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Exploring Synergies in Brain-Machine 
Interfaces: Compression vs. 

Performance 
Abstract 
Individuals with severe neurological injuries often rely on assistive technologies, but current 
methods have limitations in accurately decoding multi-degree-of-freedom (DoF) movements. 
Intracortical brain-machine interfaces (iBMIs) use neural signals to provide a more natural 
control method, but currently struggle with higher-DoF movements—something the brain 
handles effortlessly. It has been theorized that the brain simplifies high-DoF movement through 
muscle synergies, which link multiple muscles to function as a single unit. These synergies have 
been studied using dimensionality reduction techniques like principal component analysis 
(PCA), non-negative matrix factorization (NMF), and demixed PCA (dPCA) and successfully 
used to reduce noise and improve offline decoder stability in non-invasive applications. 
However, their effectiveness in improving decoding and generalizability for implanted recordings 
across varied tasks is unclear. Here, we evaluated if brain and muscle synergies can enhance 
iBMI performance in non-human primates performing a two-DoF finger task. Specifically, we 
tested if PCA, dPCA, and NMF could compress and denoise brain and muscle data and 
improve decoder generalization across tasks. Our results showed that while all methods 
effectively compressed data with minimal loss in decoding accuracy, none improved 
performance through denoising. Additionally, none of the methods enhanced generalization 
across tasks. These findings suggest that while dimensionality reduction can aid data 
compression, alone it may not reveal the "true" control space needed to improve decoder 
performance or generalizability. Further research is required to determine whether synergies are 
the optimal control framework or if alternative approaches are required to enhance decoder 
robustness in iBMI applications. 
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Significance Statement 
Many researchers believe that brain and muscle synergies represent a fundamental control 
strategy and could enhance brain-machine interface (BMI) decoding performance. These 
synergies, extracted through dimensionality reduction techniques, are thought to simplify 
complex neural data, improving the efficiency and accuracy of BMI systems. In our study, we 
evaluated brain and muscle synergies in a dexterous finger task. We found that while these 
synergies effectively compressed high-dimensional data, they did not improve performance 



through denoising or generalize well across different contexts. Instead, the highest performance 
was achieved when using all available data, suggesting that synergies, although useful for data 
compression, may not provide the "true" control space needed to enhance decoder robustness 
or adaptability in implanted BMI systems. 

Introduction 
Individuals with serious neurological injuries (e.g., spinal cord injury, severe stroke) often require 
assistive technologies to perform basic activities of daily living (Maresova et al., 2020). 
Intracortical brain-machine interfaces (iBMIs) have appeared as a promising technology for 
these individuals (Lobel and Lee, 2014). iBMIs offer a natural way of controlling external devices 
by directly decoding brain signals into behavioral commands, and have been successfully 
applied in various settings, including controlling robotic arms (Hochberg et al., 2012; Flesher et 
al., 2021) and decoding live speech (Willett et al., 2021; Card et al., 2024). Although impressive, 
iBMIs have enabled simultaneous control of only a few DoFs (Deo et al., 2024; Shah et al., 
2024; Willsey et al., 2024)—whereas the human brain can control hundreds of muscles at the 
same time for fluid motion. 

One hypothesis for the brain's efficiency in managing multiple degrees of freedom is that the 
nervous system simplifies this complexity by functionally grouping muscles, called muscle 
synergies, to act as a single unit (Holdefer and Miller, 2002; d’Avella et al., 2003; Tresch and 
Jarc, 2009; Overduin et al., 2015). Although the anatomical basis of muscle synergies is 
debated (Tresch and Jarc, 2009; Kutch and Valero-Cuevas, 2012; Ranganathan and Krishnan, 
2012; Ranganathan et al., 2016), the concept has proven practically useful for understanding 
the neural control of movement. To investigate these muscle synergies, researchers have used 
dimensionality reduction (DR) techniques (e.g., principal component analysis [PCA], non-
negative matrix factorization [NMF]) on muscle data recorded across various tasks, including 
walking (Chvatal and Ting, 2012), reaching (d’Avella et al., 2006), and grasping (Overduin et al., 
2008). Similarly, these findings have been extended to neural populations in the brain (i.e., brain 
synergies, usually referred to as neural modes that form a neural manifold in the literature 
(Gallego et al., 2018)), suggesting that DR might reveal the underlying signals of neural circuits 
during different tasks (Gallego et al., 2018; Degenhart et al., 2020). If muscle and brain 
synergies are indeed a fundamental component of the brain's control strategy, then they could 
serve as an optimal control space for brain-machine interfaces, leveraging the brain's inherent 
structure to facilitate effective control. However, this remains an open question: if synergies are 
more than an abstraction, they should ideally provide a perfect framework for iBMI control, 
allowing us to capitalize on the brain's natural control strategies for improving decoding 
performance. 

Brain and muscle synergies obtained through DR have already proven to be useful in many 
applications. They have reduced noise in noninvasive recordings (both artifact-induced and 
electrical noise (Winkler et al., 2011; Damon et al., 2013; Islam et al., 2021; Costa-García et al., 
2023)), enhanced iBMI decoder stability across sessions (Degenhart et al., 2020; Karpowicz et 
al., 2022), and compressed high-dimensional physiological data (Cozza et al., 2020). However, 



it is unclear whether the denoising benefits would transfer to implanted recordings, whether 
dimensionality reduction methods can help adapt to new task contexts beyond their initial 
training, and whether their compression benefits vary between methods and physiological 
origin. Addressing these issues and comparing different methods could enhance the 
functionality and clinical translatability of BMI and neuroprosthetic interfaces. 

In this study, we examined the potential of brain and muscle synergies extracted from three 
popular dimensionality reduction techniques to enhance intracortical BMI performance in 
predicting finger kinematics or forearm muscle activity in non-human primates (NHPs). We 
systematically assessed their ability to compress the data while maintaining performance, 
denoise the data by increasing the specificity of the recording, and facilitate generalization 
across different task contexts. We hypothesized that we could greatly reduce the dimensionality 
of brain and muscle data without losing performance and that removing some of the lower-
variance dimensions would help remove noise and improve iBMI performance. Overall, we 
found that dimensionality reduction methods were useful for data compression, with dPCA 
showing the best performance, but did not show denoising or generalization benefits.  

Materials and Methods 

Experimental Design 

Task and Data Acquisition 
We implanted two non-human primates (NHPs), monkeys N and W, with Utah microelectrode 
arrays in the pre-central gyrus at the arcuate sulcus, which is an anatomic landmark for the 
‘hand area’ of motor cortex in NHPs. Monkey N was implanted with two 64-channel arrays, 
while Monkey W received a 96-channel array, and both recordings were limited to 96 channels. 
Additionally, we implanted Monkey N with eight intramuscular bipolar electromyographic (EMG) 
electrodes in the forearm, targeting muscles involved in finger and wrist movements (Flexor 
Carpi Radialis (FCR), Flexor Digitorum Profundus (three electrodes, denoted by FDP-distal 
[FDPd], proximal [FDPp], and FDP), Flexor Carpi Ulnaris (FCU, excluded due to disconnection 
from target), Extensor Carpi Radialis Brevis (ECRB), Extensor Indicis Propius (EIP), and 
Extensor Digitorum Communis (EDC); Figure 1A).  
 
We trained the monkeys to perform a 2-degree-of-freedom (2-DoF) dexterous finger task. This 
task required them to flex and extend their index and middle-ring-small (MRS) fingers 
independently while targets were shown in colors over a virtual hand on a screen in front of the 
monkeys (screen next to monkey in Figure 1A). Targets were presented in a center-out manner: 
every two trials, the targets appeared on the center, which corresponds to a resting position 
between flexion and extension. Successful trial completion required that the monkey maintain its 
finger positions within the targets for a preset hold time of 750 ms. At the end of each trial, 
monkeys were rewarded with fruit juice by using a juicer machine that turned on a pump for 100 
milliseconds (juicer artifact in Figure 2). Finger flexion was measured using a custom-designed 



manipulandum equipped with daily-calibrated bend sensors, as described previously (Nason et 
al., 2021). 
 
Additionally, monkeys performed three variations of the task: one in which the wrist was flexed 
by 23 degrees (“wrist context”), another in which a spring to resist flexion was added (“spring 
context”), and a final one that included both changes (“spring+wrist context”). These context 
changes allowed us to explore changes in brain and muscle activity due to the variations in task 
while keeping the finger kinematics the same, as shown previously (Mender et al., 2023).  
 
Data acquisition included real-time brain and finger movement data collection via xPC Target 
(Mathworks), ensuring millisecond precision. These data were later synchronized with EMG 
data. The 96 brain channels were sampled at 30kHz and bandpass filtered from .3-7500 Hz. 
Threshold crossings were detected by setting a threshold of -4.5 times the signal root-mean-
square (RMS) during an initial calibration recording. For brain data analyses, only channels with 
at least one threshold crossing per second on average across the recording session were used. 
For each of these channels, we extracted the spiking band power (power in the 300-1000 Hz 
band, SBP, (Nason et al., 2020)) feature, known for its low power consumption while 
maintaining decoding performance. The SBP and finger movements were then averaged into 
20ms bins (Figure 1B, right). On the other hand, the EMG data processing pipeline involved 
downsampling the original signal to 2000Hz using an 800Hz anti-aliasing filter, followed by a 
band-pass filter (100 to 500Hz), signal rectification, and a final low-pass filter at 6Hz to extract 
the envelopes (“Envelope Extraction” in Figure 1B, left) (Gallego et al., 2018; Mender et al., 
2023). The processed EMG was then normalized to the peak activation of each day and the 
resulting signal is referred to as the muscle activity throughout the paper. The binned SBP and 
kinematics, as well as the muscle activity were used for all analyses, as opposed to the raw 
data for each. 
 

Figure 1: Monkey task and data processing pipeline. (A) Monkeys N and W were trained to do a 2-DoF dexterous 
finger task, in which they had to move the index and the middle-ring-small (MRS) fingers independently to targets 
shown on the screen (center diagram). While they did the task, we recorded finger position and velocity (top right 
plot), spiking band power of the brain channels (top left plot) and, for Monkey N, muscle activity (bottom left plot). (B) 
Diagram showing the data processing pipeline for the muscle (left) and brain (right) data. The 7 bipolar muscle 
channels are processed to extract envelopes and then normalized to the peak activation from each day. Then, we 



applied PCA and NMF, resulting in a set of muscle synergy activations (top plot) and synergy weights (bottom plot). 
The 96 brain channels are filtered to extract only those with at least 1Hz firing rate on average, and then transformed 
using the SBP in 20ms bins. PCA, NMF, and dPCA are then applied, which results in a set of brain synergy 
activations. Abbreviations: MRS = middle-ring-small fingers; EMG = electromyography; PCA = principal component 
analysis; NMF = non-negative matrix factorization; dPCA = demixed PCA; SBP = spiking band power; FDP = flexor 
digitorum profundus; EDC = extensor digitorum communis; FCR = flexor carpi radialis; ECRB = extensor carpi radialis 
brevis; EIP = extensor indicis propius. 

Dimensionality Reduction Methods 
We tested the application of different dimensionality reduction methods to the brain and muscle 
data. These methods work by taking an N-dimensional time series (such as the spiking band 
power of 96 channels throughout an experiment; N = 96 in that case) and extracting M (M <= N) 
synergies. These synergies can usually be described with two components: the synergy 
activations and the synergy weights (Figure 1B, bottom). The synergy activations are M-
dimensional time series representing the corresponding synergy activity. The synergy weights, 
on the other hand, represent the relative scaling of each of the original N dimensions for the 
corresponding synergy. In the neural population literature, the synergy weights are called neural 
modes, which form a neural manifold, and the synergy activations are called the neural 
trajectories of those modes in the neural manifold. 
 
We applied three dimensionality reduction methods to the data: PCA (Abdi and Williams, 2010), 
NMF (Rabbi et al., 2020), and dPCA (Kobak et al., 2016). All three were applied to brain activity, 
but only PCA and NMF were applied to the muscle activity, as dPCA’s main benefit is extracting 
movement-relevant components from brain data (Kobak et al., 2016). All three methods identify 
low-dimensional components that can reconstruct the original data as best as possible, but they 
differ in the specific loss functions and their restrictions. First, PCA defines a decoder/encoder 
matrix D and tries to minimize the reconstruction error of the data 𝑋𝑋 in the following form: 

𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷

||𝑋𝑋 − 𝐷𝐷𝑇𝑇𝐷𝐷𝐷𝐷||2 

In this study, we denominated 𝐷𝐷𝐷𝐷 as the synergy activations (a.k.a. scores) and 𝐷𝐷𝑇𝑇 as the 
synergy weights (a.k.a. loadings). The 𝐷𝐷 matrix can be solved analytically, making PCA 
decomposition a fast process. NMF, on the other hand, imposes a non-negative constraint on 
the weights (𝑊𝑊) and the activation (𝐻𝐻), and minimizes the reconstruction error of the data 𝑋𝑋 in 
the following form: 

𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑊𝑊≥0,𝐻𝐻≥0

||𝑋𝑋 −𝑊𝑊𝑊𝑊||2 

NMF does not have an analytical solution; rather, numerical methods are needed to solve for 𝑊𝑊 
and 𝐻𝐻, making it a more demanding computation than for PCA. NMF is frequently used because 
it may better represent physiological signals due to its non-negative constraint (Rabbi et al., 
2020). Finally, dPCA is similar to PCA, but it is supervised (i.e., has access to the behavior data 
for training) and also relaxes the restriction that the encoder and decoder transformations must 
be the same, which allows for selection of principal components in the brain activity most related 
to pre-specified task parameters. Like PCA, the dPCA matrices can also be solved analytically, 
using a similar objective function which accounts of task parameters, seen below: 

𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹,𝐷𝐷

�
𝜙𝜙

||𝑋𝑋𝜙𝜙 − 𝐹𝐹𝜙𝜙𝐷𝐷𝜙𝜙𝑋𝑋||2 



Where 𝜙𝜙 represents the task parameter (i.e., target position or time), 𝐹𝐹𝜙𝜙 is the encoder matrix 
for that parameter,  𝐷𝐷𝜙𝜙 is the decoder matrix for that parameter, and 𝑋𝑋𝜙𝜙 is the trial-averaged 
data separated with regards to that parameter. In this study, we used two task parameters to 
separate the data: target position (nine possible values given by all combinations of flex, extend, 
and rest for each finger group; see Task Targets in Figure 1A) and time (i.e., a condition-
independent parameter), both of which are common choices when using dPCA (Kobak et al., 
2016). The synergy activation for dPCA was determined by computing 𝐷𝐷𝜙𝜙𝑋𝑋, with 𝐷𝐷𝜙𝜙being the 
decoder matrix related to the target location, and 𝑋𝑋 the non-parameter-separated data.  

Statistical Analyses 

Signal Quality Assessment 
To assess the quality of the recorded physiological signals, we determined whether they were 
related to finger movements during the task. This tested the predictive ability of brain activity to 
estimate muscle activity and finger kinematics and of muscle activity to predict finger 
kinematics. For three days of 500 trials each with Monkey N, we trained three ridge-regression-
with-history models (Collinger et al., 2013): one to predict muscle activity from brain activity, 
another to predict finger velocity from brain activity, and the last to predict finger velocity from 
muscle activity. For two days of 500 trials each with Monkey W, since only brain and kinematics 
data were available, we trained a single model predicting finger velocity from brain activity. All 
models had a total of 10 bins of history, equivalent to 200ms. Additionally, to study movement 
discrimination ability in the recorded signals, we trained linear classifiers (support vector 
machines with a linear kernel, fitcecoc in Matlab) that distinguished between nine different task 
targets (all combinations between flex, extend, and rest for each finger group; Figure 3A). The 
performance of the ridge regression models was measured with the Pearson correlation 
coefficient between the ground truth and the prediction, and the classifier's performance with the 
average accuracy across targets. 

Relation Between Synergies and Movement 
After assessing the quality of the signals, we applied dimensionality reduction methods to the 
brain and muscle data, and explored whether those tools could advance our understanding of 
the relationship between brain and muscle synergies with movement. Unlike muscle data, which 
has a more direct and well-understood link to movement (e.g., FDPp is involved in the flexion of 
the index finger), brain signals can represent complex neural activity that doesn't always 
correspond in a straightforward way to intended actions, adding a layer of ambiguity and 
complexity in decoding. We quantified this brain and muscle interpretability hypothesis by 
computing the Pearson correlation coefficients between each muscle and brain channel with 
each kinematic output: index position and velocity and MRS position and velocity. Higher 
correlations between kinematics and muscle activity, than between kinematics and brain 
activity, may mean a more direct relationship between muscle activity and kinematics. 

Then, we studied the relationship between brain and muscle and their respective synergies. We 
first determined the number of brain and muscle synergies needed to achieve at least 90% VAF 



for PCA (Hug et al., 2010; Frère and Hug, 2012; Steele et al., 2015; Turpin et al., 2021). Given a 
set of muscle and brain synergies for each method, we computed the Pearson correlation 
coefficient between every combination of brain channels and synergies with every combination 
of muscle channels and synergies. For example, for brain channel 1, we computed the 
correlation with all seven muscle channels, all PCA muscle synergy activations, and all NMF 
muscle synergy activations. If the correlations with the muscle channels are higher overall than 
with the muscle synergies, it may suggest that muscle activity is better represented in brain 
channel 1 than muscle synergies. To determine the significance threshold for correlations, we 
ran 1000 permutations of the signals for each pair of the computed correlations. We computed 
the thresholds with an alpha level of 5% and corrected for the number of comparisons using the 
Bonferroni correction. Finally, we organized the correlations into four groups: (1) brain channels 
vs. muscle channels, (2) brain channels vs. muscle synergies, (3) brain synergies vs. muscle 
channels, and (4) brain synergies vs. muscle synergies. We compared the overall correlations 
between groups using the cocor package in R. 

Compression Experiment 
Next, we tested whether PCA, NMF, and dPCA were useful in compressing brain and muscle 
features when predicting muscle activity and kinematics. First, we computed the variance 
accounted for (VAF), as described in (Gallego et al., 2018), for each method with both brain and 
muscle data, with varying numbers of synergies. Then, we trained ridge regression models that 
took varying numbers of brain or muscle synergies as input and predicted muscle activity and 
kinematics (when using brain synergies) or only kinematics (when using muscle synergies). We 
measured their performance by computing the Pearson correlation coefficient between the 
predictions and the ground truth. Additionally, we trained ridge regression models using the full 
high-dimensional brain or muscle data as input and compared their performance in predicting 
muscle activity and kinematics to that of ridge regressions trained with synergies. Given that the 
performance of these regressions may not necessarily exhibit a strictly monotonic increase, we 
determined for each the number of synergies necessary to achieve at least 95% of the 
correlation given by the full-data-trained model by fitting the following exponential function to the 
results: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥)  =  𝑘𝑘1 + 𝑘𝑘2 ⋅ (1 + 𝑒𝑒−𝑘𝑘3𝑥𝑥) 
where x is the number of synergies used, corr represents the Pearson correlation coefficient, 
and 𝑘𝑘1through 𝑘𝑘3were fit using gradient-based optimization. After fitting the model, we found the 
x such that corr(x) went over 95% of the maximum value (𝑘𝑘1 + 𝑘𝑘2). Then, we expressed the 
compression capabilities of each method for each input as the ratio between the total number of 
dimensions and this x. We tested the compression on three days for Monkey N and two days for 
Monkey W. 

Denoising Experiment 
Previous research has shown that removing dimensions of brain data (in modalities such as 
EEG or MEG) can help in decoding by eliminating noise (Winkler et al., 2011; Islam et al., 2021) 
(a.k.a., denoising). In this case, noise is defined as the electrical activity not related to the 
behavior of interest (e.g., movement artifacts, power line interference, or neural activity not 



directly related to behavior). We are interested in studying whether extracting synergies and 
then using them for decoding can help in denoising our intracortical and intramuscular data. We 
tested this hypothesis by training multiple models that evaluated muscle activity and kinematics 
prediction from brain and muscle synergies and compared them to the baselines of using all the 
available data. If the dimensionality reduction methods can denoise the data, then we would see 
better predictions coming from a reduced number of synergies than using all the data available. 
On the other hand, if the methods cannot denoise the data, then removing information, in the 
form of removing higher-order synergies, will reduce performance. To determine this, we 
performed the following analysis. We trained eight ridge regressions with different inputs and 
outputs (Table 1, schematic in Figure 4A). Then, we compared the results of reducing the 
dimensionality using PCA (brain and muscles), NMF (brain and muscles), and dPCA (only 
brain), versus just using the full dimensional data. Note that for the models that predict muscle 
synergy activation rather than muscle activity, an additional layer was added that projects the 
output into muscle space using the appropriate muscle synergy weights, to compare the 
predictions across models in muscle space. To measure the performance of these models, we 
used the Pearson correlation coefficient between the predictions and the ground truth output. 
We tested denoising on three days for Monkey N, and two days for Monkey W.  
 
 

Table 1: Ridge regressions for denoising analyses 

Number Input Output 

1 Brain activity Muscle activity 

2 Brain activity Finger Velocity 

3 Brain activity Muscle syn. activation 

4 Brain syn. activation Muscle activity 

5 Brain syn. activation Finger Velocity 

6 Brain syn. activation Muscle syn. activation 

7 Muscle activity Finger Velocity 

8 Muscle syn. activation Finger Velocity 

 

Generalization Experiment 
Finally, previous studies have shown that latent spaces extracted with dimensionality reduction 
methods are stable across days and tasks (Gallego et al., 2018), and we wanted to test whether 
they could help for decoding generalizing across task contexts. We had Monkey N perform the 
finger task in four different contexts (normal, spring, wrist, and spring+wrist) sequentially and 
then trained ridge regression models to predict finger velocity and muscle activity for each non-
normal context. Off-context models refer to those trained using 100% of the data in the normal 
context and then tested using the last 20% of the data in each non-normal context (Figure 5A). 



On-context models were used as a baseline and refer to those trained using the first 80% of the 
data in each non-normal context and then tested on the last 20% of the data in the same 
context. Similarly to what we did for the denoising experiment, we trained off-context models to 
predict finger velocity and muscle activity from the full brain and muscle data (models 1, 2, and 
7 in Table 1), which are referred to as the baseline on-context models. Additionally, we trained 
off-context models to predict finger velocity and muscle activity from brain synergies and 
through muscle synergies (models 3, 4, 5, 6, and 8 in Table 1; Figure 5A). We measured each 
model’s performance using the Pearson correlation coefficient between the predictions and the 
ground truth and compared the performance between on-context and off-context models, as 
well as between models trained on synergies and models trained on the full data. We tested 
generalization on one day for Monkey N containing all four task contexts sequentially.  

Results 

Signal Quality Assessment 

As an initial step, we sought to verify that the recorded physiological signals were related to the 
monkey finger movements during the task. The recorded EMG in Monkey N visibly modulated 
activity with finger movements (Figure 2A). For example, FDP, a flexor muscle targeting middle-
ring-small (MRS) flexion, increased activity when moving fingers towards flexion (Figure 2A, 
top), while EDC, an extensor muscle targeting MRS extension, increased activity when 
extending MRS (Figure 2A, bottom). Additionally, when using all EMG channels, the muscle 
activity significantly predicted finger velocity using a ridge regression with history (correlation 
coefficient CC = 0.60±0.08 across days; p < 1E-4; Figure 2B, right). Finally, we could use the 
muscle activity to accurately classify the correct kinematic target 97.64%±1.17% of the time 
(average across n=3 days; chance level 28.2%, nine total targets; Figure 2C).  

Similarly, we wanted to verify the intracortical data reflected finger movements too. We recorded 
intracortical spiking band power (SBP; Nason et al., 2020) from 96 channels in the hand area of 
the motor cortex for two monkeys: N and W. The “active” channels for each, measured as those 
that had at least one spike per second on average, are shown in Table 2. With Monkey N, the 
SBP predicted finger velocities with a slightly lower correlation (CC = 0.53±0.09; p < 1E-4; 
Figure 2B) compared to the predictions from muscle activity. Monkey N’s SBP could also 
significantly predict muscle activity (CC=0.71±0.05; p < 1E-19) and accurately classify the task 
target for each trial (acc = 91.3%±4.6%; Figure 2C). Monkey W’s SBP showed similar predictive 
capabilities compared to Monkey N, significantly predicting finger velocities (CC = 0.58±0.08; p 
= 1E-3; Figure 2D) and detecting the correct kinematic target (acc = 86.2%±0.9%; Figure 2C). 
Overall, these results show that the recorded physiological signals were related to the monkey 
finger movement during the task. 

Table 2: Number of active intracortical channels per day and monkey 

 Monkey N (total 96) Monkey W (total 96) 



Day 1 53 53 

Day 2 37 29 

Day 3 36 N/A 
 

Figure 2: Assessment of the quality of physiological signals. (A) Monkey N’s raw and processed EMG, together with 
MRS finger velocity for two example trials. Gray vertical bars represent the removed juicer artifact (see Methods) at 
the beginning of each trial. Top plot shows FDP, a muscle targeting MRS flexion, and the bottom shows EDC, a 
muscle targeting MRS extension. Vertical gray line shows scale of 100uV for the raw EMG and horizontal black line 
shows scale for 500ms. (B) Example traces of Monkey N’s processed FDP EMG predicted from brain activity (top) 
and finger velocity predicted from brain activity (middle) and processed EMG (bottom). Bar plot on the right shows 
aggregated correlations corresponding to three days of Monkey N data. Black dots in the left bar represent the 
predictions for each muscle channel (seven dots for each day). Bar plots in middle and right bar represent the velocity 
predictions for each finger group (two dots for each day). (C) Accuracy of classifying targets using EMG (muscle 
symbol) and brain activity (brain symbol) for both monkeys across days. Segmented line shows chance level. 
Aggregated results correspond to three days of Monkey N and two days of Monkey W. (D) Same as in B but for 
Monkey W. Trace shows example of MRS velocity and the prediction when using the brain data. Bar plot shows 
aggregated results across 2 days of Monkey W data. Abbreviations: FDP = flexor digitorum profundus; EDC = 
extensor digitorum communis; MRS = middle-ring-small fingers; Vel. = velocity; EMG = electromyography.  

Relation Between Synergies and Movement 

Having shown that the recorded signals were, in fact, related to the monkey finger movements, 
we were next interested in exploring whether the dimensionality reduction methods could reveal 
distinct relationships between synergies and movements, particularly in the muscle data. Across 
all three days and methods (PCA, NMF), the extracted muscle synergies consistently exhibited 



an explainable structure closely related to the task. Specifically, two synergies were 
predominantly composed of either flexor or extensor muscles (e.g., synergies 1 and 2 in Figure 
3A, respectively), reflecting the flexion-extension nature of the center-out task performed by the 
monkeys. The third synergy was more broadly distributed among muscles, even those involved 
in opposing movement patterns, suggesting a supportive role in movement execution. This 
follows from a more direct relationship between muscles and movement (e.g., FDP is known to 
be involved in finger flexion) and was quantified by computing the correlations between 
individual muscle channels and specific movements (Figure 3B). In contrast, the individual brain 
channels are believed to have a more obscure relationship with movement, which hinders a 
similar interpretation to the muscle synergies in the context of the task, and was further 
validated by the lower correlations with movement, compared to the muscle synergies (Figure 
3B). 

This relationship between brain and movement may be obscure due to an intermediate 
modulation through brain and muscle synergies. We explored this hypothesis by investigating 
the relationship between brain and muscles directly, or through synergies. We computed the 
correlations between all possible pairs of brain and muscle channels (Nx7 pairs for each day, 
where N corresponds to brain channels in Table 2). We computed the number of brain and 
muscle synergies needed to explain at least 90% of the variance in PCA for each day, and then 
computed the correlations between all pairs of the activations of these synergies (PxQx3 for 
each day, where P is the number of brain synergies and Q the number of muscle synergies). 
We found generally low (CC <= 0.4; Figure 3C) but significant correlations on most pairs: 93% 
for brain to EMG, 92% for brain to muscle synergies, 72% for brain synergies to EMG, and 71% 
for brain synergies to muscle synergies. Interestingly, we also found significantly higher 
correlations between brain and muscle activity than between all other pairings: higher than brain 
to muscle synergies, p<1E-20; higher than brain synergies to EMG, p < 1E-20; higher than brain 
synergies to muscle synergies, p < 1E-20. The stronger relationship between brain and muscles 
than between using any type of synergy as an intermediate step raises the question as to 
whether synergies can actually be more useful for decoding than using all the available data, or 
at least whether they can simply help compress the data more effectively, as has been 
suggested previously (Cozza et al., 2020; Tang et al., 2021). 



 

Figure 3: Analysis of brain and muscle synergy relationships for monkey N. (A) Muscle synergy weights extracted 
using PCA (top bar plot in each window) and NMF (bottom bar plot) across days. Synergy weights were consistent 
across days and methods and revealed a structure closely related to the task. (B) Barplot showing the average 
across days of the maximum absolute correlation coefficient between all muscle channels and all brain channels with 
the four kinematic outputs: index and MRS position, index and MRS velocity. The brain channels had a weaker direct 
relationship with the kinematic outputs, which hinders an interpretation of the brain synergies similar to that shown in 
A. (C) Average of the absolute correlation coefficient between all possible pairs of brain and muscle synergy 
activations, broken down by the method(s) used. The black segmented line shows the average of the absolute 
correlation coefficient between all pairs of brain and muscle channels, while the shading represents the standard 
error of the mean (SEM). All error bars represent the SEM as well. Abbreviations: PCA = principal component 
analysis; NMF = non-negative matrix factorization; FCR = flexor carpi radialis; FDP = flexor digitorum profundus; 
FDPd = FDP distal; FDPp = FDP proximal; ECRB = extensor carpi radialis brevis; EIP = extensor indicis propius; 
EDC = extensor digitorum communis; Idx = index finger; MRS = middle-ring-small fingers; Pos. = position; Vel. = 
velocity; Syn. = synergy; Corr. Coef. = Pearson correlation coefficient; a.u. = arbitrary units.  

Compression and Denoising Experiments 

The ability to compress data effectively is useful by itself, as it can greatly lower power 
requirements and enable simpler decoding models (Casson et al., 2010; Thies and 
Alimohammad, 2019). Here, we first compared the different dimensionality reduction methods’ 
abilities in compressing brain and muscle data in two ways: we first measured the VAF and 
studied how the total explained variance changed when increasing the number of synergies. 
Then, we evaluated compressibility end-to-end by measuring the performance of decoders 
trained on varying numbers of synergies as inputs (Figure 4A). In terms of VAF, three out of 



seven (~43%) muscle synergies consistently explained >90% of the variance, across all days 
and methods (Figure 4C, right). For brain synergies, ~54% of the total dimensions were needed 
on average to explain 90% of the variance (Figure 4C, left) for monkey N, while ~51% were 
needed for Monkey W (Figure 4E, left). Note that dPCA is extracted from the trial-averaged data 
and thus cannot explain the full variance of the data, even with all possible synergies. In terms 
of end-to-end compression ability, we found that all three methods were good at compressing 
brain data, achieving 95% of the maximum prediction correlation with a relatively small 
percentage of the total dimensions (Figure 4, B and E), resulting in an average compression 
ratio of 3.43:1 across monkeys and outputs (Table 3). When compressing muscle data, PCA 
and NMF had a smaller effect than on the brain data, achieving an average compression ratio 
across days of 1.75:1 (Table 3). Overall, dimensionality reduction methods were effective in 
compression, with the brain data showing greater benefits and dPCA showing the best 
performance. 

Table 3: Average compression ratios across methods and monkeys. 

Prediction Type Monkey PCA NMF dPCA 

Brain to Velocity 
N 2.23:1 2.23:1 4.83:1 

W 2.90: 1 2.90:1 4.14:1 

Brain To EMG N 2.90:1 2.90:1 5.80:1 

EMG to Velocity N 1.75:1 1.75:1 N/A 

Given the promising results in compressing brain and muscle data, we next examined whether 
dimensionality reduction could also enhance prediction accuracy by reducing noise in the data, 
i.e., whether it could “denoise” brain and muscle data (De Clercq et al., 2005; Costa-García et 
al., 2023). Specifically, we were interested in determining if fewer synergies, representing a 
compressed and potentially less noisy version of the original data, could lead to better 
predictions compared to using all dimensions. We trained models either using the full dataset or 
on a reduced set with varying number of synergies (see Methods) and compared their prediction 
performance. Our results showed that, on both monkeys, none of the dimensionality reduction 
models outperformed the baseline of using the full data (Figure 4B, D, and E; Supp. Figure 1). 
When predicting muscle activity (Figure 4B, top row and heatmap in 4D; Supp. Figure 1) and 
finger velocity (Figure 4B, bottom row and Figure 4E right), we observed a similar trend: as the 
number of synergies increased (and thus also the VAF), the prediction performance improved, 
but never above the baseline (indicated by the black lines on the line plots, 100% in heatmap). 
This lower performance was consistent across dimensionality reduction methods, with PCA and 
NMF showing nearly identical behavior and dPCA generally performing better with fewer 
synergies. 



 

Figure 4: Compression and denoising analyses. (A) Diagram explaining the connections that were tested. Each line 
represents a different model. For example, the pink line represents a model that was trained with brain synergy 
activations as the input, and with muscle activity as the output. The three icons represent the brain channels, the 
muscle activity, and the finger velocity, respectively. The two black lines represent the baselines, shown in black in 
the rest of the plots. (B, top) Correlation coefficient of the prediction of muscle activity from brain synergies (left) and 
from the brain channels through muscle synergies (right). The x axis represents what percent of the total dimensions 
were used to make the predictions. The black lines represent the result of using all brain channels to predict all 
muscle activity. The colors of the icons are as in A. The vertical lines represent the percent of total dimensions that 
are needed for each method to achieve 95% of the maximum correlation. The shading for each line represents the 
standard error of the mean across days. (B, bottom) Correlation coefficient of the prediction of finger velocity from 
brain synergies (left) and from muscle synergies (right). (C) Average variance accounted for as a function of the 
percentage of total brain (left) and muscle (right) channels for monkey N. (D) Sample heatmap showing, for day 1, the 
correlation of predicting muscle activity through brain and muscle synergies, normalized to the result of predicting 
muscle activity directly from brain channels. A value of 100 would mean that it matches the baseline perfectly. P 
represents PCA, N represents NMF, and d represents dPCA. (E) Same as B and C but for Monkey W. 
Abbreviations: PCA = principal component analysis; NMF = non-negative matrix factorization; dPCA = demixed 
PCA; VAF = variance accounted for; Syn. = synergy; Vel. = velocity.  



Generalization Experiment 

Previous research suggests that even if synergies cannot help with denoising, they may be 
stable across tasks (Gallego et al., 2018), which may enable higher generalization across tasks 
than using all data. We tested this hypothesis by having Monkey N perform the same task under 
different contexts: normal, with a spring resisting flexion, a 23-degree change in wrist angle, and 
both wrist and spring changes simultaneously. We trained decoders based on the full data or a 
set of synergies for both brain and muscles and predicted finger velocities, muscle activity, and 
muscle activity through muscle synergies. Off-context models were trained on normal trials, 
while on-context models were trained in the context they were tested on (see Methods, Figure 
5A). Overall, we found that, regardless of context, as the number of synergies increased, the 
correlation with finger velocities and muscle activity increased but did not surpass correlations of 
the off-context models trained on full data (Figure 5B-F; Supp. Figure 2). Therefore, there does 
not seem to be any obvious performance enhancing advantages of using synergies to tackle the 
problem of decoding generalization. The only exception is shown on Figure 5F, where NMF 
demonstrated a modest improvement in correlation in the spring+wrist context, compared to 
using the full dataset off-context (1-10%), but this effect was not observed in the other contexts 
(Supp. Figure 2).  

Figure 5: Generalization analyses for Monkey N. (A) Diagram showing how the on-context and off-context models 
differ: on-context models are trained on each non-normal context (spring, wrist, spring+wrist) and tested on the same 
context. Off-context models are trained on the normal context and then tested on each of the non-normal contexts. 
(B) Average across non-normal contexts of the Pearson correlation coefficient of the prediction of muscle activity from 
all numbers of brain synergies up to the total dimension of the brain data. The two black lines represent the baselines 
for on-context and off-context, when predicting the muscle activity from the full brain data. (C) Same as in B but for 
the prediction of muscle activity from the full brain data and through muscle synergies (see Methods). (D) Same as in 



B and C but now showing the prediction of finger velocity from brain synergies. (E) Same as in B, C, and D, but now 
for the prediction of finger velocity from muscle synergies. (F) Heatmap for the spring+wrist context, like the one 
shown in Figure 4D, showing the correlation coefficient of the prediction of muscle activity from brain synergies and 
through muscle synergies, normalized to the off-context baseline prediction. A value over 100 means a better 
prediction than the baseline off-context model that uses all brain data and predicts muscle activity directly. 
Abbreviations: PCA = principal component analysis; NMF = non-negative matrix factorization; dPCA = demixed 
PCA; Syn. = synergy.  

Discussion 
In this study, we tested the ability of three popular dimensionality reduction methods to 
compress and denoise brain and muscle activity from implanted electrodes, as well as their 
capacity for generalizing to unseen contexts. Our results demonstrate that while dimensionality 
reduction methods can effectively compress neural and muscle data, they do not improve 
decoding accuracy compared to using all available data or help generalize across tasks. 
Notably, while PCA and NMF performed comparably in compression, dPCA, a supervised 
approach, generally showed better performance with fewer synergies, suggesting it may be a 
preferable approach when compressing for decoding models. Overall, these findings indicate 
that while synergies provide efficient data compression, they do not help data denoising for 
better performance than using the full dataset. 
 
Brain and muscle synergies have been suggested in the field of neuroprosthetics as a practical 
way of solving different issues in performance. For example, (Degenhart et al., 2020) showed 
that brain synergies can be used to maintain BMI decoder performance across days by 
transforming each new day’s brain activity to the synergy space. On the muscle side, (Ajiboye 
and Weir, 2009) showed that muscle synergies can be used to discriminate between postures of 
the American Sign Language and proposed their use as a control input for prosthetic devices. 
Here, we show that even though muscle synergies can be easily interpreted in terms of their 
kinematic meaning (in our case, two synergies for finger flexion, plus another for extension, 
Figure 3, A), the correlations between the brain and muscle activations were still always higher 
than between the brain and muscle synergy activations (Figure 3, C). These higher correlations 
suggest that a prosthetic control strategy that uses muscle synergies rather than muscle 
activation for control may be less related to brain activity, which can be undesirable when 
developing control strategies that are easy and natural to use, especially if the decoding 
performance with synergies is worse. 
 
Additionally, we showed that synergies extracted using dimensionality reduction techniques 
were not useful for denoising brain or muscle data from invasive electrodes. Synergies also did 
not appear to be useful in most cases for generalizing decoders for the same data across 
contexts. If these techniques could remove unrelated signals (“noise”) from the data, then we 
would have seen better performance when projecting the data into a lower dimension than when 
using the full data. This denoising phenomenon has been shown in other studies (Winkler et al., 
2011; Damon et al., 2013; Niegowski et al., 2015; Islam et al., 2021; Costa-García et al., 2023), 
mostly in the context of less invasive recording methods. In our study, however, we found that 
removing dimensions to the data almost always results in worse performance (Figure 4), which 



could be driven by the higher inherent signal-to-noise-ratio (SNR) of invasive methods versus 
their noninvasive counterparts.  
Overall, if the dimensionality reduction methods improved the stability of the decoders for brain 
and muscle across tasks, then we would have seen better generalization performance when 
using these methods than when using the full data. The stability of the lower dimensional 
projections of brain data across tasks has been shown in previous studies (Gallego et al., 2018), 
and others have shown that decoder stability across time can be achieved by reducing the 
dimensionality and then adjusting future data points. Here, however, we show that 
dimensionality reduction methods on their own did not help a decoder generalize better than 
when using the full data in most cases. The results of denoising and generalization collectively 
suggest that higher-dimensional components, which are typically considered to lack task-related 
information (Barradas et al., 2020), do contain relevant information for decoding. 
 
Although we were not able to achieve improvements by using synergies for denoising and 
generalization, these methods were still a great tool for compression. We found that all 
dimensionality reduction methods achieved good results, showing high compressibility for brain 
data (3.48:1 for Monkey N, 3.31:1 for Monkey W) and muscle data (1.75:1 for Monkey N; Figure 
4). These results suggest that the brain data can be greatly compressed with no loss in 
decoding performance, which can be very valuable for more complex neural-network-based 
models. The size of these models is usually dictated by the dimension of the feature vector 
(Guduru, 2006), and bigger models increase the risk of overfitting to the training data 
(Srivastava et al., 2014) and require more power to run in real-time (Casson et al., 2010; Gabert 
et al., 2020). Models that use less power are going to be the key to translating brain-machine 
interfaces into everyday patient use. Thus, using a linear dimensionality reduction technique as 
a first layer, potentially even implemented in hardware, that transforms the input features into a 
lower dimensional space without losing performance can be a key addition to existing complex 
models. A similar process has been used in other applications to improve model size (Mladenić, 
2006).  
 
The three dimensionality reduction methods we tested, PCA, NMF, and dPCA differ in the loss 
function they minimize and the restrictions they impose: PCA restricts the decoder to be the 
transpose of the encoder; NMF restricts the activations and the weights to be positive; dPCA 
allows for different encoder and decoder but computes the transformations subject to a task 
parameter of interest. In our results, we found dPCA to do the best in terms of compression, 
denoising, and generalization: it achieved higher compression rates than PCA and NMF (5.32:1 
vs 2.57:1 for Monkey N; 4.14:1 vs 2.90:1 for Monkey W) and performed the closest to the full 
data in the denoising and generalization experiments (Figures 4 and 5). These better results 
likely follow from the ability of dPCA to have different decoder and encoder transformations, the 
fact that it is trained in a supervised manner, and the possibility of using task parameters (target 
locations, in our case) to extract transformations relevant to the task.  
 
This study has some limitations that should be acknowledged. First, we did not test the full 
range of dimensionality reduction techniques available. We focused on PCA and NMF, which 
are commonly applied to brain and muscle data, respectively, and included dPCA for brain data 



to leverage task-specific information. However, other methods, such as more advanced 
manifold learning techniques or neural network-based approaches (Pandarinath et al., 2018; 
Abbaspourazad et al., 2023), may offer different or improved insights into data structure and 
decoding performance, as well as allow for potential non-linear readouts from synergies to 
behavior. Second, our muscle dataset was limited to a single monkey that had synchronized 
recordings of muscle activity, brain signals, and kinematics. Although these experiments provide 
a valuable foundation, the generalizability of our findings is limited by the small sample size. We 
acknowledge the challenges and costs associated with such experiments, and we aim to 
expand our study to include additional subjects in future research to strengthen the validity of 
our conclusions. 
 
In conclusion, the results of this study show that dimensionality reduction methods can 
effectively compress high-dimensional physiological data for brain-machine interfaces and 
neuroprosthetics, achieving substantial reductions in data size while retaining predictive power. 
However, these methods showed limited utility for denoising or improving generalization, as 
none outperformed the baseline (i.e., using all available data) for predicting EMG or finger 
velocity. Although synergies approximated full data performance in cross-context tasks, there 
was no significant advantage in enhancing generalizability. These findings highlight both the 
value and the limitations of dimensionality reduction for neural data applications, particularly in 
tasks requiring compact yet informative representations. 
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