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ABSTRACT

Virtually all federated learning (FL) methods, including FedAvg, operate in the
following manner: i) an orchestrating server sends the current model parameters
to a cohort of clients selected via certain rule, ii) these clients then independently
perform a local training procedure (e.g., via SGD or Adam) using their own train-
ing data, and iii) the resulting models are shipped to the server for aggregation.
This process is repeated until a model of suitable quality is found. A notable
feature of these methods is that each cohort is involved in a single communica-
tion round with the server only. In this work we challenge this algorithmic de-
sign primitive and investigate whether it is possible to “squeeze more juice” out
of each cohort than what is possible in a single communication round. Surpris-
ingly, we find that this is indeed the case, and our approach leads to up to 74%
reduction in the total communication cost needed to train a FL. model in the cross-
device setting. Our method is based on a novel variant of the stochastic proximal
point method (SPPM-AS) which supports a large collection of client sampling
procedures some of which lead to further gains when compared to classical client
selection approaches.

1 INTRODUCTION

Federated Learning (FL) is increasingly recognized for its ability to enable collaborative training
of a global model across heterogeneous clients, while preserving privacy (McMahan et al., 2016;
2017; Kairouz et al., 2019; Li et al., 2020a; Karimireddy et al., 2020b; Mishchenko et al., 2022b;
Malinovsky et al., 2024; Yi et al., 2024). This approach is particularly noteworthy in cross-device
FL, involving the coordination of millions of mobile devices by a central server for training pur-
poses (Kairouz et al., 2019). This setting is characterized by intermittent connectivity and limited
resources. Consequently, only a subset of client devices participates in each communication round.
Typically, the server samples a batch of clients (referred to as a cohort in FL), and each selected
client trains the model received from the server using its local data. Then, the server aggregates the
results sent from the selected cohort. Another notable limitation of this approach is the constraint
that prevents workers from storing states (operating in a stateless regime), thereby eliminating the
possibility of employing variance reduction techniques. We will consider a reformulation of the
cross-device objective that assumes a finite number of workers being selected with uniform prob-
abilities. Given that, in practice, only a finite number of devices is considered, i.e. the following
finite-sum objective is considered:

min f(r) = =3 fi(x). M)
=1

xR

This reformulation aligns more closely with empirical observations and enhances understanding for
illustrative purposes. The extension to the expectation form of the following theory can be found in
Appendix F.4.

Current representative approaches in the cross-device setting include FedAvg and FedProx. In our
work, we introduce a method by generalizing stochastic proximal point method with arbitray sam-
pling and term as SPPM-AS. This new method is inspired by the stochastic proximal point method
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Figure 1: The total communication cost (defined as T'K') with the number of local communication
rounds K needed to reach the target accuracy e for the chosen cohort in each global iteration. The
dashed red line depicts the communication cost of the FedAvg algorithm. Markers indicate the T'K
value for different learning rates y of our algorithm SPPM-AS.

(SPPM), a technique notable for its ability to converge under arbitrarily large learning rates and
its flexibility in incorporating various solvers to perform proximal steps. This adaptability makes
SPPM highly suitable for cross-device FL (Li et al., 2020a; Yuan & Li, 2022; 2023; Khaled & Jin,
2023; Lin et al., 2024). Additionally, we introduce support for an arbitrary cohort sampling strategy,
accompanied by a theoretical analysis. We present novel strategies that include support for client
clustering, which demonstrate both theoretical and practical improvements.

Another interesting parameter that allows for control is the number of local communications. Two
distinct types of communication, global and local, are considered. A global iteration is defined
as a single round of communication between the server and all participating clients. On the other
hand, local communication rounds are synchronizations that take place within a chosen cohort.
Additionally, we introduce the concept of total communication cost, which includes both local and
global communication iterations, to measure the overall efficiency of the communication process.
The total communication cost naturally depends on several factors. These include the local algorithm
used to calculate the prox, the global stepsize, and the sampling technique.

Previous results on cross-device settings consider only one local communication round for the se-
lected cohort (Li et al., 2020b; Reddi et al., 2020; Li et al., 2020a; Wang et al., 2021a;b; Xu et al.,
2021; Malinovsky et al., 2023; Jhunjhunwala et al., 2023; Sun et al., 2023; 2024). Our experimental
findings reveal that increasing the number of local communication rounds within a chosen cohort
per global iteration can indeed lower the total communication cost needed to reach a desired global
accuracy level, which we denote as €. Figure 1 illustrates the relationship between total communica-
tion costs and the number of local communication rounds. Assume that the cost of communication
per round is 1 unit. K represents the number of local communication rounds per global iteration for
the selected cohort, while 7' signifies the minimum number of global iterations needed to achieve
the accuracy threshold e. Then, the total cost incurred by our method can be expressed as T K. For
comparison, the dashed line in the figure shows the total cost for the FedAvg algorithm, which al-
ways sets K to 1, directly equating the number of global iterations to total costs. Our results across
various datasets identify the optimal K for each learning rate to achieve e-accuracy. Figure | shows
that adding more local communication rounds within each global iteration can lead to a significant
reduction in the overall communication cost. For example, when the learning rate is set to 1000,
the optimal cost is reached with 10 local communication rounds, making K = 10 a more efficient
choice compared to a smaller number. On the other hand, at a lower learning rate of 100, the optimal
cost of 12 is reached with K = 3. This pattern indicates that as we increase the number of local com-
munication rounds, the total cost can be reduced, and the optimal number of local communication
rounds tends to increase with higher learning rates.

Our key contributions are summarized as follows:

e We present and analyze SPPM-AS, a novel approach within the stochastic proximal point method
framework tailored for cross-device federated learning, which supports arbitrary sampling strategies.
Additionally, we provide an analysis of standard sampling techniques and introduce new techniques
based on clustering approaches. These novel techniques are theoretically analyzed, offering a thor-
ough comparison between different methods.
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o Our numerical experiments, conducted on both convex logistic regression models and non-convex
neural networks, demonstrate that the introduced framework enables fine-tuning of parameters to
surpass existing state-of-the-art cross-device algorithms. Most notably, we found that increasing
the number of local communication rounds within the selected cohort is an effective strategy for
reducing the overall communication costs necessary to achieve a specified target accuracy threshold.

e We offer practical guidance on the proper selection of parameters for federated learning applica-
tions. Specifically, we examine the potential choices of solvers for proximal operations, consider-
ing both convex and non-convex optimization regimes. Our experiments compare first-order and
second-order solvers to identify the most effective ones.

2 METHOD

In this section, we explore efficient stochastic proximal point methods with arbitrary sampling for
cross-device FL to optimize the objective (1). Throughout the paper, we denote [n] :== {1,...,n}.
Our approach builds on the following assumptions.

Assumption 2.1. Function f; : R? — R is differentiable for all samples i € [n].

This implies that the function f is differentiable. The order of differentiation and summation can be
interchanged due to the additive property of the gradient operator.

Eqn. (1) 1 — 1 &
vi v [ 15 h) < LS ws
i=1 i=1
Assumption 2.2. Function f; : R? — R is u-strongly convex for all samples i € [n], where y > 0.
That is, fi(y) + (Vfi(y),z —y) + §llz — y||2 < fi(z), forall z,y € R%

This implies that f is p-strongly convex and hence has a unique minimizer, which we denote by z,.
We know that V f(z,) = 0. Notably, we do nor assume f to be L-smooth.

2.1 SAMPLING DISTRIBUTION

Let S be a probability distribution over the 2" subsets of [n]. Given a random set S ~ S, we define
p; :=Prob(i € S), i€ [n].
We restrict our attention to proper and nonvacuous random sets.

Assumption 2.3. S is proper (i.e., p; > 0 for all ¢ € [n]) and nonvacuous (i.e., Prob(S = 0) = 0).

Let C be the selected cohort. Given () # C' C [n] and i € [n], we define

v;(C) = {Pi z ; g = folz) = %Zvi(c)fi(x)zz

0 i€C

; fi(). 2

np;

Note that v;(S) is a random variable and fg is a random function. By construction, Egs [v;(S)] =
1 for all ¢ € [n], and hence

n

Iy w<s>fi<x>] = 2> Bous () filw) = 3 file) = (o)

i=1

Esws [fs(z)] = Es~s

Therefore, the optimization problem in Equation (1) is equivalent to the stochastic optimization
problem

min {f(x) := Esws [fs(2)]}. 3)

zERY

Further, if for each C' C [n] we let pc := Prob(S = C), then f can be written in the equivalent
form

f(@) =Esus[fs@)] = Y pofolz)= > pofe(x). “

oCln] CCinl,pe>0
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2.2 CORE ALGORITHM Algorithm 1 Stochastic Proximal Point Method with

Arbitrary Sampling (SPPM-AS)

Applying SPPM (Khaled & Jin, 2023) to
Equation (3), we arrive at stochastic prox- 1: Input: starting point 20 € R, distribution S over

imal point method with arbitrary sampling the subsets of [n], learning rate vy > 0
(SPPM-AS, Algorithm 1): 2: fort =0,1,2,...do
3:  Sample S; ~ S
Tiy1 = pI‘OX,stt (xt) ; 4: Tiy1 = prOX"/fs, (xt)
where S; ~ S. 5: end for

Theorem 1 (Convergence of SPPM-AS). Let Assumption 2.1 (differentiability) and Assumption 2.2
(strong convexity) hold. Let S be a sampling satisfying Assumption 2.3, and define

. M 2 2
Jas = min -, oZas= Y. pelVie (@)l (5)
CCln],pc>0 ieC np; CC[n],pc>0

Let 29 € RY be an arbitrary starting point. Then for any ¢ > 0 and any v > 0, the iterates of
SPPM-AS (Algorithm 1) satisfy

2t 2
1 YO x,AS
E —z ] < [ ——— — a4+ A
[”xt 2l ] - <1+7,uAs> lzo = 2. 'yuis+2,uAS

Theorem interpretation. In the theorem presented above, there are two main terms:
(Y (1+wAS))2t and 797 as/(vuZg+2uas), which define the convergence speed and neighborhood, re-
spectively. Additionally, there are three hyperparameters to control the behavior: ~ (the global
learning rate), AS (the sampling type), and T" (the number of global iterations). In the following
paragraphs, we will explore special cases to provide a clear intuition of how the SPPM-AS theory
works.

Interpolation regime. Consider the interpolation regime, characterized by 02 ,4 = 0. Since we

can use arbitrarily large v > 0, we obtain an arbitrarily fast convergence rate. Indeed, (1/ (1+’Y/LAS))2t
can be made arbitrarily small for any fixed ¢ > 1, even ¢ = 1, by choosing ~ large enough. However,
this is not surprising, since now f and all functions f¢ share a single minimizer, x,, and hence it is
possible to find it by sampling a small batch of functions even a single function fg¢, and minimizing
it, which is what the prox does, as long as -y is large enough.

A single step travels far. Observe that for v = 1/uas, we have 797 as/(vudg+2uas) = 75.as/342.
In fact, the convergence neighborhood Wf,As/(wiSJrzuAs) is bounded above by three times this
2 2 2
. . . . . Y04 AS : O, AS 79 AS
quantity irrespective of the choice of the stepsize. Indeed, S 2uns < min { WL Thas } <

2
olzéAS . That means that no matter how far the starting point x is from the optimal solution x, if we

choose the stepsize 7y to be large enough, then we can get a decent-quality solution after a single itera-
tion of SPPM-AS already! Indeed, if we choose ~ large enough so that (1/14+uas)? ||zo — 24> < 6,

where 0 > 0 is chosen arbitrarily, then for ¢ = 1 we get E {Hxl — 2, |)?| <0+ % as/ids.

Iteration complexity. We have seen above that an accuracy arbitrarily close to (but not reach-
ing) o% as/u%s can be achieved via a single step of the method, provided that the stepsize ~y
is large enough. Assume now that we aim for e accuracy, where ¢ < o3 as/u2s. We can

show that with the stepsize v = cnas/o? o, we get E [th - x*||2] < ¢ provided that ¢t >

2
(;*"L’;S + %) log <M) . We provide the proof in Appendix F.5. To ensure thoroughness, we
AS

present in Appendix F.9 the lemma of the inexact formulation for SPPM-AS, which offers greater
practicality for empirical experimentation. Further insights are provided in the subsequent experi-
mental section.
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General Framework. By allowing the freedom to choose arbitrary algorithms for solving the
proximal operator, one can see that SPPM-AS generalizes renowned methods such as FedProx (Li
et al., 2020a) and FedAvg (McMahan et al., 2016). In doing so, we are able to adapt our theoret-
ical framework to prove the convergence rate of FedProx using a minimalistic set of assumptions,
specifically Assumption 2.1 and Assumption 2.2. A more detailed overview of these generalization
properties is provided in Appendix B.4.

2.3 ARBITRARY SAMPLING EXAMPLES

Details on simple Full Sampling (FS) and Nonuniform Sampling (NS) are provided in Appendix B.2.
In this section, we focus more intently on the sampling strategies that are of particular interest to us.

Nice Sampling (NICE). Choose 7 € [n] and let S be a random subset of [n] of size 7 chosen
uniformly at random. Then p; = 7/n for all ¢ € [n]. Moreover, let (f) represents the number of
combinations of n taken 7 at a time, pc = ﬁ whenever |C| = 7 and pc = 0 otherwise. So,

— Pi _ _— .
uas = unice(T) == c>0 = cg[ﬂl\%\ﬂ - ;u“
2
2 2 2 Egn. (2) 1
o as = 05 nice(T) 1= Z pc Ve (z)l = Z ( ) p vai ()
CCln],pc>0 CC[nl],|C|=1 \T e’

It can be shown that pnicg(7) is a nondecreasing function of 7 (Appendix F.6). So, as the minibatch
size 7 increases, the strong convexity constant unicg(7) can only improve. Since pnice(l) =
min; u; and pNice(n) = % Z?zl L, the value of unicg(7) interpolates these two extreme cases as

. n/r—1 . . . .
7 varies between 1 and n. Conversely, 02 yop(T) = T/L 02 nicg(1) is a nonincreasing function,

reaching a value of oiNICE(n) = 0, as explained in Appendix F.6.

Block Sampling (BS). Let C1,...,C} be a partition of [n] into b nonempty blocks. For each

€ [n], let B(i) indicate which block i belongs to. In other words, ¢ € C; if B(i) = j. Let S = C}
W1th probability g; > 0, where Z q; = 1. Then p; = gp(;), and hence Equation (5) takes on the
form

2

i (T4)

1 1
HAS = UBS = nnlr)l oo His OE,AS * BS * Z a; Z n
g€l ng; i€Cy JElb] i€Cy

Considering two extreme cases: If b = 1, then SPPM-BS = SPPM-FS = PPM. So, indeed, we recover
the same rate as SPPM-FS. If b = n, then SPPM-BS = SPPM-NS. So, indeed, we recover the same
rate as SPPM-NS. We provide the detailed analysis in Appendix B.3.

Stratified Sampling (SS). Let C1,. .., C} be a partition of [n] into b nonempty blocks, as before.
For each ¢ € [n], let B(i) indicate which block does i belong to. In other words, i € Cj; iff
B(i) = j. Now, for each j € [b] pick &; € Cj; uniformly at random, and define S = U, {5}

Clearly, p; = ﬁ Let’s denote iy, :== (i1, -+ ,4p), Cp := C1 X - - - X Cy. Then, Equation (5) take
B(i)
on the form
b b b 2
N . Hij 51 |Cj‘ 2 2 . 1 |Cy]
HAS = Hss 1= llbfrellélb n 04, AS = 04,88 = Z H m Z vazj ()
=1 i,eCy \j=1 Jj=1

Considering two extreme cases: If b = 1, then SPPM-SS = SPPM-US. So, indeed, we recover the
same rate as SPPM-US. If b = n, then SPPM-SS = SPPM-FS. So, indeed, we recover the same rate
as SPPM-FS. We provide the detailed analysis in Appendix B.3.
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2.4 COMPARING STRATIFIED SAMPLING WITH BLOCK SAMPLING AND NICE SAMPLING

Lemma 1 (Stratified Sampling Variance Bounds). Consider the stratified sampling. For each j € [b],

define
2

o2 = max ||V f; (z.) — ! > Vii(x)

i€Cy |C]| lec;

In words, 0]2 is the maximal squared distance of a gradient (at the optimum) from the mean of the
gradients (at optimum) within cluster C;. Then

b
b 2
af’ss < 2 E |C5] sz- <bmax{0o3,...,00}.
i=1

Note that Lemma | provides insights into how the variance might be reduced through stratified
sampling. For instance, in a scenario of complete inter-cluster homogeneity, where O'JQ» = 0 for all 7,
both bounds imply that 0 = Uf,ss < UE’BS. Thus, in this scenario, the convergence neighborhood
of stratified sampling is better than that of block sampling.

Stratified Sampling Outperforms Block Sampling and Nice Sampling in Convergence Neigh-
borhood. We theoretically compare stratified sampling with block sampling and nice sampling,
advocating for stratified sampling as the superior method for future clustering experiments due to
its optimal variance properties. We begin with the assumption of b clusters of uniform size b (As-
sumption F.10), which simplifies the analysis by enabling comparisons of various sampling meth-
ods, all with the same sampling size, b: b-nice sampling, stratified sampling with b clusters, and
block sampling where all clusters are of uniform size b. Furthermore, we introduce the concept of
optimal clustering for stratified sampling (noted as C gg, Definition F.11) in response to a coun-
terexample where block sampling and nice sampling achieve lower variance than stratified sampling
(Appendix F.8). Finally, with Assumption F.10 and Definition F.11 in place, we can compare the
convergence neighborhoods of stratified sampling and nice sampling.

Lemma 2. Given Assumption F.10, the following holds: ¢ g (Co.ss) < 07 yycp for arbitrary b.
Moreover, the variance within the convergence neighborhood of stratified sampling is less than or

2 2
equal to that of nice sampling: wgz*ﬁ (Cpss) < ,%:’2;%
Lemma 2 demonstrates that, under specific conditions, the stratified sampling neighborhood is
preferable to that of nice sampling. One might assume that, under the same assumptions, a similar
assertion could be made for showing that block sampling is inferior to stratified sampling. However,
this has only been theoretically verified for the simplified case where both the block size and the
number of blocks are b = 2, as detailed in Appendix F.8.

3 EXPERIMENTS

Practical Decision-Making with SPPM-AS. In
our analysis of SPPM-AS, guided by theoreti- Table 1: KT(e, S, 7, A(K))
cal foundations of Theorem 1 and empirical evi-

dence summarized in Table 1, we explore practi- HP_Control KT(.) Exp.
cal decision-making for varying scenarios. This y 71 KT, et™ D2
includes adjustments in hyperparameters within optimal (v, K) 1 1 3.3
the framework KT (¢, S,~, A(K)). Here, € rep- srasice | compared
resents accuracy goal, S represents the sampling A p-convex + to LocalGD
distribution, -y is representing global learning rate NonCVX and Hier-

. . J} compared
(proximal operator parameter), A denotes the archical FL + Adam ° =~ 3.7
proximal optimization algorithm, while K de- with tuned Ir
notes the number of local communication rounds. (M ¢ is a convergence neighborhood or accuracy.

In table 1,
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we summarize how changes on following hyperparameters will influence target metric. With in-
creasing learning rate 7y one achieves faster convergence with smaller accuracy, also noted as
accuracy-rate tradeoff. Our primary observation that with an increase in both the learning rate,
v, and the number of local steps, K, leads to an improvement in the convergence rate. Employing
various local solvers for proximal operators also shows an improvement in the convergence rate
compared to FedAvg in both convex and non-convex cases.

Inexact Prox Implementation. In practice, the proximal operator cannot be calculated exactly,
as proposed in the theoretical version of SPPM-AS (Algorithm 1). In our work, we tackle two
approaches for estimating the proximal operator. For logistic regression, we use a simplified ap-
proach that employs a virtual hub for computation. When integrated into a hierarchical FL archi-
tecture with physical hubs, this approach minimizes communication costs. Standard optimization
algorithms such as BFGS and CG are applied to handle the proximal operations. In the neural net-
work experiments, we use local optimization algorithms to estimate the proximal operator. We treat
the argument of the proximal operator as an optimization objective and decompose it into func-

tions corresponding to each worker: ;41 = prox, s, (x;) := argminy, (fs,, (y) + %|y - :17|2) =

arg min,, (Ziest fily) + ﬁ\y — 1\2) = argmin, (Ziest ﬁ(y)) Thus, various local meth-
ods for minimizing min,, (Z ics, ﬂ(y)) can be applied, as detailed in Appendix A.3.

3.1 OBIECTIVE AND DATASETS

Our analysis begins with logistic regression with a convex [l regularizer, which can be represented
as:

1 & "
filz) = — > log (1 + exp(—bija"ai ;) + §||33||27

? ]:1

where p is the regularization parameter, n; denotes the total number of data points at client ¢, a; ;
are the feature vectors, and b, ; € {—1, 1} are the corresponding labels. Each function f; exhibits
u-strong convexity and L;-smoothness, with L; computed as 4%” 27:1 llai ;||* + p. For our exper-
iments, we set p to 0.1.

Our study utilized datasets from the LibSVM repository (Chang & Lin, 2011), including
mushrooms, a6a, 1jcnnl.bz2, and a9a. We divided these into feature-wise heterogeneous
non-iid splits for FL, detailed in Appendix C.1, with a default cohort size of 10. We primarily ex-
amined logistic regression, finding results consistent with our theoretical framework, as discussed
extensively in Section 3.3 through Appendix D.2. Additional neural network experiments are de-
tailed in Section 3.7 and Appendix E.

3.2 ON CHOOSING SAMPLING STRATEGY

As shown in Section 2.3, multiple sampling techniques exist. We propose using clustering approach
in conjuction with SPPM-SS as the default sampling strategy for all our experiments. The stratified
sampling optimal clustering is impractical due to the difficulty in finding x,; therefore, we employ
a clustering heuristic that aligns with the concept of creating homogeneous worker groups. One
such method is K-means, which we use by default. More details on our clustering approach can be
found in the Appendix C.1. We compare various sampling techniques in the left panel of Figure 3.
Extensive ablations verified the efficiency of stratified sampling over other strategies, due to variance
reduction (Lemma 1).

3.3 COMMUNICATION COST REDUCTION THROUGH INCREASED LOCAL COMMUNICATION
ROUNDS

In this study, we investigate whether increasing the number of local communication rounds, denoted
as K, in our proposed algorithm SPPM-SS, can lead to a decrease in the total communication cost
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Figure 2: Analysis of total communication costs against local communication rounds for computing
the proximal operator. For LocalGD, we align the x-axis to the total local iterations, highlighting
the absence of local communication. The aim is to minimize total communication for achieving a
predefined global accuracy €, where |7 — 2, ||” < e. The optimal step size and minibatch sampling
setup for LocalGD are denoted as LocalGD, optim. This showcases a comparison across varying e
values and proximal operator solvers (CG and BFGS).
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Figure 3: The first column compares sampling methods, while the right two columns analyze con-
vergence relative to popular baselines. v = 1.0.

required to converge to a predetermined global accuracy e > 0. In Figure 1, we analyzed vari-
ous datasets, including a6a and mushrooms, confirming that higher local communication rounds
reduce communication costs, especially with larger learning rates. Our study includes both self-
ablation of SPPM-SS across different learning rate scales and comparisons with the widely-used
cross-device FL. method LocalGD (or FedAvg) on the selected cohort. Ablation studies were con-
ducted with a large empirical learning rate of 0.1, a smaller rate of 0.01, and an optimal rate as
discussed by Khaled & Richtarik (2023), alongside minibatch sampling described by Gower et al.
(2019).

In Figure 2, we present more extensive ablations. Specifically, we set the base method (Figure 2a)
using the dataset a6a, a proximal solver BFGS, and ¢ = 5-10~3. In Figure 2b, we explore the use of
an alternative solver, CG (Conjugate Gradient), noting some differences in outcomes. For instance,
with a learning rate v = 1000, the optimal K with CG becomes 7, lower than 10 in the base setting
using BFGS. In Figure 2c, we investigate the impact of varying ¢ = 10~2. Our findings consistently
show SPPM-SS’s significant performance superiority over LocalGD.
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Figure 4: The left column shows the Server-hub-client hierarchical FL architecture. For the right two
columns: on the left, communication cost for achieving 70% accuracy in hierarchical FL (¢; = 0.05,
co = 1); on the right, convergence with optimal hyperparameters (c; = 0.05, co = 1).

3.4 EVALUATING THE PERFORMANCE OF VARIOUS SOLVERS A

We further explore the impact of various solvers on optimizing the proximal operators, showcasing
representative methods in Table 2 in the Appendix A.3. A detailed overview and comparison of local
optimizers listed in the table are provided in Section A.3, given the extensive range of candidate op-
tions available. To emphasize key factors, we compare the performance of first-order methods, such
as the Conjugate Gradient (CG) method (Hestenes et al., 1952), against second-order methods, like
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden, 1967; Shanno, 1970), in the
context of strongly convex settings. For non-convex settings, where first-order methods are preva-
lent in deep learning experiments, we examine an ablation among popular first-order local solvers,
specifically choosing MimeLite (Karimireddy et al., 2020a) and FedOpt (Reddi et al., 2020). The
comparisons of different solvers for strongly convex settings are presented in Figure 2b, with the
non-convex comparison included in the appendix. Upon comparing first-order and second-order
solvers in strongly convex settings, we observed that CG outperforms BFGS for our specific prob-
lem. In neural network experiments, MimeLite-Adam was found to be more effective than FedOpt
variations. However, it is important to note that all these solvers are viable options that have led to
impressive performance outcomes.

3.5 COMPARATIVE ANALYSIS WITH BASELINE ALGORITHMS

In this section, we conduct an extensive comparison with several established cross-device FL base-
line algorithms. Specifically, we examine MB-GD (MiniBatch Gradient Descent with partial client
participation), and MB-LocalGD, which is the local gradient descent variant of MB-GD. We default
the number of local iterations to 5 and adopt the optimal learning rate as suggested by Gower et al.
(2019). To ensure a fair comparison, the cohort size |C] is fixed at 10 for all minibatch methods,
including our proposed SPPM-SS. The results of this comparative analysis are depicted in Figure 3.
Our findings reveal that SPPM-SS consistently achieves convergence within a significantly smaller
neighborhood when compared to the existing baselines. Notably, in contrast to MB-GD and MB-
LocalGD, SPPM-SS is capable of utilizing arbitrarily large learning rates. This attribute allows for
faster convergence, although it does result in a larger neighborhood size.

3.6 HIERARCHICAL FEDERATED LEARNING

We extend our analysis to a hub-based hierarchical FL structure, as conceptualized in the left part of
Figure 4. This structure envisions a cluster directly connected to m hubs, with each hub m; serving
n; clients. The clients, grouped based on criteria such as region, communicate exclusively with their
respective regional hub, which in turn communicates with the central server. Given the inherent na-
ture of this hierarchical model, the communication cost c¢; from each client to its hub is consistently
lower than the cost co from each hub to the server. We define communication from clients to hubs
as local communication and from hubs to the server as global communication. Under SPPM-SS,
the total cost is expressed as (¢1 K + c2)Tsppm.ss, while for LocalGD, it is (¢1 + ¢2)TLocalaD- As
established in Section 3.3, Tsppn.gs demonstrates significant improvement in total communication
costs compared to LocalGD within a hierarchical setting. Our objective is to illustrate this by con-
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trasting the standard FL setting, depicted in Figure 2a with parameters ¢c; = 1 and ¢, = 0, against
the hierarchical FL structure, which assumes ¢; = 0.1 and co = 1, as shown in Figure 2d. Given the
variation in ¢; and cy values between these settings, a direct comparison of absolute communication
costs is impractical. Therefore, our analysis focuses on the ratio of communication cost reduction
in comparison to LocalGD. For the base setting, LocalGD’s optimal total communication cost is
39 with 12 local iterations, whereas for SPPM-SS (y = 1000), it is reduced to 10 with 10 local
and 1 global communication rounds, amounting to a 74.36% reduction. With the hierarchical FL
structure in Figure 2d, SPPM-SS achieves an even more remarkable communication cost reduction
of 94.87%. Further ablation studies on varying local communication cost ¢; in the Appendix D.3
corroborate these findings.

3.7 NEURAL NETWORK EVALUATIONS

Our empirical analysis includes experiments on Convolutional Neural Networks (CNNs) using the
FEMNIST dataset, as described by Caldas et al. (2018). We designed the experiments to include
a total of 100 clients, with each client representing data from a unique user, thereby introducing
natural heterogeneity into our study. We employed the Nice sampling strategy with a cohort size of
10. In contrast to logistic regression models, here we utilize training accuracy as a surrogate for the
target accuracy €. For the optimization of the proximal operator, we selected the Adam optimizer,
with the learning rate meticulously fine-tuned over a linear grid. Detailed descriptions of the training
procedures and the CNN architecture are provided in the Appendix E.

In the deep learning context, we performed a set of experiments similar to those conducted for the
convex case. In Appendix E.2, we review nice, block, and stratified sampling strategies, demon-
strating the superiority of stratified sampling. Additionally, Appendix E.4 compares various local
solvers for the proximal operator. For comparison with the baselines our analysis primarily focuses
on the hierarchical FL structure. Initially, we draw a comparison between our proposed method,
SPPM-AS, and LocalGD. The crux of our investigation is the total communication cost required
to achieve a predetermined level of accuracy, with findings detailed in the right part of Figure 4.
Significantly, SPPM-AS demonstrates enhanced performance with the integration of multiple local
communication rounds. Notably, the optimal number of these rounds tends to increase alongside the
parameter . For each configuration, the convergence patterns corresponding to the sets of optimally
tuned hyperparameters are depicted in Figure 4.

4 CONCLUSION

Our research challenges the conventional single-round communication model in federated learning
by presenting a novel approach where cohorts participate in multiple communication rounds. This
adjustment leads to a significant 74% reduction in communication costs, underscoring the efficacy
of extending cohort engagement beyond traditional limits. Our method, SPPM-AS, equipped with
diverse client sampling procedures, contributes substantially to this efficiency. This foundational
work showcases a pivotal shift in federated learning strategies. Future work could focus on improv-
ing algorithmic robustness and ensuring privacy compliance.
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A RELATED WORK

A.1 CRroOSS-DEVICE FEDERATED LEARNING

This paper delves into the realm of Federated Learning (FL), focusing on the cross-device variant,
which presents unique and significant challenges. In FL, two predominant settings are recognized:
cross-silo and cross-device scenarios, as detailed in Table 1 of Kairouz et al., 2019. The primary
distinction lies in the nature of the clients: cross-silo FL typically involves various organizations
holding substantial data, whereas cross-device FL engages a vast array of mobile or [oT devices. In
cross-device FL, the complexity is heightened by the inability to maintain a persistent hidden state
for each client, unlike in cross-silo environments. This factor renders certain approaches impractical,
particularly those reliant on stateful clients participating consistently across all rounds. Given the
sheer volume of clients in cross-device FL, formulating and analyzing outcomes in an expectation
form is more appropriate, but more complex than in finite-sum scenarios.

The pioneering and perhaps most renowned algorithm in cross-device FL is FedAvg (McMahan
et al., 2017) and implemented in applications like Google’s mobile keyboard (Hard et al., 2018;
Yang et al., 2018; Ramaswamy et al., 2019). However, it is noteworthy that popular accelerated
training algorithms such as Scaffold (Karimireddy et al., 2020b) and ProxSkip (Mishchenko et al.,
2022b) are not aligned with our focus due to their reliance on memorizing the hidden state for each
client, which is applicable for cross-device FL. Our research pivots on a novel variant within the
cross-device framework. Once the cohort are selected for each global communication round, these
cohorts engage in what we term as ‘local communications’ multiple times. The crux of our study is
to investigate whether increasing the number of local communication rounds can effectively reduce
the total communication cost to converge to a targeted accuracy.

A.2 STOCHASTIC PROXIMAL POINT METHOD

Our exploration in this paper centers on the Stochastic Proximal Point Method (SPPM), a method
extensively studied for its convergence properties. Initially termed as the incremental proximal point
method by Bertsekas (2011), it was shown to converge nonasymptotically under the assumption of
Lipschitz continuity for each f;. Following this, Ryu & Boyd (2016) examined the convergence
rates of SPPM, noting its resilience to inaccuracies in learning rate settings, contrasting with the
behavior of Stochastic Gradient Descent (SGD). Further developments in SPPM’s application were
seen in the works of Patrascu & Necoara (2018), who analyzed its effectiveness in constrained op-
timization, incorporating random projections. Asi & Duchi (2019) expanded the scope of SPPM
by studying a generalized method, AProx, providing insights into its stability and convergence rates
under convex conditions. The research by Asi et al. (2020) and Chadha et al. (2022) further ex-
tended these findings, focusing on minibatching and convergence under interpolation in the AProx
framework.

In the realm of federated learning, particularly concerning non-convex optimization, SPPM is also
known as FedProx, as discussed in works like those of Li et al. (2020a) and Yuan & Li (2022).
However, it is noted that in non-convex scenarios, the performance of FedProx/SPPM in terms of
convergence rates does not surpass that of SGD. Beyond federated learning, the versatility of SPPM
is evident in its application to matrix and tensor completion such as in the work of Bumin & Huang
(2021). Moreover, SPPM has been adapted for efficient implementation in a variety of optimization
problems, as shown by Shtoff (2022). While non-convex SPPM analysis presents significant chal-
lenges, with a full understanding of its convex counterpart still unfolding, recent studies such as the
one by Khaled & Jin (2023) have reported enhanced convergence by leveraging second-order sim-
ilarity. Diverging from this approach, our contribution is the development of an efficient minibatch
SPPM method SPPM-AS that shows improved results without depending on such assumptions. Sig-
nificantly, we also provide the first empirical evidence that increasing local communication rounds
in finding the proximal point can lead to a reduction in total communication costs.

A.3 LOCAL SOLVERS
In the exploration of local solvers for the SPPM-AS algorithm, the focus is on evaluating the perfor-

mance impact of various inexact proximal solvers within federated learning settings, spanning both
strongly convex and non-convex objectives. Here’s a simple summary of the algorithms discussed:
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Setting 1st order 2nd order
Conjugate Gradients (CQG)
Accelerated GD BFGS
Strongly-Convex AICN
Local GD
LocalNewton
Scaffnew
Mime-Adam Apollo
Nonconvex FedAdam-AdaGrad P
OASIS
FedSpeed

Table 2: Local optimizers for solving the proximal subproblem.

FedAdagrad-AdaGrad (Wang et al., 2021b): Adapts AdaGrad for both client and server sides within
federated learning, introducing local and global corrections to address optimizer state handling and
solution bias.

BFGS (Broyden, 1967; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970): A quasi-Newton method that
approximates the inverse Hessian matrix to improve optimization efficiency, particularly effective in
strongly convex settings but with limitations in distributed implementations.

AICN (Hanzely et al., 2022): Offers a global O(1/k?) convergence rate under a semi-strong self-
concordance assumption, streamlining Newton’s method without the need for line searches.

LocalNewton (Bischoff et al., 2023): Enhances local optimization steps with second-order infor-
mation and global line search, showing efficacy in heterogeneous data scenarios despite a lack of
extensive theoretical grounding.

Fed-LAMB (Karimi et al., 2022): Extends the LAMB optimizer to federated settings, incorporating
layer-wise and dimension-wise adaptivity to accelerate deep neural network training.

FedSpeed (Sun et al., 2023): Aims to overcome non-vanishing biases and client-drift in federated
learning through prox-correction and gradient perturbation steps, demonstrating effectiveness in
image classification tasks.

Mime-Adam (Karimireddy et al., 2020a): Mitigates client drift in federated learning by integrating
global optimizer states and an SVRG-style correction term, enhancing the adaptability of Adam to
distributed settings.

OASIS (Jahani et al., 2021): Utilizes local curvature information for gradient scaling, providing an
adaptive, hyperparameter-light approach that excels in handling ill-conditioned problems.

Apollo (Ma, 2020): A quasi-Newton method that dynamically incorporates curvature information,
showing improved efficiency and performance over first-order methods in deep learning applica-
tions.

Each algorithm contributes uniquely to the landscape of local solvers in federated learning, ranging
from enhanced adaptivity and efficiency to addressing specific challenges such as bias, drift, and
computational overhead.

B THEORETICAL OVERVIEW AND RECOMMENDATIONS

B.1 PARAMETER CONTROL

We have explored the effects of changing the hyperparameters of SPPM-AS on its theoretical proper-
ties, as summarized in Table 3. This summary shows that as the learning rate increases, the number
of iterations required to achieve a target accuracy decreases, though this comes with an increase in
neighborhood size. Focusing on sampling strategies, for SPPM-NICE employing NICE sampling,
an increase in the sampling size 75 results in fewer iterations (7°) and a smaller neighborhood. Fur-
thermore, given that stratified sampling outperforms both block sampling and NICE sampling, we
recommend adopting stratified sampling, as advised by Lemma 1.
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Table 3: Theoretical summary

Hyperparameter  Control Rate (T) Neighborhood
v T 1 T
S s 10 I t

Stratified sampling optimal clustering
instead of BS or NICE sampling

(' We define 75 := Es~s [| S]] -

1 Lemma |

Table 4: Arbitrary samplings comparison.

Setting/Requirement LAS Ox,AS
Full » i i 0
Non-Uniform min; N ni,i IV f; ()|
. . 2
Nice MINCC[n],|Cl=r % dicc Hi ch[n],\C\:T ﬁ H Yiec Vi (1*)”

p
Block min;ep) ﬁ Dicc, Mi djem U ‘Ziecj n%lvfi ()

. b i, |Gl b b 2
ming,ec, Y ojo ‘ Yiec, (Hj:l \é_,-\) Hijl l,{'VfiJ ()
Upper bound: -% Z?zl |c;1? o3

Stratified

B.2 COMPARISON OF SAMPLING STRATEGIES

Full Sampling (FS). Let S = [n] with probability 1. Then SPPM-AS applied to Equation (9)
becomes PPM (Moreau, 1965; Martinet, 1970) for minimizing f. Moreover, in this case, we have
p; = 1forall i € [n] and Equation (5) takes on the form

1 n
— 2 — 52 -
HAs = HFS = " E His Oy as = Oxps = 0.
i=1

Note that ups is the strong convexity constant of f, and that the neighborhood size is zero, as we
would expect.

Nonuniform Sampling (NS). Let S = {i} with probability p; > 0, where >, p; = 1. Then
Equation (5) takes on the form

n
o 1 1
fas = fNs 1= min “, Oias = UE,NS == Z IV fi (33*)”2-

np ’ n < np;

If we take p; = Miu for all ¢ € [n], we shall refer to Algorithm 1 as SPPM with importance
j=1Hj
sampling (SPPM-IS). In this case,

@I

i

n n n
UNS = JIs = 1 E i, 0Zng =02 g = Diy Mi Z IV fi
n 4 - () *, NS *,IS n ! n

= i=

This choice maximizes the value of png (and hence minimizes the first part of the convergence rate)
over the choice of the probabilities.

Table 4 summarizes the parameters associated with various sampling strategies, serving as a con-
cise overview of the methodologies discussed in the main text. This summary facilitates a quick
comparison and reference.

B.3 EXTREME CASES OF BLOCK SAMPLING AND STRATIFIED SAMPLING

Extreme cases of block sampling. We now consider two extreme cases:
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e If b = 1, then SPPM-BS = SPPM-FS = PPM. Let’s see, as a sanity check, whether we
recover the right rate as well. We have ¢; = 1,1 = [n],p; = 1 for all ¢ € [n], and the
expressions for pag and 037 ps simplify to

n
_ R 1 . 2 _ 2 =0
UBS = HFS = n His 0y BS = Oy Fs = Y.
=1

So, indeed, we recover the same rate as SPPM-FS.

* If b = n, then SPPM-BS = SPPM-NS. Let’s see, as a sanity check, whether we recover the
right rate as well. We have C; = {i} and ¢; = p; for all i € [n], and the expressions for
pias and 07 g simplify to

n

I 2 2 1 1 2
= = min — = = — Vii(x .
HUBS = KNS tei] npi 04,BS = 0x,NS n ; np; IV fi (@)l

So, indeed, we recover the same rate as SPPM-NS.

Extreme cases of stratified sampling. We now consider two extreme cases:

e If b = 1, then SPPM-SS = SPPM-US. Let’s see, as a sanity check, whether we recover the
right rate as well. We have C; = [n], |C}| = n, (H;’-:l ﬁ) = L and hence

. 1 & 9
pss = pus 7= min i, 02 g5 = Oaug i= - Z IV fi (@)
=1

So, indeed, we recover the same rate as SPPM-US.

e If b = n, then SPPM-SS = SPPM-FS. Let’s see, as a sanity check, whether we recover the

right rate as well. We have C; = {i} forall ¢ € [n], (H?Zl ﬁ) = 1, and hence

n
_ o 1 . 2 _ 2 =0
HSs = UFS ‘= o Hiy Oy g8 = Oy s = U
i=1

So, indeed, we recover the same rate as SPPM-FS.

B.4 FEDERATED AVERAGING SPPM BASELINES

In this section we propose two new algorithms based on federated averaging principle. Since to the
best of our knowledge there are no federated averaging analyses within the same assumptions, we
provide analysis of modified versions of SPPM-AS.

Averaging on prox, ;. We introduce FedProx-SPPM-AS (see Algorithm 2), which is inspired
by the principles of FedProx (Li et al., 2020a). Unlike the SPPM-AS approach where a proximal
operator is computed for the chosen cohort as a whole, in FedProx-SPPM-AS, we compute and then
average the proximal operators calculated for each member within the cohort. One can see, that the
FedProx is the simple case of this algorithm, when number of local communication rounds K = 1.
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Algorithm 3 Federated Averaging SPPM-AS
Algorithm 2 Proximal Averaging SPPM-AS (FedAvg-SPPM-AS)

(FedProx-SPPM-AS) 1: Input: starting point xgo € R?, arbitrary

I: Input: starting point ¥ € R?, arbitrary sampling distribution S, global learning rate
sampling distribution S, learning rate v > v > 0, local learning rate o > 0, local com-
0, local communication rounds K. munication rounds K

2: fOI‘tZO,l,Q,"',T—ldO 2: fort:071727"'7T_]-d0

3:  Sample S; ~ S 3:  Sample S; ~ S

4 fork=0,1,2,---K — 1do 4 Vi€ S fir(@) « filz) + 2 Iz — @

5: Tht1t = Des, 15 POXyp, (Tht) s: fork=0,1,2,---K —1do

6: end for 6: Tht1,p = Ziest ﬁ Prox,;, , (Tk,t)

7 Tot+1 < TKt 7:  end for

8: end for 8  Toy41 & Ty

9: Output: z 7 9: end for

10: Output: zo 1

Here, we employ a proof technique similar to that of Theorem | and obtain the following conver-
gence.

Theorem 2 (FedProx convergence). Let the number of local iterations X = 1, and assume that
Assumption 2.1 (differentiability) and Assumption 2.2 (strong convexity) hold. Let 7o € R? be
an arbitrary starting point. Then, for any ¢ > 0 and any v > 0, the iterates of FedProx-SPPM (as
described in Algorithm 2) satisfy:

Bs
1—As’

2
where As :=Eg, s [ﬁ > ies, lem] and Bs = Eg,~s ﬁ Yies, Tmm Vi@l |-

E |z — .| < A5 lao - a.l” +

Compared to the theoretical analysis for convex functions provided in Li et al. (2020a), our theoret-
ical bound does not rely on the “gradient boundedness” assumption or the L-smooth constant.

Federated averaging for prox approximation. An alternative method involves estimating the
proximal operator by averaging the proximal operators calculated for each worker’s function. We
call it Federated Averaging Stochastic Proximal Point Method (FedAvg-SPPM-AS, see Algorithm 3).
(FedAvg-SPPM-AS, see Algorithm 3).

After selecting and fixing a sample of workers Sy, the main objective is to calculate the proximal
operator. This can be accomplished by approximating the proximal calculation with the goal of

minimizing fs(z) = fs(z) + % ||# — x4||>. Essentially, this method utilizes FedProx as a local

solver for computing the proximal operator. It can be observed that this approach is equivalent to
FedProx-SPPM-AS, as at each local step we calculate

.| = 2 . 2 2
Prox,, 7, (xp,e) = argmin | f;(z) + =]z — xk,tHQ] = arg min [fl(z) + ( + ) Iz — xk7t||2} .
z€RA « 2€RA 7o«

It follows that FedProx is equivalent to FedAvg-SPPM-AS when the number of communication
rounds is set to K = 1. Thus, we can conclude that FedProx is a specific instance of SPPM-AS.

C TRAINING DETAILS

C.1 NON-IID DATA GENERATION

In our study, we validate performance and compare the benefits of SPPM-AS over SPPM using
well-known datasets such as mushrooms, a6a, wéa, and 1 jennl.bz2 from LibSVM (Chang
& Lin, 2011). To ensure relevance to our research focus, we adopt a feature-wise non-IID setting,
characterized by variation in feature distribution across clients. This variation is introduced by
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Figure 5: t-SNE visualization of cluster-features across data samples on clients.

clustering the features using the K-means algorithm, with the number of clusters set to 10 and the
number of clients per cluster fixed at 10 for simplicity. We visualize the clustered data using t-SNE
in Figure 5, where we observe that the data are divided into 10 distinct clusters with significantly
spaced cluster centers.

C.2 SAMPLING

To simulate random sampling among clients within these 10 clusters, where each cluster comprises
10 clients, we consider two contrasting scenarios:

* Case I - SPPM-BS: Assuming clients within the same cluster share similar features and
data distributions, sampling all clients from one cluster (i.e., C' = 10 clients) results in a
homogeneous sample.

* Case II - SPPM-SS: Conversely, by traversing all 10 clusters and randomly sampling one
client from each, we obtain a group of 10 clients representing maximum heterogeneity.

We hypothesize that any random sampling from the 100 clients will yield performance metrics lying
between these two scenarios. In Figure 6, we examine the impact of sampling clients with varying
degrees of heterogeneity using a fixed learning rate of 0.1. Our findings indicate that heterogeneous
sampling results in a significantly smaller convergence neighborhood 2. This outcome is attributed
to the broader global information captured through heterogeneous sampling, in contrast to homo-
geneous sampling, which increases the data volume without contributing additional global insights.
As these two sampling strategies represent the extremes of arbitrary sampling, any random selection
will fall between them in terms of performance. Given their equal cost and the superior performance
of the SPPM-SS strategy in heterogeneous FL environments, we designate SPPM-SS as our default
sampling approach.

C.3 SPPM-AS ALGORITHM ADAPTATION FOR FEDERATED LEARNING

In the main text, Algorithm [ outlines the general form of SPPM-AS. For the convenience of imple-
mentation in FL contexts and to facilitate a better understanding, we introduce a tailored version of
the SPPM-AS algorithm specific to FL, designated as Algorithm 4. Notably, as stratified sampling
is adopted as our default method, this adaptation of the algorithm specifically addresses the nuances
of the block sampling approach. We also conducted arbitrary sampling on synthetic datasets and
neural networks to demonstrate the algorithm’s versatility.
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Figure 6: Comparison with SPPM-SS and SPPM-BS samplings.

Algorithm 4 SPPM-AS Adaptation for Federated Learning

1: Input: Initial point 20 € R, cohort size C > 1, learning rate v > 0, clusters ¢ > C, local
communication rounds K&

2: fort=0,1,2,--- do

3:  SPPM-BS:

4 Server samples a cluster g; from [g]

5: Server samples C clients, denoted as [C] from cluster g;

6: SPPM-SS:

7 Server samples C' clusters from [¢]

8 Server sample 1 client from each selected cluster to construct C' clients

9:  Server broadcasts the model z; to each C; € [C]
10:  All selected clients in parallel construct Fy; ... cc(24)
11:  All selected clients together evaluate the prox for K local communication rounds to obtain
12:
T4l EPIOXyp, o (x1)

13:  All selected clients send the updated model x4 to the server
14: end for
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D ADDITIONAL EXPERIMENTS ON LOGISTIC REGRESSION

D.1 COMMUNICATION COST ON VARIOUS DATASETS TO A TARGET ACCURACY

In Figure 1, we presented the total communication cost relative to the number of rounds required to
achieve the target accuracy for the selected cohort. In this section, we provide more details on how
is this figure was obtained and present additional results for various datasets.

aba, e=5e-03, A=BFGS a9a, e=5e-03, A=BFGS mushrooms, e=5e-03, A=BFGS
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Figure 7: Total communication cost with respect to the local communication round. For LocalGD,
K represents the local communication round K for finding the prox of the current model. For
LocalGD, we slightly abuse the x-axis, which represents the total number of local iterations, no
local communication is required. We calculate the total communication cost to reach a fixed global
accuracy € such that ||z; — z,]|> < e. LocalGD, optim represents using the theoretical optimal
stepsize of LocalGD with minibatch sampling.
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Figure 8: K = 4. Figure 9: K = 16.

D.2 CONVERGENCE SPEED AND 02 ¢ TRADE-OFF

Unlike SGD-type methods such as MB-GD and MB-LocalGD, in which the largest allowed learn-
ing rate is 1/A, where A is a constant proportion to the smoothness of the function we want to
optimize (Gower et al., 2019). For larger learning rate, SGD-type method may not converge and
exploding. However, for stochastic proximal point methods, they have a very descent benefit of
allowing arbitrary learning rate. In this section, we verify whether our proposed method can allow
arbitrary learning rate and whether we can find something interesting. We considered different learn-
ing rate scale from le-5 to le+5. We randomly selected three learning rates [0.1, 1, 100] for visual
representation with the results presented in Figure 8 and Figure 9. We found that a larger learning
rate leads to a faster convergence rate but results in a much larger neighborhood, o2 gg/idg. This

can be considered a trade-off between convergence speed and neighborhood size, Uf,ss' By default,
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we consider setting the learning rate to 1.0 which has a good balance between the convergence speed
and the neighborhood size.

In this section, we extend our analysis by providing additional results across a broader range of
datasets and varying learning rates. Specifically, Figure 8 illustrates the outcomes using 4 local
communication rounds (K = 4), while Figure 9 details the results for 16 local communication
rounds (K = 16). Previously, in Figure 1, we explored the advantages of larger K values. Here,
our focus shifts to determining if similar trends are observable across different K values. Through
comprehensive evaluations on various datasets and multiple K settings, we have confirmed that
lower learning rates in SPPM-AS result in slower convergence speeds; however, they also lead to a
smaller final convergence neighborhood.

D.3 ADDITIONAL EXPERIMENTS ON HIERARCHICAL FEDERATED LEARNING

In Figure 2d of the main text, we detail the total communication cost for hierarchical Federated
Learning (FL) utilizing parameters ¢; = 0.1 and c; = 1 on the a6a dataset. Our findings re-
veal that SPPM-AS achieves a significant reduction in communication costs, amounting to 94.87%,
compared with the conventional FL setting where ¢c; = 1 and co = 1, which shows a 74.36%
reduction. In this section, we extend our analysis with comprehensive evaluations on additional
datasets, namely i jcnnl.bz2, a9a, and mushrooms. Beyond considering ¢c; = 0.1, we further
explore the impact of reducing the local communication cost from each client to the corresponding
hub to ¢; = 0.05. The results, presented in Figure 10 and the continued Figure 11, reinforce our
observation: hierarchical FL consistently leads to further reductions in communication costs. A
lower ¢y parameter correlates with even greater savings in communication overhead. These results
not only align with our expectations but also underscore the efficacy of our proposed SPPM-AS in
cross-device FL settings.
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Figure 10: The total communication cost is analyzed with respect to the number of local communi-
cation rounds. For LocalGD, K represents the local communication round used for finding the prox
of the current model. In the case of LocalGD, we slightly abuse the x-axis to represent the total num-
ber of local iterations, as no local communication is required. We calculate the total communication
cost needed to reach a fixed global accuracy e, such that ||z, — gc*||2 < €. LocalGD, optim denotes
the use of the theoretically optimal stepsize for LocalGD with minibatch sampling. Comparisons are
made between different prox solvers (CG and BFGS).

E ADDITIONAL NEURAL NETWORK EXPERIMENTS

E.1 EXPERIMENT DETAILS

For our neural network experiments, we used the FEMNIST dataset (Caldas et al., 2018). Each
client was created by uniformly selecting from user from original dataset, inherently introducing
heterogeneity among clients. We tracked and reported key evaluation metrics—training and testing
loss and accuracy—after every 5 global communication rounds. The test dataset was prepared by
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Figure 11: Total communication cost with respect to the local communication round.

25




Under review as a conference paper at ICLR 2025

Layer Output Shape  # of Trainable Activation Hyperparameters
Parameters

Input (28,28, 1) 0

Conv2d (24, 24, 32) 832 ReLU kernel size = 5;
strides = (1, 1)

Conv2d (10, 10, 64) 51,264 ReLU kernel size = 5;
strides = (1, 1)

MaxPool2d (5,5,64) 0 pool size = (2, 2)

Flatten 6400 0

Dense 128 819,328 RelLU

Dense 62 7,998 softmax

Table 5: Architecture of the CNN model for FEMNIST symbol recognition.

dividing each user’s data into a 9:1 ratio, following the partitioning approach of the FedLab frame-
work (Zeng et al., 2023). For the SPPM-AS algorithm, we selected Adam as the optimizer for the
proximal operator. The learning rate was determined through a grid search across the following
range: [0.0001, 0.0005, 0.001, 0.005,0.01, 0.05,0.1, 0.5]. The model architecture comprises a con-
volutional neural network (CNN) with the following layers: Conv2d(1, 32, 5), ReLU, Conv2d(32,
64, 5), MaxPool2d(2, 2), a fully connected (FC) layer with 128 units, ReLU, and another FC layer
with 128 units, as specified in Table 5. Dropout, learning rate scheduling, gradient clipping, etc.,
were not used to improve the interpretability of results.

We explore various values of targeted training accuracy, as illustrated in Figure 12. This analysis
helps us understand the impact of different accuracy thresholds on the model’s performance. For
instance, we observe that as the target accuracy changes, SPPM-NICE consistently outperforms
LocalGD in terms of total communication cost. As the target accuracy increases, the performance gap
between these two algorithms also widens. Additionally, we perform ablation studies on different
values of c¢1, as shown in Figure 13, to assess their effects on the learning process. Here, we note
that with c; = 0.2, SPPM-NICE performs similarly to LocalGD, suggesting that an increase in ¢y
value could narrow the performance gap between SPPM-NICE and LocalGD.
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Figure 12: Varying targeted training accuracy level for SPPM-AS.

E.2 SAMPLINGS DEEP LEARNING PRACTICAL COMPARISON

In the arbitrary samplings theory section 2.3, we referred to several sampling techniques such as
batch sampling and nice sampling, which require dividing workers into clusters. We have reviewed
the theoretical properties of clustering using the values of gradients at the optimum z... However, in
practice, this information is unavailable, necessitating the use of various clustering methods based
on heuristics. To achieve this, we can apply unsupervised algorithms such as feature-wise K-means.
In the federated learning scenario, each worker’s dataset consists of numerous data points, so we
need to create some representation of them. One of the most straightforward methods is to average
the dataset points. The 2-dimensional t-SNE representation of the provided clustering is shown in
Figure 14. Cluster patterns are visible, but they are not as well separated as theory suggests.
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Figure 14: 2-dimensional t-SNE representation of feature-wise averaging K-means clustering of 100
randomly chosen workers from the FEMNIST dataset into 10 equally sized clusters.

After applying the clustering, we can compare the performance of the proposed sampling tech-
niques, as shown in Figure 15. The performance gap between the nice and stratified samplings is
insignificant, suggesting that clustering is not effectively separating the workers based on feature av-
eraging. However, it is noticeable that stratified sampling consistently outperforms block sampling,
demonstrating greater stability. This observation aligns with the hypothesis stated in Appendix F.8.

E.3 CONVERGENCE ANALYSIS COMPARED WITH BASELINES

Further, we compare SPPM-AS, SPPM, and LocalGD in Figure 17, placing a partlcular emphasm on
evaluating the total computational complexity. This measure gains importance in scenarios where
communication rounds are of secondary concern, thereby shifting the focus to the assessment of
computational resource expenditure.

E.4 PROX SOLVERS BASELINES

We compare baselines from A.3 for training a CNN model over 100 workers using data from the
FEMNIST dataset, as shown in Figure 16. The number of local communication rounds and worker
optimizer steps is consistent among various solvers for the purpose of fair comparison. All local
solvers optimize the local objective, which is prox on the selected cohort. The solvers compared
are: LocalGD referred as FedSGD (McMahan et al., 2017) - the Federated Averaging algorithm with
SGD as the worker optimizer, FedAdam - the Federated Averaging algorithm with Adam as the
worker optimizer, FedAdam-Adam based on the FedOpt framework (Reddi et al., 2020), and finally
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Train Loss

Figure 15: Comparison of stratified, block, and nice samplings based on training data convergence.
For stratified and block sampling, feature-wise averaged K-Means clustering into 10 clusters is
used. All parameters, aside from samplings, are fixed at the same values: the number of local
communication rounds (7 is 3, the number of worker training epochs is 3, and the number of
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Figure 16: Different local solvers for prox baselines for training a CNN model over 100 workers
using data from the FEMNIST dataset. The number of local communication rounds is fixed at 3 and
the number of worker optimizer steps is fixed at 3. Nice sampling with a minibatch size of 10 is
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Figure 17: Accuracy compared with baselines.
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MimeLite-Adam, which is based on the Mime (Karimireddy et al., 2020a) framework and the Adam
optimizer. The hyperparameter search included a double-level sweep of the optimizer learning rates:
[0.00001,0.0001,0.001,0.01, 0.1], followed by [0.25,0.5,1.0,2.5, 5] * I7pes. One can see that all
methods perform similarly, with MimeLite-Adam and FedSGD converging better on the test data.
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F MISSING PROOF AND ADDITIONAL THEORETICAL ANALYSIS

F.1 FAcTs USED IN THE PROOF

Fact F.1 (Differentiation of integral with a parameter (theorem 2.27 from Folland (1984))). Suppose
that f : X X [a,b] & C(—o0 < a < b < o) and that f(-,t) : X — C is integrable for each

t € [a,b]. Let F(t) = [ f(z,t)du(z).
[label=.]

1. Suppose that there exists g € L*(u) such that |f(z,t)] < g(z) for all z,t. If
lim¢_y¢, f(2,t) = f (x,t0) forevery x, then limy_,;, F'(t) = F (to); in particular, if f(z, -)
is continuous for each x, then F' is continuous.

2. Suppose that O f /9t exists and there is a g € L*(p) such that [(0f/0t)(x,t)| < g(z) for
all 2, ¢. Then F is differentiable and F'(z) = [(0f/0t)(z, t)du(z).

Fact E.2 (Tower Property). For any random variables X and Y, we have
E[E[X|Y] = E[X].

Fact F.3 (Every point is a fixed point (Khaled & Jin, 2023)). Let ¢ : R? — R be a convex differen-
tiable function. Then

prox.,(z + vVo(r)) = z, Vy >0, VzeRe
In particular, if x, is a minimizer of ¢, then proxw(x*) = x,.
Proof. Evaluating the proximity operator is equivalent to
. 1 2
prox,,(y) = argmin | p(z) + —[lz —y[|" | .
zERY 2y

This is a strongly convex minimization problem for any v > 0, hence the (necessarily unique)
minimizer & = prox., (y) of this problem satisfies the first-order optimality condition

1
V(r) + —(z —y) =0.
Y
Solving for y, we observe that this holds for y = x + yV¢(x). Therefore, x = prox.,(z +

V(). O

Fact F.4 (Contractivity of the prox (Mishchenko et al., 2022a)). If ¢ is differentiable and p-strongly
convex, then for all v > 0 and for any =, y € R? we have

2
||prOX'y<p(‘T) - prOX'ygp(y)H < m HI’ - yH2

Fact E5 (Recurrence (Khaled & Jin, 2023, Lemma 1)). Assume that a sequence {s; }+>o of positive
real numbers for all ¢ > 0 satisfies

St+1 < asg + b,

where 0 < a < 1 and b > 0. Then the sequence for all ¢ > 0 satisfies

t : 1
s¢ <a'sgp+ bmin < t, .
1—-a
Proof. Unrolling the recurrence, we get

t—1
s <asi_1+b<alasi_o+b)+b< - <alsg erZai.
i=0
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We can now bound the sum Zz;é a’ in two different ways. First, since a < 1, we get the estimate

t—1 t—1
Zai < Z 1=t
=0 =0

Second, we sum a geometic series

t—1

a' < a' =

5
=

Il
=
Il
=

Note that either of these bounds can be better. So, we apply the best of these bounds. Substituing
the above two bounds gived the target inequality. [

F.2 SIMPLIFIED PROOF OF SPPM

We provide a simplified proof of SPPM (Khaled & Jin, 2023) in this section. Using the fact that
Ty = ProX,y, (x4 +7V fe,(x4)) (see Fact F.3) and then applying contraction of the prox (Fact F.4),
we get

2

g1 — zo||* = ProX, s —&x

(Fact F.3) 2
2 prox, (1) = prox, g, (@, +9V fe, ()|

(Fact F.4) 1
- (A +w?
1

= e (e =l =20 (Ve o) 20 = ) + 219 fe w)I)

e = (@0 + 7V fe, (22))]]?

Taking expectation on both sides, conditioned on x;, we get

1
E [llees = aallor] < s (e = 2l = 20 BV S )] 20— ) +9°E [V e ()] )
1
= e (e m ol 0%02)

where we used the fact that E [V fe, (v,)] = Vf(z,) = 0and 02 == E [HVfgt (@)Hﬂ Taking
expectation again and applying the tower property (Fact F.2), we get

E [lors — o] < e = @ +9%02).

1
(1 +yp)? (

It only remains to solve the above recursion. Luckily, that is exactly what Fact F.5 does. In particular,

2_2
s and b = 7= to get

we use it with s, = E {th - x*||2} ,a = W e

(Fact F.5) 1 2t 2 92 1 9
B [l —enl?] “E () ol e min

1+p (14 yp)? T(Lp)? -1
2t 2 92
1 ol
< () ool + 2
L+9p (I+yu)? -1
2t 2
1 2 YO %
< zo — T||” + ———.
B (1+w> o ” YH? + 2p
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F.3 MISSING PROOF OF THEOREM 1

We first prove the following useful lemma.

Let ¢¢ : R? — R be differentiable functions for almost all ¢ ~ D, with ¢¢ being pi¢-strongly convex
for almost all £ ~ D. Further, let w, be positive scalars. Then the function ¢ := E¢op [wege] is
p-strongly convex with 1 = E¢op [we pie].

Proof. By assumption,

be(y) + (Ve (y),z —y) + %Hx —y||* < ¢e(w), foralmostall £ € D,Va,y € RY.

This means that
o’
Eep [we (¢c(y) + (Vée(),2 = y) + Eollo = yl1?) | < Eewp [weve(@)], Va,y € RY,

which is equivalent to

|z —y|* < ¢(x), Vaz,y€RY,

d(y) + (Vo(y), = — y) + M

So, ¢ is u-strongly convex. O
Now, we are ready to prove our main Theorem 1.

Proof. Let C be any (necessarily nonempty) subset of [n] such that pc > 0. Recall that in view of
Equation (8) we have
I(¢eQ)

z) = Eeo
fo(x) ED{ Pe

Je(o)

i.e., fc is a conic combination of the functions { f¢ : £ € C'} with weights we = I(%C). Since each
fe is pe-strongly convex, Appendix F.3 says that fc is pc-strongly convex with

I¢eC
He = ]Efm’D |:(£)'u£:| .
D¢
So, every such f¢ is u-strongly convex with
. I(€e€0) us]
= == min Egfop | ——————— .
= as CCln],pc>0 e~D [ De

Further, the quantity o2 from (2.3) is equal to

Eqgn. (10)
0% i=Beun [|Vfe (@I 7= Y pellVie (@)l =02 as:
CClnl,pc>0

Incorporating Appendix F.2 into the above equation, we prove the theorem. O

F.4 THEORY FOR EXPECTATION FORMULATION

We will formally define our optimization objective, focusing on minimization in expectation form.
We consider

min f(z) = E¢vp [fe(2)], (©)

where f : R? — R, £ ~ D is a random variable following distribution D.

Assumption F.6. Function f¢ : R? — R is differentiable for almost all samples & ~ D.
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This implies that f is differentiable. We will implicitly assume that the order of differentiation and
expectation can be swapped ', which means that

Vf(z) VE¢np [fe(7)] = Egup [V fe(@)] -

Assumption F.7. Function f : R? — R is p-strongly convex for almost all samples & ~ D, where
> 0. That is

Eqn. (1)

few) + (Ve —y) + Sl =yl < fela),
for all z,y € R%.

This implies that f is p-strongly convex, and hence f has a unique minimizer, which we denote by
Z4. We know that V f (z,) = 0. Notably, we do not assume f to be L-smooth.

Let S be a probability distribution over all finite subsets of N. Given a random set S ~ S, we define
p; =Prob(i € S), ieN.

We will restrict our attention to proper and nonvacuous random sets.
Assumption F.8. S is proper (i.e., p; > 0 for all # € N) and nonvacuous (i.e., Prob(S = () = 0).

Let C be the selected cohort. Given () # C C Nand ¢ € N, we define

1l seC
v (C) = {5 Z; o (7)

and
I(£e€0)

fo(@) = Eeop e (O) fe(@)]) P D Egop [ -

fetw)]. ®)

Note that v;(S) is a random variable and fs is a random function. By construction, Eg.s [v;(S)] =
1 for all 7 € N, and hence

Esws [fs(z)] = Es~s [Ecap [ve(C)V fe(2)]]
= E¢up [Esns [ve(9)] V()] = B [fe(2)] = f(2).

Therefore, the optimization problem in Equation (1) is equivalent to the stochastic optimization
problem

min {f(x) := Ess [fs(2)]}. 9

zERY

Further, if for each C' C N we let pc := Prob(S = (), f can be written in the equivalent form
f(@) =Esus[fs(@)] = > pofolx)= >  pcfel(@). (10)
CCN CCN,pc>0

Theorem F.9 (Main Theorem). Let Assumption 2.1 (diferentiability) and Assumption 2.2 (strong
convexity) hold. Let S be a random set satisfying Assumption 2.3, and define

— I(§€C)pe
HAS = CCIRI&IEN]E@D {p& ;
T2 AS = Z pellVic (x)]*. (11
CCN,pc>0

Let xog € R? be an arbitrary starting point. Then for any t > 0 and any v > 0, the iterates of
SPPM-AS (Algorithm 1) satisfy

2t 2
1 YO, AS
E —z < ——— — P s
[”xt 24|l ] - (1+’YHAS> lzo = @] TH3g + 2pas

I'This assumption satisfies the conditions required for the theorem about differentiating an integral with a
parameter (Fact F.1).
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F.5 MISSING PROOF OF ITERATION COMPLEXITY OF SPPM-AS

We have seen above that accuracy arbitrarily close to (but not reaching) o% as/u%¢ can be achieved
via a single step of the method, provided the stepsize v is large enough. Assume now that we aim
for € accuracy where € < o7 as/u2s. Using the inequality 1 — k < exp(—k) which holds for all

k > 0, we get
1 * o\ 2ypiast
—_— =|1-— <exp|—7———
T4+ ypas L+ ypas 1+ vpas

Therefore, provided that

2
£ 1+7MAslog 2[|zo — .| 7
2vpas €

2t
1 _ 2 & 2epas
we get ( I +WAS) lzo — z4]|” < 5. Furthermore, as long as v < P (this is true pro-

vided that the more restrictive but also more elegant-looking condition v < enas/o? o holds),

2
Yo%, AS

we get —————
g YHAg+2uas —

5. Putting these observations together, we conclude that with the stepsize

v = enas/o? \o, we get B {th - x*||2] < ¢ provided that

1 2 ||wo — || o? 1 2 ||lzo — ||
LA o — ™ _ s L) lzo — 2lI” \
29uas € 2epig 2 €

F.6 07 xicp(T) AND piNice(T) ARE MONOTONOUS FUNCTIONS OF T

t >

Foral0 <7 <n-—1:

1. pnice(7 + 1) > punicr(T),
n_q
2. UE,NICE(T) = ﬁUE,NICE(l) < % NICE(l)

Proof. 1. Pick any 1 < 7 < n, and consider a set C' for which the minimum is attained in
1
pen(r ) = o i S

Let j = argmax;ec ;. Thatis, pi; > p; forall i € C. Let C; be the set obtained from C
by removing the element j. Then |C;| = 7 and

i = max >max >7
Mg ’LEC’LLZ_ Mz_ GZC:M
k2

By adding ), cc, Mito the above inequality, we obtain
1
Mj‘*‘_ZMz‘Z;ZM-F.ZM-
’LGC]' ZECj IGC]‘

Observe that the left-hand side is equal to ), j;, and the right-hand side is equal to
T Y e, b If we divide both sides by 7 + 1, we obtain

1 1
T+12M¢Z;ZM¢-
icC

i€Cy

Since the left-hand side is equal to unicr(7 + 1), and the right hand side is an upper bound
on unice(7), we conclude that unice (T + 1) > unice(7).
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2. In view of (8) we have

2

> Vi)

2
oeas = Eses ]
icS

?

Let x; be the random variable defined by
_J 1 jes
Xi=10 jé¢s.

It is easy to show that

E[y;] = Prob(j € §) = %
Let fix the cohort S. Let x;; be the random variable defined by

{1 icSandje S
Xij =

0 otherwise.

Note that

Xij = XiXj-

Further, it is easy to show that

E[x:;] = Prob(i € S,j € S) = ;E;:i))

Denote a; := V fi(x,).
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1 1
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ies | llies
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= ﬁ]E ZXiai
1
= ﬁE ZHXW@” +Z XlaHX]aj
i#]
1
= ﬁE Z”Xlal” +ZX1] @uaj
i#]
1< 9
= ﬁZE[Xl] llaill +Z]E[Xij] (as,a;)
i=1 i£j

- ZH P+ Z
#J

1y 2 T—1

= %;Hazu +m2(ai,aj>

i#]

= *ZI ai|” + Zay

n
2
= > lail
i=1
2

n—1 1 s n(r—1)
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*EZ vai(l"*)HQ
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F.7 MISSING PROOF OF LEMMA 1

For ease of notation, let a; = V f; (x,) and Z; = |C}] ag;, and recall that

b
ZA‘ } (19)

2 —
04,88 = Ee¢ .6

S|
<
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where {; € Cj is chosen uniformly at random. Further, for each j € [b], let z; = 3, a;. Observe
that 2221 z; = Z?Zl Diec; @i = 2i—1 ai = V[ (z.) = 0. Therefore,

2 2
1 1 ||
O IL] Bl VDD B
j=1 j=1 j=1
b 2
b |1 .
= n2 EZ(ZJ _Z])
j=1

IN
>
e
S| =
]+

bl\z

|

K7(\1

b
b~ .
== > 14—l (20)

where the inequality follows from convexity of the function u + |Ju||?. Next,
2

~ 2 2
12 = 21* = |[ICyl ag, = > asl| = 1C4I |lag, — C Y ail| <ICifo @21
ieCj ‘ | ’LGC

By combining Equation (19), Equation (20) and Equation (21), we get

Eqn. (19) 1< :
2 qn. (1€ .
Tess = Bae |- > %
j=1
Eqn. (20) [ h
< [SERPR Y EZ”ZJ _ZJH
L J=1
Eqn. (21) [ h L 5 s
< B¢, |3 2_ 1G5 05
=1

b b
2 : 2

The last expression can be further bounded as follows:
2

b
b
722 Z|C| Injaxa <* Z|C| m?xa?:bmjaxo]z,

where the second inequality follows from the relation ||ul|2 < ||u||; between the Lo and L; norms,
and the last identity follows from the fact that 22:1 |C;| = n.

F.8 STRATIFIED SAMPLING AGAINST BLOCK SAMPLING AND NICE SAMPLING

In this section, we present a theoretical comparison of block sampling and its counterparts, providing
a theoretical justification for selecting block sampling as the default clustering method in future
experiments. Additionally, we compare various sampling methods, all with the same sampling size,
b: b-nice sampling, block sampling with b clusters, and block sampling, where all clusters are of
uniform size b.

Assumption F.10. For simplicity of comparison, we assume b clusters, each of the same size, b:
|C1| = |Cs| = ... =|Cy| =b.
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It is crucial to acknowledge that, without specific assumptions, the comparison of different sampling
methods may not provide meaningful insights. For instance, the scenario described in Lemma 1,
characterized by complete inter-cluster homogeneity, demonstrates that stratified sampling achieves
a variance term, denoted as O’iss, which is lower than the variance terms associated with both block
sampling and nice sampling. However, a subsequent example illustrates examples in which the
variance term for block sampling surpasses those of block sampling and nice sampling. Without
imposing any additional clustering assumptions, there exist examples for any arbitrary n, such that

2 2 2 2
0,88 = 0y s and 05 g5 > 0 N1CE-

Proof. Counterexample when SS is worse in neighborhood than BS
Assume we have such clustering and V f;(z,) such that the centroids of each cluster are equal to
zero: Vi € [b], |T1\ > jec; VIj(xzs) = 0. For instance, this can be achieved in the following

case: The dimension is d = 2, all clusters are of equal size m, then assign Vi € [b], Vj € C;,
Vfi(xe) = (Re (W™ ) Im (w™i+7)) where w = {/1 € C. Let us calculate 02 5g:
2
b 1
JE,BS = Z%‘ Z vai(f*) =
j=1 i€C; pi
2

|C|Zszx* =0.

i€Cy

2

-Ly
n? = qj
As a result:

2 2

oyps =0 <0y gs-
Counterexample when SS is worse in neighborhood than NICE
Here, we employ a similar proof technique as in the proof of Lemma 2. Let us choose such clustering
Cb.ss,max = argmaxe, o; g5(Cy). Denote iy = (i1, - i), Cp == Cy x --- x Cy, and S, =

15 Zies, VAilza)]-

i€ip

% vaz(x*)

i€C

1
OE,NICE = T Z

W) ccplicl—r

- nbzslb

i,C[n]

1 1
S 5 > S

#cluslerlzatlons Cs i,eCy
E o2 * ss (C)

S 07 55(Cb,58 max)-

#clusterlzatlons

Equation 1 holds because, in every clusterization Cp, there are bb possible sample combinations ip.
Due to symmetry, one can conclude that each combination .S, is counted the same number of times.
Equation 2 follows from the definition of Cp, g5 max-

For illustrative purposes, we can demonstrate this effect with a specific example. Let n = 4 and
define Vi a; = Vf;(z*) € R% Leta; = (0,1)T, a3 = (1,0)7, a3 = (0,—1)T, and a4 = (—1,0)7.
Then fix clustering C, = {C1 = {a1,a3},C2 = {az2,a4}}. Then:

1 a;, + a;
UESS*ZZ B :
i,€C

2
1 1 1
= - +—,+=
4. ( 2’ 2)
i, €Cy
1
=3
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1 a; +a;
2 _ i J
O« NICE = C(4,2) ; 9
]. ai—i—aj 2
*Bg 2
:1 ay +as 2 az + ay 2 19w Ay + Ay 2
6 2 2 2
_ ! 0—|—2><2><1
6 2
1
-3
2 2
= - X
3 04,88
<07 ss

To select the optimal clustering, we will choose the clustering that minimizes O'EVSS.

Definition F.11 (Stratified sampling optimal clustering). Denote the clustering of workers into
blocks as Cp, := {C1,Cy, . .., Cp}, such that the disjoint union of all clusters C; UC5U. . .UC}, = [n].
Define block sampling Optimal Clustering as the clustering configuration that minimizes Uf,ss’ for-
mally given by:

.2
Cp,gs 1= argmin J*}SS(Cb).
Cy

Proof of the Lemma 2 is provided below.

Proof. 1. Denote i :== (i1, ,4p), Cp = Cy X - -+ X Cp, and Sj, == ]H Eieib Vfi(x*)H.

2

=Y Vi)

i€C

1
UE,NICE = C(n, 1) Z

CClnl,|Cl=T

1
= Cnb) Z] Sy,

i,Cn

1 1
e DY B D

#clusterizations .
Cy i,€Cy

1 2
=7 E o5 ss(Cv)
#clusterizations C *
O

[V

07 55(Cb,58,min)

Equation 1 holds because, in every clusterization Cy, there are bib possible sample combi-
nations i,. Due to symmetry, one can conclude that each combination Sj, is counted the
same number of times. Equation 2 follows from the definition of Cy, g5 min as the clustering
that minimizes aiss, according to Definition F.11.
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0'2 . .
2. The neighborhood size for SPPM-AS is given by —a=45 _ denoted as Upg for simplic-

0 Defi YHAsT21As
ity. Define:
NICE(b) ‘= min —
HUNIC (b) cCin ] b E Hi,y
|Cl= ieC
b
[ss = min #is | Gl s 10 min M min E 1
sg = = = —_
i,€Cy 4 1 n i,€Cy “ 1 i,eCy b £
J= j=

Using the definition of the set Cp, := Cy x Cy X - -+ X Cp, we have C, C {C' C [n] | |C| =
b}. Applying this fact, we obtain:

= min - >
Hss = ed, ;Nj HNICE(b)-
VASEE)

Combining the above with o7 s5 (Cys5) < 07 x1c. We obtain that Uss (C,ss) < Unices
demonstrating the variance reduction of SS compared to NICE.

O

Consider the number of clusters and the size of each cluster, with b = 2, under Assumption F.10.
Then, 07 g5 (Ct,s5) < 07 ps:-

a;ta;

2)2

Proof. Letn = 4,b = 2. Denote Vi a; = V f;(x,). Define S? := Dics

1
2 2
ol =~ 5%~
%8S 4(

1
= 1 (SQ — ZUE,BS)

acll + Clc;z 2
2

acl + acs
2

Cp,ss clustering minimizes JE,SS, thereby maximizing O’EyBS. Thus,
2

R i (e inile n

Orss =~

*,SS 4 2

ac2 + acz
2

acl +acs
2

ac2 + acy
2

)

1
Z (2‘7* BS ((0117 021)7 (0127 022)) + 2U»%,BS ((0117 022)7 (0127 021)))
1

= 5 ( E,BS ((0117 CZI)a (0127 022)) + O—E,BS ((Clla 022)7 (0127 021)))

< UE}BS'

O

However, it is possible that this relationship might hold more generally. Empirical experiments for
different configurations, such as b = 3, support this possibility. For example, withn = 9, b = 3,
and d = 10, Python simulations where gradients V f; are sampled from N'(0, 1) and N (e, 1) across
1000 independent trials, show that Uf,ss < ‘73733- Question of finding theoretical proof for arbitrary
n remains open and has yet to be addressed in the existing literature.

F.9 DIFFERENT APPROACHES OF FEDERATED AVERAGING

Proof of Theorem 2:
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Proof.
R \Z””*
S, 1€St
2
(Fact F.3) 1
= > [EA [prox, s, (z¢-1) = prox, z, (z. + 7V fi(2.))]
i€Sy
Jensen 2
< |S|||[prOX7fL(-Tt 1) = prox g, (2. + 9V fi(w)] |
i€S;
(Fact F.4) 1 1 2
< —————— |1 — (e + YV fi (2
2o TSI e 7 (e F Ve

Egis [l - x*||2|xt,1}

<Es.s [Z Bl [SREES —sz-<x*>>|2|xt1]

Young a; >0

< SwSlZ ST ((Hai)lxt—l:E*||2+(1+a51)Ivvfi(rv*))llz)lxt—ll

(3

1 1 2 v 2
:E ~. T 1 * 71 . N K3 * -
s SL;J&' (1+»y i =2l + IV b ]

_ _ 2
_EStNS [S| Z ]-+'Y,Uzz 1‘| ”xt—l JZ*H +ESt~S [|S| Z 1+ Mz) lHVfl(x*))H I-’I:t 1]

Q= ’YIM 2 1 2
E ~ 1 7 —1 — Lx 1 i\ Lx —
s S[Z e (@ e = ol + (14 - ) VAT o

By applying tower property one can get the following:

2
Es,~s [llxt — x| }

|5|21+w

= ASHJTt_l - x*|| + BS-

=Eg,~s |21 — 2,* + Es,ns

1S melvfz(x*))lll

2
where As = Es, s |11 ies, iz | a0d Bs = Esons |31 Sies, b IV @I
By directly applying Fact F.5:
LB
1-As

Esims [lae = o.] < ASllao — .
O

[Inexact formulation of SPPM-AS] Let b > 0 € R and define prox.,;(z) such that

Vx”pfr\o/x,yf (z) — prox,yf(as)||2 < b. Let Assumption 2.1 and Assumption 2.2 hold. Let zo € R?
be an arbitrary starting point. Then for any ¢ > 0 and any v > 0, s > 0, the iterates of SPPM-AS
satisfy

1+s K 1+ 5) (7202 + s71b(1 + ypu)?
(14w V22 + 2y — s
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Proof of Lemma F.9. We provide more general version of SPPM proof

2 2
lze41 — 2sl|” =

p/r\o/x,yfét (@) — PTOXy . (z¢) + ProX, s . (z4) — x4

Young,s>0 2 2
<

(1457

(e) +(1+3)|

pfr\&(vfe,, (24) = PIOXy g,

2

prox. , (Tt) — s

<(14+sHo+0a+ s)‘ prox, s, (1) — .«

Then proof follows same path as proof Theorem 1 and we get

E [loes1 = 2al?] < (14 570+ (1+) 5 (2 = 2. +9%02)

1
(1+p)
1+s

= s (el + [P+ 57w,

azc It only remains to solve the above recursion. Luckily, that is exactly what Fact F.5 does. In

. . . 2 s (1+s) (720245 o(1+vp)?
particular, we use it with s, = E [th — 4| ] VA= (1_%:;#)2 and B = (v - v1)?) to
get

E [th — mﬂ < Alllzy — 2 |? + B——
- 1-A4
1+ yp)?
< Az — 24 4B (
= HO || (1+7N)27175
14 5) (v202 4+ s71b(1 + 2
§At‘|l‘ofﬂs‘*”2+( )(7 * . ( 'Y,U) )
(I+yu)?—1-s
1+s tH 2+ (1+5) (%07 +57'b(1 + yp)?)
=— To— T )
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