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Abstract

We contribute an empirically derived noise model for the
Kinect sensor. We systematically measure both lateral and
axial noise distributions, as a function of both distance and
angle of the Kinect to an observed surface. The derived
noise model can be used to filter Kinect depth maps for a
variety of applications. Our second contribution applies
our derived noise model to the KinectFusion system to ex-
tend filtering, volumetric fusion, and pose estimation within
the pipeline. Qualitative results show our method allows
reconstruction of finer details and the ability to reconstruct
smaller objects and thinner surfaces. Quantitative results
also show our method improves pose estimation accuracy.

1. Introduction
Researchers in many areas including computer vision,

augmented reality (AR), robotics and human computer in-
teraction (HCI) have begun to embrace the Kinect as a new
commodity depth sensor. Whilst compelling due to its low-
cost, the output depth maps of the Kinect sensor are noisy.
Researchers have begun to explore the sensor noise charac-
teristics of the Kinect [5, 9] and shown an increased vari-
ance in reported depth as the distance between the sensor
and observed surface increases.

However, this prior work has only quantified axial noise
as a function of distance to the observed surface. In this
paper we contribute a new, empirically derived noise model
for the Kinect sensor. We quantify how Kinect noise has
both an axial and lateral component, which can vary based
on distance and angle to the observed surface. As shown
in Figure 1, we systematically measure both lateral and ax-
ial noise distributions and fit a suitable parametric model to
each. These noise models can be used to filter Kinect depth
maps for a variety of applications.

As an application of our derived noise model we extend
KinectFusion [4, 7], a system that creates real-time 3D re-
constructions using a moving Kinect sensor. We show im-
proved reconstructions can be achieved by explicitly mod-
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Figure 1. We propose a 3D noise distribution of Kinect depth
measurement in terms of axial (z-direction) and lateral (directions
perpendicular to z) noise.

elling the Kinect sensor noise and applying this to vari-
ous stages of the KinectFusion pipeline. Qualitative results
show finer details in the acquired reconstructions and the
ability to reconstruct smaller objects, whilst quantitative re-
sults show improvements in pose estimation accuracy.

2. Experimental analysis of sensor noise

Kinect sensor noise is the difference between measured
depth and ground truth. Previously, axial noise has been
estimated by comparing the depth measurement of a planar
target (a door) against the mean depth of the measured sur-
face perpendicular to the sensor’s z-axis [5]. This showed
increased variance of depth measurements with increasing
distance from sensor to surface, but did not explore surface
angle or lateral noise.

Lateral noise is not so readily measurable: ideally this
would be the point spread function (PSF) recovered from
the Kinect sensor. However, given the Kinect only produces
noisy depth measurements, recovering the full PSF is chal-
lenging. We propose that the PSF can be approximated from
the derivative of the sensor’s step response function, which
can be observed at depth discontinuities. When observing
the edges of a planar target sensed with the Kinect, we can
see that straight-edges appear as zig-zag lines, and the dis-
tribution of the pixels along these edges gives an indication
of the step response function. We therefore approximate
the PSF as the distribution of absolute distances from the
observed edge pixels to a fitted straight edge of a planar tar-
get. From our experiments, we have found this simple to
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implement and more accurate than direct estimation of the
step response. The standard deviation (STD) of lateral noise
is simply the STD of the edge distance distribution.

2.1. Experimental setup

Figure 2 summarizes our setup for measuring lateral and
axial noise probability distribution functions (PDFs) for
a Kinect sensor. We used a planar target rotating freely
around a vertical axis in front of a fixed Kinect (Figure
2a). All experiments in this paper used a Kinect for Win-
dows sensor set to run in “near-mode” with depth sensing
between 0.4m to 3.0m.

The principal axis of the depth camera is defined as the
z-axis and the target rotation axis is approximately perpen-
dicular. Lateral noise is extracted from the pixels along the
vertical edges of the depth map (Figure 2b, front view). Ax-
ial noise is obtained from the differences between raw depth
and a fitted plane (Figure 2c, top view).
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Figure 2. Experimental setup to measure noise distributions of
Kinect sensor. a) Photo and schematic representation of experi-
mental setup, with Kinect capturing depth maps of a rotating tar-
get. b) The 2D projected depth map of the planar target with lateral
noise along one edge highlighted. c) A top-down cross-section of
the depth map revealing noise distribution along z-axis and normal
to the target plane.

2.2. How to extract axial and lateral noise

Figure 3 shows how to extract lateral noise (top row) and
axial noise (bottom row) from a depth map as function of
plane angle θ. Figure 3a-c show how to isolate the verti-
cal edges of the observed target and obtain the edge-pixel

distance distribution to calculate the lateral noise STD σL.
Detected edge pixels are shown as thick lines.
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Figure 3. Processing of depth map to extract noise components.
a) Crop horizontal edges b) extract edge pixels and fit straight lines
to vertical edges. c) Extract distance from edge pixels to the fitted
lines to calculate σL. d) Crop vertical edges by 3σL. e) Fit plane
to remaining rectangle depth map. f) extract the rotation angle θ
and σz .

For axial noise measurement, the vertical edges of the
depth map are trimmed 3σL to remove all lateral noise as
shown in Figure 3d. The remaining depth map region is
fitted to a plane to estimate the plane angle and depth noise
along the z-axis as shown in Figure 3e-f. Plane fitting can
be performed using orthogonal distance regression.

Figure 4 shows examples of the depth maps at different
z positions and plane angles. Detected edges and bounding
box are highlighted for illustrative purposes to indicate how
σL and σz are computed.

=10    20     30     40     50     60     70     80 θ
 

z = 0.5m    0.75m     1.25m     1.75m     2.25m     2.75m 

 0          0           0            0           0            0           0            0

a)

b)

Figure 4. Detected edges (solid red lines) to measure lateral noise
and bounding box (white dashed line) to crop the depth map be-
fore plane fitting at different angles (a) and different distances (b).
Invalid depth measurements shown in black.

2.3. Results and models of noise distributions

Experimental results were obtained using A2–A5-sized
targets of same surface material and thickness. Targets
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were placed at z-distances between 0.5m to 2.75m from the
Kinect at 0.25m increments. At each distance 1000 depth
maps were captured at varying angles θ. This led to ap-
proximately 10 depth maps being captured for each unique
z-distance and angle. We used an A5-sized plane at dis-
tances of approximately 0.5m and 0.75m; A4 at 1.0m and
1.25m; A3 at 1.5m, 1.75m and 2.0m; A2 at 2.25m, 2.5m
and 2.75m. This allowed us to maintain a fixed measure-
ment region around the optical center of the Kinect camera
for all target sizes and z-distances (Figure 3). We used fac-
tory default intrinsic parameters for lens calibration with a
field-of-view of 70◦, focal length of 585 pixels and principal
point at the center of the image.

Measured noise distributions obtained for three example
z-distances are shown in Figure 5. As illustrated, the spread
of lateral noise distributions (obtained in pixels) does not
vary significantly with z-distance. In contrast, the spread
of axial noise distributions (obtained in meters) clearly in-
creases with z-distance.

Figure 6 gives an overview of lateral and axial noise
over z-distance. The distribution of noise as function of
z-distances between 0.75m-2.5m is plotted for angles θ be-
tween 10-60◦. As shown, the lateral noise increases linearly
with z-distance. Axial noise increases quadratically with z-
distance. Note we avoid reporting data at the limits of the
operating distance of the near-mode Kinect or extreme sur-
face angles, as a significant increase of invalid depth pixels
makes robust plane fitting impractical.
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z = 0.74m

0.04 0.00 0.04
Axial noise [m]

3 0 3
Lateral noise [pixel]

z = 1.78m
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z = 2.81m

0.04 0.00 0.04
Axial noise [m]

Figure 5. Measured lateral noise (top row) and axial noise (bot-
tom row) measured for three z-distances. Dashed lines show fitted
Gaussian distributions. The spread of lateral noise (in pixels) does
not vary significantly with increasing z-distance, while the spread
of axial noise (in meters) does.

2.3.1 Fitted lateral noise model

Figure 7a shows that lateral noise (in pixels) changes lit-
tle with z-distance, except close to the limit of the oper-
ating range of the Kinect (at 0.5m). Furthermore, lateral
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Figure 6. Linear and quadratic fits to the lateral and axial
noise components, respectively, as function of z-distances between
0.75m-2.5m plotted for angles θ between 10-60◦

noise increases slightly with θ before 70◦. When converting
from pixel to real-world distances in meters, lateral noise
increases linearly with z-depth as shown in Figure 6.

We fitted a linear plus hyperbolic model to this data us-
ing ordinary least squares regression and excluding spurious
data at z-distances less than 0.5m or higher than 2.8m. The
hyperbolic term accounts for the rapid growth of the noise
towards 90◦. Equation 1 gives the standard deviation distri-
bution in pixels, and equation 2 converts this to real world
units (meters):

σL(θ)[px] = 0.8 + 0.035 · θ/(π/2− θ) (1)
σL(θ)[m] = σL(θ)[px] · z · px/fx (2)

where px/fx is the ratio between pixel size and focal length
of the Kinect camera (both in either pixel or metric units).
σL is assumed the same for directions perpendicular to z.
The coefficient of 0.035 is found manually. The fitted lateral
model is plotted in Figure 7a.

2.3.2 Fitted axial noise model

Figure 7b shows that σz varies significantly with z-depth but
remains constant at angles less than approximately 60◦ and
increases rapidly when the angle approaches 90◦. At dis-
tances beyond 2.5m σz show a noticeable decrease as angle
approaches 0◦. This is because Kinect’s depth resolution
decreases at larger distances [5].

We can derive an equation for z-axial noise by firstly as-
suming it is constant for angles from 10-60◦ and using lin-
ear regression to fit a relationship between z-axial noise and
reported depth. Note we again avoid capturing spurious data
at extreme angles outside of the range of 10-60◦.

σz(z, θ) = 0.0012+0.0019(z−0.4)2, 10◦ ≤ θ ≤ 60◦ (3)
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Figure 7. Fitted models plotted over a) lateral and b) z-axial noise.

This equation differs from the axial noise model in [5] as
it includes extra terms with coefficients 0.0012 and −0.4 to
better fit noise at smaller distances. We then add a hyper-
bolic term to account for the increase as θ approaches 90◦:

σz(z, θ) = 0.0012 + 0.0019(z − 0.4)2 +
0.0001√

z

θ2(
π
2 − θ

)2
(4)

The coefficient of z−
1
2 is found manually. The fitted axial

noise model is plotted over the raw data in Figure 7b.

3. Applying our noise model to KinectFusion
To demonstrate the value of our empirically derived

Kinect noise model we use it to extend the KinectFusion
system. In KinectFusion, depth data from the Kinect cam-
era is integrated into a regular voxel grid structure stored
on the GPU. Surface data is encoded implicitly into voxels
as signed distances, truncated to a predefined region around
the surface, with new values integrated using a weighted
running average [3]. The global pose of the moving depth
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Figure 8. 2D visualization of the PDF contours of Kinect sen-
sor noise distributions in image space (top) and in 3D space (bot-
tom). Each ellipse represents the noise distribution with σz and
σL scaled up by a factor of 20.

camera is predicted using the point-plane variant of the it-
erative closest point (ICP) algorithm [2]. Drift is mitigated
by aligning the current raw depth map with the accumu-
lated model (instead of just the previous raw frame). This
implicit surface can be extracted either through ray-casting
the voxel grid or triangulating a mesh using marching cubes
or other variants.

In the following subsections, a 2D pixel position on
Kinect depth map is denoted as u = (x, y). Di(u) is the
depth map value at u retrieved at time frame i. With an in-
trinsic calibration matrix K, a 3D vertex of the depth value
at u is vi(u) = Di(u)K−1[u, 1]. Di therefore results in a
single vertex map Vi. A rotation and translation matrix for
time frame i is Ti = [Ri, ti]. The vertex position is ex-
pressed in global coordinates as vgi = Tivi.

3.1. Data filtering

One approach to filtering Kinect data in 3D space is to
the model the noise PDF as a full 3 × 3 covariance matrix.
As shown however, lateral noise is independent of depth
distance (Figure 7a), and so a full covariance matrix can
lead to redundancy. As a result, we can filter input depth
data in image space, using only two variances σ2

z and σ2
L.

This allows us to apply more efficient and simpler image-
based filtering methods, such as [10] to achieve similar re-
sults to full 3D filtering. Figure 8 shows a 2D visualization
of the PDF contours for the Kinect, in image space (top)
and 3D space (bottom). Note how the PDFs only expands
along the z-direction as depth increases in image space.

Thus, the derived σL and σz can be used directly to sup-
port edge-aware filtering of depth maps. As σL is mostly
less than 1 from equation 2, a raw depth map Di is smoothed
using a kernel size of 3 × 3 to generate a smoothed depth
map D̃i(u). This is described in Listing 1.
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Listing 1 Smoothing raw depth
1: Assuming θmean = 30◦

2: for each image pixel u ∈ depth map Di in parallel do
3: if Di(u) within depth range then
4: σL, σz ← calculate from Di(u) and θmean
5: for each uk in 3× 3 pixel area around u do
6: ∆u← ||u - uk||
7: ∆z ← ||Di(u)− Di(uk)||
8: if ∆z < threshold then
9: wk ← exp

(
−∆u2

2σ2
L
− ∆z2

2σ2
z

)
10: else
11: wk ← 0

12: D̃i(u)←
∑
k Di(uk)wk∑

k wk

A normal vector map Ni is generated from D̃i where its
element ni(u) = (vi(x + 1, y) − vi(x, y)) × (vi(x, y +
1) − vi(x, y)). Then ni(u) is normalized to unit length.
Surface angle θ is calculated as angle between ni(u) and the
camera z-axis, i.e. θ = arccos(|ni,3|). The normal vector is
expressed in global coordinates as ngi (u) = Rini(u).

3.2. Weighted ICP for pose estimation

KinectFusion uses point-plane ICP to extract the relative
6-DoF rigid transform that best aligns the set of oriented 3D
points derived from the current depth map with the oriented
points derived from the previous pose. Correspondences are
found using projective data association [8]. In addition to
the distance and normal thresholds used in projective data
association, only points where the angle of normal vector
θ = arccos(|ni,3|) is less than 700 are used for pose esti-
mation, as points with larger normal angle have significant
error (as shown in Figure 7).

The point-plane energy function is linearized by assum-
ing small angle changes from one pose to the next [6].
However, this approximation treats data points of differ-
ent noise levels equally, and may lead to suboptimal solu-
tions. To avoid this we include a weighting factor wi =
σz(zmin, 0)/σz in the relative pose given by:

arg min
∑

u
D(u)>0

‖
(
Tivi(p)− vgi−1(u)

)
· ngi−1(u) ·wi‖ (5)

3.3. Volumetric depth map fusion

To better accommodate the Gaussian-like axial-noise
(Figure 5), we propose a new approximation of the Trun-
cated Signed Distance Function (TSDF) [3] encoded in the
voxel grid. This is based on the Cumulative Distribution
Function (CDF) of the axial noise PDF.

Figure 9 depicts our new approach for modeling the
TSDF. In the original TSDF, a truncation length µ is used
to account for measurement uncertainty. We set this to 3σz

to relate it to the axial noise distribution. In fact, our ex-
periments show that a truncation length of 6σz enables us
to accommodate additional noise due to camera tracking er-
ror. To allow for more refinement, truncation length can
be adjusted adaptively from 6σz down to 3σz according to
decreasing residual error of ICP optimization when the re-
construction quality increases. The pseudo-code excerpt in
Listing 2 shows the improved volumetric depth map fusion
for KinectFusion.

The TSDF calculation at line 17 of Listing 2 is a modi-
fied version of an approximate Gaussian CDF [1] to gener-
ate values within [−1, 1]. This operates on the SDF value
sdfk calculated as in the original KinectFusion algorithm.

Listing 2 Projective TSDF integration
1: for each voxel g on x-y slice of volume in parallel do
2: while sweep along z-axis of volume do
3: vg ← convert g from grid to global 3D position
4: v← T−1

i vg
5: p← perspective project vertex v
6: if p ∈ depth map Di and Di(p) > 0 then
7: tsdfi ← tsdfi−1

8: wi ← wi−1

9: for each pk in 3× 3 area around p do
10: θ ← angle(z-axis, ni(pk) )
11: ∆u← ||p - pk|| with sub-pixel accuracy
12: ∆z ← ||Di(p)− Di(pk)||
13: if Di(pk) > 0 and θ < angle threshold then
14: σL, σz ← calculate from Di(pk) and θ
15: sdfk ← ||ti − v|| − Di(pk)
16: if sdfk > −6σz and ∆z < 3σz then

17: tsdfk ← sgn(sdfk)

√
1− e−

2
π

sdf2
k

σ2
z

18: wk ← σz(zmin,0)
σz

z2
min

D2
i (pk)

e

(
−∆u2

2σ2
L

−∆z2

2σ2
z

)
19: tsdfi ← (tsdfiwi+tsdfkwk)/(wi+wk)

20: wi ←min(max weight, wi + wk)

In the original KinectFusion system geometric features
could be lost when the accumulated voxel model was up-
dated with nosier depth measurements further away from
the surface. This is because noisy depth measurements
were integrated into the voxel grid with the same weight
as measurements closer to surfaces. To avoid this prob-
lem, normalized terms are added to the voxel weight (line
18, Listing 2). The exponential term is the noise distribu-
tion weight. The term z2

min

D2
i (pk)

adjusts for the spread of the
width of 3D noise distribution, covering more voxels as z-
depth increases. The term σz(zmin,0)

σz
accounts for increased

length of the distribution for larger z-depths (see Figure 8).
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Figure 9. Top: an empirical axial-noise PDF with standard devia-
tion σz . Bottom: comparison of SDF, old and new TSDF models
generated from depth measurements at 1.5m. (Note: the SDF is
scaled 30 times to show the variation.) µ is the truncation length
of the original linear TSDF. The new TSDF is a cumulative distri-
bution function based on the axial-noise PDF. While 3σz is equiva-
lent to the truncation length of the original linear TSDF, truncation
at 6σz helps accommodate noise due to camera tracking error.

4. Reconstruction and tracking results
To illustrate the effectiveness of the new KinectFusion

pipeline, experiments were performed in two challenging
scanning situations where objects with thin and fine struc-
tures are scanned on a manual turntable as shown in Figure
10. The Kinect was attached to a frame and rotated manu-
ally around the table at roughly a fixed distance and angle.
Raw depth data was recorded and processed off-line for di-
rect comparison between the original KinectFusion [4, 7]
implementation and our extensions. External Vicon track-
ing is used to provide ground truth tracking information to
validate the 6-DoF pose estimation performance. Markers
were attached to the body of the Kinect as shown in the left
of Figure 10.

4.1. Qualitative Results

Figure 10. Two test scenes scanned by rotating a Kinect around
the table as shown in the left figure. Vicon markers for ground
truth tracking were attached to the body of the Kinect.

Figure 11. Full 360 reconstruction of two scenes using original
KinectFusion (left) and our extensions (right).

Figure 11 shows reconstruction results of the original
KinectFusion (left columns) in comparison to results from
our extensions (right columns). The reconstruction volume
is 1m3 with a resolution of 5123, centered at 0.8m from the
Kinect. The original KinectFusion has more noise and miss-
ing structures, and less details. The extended KinectFusion
produces reconstructions with higher quality and more de-
tail, especially the leaves and other thin surfaces.

4.2. Quantitative Results

Figure 12 compares angular tracking performance of
the original and extended KinectFusion algorithms for the
scene shown in Figure 11 (left). The estimation of (yaw) ro-
tation around the turntable is compared against ground truth
data from the Vicon across about 600 depth frames. The
original KinectFusion has better tracking accuracy at first,
however after about 1500 rotation, the extended version
shows improved tracking accuracy. The extended Kinect-
Fusion achieves a 2.5% reduction in angular tracking error
after a full rotation compared with the original.

5. Conclusion
We have presented a new, empirically derived noise

model for the Kinect sensor, which considers both axial and
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Figure 12. Tracking error around turntable by original and ex-
tended KinectFusion algorithms with respect to ground truth data.
The error is the magnitude of the difference between yaw angle
produced by KinectFusion and the groundtruth by Vicon tracking.
The dashed lines are for the angle errors by original KinectFusion
before and after smoothing. The continuous lines are for the an-
gle errors with our approach before and after smoothing. The new
algorithm reduces tracking error for a full 360 rotation by 2.5%.

lateral noise distributions as a function of distance and an-
gle from sensor to observed surface. Whilst other applica-
tions are feasible, we have demonstrated the effectiveness
of these derived noise models in improving reconstruction
accuracy for KinectFusion.

We have proposed a method of estimating lateral noise
PDF using the edge pixels of a planar target. We found that
in real world units, lateral noise increases linearly with dis-
tance while axial noise increases quadratically. Both lateral
and axial noise are fairly independent of surface angle until
approximately 70◦ where they increase rapidly.

We use these derived noise models for improved noise
filtering of Kinect data. We also propose extensions to
the KinectFusion pipeline to improve reconstruction quality
and pose estimation based on these derived noise models.
This has been demonstrated by two test scans where thin
structures and fine details can pose a significant challenge
for 3D reconstruction.

From our experiments we have observed that our new
empirically derived noise model has the potential to allow
surfaces to converge quicker during reconstruction than the
original KinectFusion system. Whilst we need to verify this
quantitatively, we have noted that more detailed reconstruc-
tions of test scenes could be acquired in less frames with our
explicit noise modeling. This was observed during all our
experiments (in Figure 11) and will be quantified in our fu-
ture work. Another rich area for future research is to extend
our empirically derived noise model to better accommodate
surface material properties such as reflectance and albedo,

a research topic in its own right, but one that clearly can
impact noise characteristics.
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