

AU-HARNESS: AN OPEN-SOURCE TOOLKIT FOR HOLISTIC EVALUATION OF AUDIO-LLMs

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Large Audio Language Models (LALMs) are rapidly advancing, but evaluating
 012 them remains challenging due to inefficient toolkits that limit fair comparison and
 013 systematic assessment. Current frameworks suffer from three critical issues: slow
 014 processing that bottlenecks large-scale studies, inconsistent prompting that hurts
 015 reproducibility, and narrow task coverage that misses important audio reasoning
 016 capabilities. We introduce **AU-Harness**, an efficient and comprehensive evalua-
 017 tion framework for LALMs. Our system achieves a speedup of up to 127%
 018 over existing toolkits through optimized batch processing and parallel execution,
 019 enabling large-scale evaluations previously impractical. We provide standard-
 020 ized prompting protocols and flexible configurations for fair model comparison
 021 across diverse scenarios. Additionally, we introduce two new evaluation cate-
 022 gories: LLM-Adaptive Diarization for temporal audio understanding and Spoken
 023 Language Reasoning for complex audio-based cognitive tasks. Through evalua-
 024 tion across 380+ tasks, we reveal significant gaps in current LALMs, particularly
 025 in temporal understanding and complex spoken language reasoning tasks. Our
 026 findings also highlight a lack of standardization in modalities of user-provided
 027 instructions existent across audio benchmarks, which can lead to performance dif-
 028 ferences of up to 7.1 absolute points on challenging complex instruction follow-
 029 ing downstream tasks. AU-Harness provides both practical evaluation tools and
 030 insights into model limitations, advancing systematic LALM development.¹

1 INTRODUCTION

031 The emergence of Large Audio Language Models (LALMs) has opened new frontiers, extending
 032 capabilities beyond textual inputs to speech, sounds, and multimodal inputs (Tang et al., 2023;
 033 Cui et al., 2024). This progress has accelerated the development of frontier LALMs and audio-
 034 focused benchmarks. Recent multimodal LALMs like Gemini 2.5 (Comanici et al., 2025), Qwen2.5-
 035 Omni (Xu et al., 2025) have demonstrated substantial audio understanding capabilities well beyond
 036 the traditional Automatic Speech Recognition (ASR) tasks. However, despite these advances, audio
 037 evaluation toolkits have received comparatively little attention. Thus, there is a need for efficient,
 038 customizable, and consistent evaluation frameworks for fair model comparisons which can evolve
 039 as audio tasks and model complexities grow.

040 Existing efforts including AIR-Bench (Yang et al., 2024), AudioBench (Wang et al., 2025a), Kimi-
 041 Eval (Ding et al., 2025), and DynamicSUPERB-2.0 (Huang et al., 2024b) have broadened task
 042 coverage from ASR to spoken question answering and scene understanding. However, prevailing
 043 toolkits still face three persistent limitations. First, **throughput**: many pipelines under-utilize batch-
 044 ing and parallelism, creating bottlenecks that preclude large-scale, systematic comparisons. Second,
 045 **reproducibility**: ad-hoc prompting and non-standardized input formatting lead to evaluation vari-
 046 ance across setups. Third, **task scope**: evaluations rarely probe prompted temporal understanding
 047 (e.g., diarization) or spoken reasoning with unified, reproducible protocols.

048 Most current evaluation frameworks depend on simplistic yet inefficient input processing pipelines
 049 that struggle to scale with the increasing volume and complexity of audio benchmarks and LALMs.
 050 These limitations not only constrain the throughput of large-scale evaluations but also hinder fair and

051 ¹We will open-source AU-Harness upon acceptance to encourage future audio research.

054 reproducible comparisons across models of different sizes and architectures. As the field progresses
 055 toward more diverse and challenging audio tasks, the shortcomings of current evaluation infrastruc-
 056 ture may pose a critical bottleneck, ultimately hampering the potential progress of LALMs. Unlike
 057 previous evaluation frameworks, we introduce an efficient vLLM batching orchestration together
 058 with effective data sharding to scale the evaluations across multiple nodes and hardware architec-
 059 tures, leading to improved efficiency for audio benchmark evaluations.

060 Beyond computational efficiency, existing toolkits also suffer from a notable lack of customizable
 061 configurations for different audio task configurations, severely limiting their utility for diverse re-
 062 search and application needs. Insufficient attention to task-specific prompting remains a significant
 063 challenge for LALM evaluation and comparison across different benchmarks. Prompt sensitivity
 064 further compounds customizability concerns, since LALMs’ outcomes might significantly change
 065 when slight variations in prompt phrasing (Cui et al., 2024).

066 In addition, audio benchmarks and evaluation kits remain restricted to spoken language understand-
 067 ing and observational audio reasoning (analyzing audio content). To advance toward practical appli-
 068 cations, we focus on *operational spoken reasoning*² tasks that require executing instructions deliv-
 069 ered through speech, such as function calling, code generation, and complex instruction following.
 070 This complements existing benchmarks like MMAR (Ma et al., 2025), MMAU-PRO (Kumar et al.,
 071 2025), and MMSU (Wang et al., 2025b) that evaluate observational reasoning over mixed audio
 072 scenes. We construct and integrate *operational spoken reasoning tasks* with our evaluation kit for
 073 comprehensive agentic audio-to-text generation support. In addition, we also provide support for
 074 LLM-adaptive diarization evaluation where LLM prompting results in different I/O formats. To
 075 the best of our knowledge, our proposed evaluation kit is the first to introduce operational spoken
 076 reasoning tasks and support LLM-Adaptive Diarization evaluations.

077 Our contributions are as follows:

- 079 • We propose an **efficient evaluation engine** that leverages vLLM batching and dataset
 080 sharding to scale evaluations to multi-node infrastructures without sacrificing fidelity.
- 081 • A **unified, configurable framework** that standardizes prompting and metrics across bench-
 082 marks, enabling fair, reproducible comparisons and easy task integration.
- 083 • **Expanded evaluation coverage** with LLM-Adaptive Diarization and Spoken Language
 084 Reasoning to assess temporal grounding and audio-conditioned reasoning in LALMs.

086 2 RELATED WORK

089 **Audio Benchmarks.** Benchmarks play a critical role in the development of LALMs. SUPERB (Yang et al., 2021) established core task axes (Content, Speaker, Semantics, Paralinguis-
 090 tics) for audio model evaluation. DynamicSUPERB (Huang et al., 2024b) and DynamicSUPERB-
 091 2.0 (Huang et al., 2024a) expanded coverage to instruction-tuned and sequence generation tasks
 092 across speech, music, and environmental audio. Instruction-following and agentic behaviors have
 093 been probed by AIR-Bench (Yang et al., 2024) and VoiceBench (Chen et al., 2024). More recently,
 094 AudioBench (Wang et al., 2025a) unified eight task families over 26 datasets for AudioLLMs.

096 Complementary efforts in 2025 broaden the breadth and depth with *observational audio reasoning*: X-ARES (Zhang et al., 2025) systematically assesses general audio encoders across domains,
 097 AHELM (Lee et al., 2025) aggregates multi-aspect evaluation for audio-language models (reason-
 098 ing, robustness, safety, multilinguality), MECAT (Niu et al., 2025) targets fine-grained audio un-
 099 derstanding with expert-guided captions and QA. MMAR (Ma et al., 2025), MMAU-PRO (Kumar
 100 et al., 2025), and MMSU (Wang et al., 2025b) focus on understanding and analyzing complex audio
 101 scenes, spatial relationships, and mixed-audio reasoning. CodecBench (Wang et al., 2025c) bench-
 102 marks codecs from acoustic and semantic perspectives. While these benchmarks excel at observa-
 103 tional tasks, few evaluate *operational spoken reasoning* where models must execute tasks through
 104 speech instructions, or prompted diarization with reproducible protocols. This gap motivates our
 105 focus on operational reasoning capabilities like function calling, code generation, and complex in-

107 ²Throughout this work, we use the term *Spoken Language Reasoning* to refer to our pre-defined *Operational Spoken Reasoning*, unless stated otherwise.

108 struction following delivered through speech, complementing the observational reasoning emphasis
 109 of existing benchmarks.
 110

111 **Audio Evaluation Kits.** In contrast with Audio Benchmark development, Audio Evaluation Kits
 112 have received less attention. This can be primarily attributed to the straightforward nature and mini-
 113 mal setup requirements of the early audio tasks, as presented in [Huang et al. \(2024b\)](#) and [Yang et al.](#) (2024). However, the rapid growth of LALMs and the increasing complexity of newly curated audio
 114 benchmarks have underscored the critical need for comprehensive evaluation kits, as exemplified
 115 through the development of extensive evaluation kits ([Ding et al., 2025](#); [Wang et al., 2025a](#); [Chen](#)
 116 et al., 2024). For instance, AudioBench ([Wang et al., 2025a](#)) offers versatile evaluation support for
 117 up to 8 tasks across 26 datasets. VERSA ([Shi et al., 2025](#)) introduces a comprehensive framework
 118 to evaluate the quality of various speech, audio and music signals, with the focus on text-to-audio
 119 applications. Despite these advancements, most current evaluation kits operate on the simplified
 120 assumption that *a single model is evaluated against a single benchmark per run*. Addressing this
 121 limitation, we introduce an efficient, customizable evaluation kit to support the massive growth of
 122 the current LALMs and audio benchmarks as summarized in Table 1.
 123

3 LALM EVALUATION CHALLENGES

125 **Table 1: Feature comparison of contemporary LALM evaluation toolkits.** We evaluate key technical capa-
 126 bilities across existing frameworks: multilingual support for evaluating models across diverse languages, vLLM
 127 integration for efficient batching, multi-turn dialogue support for conversational scenarios, LLM-Adaptive
 128 Diarization for temporal understanding through prompting, Spoken Language Reasoning for complex audio-
 129 conditioned cognitive tasks, and configurable prompt customizations for flexible evaluation design. Our frame-
 130 work is the first to provide comprehensive support across all dimensions.
 131

EvalKit	Multilingual Support	vLLM support	Multi-turn	LLM-Adaptive Diarization	Spoken Language Reasoning	Configurable Prompt Customizations
AudioBench	✓	✗	✗	✗	✗	✗
Kimi-Eval	✓	✗	✗	✗	✗	✗
VoiceBench	✓	✗	✗	✗	✗	✗
AU-Harness	✓	✓	✓	✓	✓	✓

3.1 INFERENCE EFFICIENCY

139 Existing LALM evaluation kits have been de-
 140 signed based on the assumption that *a single model should be evaluated against a single*
 141 *benchmark per run*. However, this con-
 142 strains researchers from conducting systematic,
 143 large-scale comparisons across LALMs and au-
 144 dio benchmarks efficiently, slowing the iterative
 145 process of model development and refine-
 146 ment. The current evaluation kits also under-
 147 utilize parallel processing capabilities available
 148 in the high-performance computing clusters, re-
 149 sulting in failures in incorporating benefits of
 150 available hardware infrastructures.
 151

152 Two essential task-agnostic metrics for evalua-
 153 ting the efficiency of LALM evaluation frame-
 154 works are Real-time Factor (RTF) and Pro-
 155 cessed Samples per Second. RTF measures the
 156 processing time of an evaluation framework re-
 157 lative to the duration of the processed audio [Arriaga et al. \(2024\)](#). Lower RTF is more desirable,
 158 indicating a more efficient audio evaluation framework. On the other hand, Processed Samples per
 159 Second directly quantifies the model’s processing speed by measuring the average number of audio
 160 samples processed per second. It serves as a complementary measure to RTF, providing a more
 161 granular view of the model’s throughput and computational efficiency.

162 **Table 2: Throughput efficiency comparison across**
 163 **LALM evaluation frameworks.** Results averaged
 164 over 500 samples from LibriSpeech-test-clean (1.05
 165 hours total audio). Real-time Factor (RTF, ↓ better)
 166 measures processing time relative to audio dura-
 167 tion. Processed Samples per Second (↑ better) quan-
 168 tifies raw throughput. Our framework achieves 48.75%
 169 RTF reduction and 95.19% throughput increase over the
 170 best competing baseline, demonstrating substantial effi-
 171 ciency gains through vLLM integration and request or-
 172 chestration.
 173

EvalKit	RTF (↓)	Processed Samples per Second (↑)
AudioBench	19.9	0.66
Kimi-Eval	7.1	1.87
VoiceBench	87.9	0.15
AU-Harness	3.6 (↓48.75%)	3.65 (↑95.19%)

162 To quantify the efficiency of existing evaluation frameworks, we conduct a study on 500 audio
 163 samples (approximately 1.05 hours) of Librispeech-test-clean (Panayotov et al., 2015). As observed
 164 in Table 2, existing audio evaluation kits exhibit high RTF and slow sample processing speed. As the
 165 number of samples continues to increase with more diverse datasets, this challenge can significantly
 166 slow down the inference progress at scale.

167

168 3.2 CUSTOMIZABLE EVALUATION CONFIGURATIONS

169

170 Despite the strong support for various tasks and LALMs, current LALM evaluation kits provide
 171 insufficient customizations for evaluation configurations.

172

173 **Multi-turn Dialogue Support** Previous audio evaluation toolkits have largely been constrained to
 174 tasks centered on single-turn user interactions. However, as the field moves toward building interac-
 175 tive and context-aware voice assistants, the ability to evaluate multi-turn tasks becomes increasingly
 176 critical. Multi-turn evaluation enables a more realistic assessment of dialogue continuity, contextual
 177 reasoning, and the model’s capacity to adapt dynamically across extended conversations. Without
 178 such support, current evaluation approaches risk overlooking key aspects of usability and robustness
 179 that are essential for next-generation LALMs in realistic agentic voice systems.

180

181 **Customizable Filtering.** The lack of customizable filtering poses a significant barrier for re-
 182 searchers aiming to conduct in-depth analyses of current LALM limitations. Without the ability
 183 to refine evaluation datasets based on specific criteria, it is challenging to gain granular understand-
 184 ing of model performance across diverse audio conditions. For instance, while certain LALMs
 185 might perform reliably on 10-second audio chunks, they might be unable to handle short-form audio
 186 typically encountered in dialogue-state tracking systems.

187

188 **Task Hierarchical Structure & Task-Metric Aggregation.** While DynamicSUPERB-2.0 Huang
 189 et al. (2024b) provides a comprehensive set of tasks (up to 180 tasks), it lacks mechanisms for
 190 categorizing and conducting targeted evaluation runs on specific task categories. This limitation re-
 191 duces its practical value for researchers and practitioners aiming to benchmark or improve LALMs’
 192 capabilities on targeted task categories.

193

194 3.3 COMPREHENSIVE TASK CATEGORY COVERAGE

195

196 As demonstrated in Table 8, despite the wide coverage of tasks, existing benchmarks fail to support
 197 more complex audio reasoning and fine-grained diarization tasks.

198

199 **LLM-Adaptive Diarization.** A key limitation of prior evaluation kits is the lack of support for
 200 diarization tasks adapted to the prompting-focused capabilities and requirements of contemporary
 201 LALMs. To address this gap, we define **LLM-adaptive Diarization** as a class of tasks aimed at
 202 identifying “who says what and when” given continuous audio inputs purely through prompting
 203 rather than neural modeling. Unlike conventional audio understanding tasks, these tasks require
 204 models to segment the audio streams and localize the timing of specific information with them.
 205 Exemplars include speaker diarization (Anguera et al., 2012) and emotion diarization (Wang et al.,
 206 2023), both of which demand precise timestamp predictions for accurate evaluation. In the con-
 207 text of LALMs, this poses additional challenges, particularly regarding the precision of temporal
 208 predictions — an issue frequently observed in text-based LLMs (Feng et al., 2025). As a result,
 209 LLM-Adaptive Diarization calls for the development of specialized prompting strategies and adap-
 210 tive evaluation metrics tailored to the unique characteristics of LALMs beyond the traditional widely
 211 adopted Diarization Error Rate metric (Galibert, 2013).

212

213 **Spoken Language Reasoning.** Existing benchmarks remain largely centered on the audio under-
 214 standing tasks, with limited emphasis on tasks requiring deeper cognitive and reasoning abilities
 215 (Peng et al., 2024). Following the Natural Language Processing (NLP) community, we define **Spo-
 216 ken Language Reasoning** tasks as those that involve integrating information from multiple sources
 217 to derive new conclusions without relying solely on models’ memorization, knowledge-based stor-
 218 age and provided context (Yu et al., 2024). Unlike existing *observational audio reasoning* bench-
 219 marks (Wang et al., 2025b; Ma et al., 2025; Kumar et al., 2025), our task suite is designed to evalu-

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

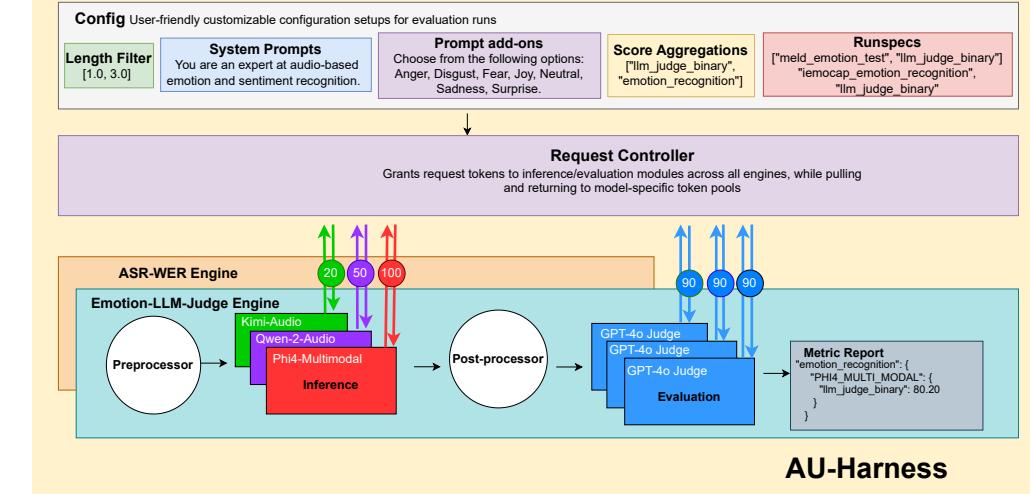


Figure 1: **Architecture overview of AU-Harness evaluation framework.** Our system comprises three core components: (1) **Config** module for hierarchical task configuration and standardized prompting, (2) **Request Controller** managing token-based concurrency limits across all engines with adaptive retry mechanisms, and (3) **Concurrent Engines** executing parallel model evaluation with dataset sharding. The Request Controller maintains a global token pool accessible to all engines, enabling efficient resource utilization and scalable throughput. Multiple concurrent connections between the controller and inference models illustrate parallel request dispatch, with each engine supporting multi-model evaluation on targeted datasets.

ate *operational reasoning* competencies, including: function calling, code generation and multi-turn complex instruction following capabilities.

4 AU-HARNESS

In response to the presented challenges of current audio understanding evaluation toolkits, we propose a standardized, efficient, highly customizable evaluation framework, **AU-Harness**, as detailed in Figure 1.

AU-Harness is composed of 3 primary components: **Config**, **Request Controller** and **Concurrent Engines**. The Config module defines a structured and hierarchical representation of customizable configurations, enabling flexible and transparent evaluation settings. The Request Controller is responsible for managing token requests and coordinating execution across the framework. Finally, the Concurrent Engines module carries out task-specific evaluations in parallel, where each engine can support multi-model evaluations tailored to particular tasks. In the following sections, we introduce our architecture design in detail to address the presented challenges in Section 3.

4.1 INFERENCE EFFICIENCY

As illustrated in Figure 1, AU-Harness maximizes inference efficiency through a token-based request scheduling architecture. More specifically, we introduce a Central Request Controller that maintains and regulates a pool of available tokens which are accessible to all models across all evaluation engines. Here, a *token* refers to a concurrency slot representing permission to issue one inference request (not a model input token), which is acquired before dispatch and released upon completion. Each concurrent engine-specific requester periodically draws from the global pool. Within each engine, multiple models are executed concurrently on a targeted dataset, with inference calls dispatched in parallel to fully exploit available computational resources. This architecture ensures that evaluation throughput is not bottlenecked by model or engine-specific constraints, but rather governed solely by user-defined request limits set globally, providing both scalability and predictable performance guarantees. Furthermore, we allow user-specified retry counts on request errors, en-

270 abling users to set higher request limits with the assurance that occasional failures will be re-tried
 271 and successfully completed, thereby offering a tunable balance between throughput and reliability.
 272

273 Furthermore, AU-Harness implements a layered request synchronization strategy that adaptively
 274 staggers request wait times across concurrent models. This design increases the probability that all
 275 models processing a given dataset segment complete their inference in a temporally aligned manner.
 276 By reducing discrepancies in model response times, the strategy minimizes idle periods within each
 277 engine, thereby mitigating intra-engine waiting time and improving overall throughput efficiency.
 278

279 Additionally, we implement dataset sharding, which
 280 partitions the evaluation dataset into disjoint subsets
 281 to enable parallel processing across multiple model
 282 endpoints. To maximize efficiency, sharding is per-
 283 formed proportionally to each endpoint’s capacity
 284 for concurrent requests, ensuring balanced utilization
 285 of heterogeneous resources. This enables near-
 286 linear scaling of inference throughput, effectively
 287 distributing the computational workload and mini-
 288 mizing bottlenecks. Finally, our native integration
 289 with vLLM leverages a range of inference-level opti-
 290 mizations, further accelerating model execution and
 291 overall evaluation system.
 292

4.2 CUSTOMIZABLE EVALUATION CONFIGURATIONS

293 AU-Harness is highly customizable with structured
 294 task coverage as presented in Figure 2, from dataset
 295 usage to inference to evaluations.
 296

297 **Decoupling Inference and Model Hosting.** AU-
 298 Harness decouples predictive inference and metric
 299 computation from model hosting infrastructure. In
 300 this way, regardless of whether the model is served
 301 through vLLM, a third-party API, or a lightweight FastAPI (Ramirez, 2018) deployment, the request
 302 handler requires only a standardized model specification to integrate seamlessly with the inference
 303 pipeline. This separation not only promotes modularity and extensibility of the evaluation frame-
 304 work but also enables straightforward integration via simplified future integration of alternative in-
 305 ference strategies.
 306

307 **Wide Model Support.** AU-Harness is designed for broad model compatibility, enabling out-of-
 308 the-box evaluation across diverse inference backends. It provides native support for vLLM compati-
 309 ble models, which deliver high-throughput and memory-efficient inference. Models not integrated
 310 with vLLM are also supported, as long as they expose a standard /v1/chat/completions endpoint.
 311 This flexibility maximizes model coverage by enabling seamless evaluation across both vLLM- com-
 312 patible and non-compatible models. To facilitate the integration, we provide boilerplate FastAPI
 313 server implementations that make it easy to build lightweight inference endpoints. Alternatively,
 314 developers can also bring their own optimized inference stacks and wrap them with FastAPI to
 315 integrate smoothly with AU-Harness, ensuring minimal overhead and maximum compatibility.
 316

317 **Multi-turn Dialogue support.** By using synchronous, turn-based evaluation chains that append
 318 model outputs to the context, AU-Harness supports multi-turn evaluation of both audio and text
 319 datasets across LALMs. The simplicity and conciseness of our implementation allows for future
 320 contributions for more complex and custom multi-turn tasks as well.
 321

322 **Customizable Filtering.** Great effort has been made into making AU-Harness as customizable as
 323 possible, while still being intuitive to use. First, any number of open-source and proprietary models,
 324 across any number of datasets, can be run. Each model can have its own specific temperature
 325 and max-token settings, which can override customizable, task-specific, temperature settings. Each
 326

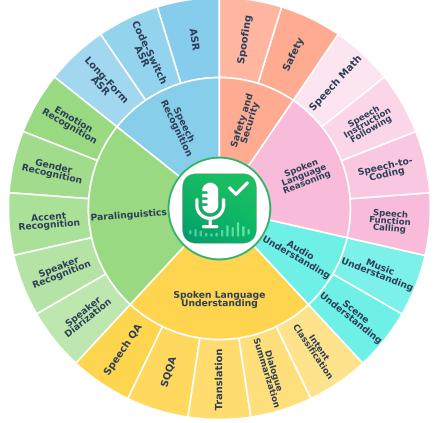


Figure 2: **Task distribution and coverage in AU-Harness.** Our framework encompasses six major categories with balanced representation. It reflects coverage from basic perception to complex reasoning, with novel emphasis on prompted temporal understanding and audio-conditioned cognitive tasks.

324 model endpoint also has specific run specifications that can be changed, such as concurrently allowed
 325 requests, error retry limit, timeout before retry, and audio chunk size. This maximizes resource
 326 utilization while minimizing the overall evaluation time.
 327

328 **Evaluation customization.** AU-Harness is also designed for granular control over evaluation steps
 329 by allowing for customizable metric assignment on a per-dataset and per-task basis. For instance,
 330 LLM-as-judge supports configurable concurrency to maximize the throughput for evaluation stage.
 331 For a more comprehensive understanding of model performance, the framework offers configurable
 332 aggregation metrics. This capability allows for the multi-dimensional analysis of task and metric
 333 results, providing a holistic view that extends beyond simple, individual scores or sub-tasks.
 334

335 4.3 COMPREHENSIVE TASK CATEGORY COVERAGE

336 **LLM-Adaptive Diarization** Following Wang et al. (2024), we adapt diarization tasks as a spe-
 337 cial category of ASR. More specifically, to alleviate the potential issues of (1) precise temporal
 338 predictions and (2) timing mismatch of ASR and Diarization systems, we incorporate the speaker
 339 information into the transcripts and prompt LLMs to generate the ASR hypotheses. The generated
 340 hypotheses are then post-processed and evaluated on the word-level via Word-diarization Error Rate
 341 (WDER) (Shafey et al., 2019) and concatenated minimum-permutation word error rate (cpWER)
 342 (Watanabe et al., 2020). Further details of the aforementioned difference in conjunction with de-
 343 tailed empirical study on temporal understanding of LALMs are provided in Appendix A.5.
 344

345 **Spoken Language Reasoning** Derived from text-based reasoning tasks, we introduce three novel
 346 audio-based reasoning tasks by converting the audio instructions into audio context via Text-to-
 347 Speech (TTS) system. Our work centers on 3 major reasoning tasks, including:

- 348 • **Speech Function Calling (Speech-FC):** Speech Function Calling aims to assess the
 349 LALMs’ comprehension of spoken instructions and their ability to map spoken natural
 350 language queries into structured, executable function calls with appropriate arguments. We
 351 achieve the goal by expanding BFCL-v3 (Patil et al., 2024) by systematically converting
 352 textual instructions into spoken counterparts.
- 353 • **Speech-to-Coding:** Speech-to-Coding evaluates LALMs’ capability to translate spoken
 354 instructions into a formal programming language. Adapted from the renowned Spider text-
 355 to-SQL benchmark (Yu et al., 2018), we construct the Speech-Spider benchmark where
 356 LALMs are expected to convert spoken instructions into valid SQL commands.
- 357 • **Speech Instruction Following (Speech-IF):** Proficiency in interpreting and executing in-
 358 tricate, potentially multi-step audio instructions is a critical skill for LALMs. To evaluate
 359 this capability, we develop Speech-MTBench benchmarks, deriving from the well-know
 360 text-based MTBench (Zheng et al., 2023).

362 5 RESULTS & DISCUSSION

364 Empirical evaluations across all task categories using our proposed AU-Harness are provided in
 365 Table 6. Following Wang et al. (2025a), we adopt GPT-4o-mini as judge for LLM-judge metrics due
 366 to its advanced capability. Further details of datasets and metrics are provided in Appendix A.1. For
 367 conciseness, we centralize the discussion on most of our introduced benchmarks shown in Table 3.
 368

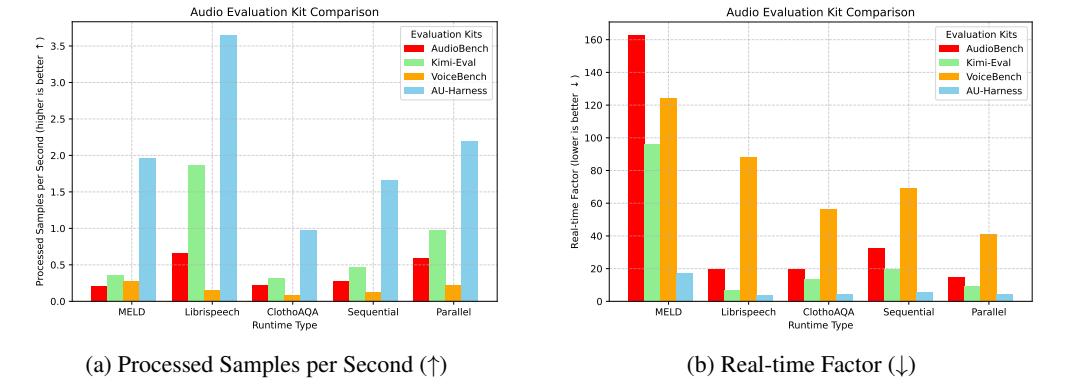
369 5.1 INFERENCE EFFICIENCY

371 **Evaluation Settings.** We perform an empirical evaluation to compare AU-Harness against existing
 372 evaluation kits: AudioBench (Wang et al., 2025a), VoiceBench (Chen et al., 2024), and Kimi-
 373 Eval (Ding et al., 2025). Our analysis focuses on the two key metrics RTF and Processed Samples per
 374 Second detailed in Section 3.1. We leverage 500 audio samples from 3 diverse datasets: librispeech-
 375 clean-test, ClothoAQA (Lipping et al., 2022), and MELD-Emotion (Poria et al., 2019) as detailed in
 376 Table 7. The evaluation is conducted on three different LALMs, including: Qwen2.5-Omni-7B Xu
 377 et al. (2025), Phi-4-Multimodal Abouelenin et al. (2025) and Vostral-Mini-3B Liu et al. (2025).
 For conciseness, we report the averaged metric across all 3 LALMs. Additional runtime setups,

378 **Table 3: LALM performance on spoken language reasoning tasks.** We evaluate representative LALMs
 379 from different spectra: Open-source LALMs (small-sized, medium-sized, large-sized), Proprietary LALMs and
 380 Cascaded System LALMs across reasoning-focused tasks. Metrics include LLM-as-judge evaluations using
 381 GPT-4o-mini and task-specific automatic metrics. **Reasoning Avg** aggregates performance across different
 382 reasoning tasks where *Exec_Acc* of *Speech-Spider* is used for averaging calculation. Results reveal significant
 383 capability gaps, particularly in complex instruction-following scenarios. **Bold**: highest; underline: second
 384 highest. Refer to Appendix A.1.2 for metric abbreviations and detailed explanations.

Models	Speech-FC				Speech-to-Coding		Speech-IF		Speech Math					
	simple	para	multi	multi-para	BFCL-Score (↑)	irrelevance	EM (↑)	Exec-Acc (↑)	IF-Score	MTJudge (↑)	Speech-MTBench	EM (↑)	Speech-GSM8K	<u>Reasoning Avg (↑)</u>
Small-sized Audio Language Models (<5B parameters)														
Voxtral-Mini	97.75	78.5	96	56	62.5	78.15	29.87	61.14	40.02	63.19	70.05	70.57	62.51	
Qwen2.5-Omni-3B	82.5	62	59	35	54.17	58.53	32.07	58.44	40.91	58.75	14.10		46.15	
Medium Sized Large Audio Language Models (5B-20B parameters)														
Phi-4-Multimodal	10.5	36.5	24.5	24.5	81.67	35.53	7.69	39.46	44.51	65.44	73.54		51.70	
Qwen2.5-Omni-7B	89.5	67.5	76	41	66.25	68.05	38.76	71.73	50.83	62.88	84.23		67.54	
Kimi-Audio	1.5	15	5.5	17	73.33	22.47	31.47	63.84	46.11	60.88	72.55		53.17	
Large Sized Large Audio Language Models (> 20B parameters)														
Voxtral-Small	98.25	87	97.5	73.5	77.92	86.83	40.16	74.73	66.83	69.25	87.57		77.08	
Qwen3-Omni-30B-A3B-Thinking	86.25	19	79	35.5	87.08	61.37	54.25	79.62	82.38	75.25	93.56		78.44	
Proprietary Audio Language Models														
GPT-4o-mini-audio	97.25	82	96	68	89.58	86.57	44.76	73.13	70.47	64.06	87.79		76.40	
Gemini-2.5-Flash	96.75	92.5	96	90.5	90.42	93.23	34.37	77.12	86.28	75.31	90.52		84.49	
Cascaded Systems														
Whisper-Large-v3 + GPT-OSS-20B	97.25	83	95.5	65.5	87.08	85.67	36.36	74.93	73.72	68.31	91.58		78.84	
GPT-4o-transcribe + GPT-4.1-mini	98.75	78.5	97	58	83.33	83.12	39.46	74.13	66.69	67.06	90.75		76.35	

396 namely *Sequential* and *Parallel*, to assure a comprehensive and fair comparison among all existing
 397 evaluation kits are also examined as detailed in Appendix A.2.



400 **Figure 3: Efficiency comparison across evaluation frameworks and runtime scenarios.** (a) Processed Samples per Second (↑ better) and (b) Real-time Factor (↓ better) measured across three datasets (MELD-Emotion,
 401 LibriSpeech-test-clean, ClothoAQA) and three runtime conditions: Individual (dataset-specific), Sequential
 402 (worst-case serialized execution), and Parallel (optimal concurrent execution). AU-Harness consistently out-
 403 performs existing toolkits across all scenarios, with most significant gains in parallel execution, demonstrating
 404 effective utilization of concurrent processing capabilities.

411 **Evaluation Comparison** As shown in Figure 3, AU-Harness consistently outperforms existing
 412 evaluation kits across all runtime scenarios in two key efficiency metrics. Specifically, AU-
 413 Harness achieves up to a 127% improvement in Processed Samples per Second and 59% reduction in
 414 RTFs compared to the next most competitive evaluation frameworks. More importantly, our *Parallel*
 415 runtime, illustrated in Figure 4, is significantly more efficient than competing frameworks. These
 416 empirical results validate our framework as a highly efficient tool for LALM evaluation.

425 5.2 INSTRUCTION MODALITY GAP

427 When text-based benchmarks are converted to the audio-based counterparts, the impact of instruc-
 428 tion modality is often overlooked. However, this distinction can have a significant impact on the
 429 downstream task evaluation performance, especially for more complex instruction-following tasks.
 430 As observed in Table 4, leveraging audio instruction modality instead text can have a major im-
 431 pact on the performance evaluation. For instance, on challenging task of Audio Function Calling
 (i.e. Speech-BFCL), we observe a performance degradation of up to 7.1 points. This observation

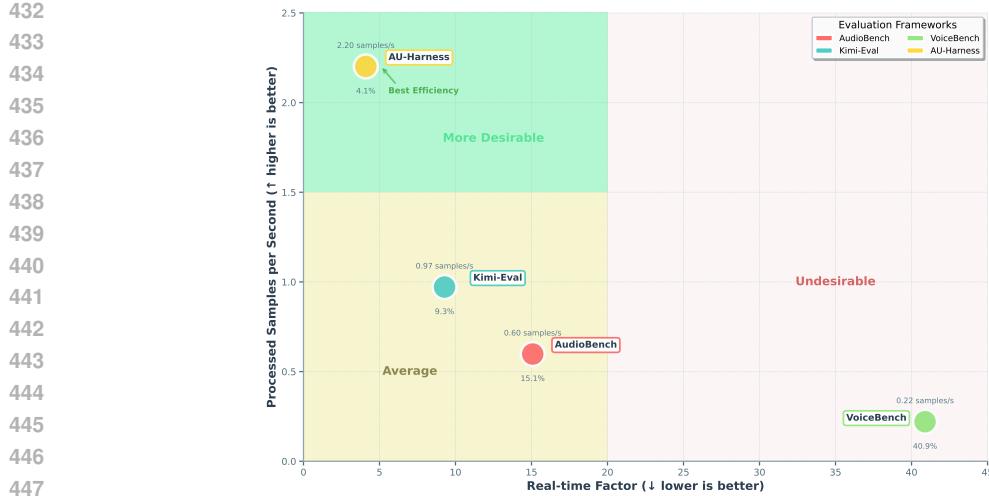


Figure 4: **Parallel runtime efficiency analysis across evaluation frameworks.** Scatter plot comparing frameworks under optimal parallel execution conditions, plotting Real-time Factor (x-axis, ↓ better) against Processed Samples per Second (y-axis, ↑ better). Our framework (rightmost cluster) achieves superior performance in both dimensions, demonstrating the effectiveness of token-based request scheduling, dataset sharding, and vLLM integration for large-scale LALM evaluation.

Table 4: **Empirical evaluations to assess the impact of different instruction modalities on Spoken Language Reasoning tasks with Qwen3-Omni-30B-A3B-Thinking** reveals the significant performance gap between Audio and Text instructions, highlighting the need for a more thorough investigation when instruction-following benchmarks are converted from text to audio.

Instruction Modality	Speech-IFEval (↑)	Speech-BFCL (↑)	Speech-Spider (↑)	Speech-MTBench (↑)	Speech-GSM8K (↑)	Reasoning Avg (↑)
Text	87.56	68.43	82.12	81.06	95.3	82.89
Audio	82.38	61.37	79.62	75.25	93.56	78.44

highlights a potential core limitation of the contemporary LALMs in following audio instructions. Therefore, a careful and thorough reassessment of different instruction modality is needed to accurately measure a model’s true reasoning capabilities in a multimodal context.

6 CONCLUSION

We introduced a modular and extensible evaluation framework for large audio-language models that emphasizes broad task coverage, ease of use, and adaptability. Its modular design enables researchers and practitioners to extend the codebase, customize benchmarks, and integrate new models or tasks without major restructuring. While efficiency gains are realized through dataset sharding proportional to endpoint capacity and seamless vLLM integration, the broader value of our framework lies in enabling flexible, large-scale evaluations that were previously difficult to conduct in a reproducible and accessible manner. By lowering the barrier to benchmarking and fostering customization, we aim to support both systematic research and practical deployment, contributing a more standardized and transparent evaluation ecosystem for LALMs.

LIMITATIONS

Backend dependency and reproducibility. Our efficiency gains rely on vLLM integration, models without mature backends revert to conventional execution with reduced throughput. Support for closed-source endpoints depends on chat-completions APIs, limiting batching control and introducing provider rate limits. Even with deterministic configs, runs may vary due to endpoint queueing and transient failures, requiring documentation of capacity and request budgets for cross-institutional comparability.

486 **Standardization vs. task fidelity.** Standardized prompting improves reproducibility but cannot
 487 eliminate prompt sensitivity. For open-ended tasks, canonical prompts may bias results toward
 488 specific behaviors. Our LLM-Adaptive Diarization uses word-level metrics (WDER, cpWER) as
 489 proxies for temporal precision, which remains imperfect under speech overlap or rapid transitions.
 490 The community needs multiple documented prompt families and complementary temporal measures
 491 to triangulate performance fairly.

492 **Coverage and generalization gaps.** While we extend beyond ASR to diarization and spoken reasoning,
 493 coverage remains skewed toward English and common domains. Environmental audio,
 494 music understanding, and low-resource languages are underrepresented. Moreover, the relationship
 495 between standardized benchmark performance and real-world audio-language capabilities where
 496 contexts are noisier, more diverse, and less structured requires further empirical validation.

497 These limitations highlight challenges in audio-language evaluation. Achieving reproducible, com-
 498 prehensive, and valid assessment requires community coordination around prompting standards,
 499 temporal diagnostics, and multilingual breadth. Our framework is designed to enable practical, sys-
 500 tematic progress in these areas across the broader ecosystem.

501

502

503 ETHICS STATEMENT

504

505 Our work focuses on responsible development of audio language model evaluation infrastructure.
 506 We have taken care to ensure that all audio datasets used in our benchmarks respect copyright and
 507 privacy guidelines, with particular attention to speaker consent in diarization tasks. While our frame-
 508 work enables large-scale evaluation of LALMs, we cannot guarantee that models evaluated through
 509 AU-Harness will not generate harmful or biased audio-related outputs. Researchers and practi-
 510 tioners are strongly encouraged to implement appropriate content filtering and bias detection when
 511 deploying LALMs in production environments. Our speech synthesis components for creating rea-
 512 soning benchmarks use only publicly available, ethically sourced voice models. Additionally, we
 513 acknowledge that our current task coverage is skewed toward English and common domains, which
 514 may inadvertently reinforce existing representational biases in audio AI systems. We encourage the
 515 community to extend our framework to include more diverse languages and cultural contexts.

516 Regarding language model usage in manuscript preparation, we utilize them solely to refine the
 517 language used in paper to improve clarity and correctness, without generating any substantial content
 518 or claims.

519

520

521 REPRODUCIBILITY STATEMENT

522

523 We are committed to full reproducibility of our evaluation framework and experimental results. All
 524 AU-Harness code, configuration files, evaluation scripts, and documentation will be publicly re-
 525 leased under an open-source license upon acceptance. We provide comprehensive implementation
 526 details including all hyperparameters, model endpoints, dataset preprocessing steps, and evaluation
 527 metrics in our appendices. For efficiency comparisons, we document exact hardware specifications,
 528 vLLM versions, concurrent request limits, and retry policies used across all experiments. Our newly
 529 introduced reasoning benchmarks include complete details on text-to-speech synthesis parameters
 530 and prompt templates. To ensure consistent reproduction, we provide Docker containers with fixed
 531 dependency versions and detailed setup instructions for multi-node evaluation. All random seeds,
 532 sampling parameters, and LLM-as-judge configurations are specified to enable identical result repli-
 533 cation across different research groups.

534

535

536 REFERENCES

537

538 Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach, Jianmin
 539 Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, et al. Phi-4-mini technical
 report: Compact yet powerful multimodal language models via mixture-of-loras. *arXiv preprint*
arXiv:2503.01743, 2025.

540 Xavier Anguera, Simon Bozonnet, Nicholas Evans, Corinne Fredouille, Gerald Friedland, and Oriol
 541 Vinyals. Speaker diarization: A review of recent research. *IEEE Transactions on audio, speech,*
 542 *and language processing*, 20(2):356–370, 2012.

543

544 Carlos Arriaga, Alejandro Pozo, Javier Conde, and Alvaro Alonso. Evaluation of real-time tran-
 545 scriptions using end-to-end asr models. *arXiv preprint arXiv:2409.05674*, 2024.

546

547 Yiming Chen, Xianghu Yue, Chen Zhang, Xiaoxue Gao, Robby T Tan, and Haizhou Li. Voicebench:
 548 Benchmarking llm-based voice assistants. *arXiv preprint arXiv:2410.17196*, 2024.

549

550 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 551 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 552 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 553 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

554

555 Wenqian Cui, Dianzhi Yu, Xiaoqi Jiao, Ziqiao Meng, Guangyan Zhang, Qichao Wang, Yiwen
 556 Guo, and Irwin King. Recent advances in speech language models: A survey. *arXiv preprint*
 557 *arXiv:2410.03751*, 2024.

558

559 Ding Ding, Zeqian Ju, Yichong Leng, Songxiang Liu, Tong Liu, Zeyu Shang, Kai Shen, Wei Song,
 560 Xu Tan, Heyi Tang, et al. Kimi-audio technical report. *arXiv preprint arXiv:2504.18425*, 2025.

561

562 Guhao Feng, Kai Yang, Yuntian Gu, Xinyue Ai, Shengjie Luo, Jiacheng Sun, Di He, Zhenguo Li,
 563 and Liwei Wang. How numerical precision affects arithmetical reasoning capabilities of llms. In
 564 *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 46–85, 2025.

565

566 Olivier Galibert. Methodologies for the evaluation of speaker diarization and automatic speech
 567 recognition in the presence of overlapping speech. In *Proc. Interspeech 2013*, pp. 1131–1134,
 568 2013.

569

570 Chien-yu Huang, Wei-Chih Chen, Shu-wen Yang, Andy T Liu, Chen-An Li, Yu-Xiang Lin, Wei-
 571 Cheng Tseng, Anuj Diwan, Yi-Jen Shih, Jiatong Shi, et al. Dynamic-superb phase-2: A collab-
 572 oratively expanding benchmark for measuring the capabilities of spoken language models with
 573 180 tasks. *arXiv preprint arXiv:2411.05361*, 2024a.

574

575 Chien-yu Huang, Ke-Han Lu, Shih-Heng Wang, Chi-Yuan Hsiao, Chun-Yi Kuan, Haibin Wu,
 576 Siddhant Arora, Kai-Wei Chang, Jiatong Shi, Yifan Peng, et al. Dynamic-superb: Towards
 577 a dynamic, collaborative, and comprehensive instruction-tuning benchmark for speech. In
 578 *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing*
 579 (*ICASSP*), pp. 12136–12140. IEEE, 2024b.

580

581 Sonal Kumar, Šimon Sedláček, Vaibhavi Lokegaonkar, Fernando López, Wenyi Yu, Nishit Anand,
 582 Hyeonggon Ryu, Lichang Chen, Maxim Plička, Miroslav Hlaváček, et al. Mmau-pro: A chal-
 583 lenging and comprehensive benchmark for holistic evaluation of audio general intelligence. *arXiv*
 584 *preprint arXiv:2508.13992*, 2025.

585

586 Tony Lee, Haoqin Tu, Chi Heem Wong, Zijun Wang, Siwei Yang, Yifan Mai, Yuyin Zhou, Cihang
 587 Xie, and Percy Liang. Ahelm: A holistic evaluation of audio-language models. *arXiv preprint*
 588 *arXiv:2508.21376*, 2025.

589

590 Samuel Lipping, Parthasarathy Sudarsanam, Konstantinos Drossos, and Tuomas Virtanen. Clotho-
 591 aqa: A crowdsourced dataset for audio question answering. In *2022 30th European Signal Pro-
 592 cessing Conference (EUSIPCO)*, pp. 1140–1144. IEEE, 2022.

593

594 Alexander H Liu, Andy Ehrenberg, Andy Lo, Clément Denoix, Corentin Barreau, Guillaume Lam-
 595 ple, Jean-Malo Delignon, Khyathi Raghavi Chandu, Patrick von Platen, Pavankumar Reddy Mud-
 596 direddy, et al. Voxtral. *arXiv preprint arXiv:2507.13264*, 2025.

597

598 Ziyang Ma, Yinghao Ma, Yanqiao Zhu, Chen Yang, Yi-Wen Chao, Ruiyang Xu, Wenxi Chen,
 599 Yuanzhe Chen, Zhuo Chen, Jian Cong, et al. Mmar: A challenging benchmark for deep rea-
 600 soning in speech, audio, music, and their mix. *arXiv preprint arXiv:2505.13032*, 2025.

594 Yadong Niu, Tianzi Wang, Heinrich Dinkel, Xingwei Sun, Jiahao Zhou, Gang Li, Jizhong Liu, Xun-
 595 ying Liu, Junbo Zhang, and Jian Luan. Mecat: A multi-experts constructed benchmark for fine-
 596 grained audio understanding tasks, 2025. URL <https://arxiv.org/abs/2507.23511>.
 597

598 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
 599 based on public domain audio books. In *2015 IEEE international conference on acoustics, speech
 600 and signal processing (ICASSP)*, pp. 5206–5210. IEEE, 2015.

601 Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
 602 Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic
 603 evaluation of large language models. In *Advances in Neural Information Processing Systems*,
 604 2024.

605 Jing Peng, Yucheng Wang, Yangui Fang, Yu Xi, Xu Li, Xizhuo Zhang, and Kai Yu. A survey on
 606 speech large language models. *arXiv preprint arXiv:2410.18908*, 2024.

607 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
 608 Mihalcea. Meld: A multimodal multi-party dataset for emotion recognition in conversations. In
 609 *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp.
 610 527–536, 2019.

611 Sebastián Ramírez. Fastapi. <https://fastapi.tiangolo.com/>, 2018.

612 Laurent El Shafey, Hagen Soltau, and Izhak Shafran. Joint speech recognition and speaker diariza-
 613 tion via sequence transduction. In *Proc. Interspeech 2019*, pp. 396–400, 2019.

614 Jiatong Shi, Hye-jin Shim, Jinchuan Tian, Siddhant Arora, Haibin Wu, Darius Petermann, Jia Qi
 615 Yip, You Zhang, Yuxun Tang, Wangyou Zhang, et al. Versa: A versatile evaluation toolkit for
 616 speech, audio, and music. In *Proceedings of the 2025 Conference of the Nations of the Amer-
 617 icas Chapter of the Association for Computational Linguistics: Human Language Technologies
 618 (System Demonstrations)*, pp. 191–209, 2025.

619 Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma,
 620 and Chao Zhang. Salmonn: Towards generic hearing abilities for large language models. *arXiv
 621 preprint arXiv:2310.13289*, 2023.

622 Bin Wang, Xunlong Zou, Geyu Lin, Shuo Sun, Zhuohan Liu, Wenyu Zhang, Zhengyuan Liu, AiTi
 623 Aw, and Nancy F. Chen. AudioBench: A universal benchmark for audio large language models.
 624 In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the
 625 Nations of the Americas Chapter of the Association for Computational Linguistics: Human Lan-
 626 guage Technologies (Volume 1: Long Papers)*, pp. 4297–4316, Albuquerque, New Mexico, April
 627 2025a. Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/
 628 2025.naacl-long.218. URL <https://aclanthology.org/2025.naacl-long.218/>.

629 Dingdong Wang, Jincenzi Wu, Junan Li, Dongchao Yang, Xueyuan Chen, Tianhua Zhang, and
 630 Helen Meng. Mmsu: A massive multi-task spoken language understanding and reasoning bench-
 631 mark. *arXiv preprint arXiv:2506.04779*, 2025b.

632 Lu Wang, Hao Chen, Siyu Wu, Zhiyue Wu, Hao Zhou, Chengfeng Zhang, Ting Wang, and Haodi
 633 Zhang. Codecbench: A comprehensive benchmark for acoustic and semantic evaluation, 2025c.
 634 URL <https://arxiv.org/abs/2508.20660>.

635 Quan Wang, Yiling Huang, Guanlong Zhao, Evan Clark, Wei Xia, and Hank Liao. Diarizationlm:
 636 Speaker diarization post-processing with large language models. In *Proc. Interspeech 2024*, pp.
 637 3754–3758, 2024.

638 Yingzhi Wang, Mirco Ravanelli, and Alya Yacoubi. Speech emotion diarization: Which emotion ap-
 639 pears when? In *2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)*,
 640 pp. 1–7. IEEE, 2023.

641 Shinji Watanabe, Michael Mandel, Jon Barker, Emmanuel Vincent, Ashish Arora, Xuankai Chang,
 642 Sanjeev Khudanpur, Vimal Manohar, Daniel Povey, Desh Raj, et al. Chime-6 challenge: Tackling
 643 multispeaker speech recognition for unsegmented recordings. In *Proc. CHiME 2020*, pp. 1–7,
 644 2020.

648 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 649 Fan, Kai Dang, et al. Qwen2. 5-omni technical report. *arXiv preprint arXiv:2503.20215*, 2025.
 650

651 Qian Yang, Jin Xu, Wenrui Liu, Yunfei Chu, Ziyue Jiang, Xiaohuan Zhou, Yichong Leng, Yuanjun
 652 Lv, Zhou Zhao, Chang Zhou, et al. Air-bench: Benchmarking large audio-language models via
 653 generative comprehension. In *Proceedings of the 62nd Annual Meeting of the Association for*
 654 *Computational Linguistics (Volume 1: Long Papers)*, pp. 1979–1998, 2024.

655 Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhota, Yist Y Lin,
 656 Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, et al. Superb: Speech processing
 657 universal performance benchmark. *Interspeech 2021*, 2021.

658 Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou Wang. Natural language reasoning, a survey.
 659 *ACM Computing Surveys*, 56(12):1–39, 2024.
 660

661 Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
 662 Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
 663 human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
 664 In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of*
 665 *the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 3911–3921,
 666 Brussels, Belgium, October–November 2018. Association for Computational Linguistics. doi:
 667 10.18653/v1/D18-1425. URL <https://aclanthology.org/D18-1425>.

668 Junbo Zhang, Heinrich Dinkel, Yadong Niu, Chenyu Liu, Si Cheng, Anbei Zhao, and Jian Luan. X-
 669 ares: A comprehensive framework for assessing audio encoder performance, 2025. URL <https://arxiv.org/abs/2505.16369>.
 670

671 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 672 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 673 chatbot arena. *Advances in neural information processing systems*, 36:46595–46623, 2023.

674 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
 675 Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint*
 676 *arXiv:2311.07911*, 2023.
 677

678 A APPENDIX

679 A.1 COMPREHENSIVE AUDIO EVALUATION

680 A.1.1 BENCHMARK DETAILS

681 We present a comprehensive benchmark suite comprising 56 diverse datasets spanning six fundamental
 682 task categories in audio and speech understanding. Our benchmark encompasses *Audio Under-
 683 standing* (6 datasets), evaluating models’ capabilities in audio scene analysis and music compre-
 684 hension; *Paralinguistics* (12 datasets), assessing speech characteristics including emotion, gender,
 685 accent recognition, and speaker-related tasks; *Safety and Security* (2 datasets), examining robustness
 686 against adversarial inputs and spoofing; *Spoken Language Reasoning* (5 datasets), testing complex
 687 reasoning abilities from mathematical problem-solving to code generation from speech; *Spoken Lan-
 688 guage Understanding* (21 datasets), the largest category covering speech question-answering, intent
 689 classification, and translation tasks; and *Speech Recognition* (15 datasets), establishing baselines for
 690 automatic speech recognition across multiple languages and acoustic conditions.

691 A.1.2 METRIC DETAILS

- 692 • **Word Error Rate (WER)** – Measures automatic speech recognition (ASR) errors via in-
 693 sertions and deletions in transcribed text. Lower is better.
- 694 • **LLM-Judge (MJ)** – LLM-based evaluation of response quality. Higher is better. Reported
 695 metrics:
 - 696 – **Binary (LB)** – Binary LLM-based pass/fail correctness judgment.

702
703
704
705
706
707
708
709
710
711
712
713
714

715 **Table 5: Comprehensive Audio and Speech Datasets Overview.** Listing of 56 datasets across 6 task categories:
716 Speech Recognition, Paralinguistics, Audio Understanding, Spoken Language Understanding, Spoken
717 Language Reasoning, and Safety & Security.

Task Category	Task Type	Dataset Name	Description	License
Speech Recognition	ASR	AISHELL-1	High-quality Mandarin speech recognition dataset	Apache 2.0
	ASR	AMI Meeting Corpus	Multispeaker meeting recordings for ASR and diarization	CC BY 4.0
	ASR	CallHome (ENG)	Conversational speech corpus across multiple languages	LDC User Agreement for Non-Members
	ASR	Common Voice	Crowdsourced multilingual speech dataset from Mozilla	CC0 1.0 Universal
	ASR	FLEURS EN-US	Multilingual speech dataset for ASR and translation	CC BY 4.0
	ASR	GigaSpeech	Large-scale audio and transcription corpus for end-to-end ASR	Apache 2.0
	ASR	LibriSpeech	Large-scale audiobook-derived speech corpus with clean and noisy subsets	CC BY 4.0
	ASR	MNSC	Large-scale multilingual speech corpus	MNSC: Publicly released
	ASR	Multilingual LibriSpeech (MLS)	Extension of LibriSpeech with multiple European languages	CC BY 4.0
	ASR	People's Speech	Large-scale open-source English speech recognition dataset	CC-BY-SA
	ASR	SPGI-Speech	Transcriptions of financial meeting recordings	Kensho User Agreement
	ASR	TEDLIUM3	Transcribed TED talks for ASR and speaker adaptation	CC BY-NC-ND 3.0
Paralinguistics	ASR	VoxPopuli	Multilingual speech corpus from European Parliament recordings	CC0
	ASR	SEAME	Mandarin-English code-switching speech dataset	LDC2015S04
	Code-switching ASR			
	Long-form ASR	Earnings21/22	Long-form earnings call dataset for speech recognition	CC-BY-SA-4.0
	Accent Recognition	MNSC AR Dialogue	Dataset for accent recognition in dialogue speech	MNSC: Publicly released
	Accent Recognition	MNSC AR Sentence	Dataset for accent recognition in sentence-level speech	MNSC: Publicly released
	Accent Recognition	VoxCeleb Accent	Speech dataset with diverse speakers for accent recognition	CC BY 4.0
	Emotion Recognition	IEMCAP Emotion	Multi-modal dataset for emotion recognition in speech	GPL-3.0
	Emotion Recognition	MELD Emotion	Multi-party conversation dataset for emotion recognition	GPL-3.0
	Emotion Recognition	MELD Sentiment	Multi-party conversation dataset for sentiment analysis	GPL-3.0
Audio Understanding	Gender Recognition	IEMCAP Gender	Multi-modal dataset for gender recognition in speech	GPL-3.0
	Gender Recognition	MNSC GR Dialogue	Dataset for gender recognition in dialogue speech	MNSC: Publicly released
	Gender Recognition	MNSC GR Sentence	Dataset for gender recognition in sentence-level speech	MNSC: Publicly released
	Gender Recognition	VoxCeleb Gender	Speech dataset with diverse speakers for gender recognition	CC BY 4.0
	Speaker Diarization	CulibrE (ENG)	Multilingual telephone conversations for speaker diarization	CC-BY-NC-SA-4.0
	Speaker Recognition	MMAU-mini	Multi-modal audio dataset for speaker recognition	Apache 2.0
	Music Understanding	MuChoMusic	Benchmark for music understanding for LALMs	CC-BY-SA-4.0
	Scene Understanding	AudioCaps	Large-scale dataset for open-domain audio captioning	MIT
	Scene Understanding	AudioCaps QA	Dataset for question answering over natural audio scenes	MIT
	Scene Understanding	Clotho AQA	Dataset for answering natural-language questions about audio signals	MIT
Spoken Language Understanding	Scene Understanding	WavCaps	Large-scale weakly labeled dataset for audio captioning	CC-BY-NC 4.0
	Scene Understanding	WavCaps QA	Large-scale dataset for audio question answering	CC-BY-NC 4.0
	Intent Classification	SLURP	Multi-domain spoken dialogue understanding benchmark	CC BY-NC 4.0
	Speech QA	Alpaca Audio	Speech dataset for question answering with audio instructions	Apache-2.0
	Speech QA	CN College Listen MCQ	Multispeaker dataset for listening-based multiple-choice questions	MERALION Public License
	Speech QA	Dream TTS MCQ	Dialogue-based multiple-choice comprehension dataset with audio	MIT
	Speech QA	MNSC SQA	Benchmark for reasoning and understanding in spoken language	NSC License
	Speech QA	OpenHomes	Speech dataset for question answering with audio instructions	CC-BY-NC
	Speech QA	Public-SG	Speech question answering benchmark	NSC License
	Speech QA	SLUE SQA	Spoken Language Understanding Evaluation benchmark	CC-BY-4.0
Spoken Language Reasoning	Speech QA	Spoken Squad	Speech dataset for extraction-based question answering	CC-BY-SA-4.0
	SQQA	Big Bench Audio	Benchmark for reasoning with audio and text input	MIT
	SQQA	MMSU	Multi-choice question answering dataset	Apache-2.0
	SQQA	OpenBookQA	Multi-choice question answering dataset	Apache-2.0
	SQQA	SD-QA	Multi-choice question answering dataset	Apache-2.0
	Translation	CoVoST2 (zh→en)	Large-scale multilingual dataset for speech translation	CC-BY-NC-4.0
	Grade School Math	GSM8k	Speech-based dataset of grade school math word problems	MIT (text dataset)
Spoken Language Reasoning	Speech Function Calling	BFCL	Speech dataset for complex function calling tasks	Apache-2.0
	Speech Instruction Following	IFEVAL	Speech dataset for complex instruction following	Apache-2.0
	Speech Instruction Following	MTBench	Speech dataset for multi-turn instruction following	Apache-2.0
	Speech-to-Coding	SPEECH_TO_SQL	Speech dataset for generating executable SQL code	Apache-2.0
Safety & Security	Safety	Advbench	Speech dataset for testing resistance to adversarial or harmful prompts	Apache 2.0
	Spoofing	ASVspoof2017	Speech dataset for spoofing attack detection in real-world conditions	CC BY-NC 4.0

744
745
746
747
748
749
750
751
752
753
754
755

756 – **Detailed (LD)** – Detailed multi-level llm judgement across multiple dimensions.
 757 – **BigBench Audio (LBBA)** – LLM-based evaluations for BigBench-like audio tasks.
 758 – **RedTeaming (SafetyJudge)** – LLM-based evaluations for red-teaming and safety.
 759 – **MT-Bench (MTJudge)** – LLM-based evaluation for multi-turn systems.
 760

- 761 • **BLEU** – N-gram overlap score for comparing generated and reference text. Higher is better.
 762
- 763 • **BFCL Score** [Patil et al. \(2024\)](#) – Measuring structured logic form comparison between predicted and reference outputs. Higher is better.
 764
- 765 • **SQL Score** [Yu et al. \(2018\)](#) – Measuring the correctness of generated SQL code in two major metrics: (1) Exact Match: generated SQL code has similar syntax as the ground truth, (2) Exec_Acc: execution accuracy of the SQL code. Higher is better.
 766
- 767 • **Instruction Following Score (IFScore)** [Zhou et al. \(2023\)](#) – Measuring instruction following capability in natural language tasks via averaging accuracy across (1) strict-prompt, (2) strict-instruction, (3)loose-prompt and (4) loose-instruction scenarios.
 768
- 769 • **Word-Diarization Error Rate (WDER)** [Shafey et al. \(2019\)](#) Diarization-relevant metrics whose goal is to measure the percentage of words in the transcription that has the correctly assigned speaker tag.
 770
- 771 • **Concatenated minimum-permutation Word Error Rate (cpWER)** [Watanabe et al. \(2020\)](#) Metric accounting for both word recognition errors and speaker attribution errors.
 772
- 773 • **Speaker_Count_Error**: Simple calculation of error in speaker attribution given the reference and hypothesis transcripts.
 774
- 775
- 776
- 777
- 778

779 Table 6: **Comprehensive LALM performance across diverse audio understanding tasks.** We evaluate
 780 three representative models: Voxtral-Mini-3B, Qwen2.5-Omni-7B, GPT-4o, and Gemini-2.5-Flash —across 19
 781 tasks spanning Speech Recognition, Paralinguistics, Spoken Language Understanding, Audio Understanding,
 782 Spoken Language Reasoning, and Safety & Security. Metrics include standard benchmarks (WER, BLEU)
 783 and LLM-as-judge evaluations using GPT-4o-mini. Results reveal significant capability gaps, particularly in
 784 temporal reasoning (diarization) and complex instruction-following scenarios. *Performance affected by Azure
 785 OpenAI content filtering. **LB**: LLM-Judge-Binary metric, **LBBA**: LLM-Judge-Big-Bench-Audio, **LD**: LLM-
 786 Judge-Detailed, **MTJudge**: Multi-turn LLM-Judge

Task Category	Task Name	Dataset	Metric	Voxtral-Mini-3B	Qwen2.5-Omni-7B	GPT-4o	Gemini-2.5 Flash
Speech Recognition	ASR	Librispeech	WER (↓)	2.1	1.74	6.25	2.75
	Emotion	MELD	LB (↑)	28.4	49.8	20.2	30.0
	Gender	IEOMOCAP	LB (↑)	54.9	85.8	—*	85.50
Paralinguistics	Accent	VoxCeleb	LB (↑)	13	28.7	—*	55.7
	Speaker Recognition	MMAU-mini	LB (↑)	45.8	62.3	42	61.5
	Speaker Diarization	CallHome	WDER (↓)	35.38	35.40	37.12	41.83
	Spoken QA	Public-SG	LD (↑)	62.12	69.4	70.2	74.34
	Spoken Query QA	Big Bench Audio	LBBA(↑)	43.5	53.8	65	90.4
Spoken Language Understanding	Speech Translation	Covost2 (zh-CN → EN)	BLEU (↑)	15.27	28.41	21.68	27.1
	Spoken Dialogue Summarization	MNSC SDS(P3)	LD (↑)	52.2	52	61.2	62.8
	Intent Classification	SLURP	LB (↑)	42.5	57	48	79
Audio Understanding	Scene Understanding	AudioCaps QA	LD (↑)	14.96	38.4	15.08	34.82
	Music Understanding	MuChoMusic	LB (↑)	45.4	59.3	50.2	72.9
	Speech Function Calling	Speech BFCL	BFCL_Score (↑)	78.15	68.05	86.57	93.23
Spoken Language Reasoning	Speech-to-Coding	Speech-Spider	EM (↑) Acc (↑)	29.87 61.14	38.76 71.73	44.76 73.13	34.37 77.12
	Speech Instruction Following	Speech MTBench	MTJudge (↑)	63.19	62.88	64.06	75.31
	Speech Instruction Following	Speech IFEval	IFScore (↑)	40.02	50.83	70.47	86.28
	Speech Math	Speech-GSM8K	EM (↑)	70.05	84.23	87.79	90.52
Safety and Security	Safety	AdvBench	SafetyJudge (↑)	78.5	98.3	88.1	97.50
	Spoofing	ASVspoof	LB (↑)	91.5	30	0*	80.50

799 A.2 INFERENCE EFFICIENCY EVALUATION SETTINGS

800 To provide a comprehensive and fair comparison with other evaluation kits, regardless of their under-
 801 lying implementation, we introduce two additional runtime scenarios beyond individual dataset
 802 runtimes, namely *Sequential* and *Parallel*. First, *Sequential* runtime represents the most inefficient
 803 runtime by assuming each benchmark is executed in a sequential manner, where no data or model
 804 parallelization algorithms are introduced. On the other hand, *Parallel* presents the theoretical upper-
 805 bound for optimal runtime. The final runtime is calculated by taking the longest runtime among
 806 all evaluated datasets. This scenario presumes an ideal, zero-overhead parallelization environment
 807 where communication protocols among parallel processes and other overheads do not impact the
 808 runtime. This is considered a best-case runtime for our framework and existing evaluation kits
 809 across all presented datasets and models.

810
 811 **Table 7: Experimental setup for efficiency comparison across evaluation frameworks.** We conduct con-
 812 trolled experiments using 500 samples from three diverse datasets: MELD-Emotion (short emotional speech),
 813 LibriSpeech-clean (medium-length read speech), and ClothoAQA (long-form descriptive audio). Total audio
 814 duration varies from 1,476 to 11,376 seconds, enabling assessment across different audio characteristics and
 815 evaluation modalities (LLM-judge vs. traditional metrics).

	MELD-Emotion	Librispeech-clean	ClothoAQA
# Samples	500	500	500
Audio Duration (seconds)	1,476	3,780	11,376
Evaluation Metric	LLM-Judge	WER	LLM-Judge

820
 821 **Table 8: Comprehensive task coverage analysis across audio evaluation benchmarks.** We systematically
 822 compare task support across major frameworks spanning 2021–2025, organized by six core categories: Speech
 823 Recognition, Paralinguistics, Audio Understanding, Spoken Language Understanding, Spoken Language
 824 Reasoning, and Safety & Security. Our framework provides the most comprehensive coverage, uniquely supporting
 825 LLM-Adaptive Diarization and novel Spoken Language Reasoning tasks (Speech Function Calling, Speech-to-
 826 Coding) absent from prior work.

Task Category	Task Name	SUPERB (2021)	DynamicSUPERB (2024)	VoiceBench (2024)	AIR-Bench (2024)	AudioBench (2025)	DynamicSUPERB-2.0 (2025)	Ours
Speech Recognition	ASR	✓	✗	✗	✗	✓	✓	✓
	Code-switching ASR	✗	✗	✗	✗	✓	✓	✓
	Long-form ASR	✗	✗	✗	✗	✓	✓	✓
Paralinguistics	Emotion Recognition	✓	✓	✗	✓	✓	✓	✓
	Gender Recognition	✗	✗	✗	✓	✓	✓	✓
	Accent Recognition	✗	✓	✗	✗	✓	✓	✓
	Speaker Recognition	✓	✓	✓	✓	✓	✓	✓
Audio Understanding	Speaker Diarization	✓	✗	✗	✗	✗	✗	✓
	Music Understanding	✗	✗	✓	✓	✓	✗	✓
	Scene Understanding	✗	✓	✗	✓	✓	✓	✓
Spoken Language Understanding	Speech QA	✗	✗	✓	✓	✓	✗	✓
	Spoken Query QA	✗	✓	✓	✗	✓	✗	✓
	Speech Translation	✗	✗	✗	✗	✗	✗	✓
	Dialogue Summarization	✗	✗	✗	✗	✗	✗	✓
Spoken Language Reasoning	Intent Classification	✓	✓	✗	✓	✗	✓	✓
	Speech Function Calling	✗	✗	✗	✗	✗	✗	✓
	Speech-to-Coding	✗	✗	✗	✗	✗	✗	✓
	Speech Instruction Following	✗	✗	✓	✗	✓	✓	✓
Safety & Security	Speech Math	✗	✗	✗	✗	✗	✗	✓
	Safety	✗	✓	✓	✓	✗	✓	✓
	Spoofing	✗	✓	✗	✗	✗	✓	✓

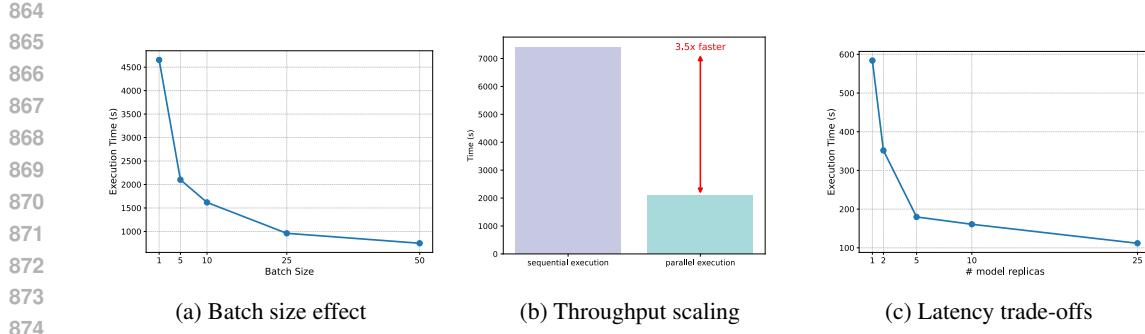
841 842 A.3 CONTEMPORARY EVALUATION KITS

843
 844 There are a few evaluation kits that we have built upon and been inspired by, both in evaluation
 845 framework design and task coverage.

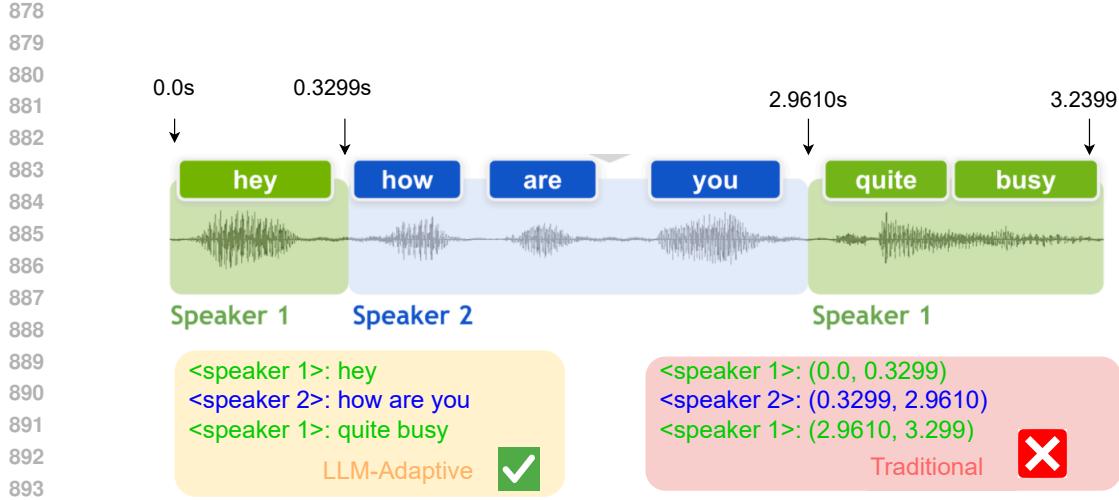
846
 847 • **AudioBench** Wang et al. (2025a): A comprehensive open-source audio evaluation frame-
 848 work encompassing eight core tasks and more than twenty-six curated datasets, with cover-
 849 age continuing to expand. AudioBench supports both open and closed-source models and
 850 provides standardized evaluation pipelines using conventional metrics such as Word Error
 851 Rate (WER) and METEOR, alongside LLM-as-a-judge scoring for instruction-following
 852 and reasoning tasks.

853
 854 • **Kimi-Eval** Ding et al. (2025): A multilingual and multi-model evaluation suite designed
 855 to assess leading Chinese and English large language models, including the Baichuan se-
 856 ries, Qwen, GLM, and Kimi itself. The benchmark spans automatic speech recognition
 857 (ASR), multiple choice question answering (MQA), open question answering (OpenQA),
 858 and reference-based question answering (RefQA), enabling a broad assessment of both
 859 comprehension and generative audio capabilities.

860
 861 • **VoiceBench** Chen et al. (2024): A focused benchmark evaluating thirty-five-plus state-of-
 862 the-art speech models across seven carefully selected datasets. While the total number of
 863 datasets is smaller than in AudioBench, the high task complexity and distinctive challenge
 864 of each dataset provide a useful test suite.



875 **Figure 5: Inference efficiency ablations in AU-Harness.** We examine three factors: (a) impact of batch
876 size on execution time, (b) throughput gains from parallel execution, and (c) latency reduction through replica
877 scaling.



895 **Figure 6: LLM-Adaptive Diarization methodology comparison.**³ Traditional diarization (top, bottom-right)
896 outputs time-stamped audio segments with speaker annotations, ideal for specialized neural architectures.
897 LLM-Adaptive approach (bottom-left) integrates speaker information directly into transcripts, enabling evalua-
898 tion through prompting-based generation evaluated via word-level metrics (WDER, cpWER). This approach
899 leverages LALMs' inherent language modeling capabilities while addressing temporal precision challenges
900 through specialized evaluation protocols.

A.4 INFERENCE EFFICIENCY ABLATIONS

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

To assess the scalability and efficiency of AU-Harness, we conduct three controlled ablations: (a) varying batch size, (b) throughput gains from parallel execution, and (c) latency trade-offs with replica scaling. The experimental setup follows Table 7, except for (c), where we use the full LibriSpeech-clean dataset to ensure sufficient workload for scalability analysis.

Figure 5 presents the results. Increasing batch size reduces execution time substantially, though benefits taper off at higher scales. Parallel execution yields up to a 3.5× improvement in throughput over sequential execution, confirming the efficiency of concurrent scheduling. Replica scaling further lowers latency, with near-linear improvements observed up to 25 replicas.

Overall, these ablations highlight that AU-Harness is both scalable and adaptable. By leveraging batching, parallelism, and replica scaling, it can be tuned for diverse deployment scenarios ranging from high-throughput evaluation to low-latency inference.

³Figure is adapted from [NeMo documentation](#)

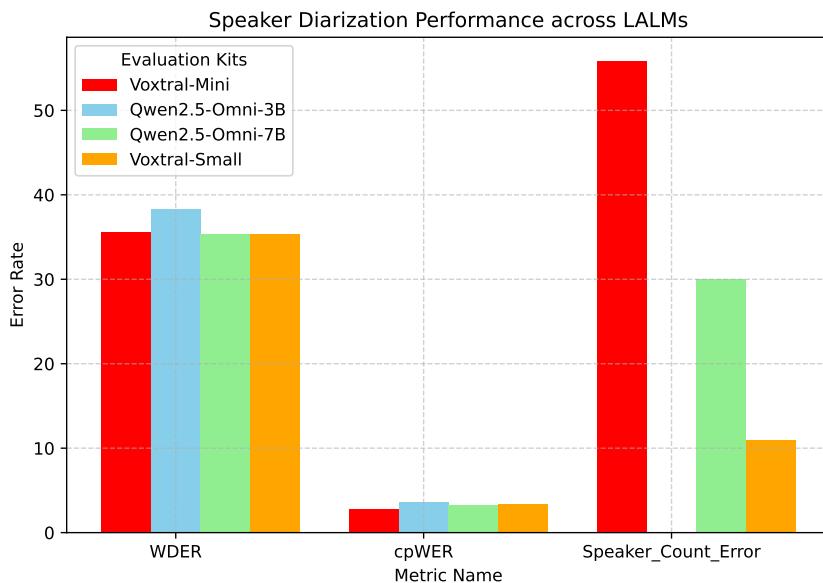


Figure 7: **LLM-Adaptive Diarization Empirical Results across LALMs.** LLM-Adaptive Diarization allows for temporal audio understanding evaluation with word-level metrics (WDER, cpWER, Speaker_Count_Error). All metrics require “**lower is better**”. Contemporary LALMs remain struggling with diarization tasks with high WDER and Speaker_Count_Error, necessitating future attention towards building and evaluating training paradigms for temporal understanding tasks.

A.5 TEMPORAL UNDERSTANDING VIA SPEAKER DIARIZATION

LLM-Adaptive Diarization vs Neural Diarization Figure 6 further illustrates the key differences between *LLM-Adaptive Diarization* and *Neural Diarization* presented in Section 3.3 and 4.3. Due to the nature of LLM-prompts, precise timestamp predictions are unrealizable, especially when working with proprietary models such as Gemini-2.5 or GPT-4o.

Empirical study of LLM-Adaptive Diarization As introduced in Section 4.3, we broaden the task coverage by integrating LLM-Adaptive Speaker Diarization with our proposed AU-Harness. The empirical results, as outlined in Figure 7, reveals the ongoing challenges of temporal understanding among LALMs. Specifically, *Voxtal-Mini* achieves significantly high *Speaker Count Error* metric, demonstrating its struggle with the accurate temporal localization and correct identification of speaker turn-taking in complex yet realistic audio streams. This performance gap underscores a critical area for future work, requiring future enhanced training paradigms to enhance the temporal understanding capabilities for LALMs.

A.6 IMPACT OF THINKING MODE OF LALMs FOR SPOKEN LANGUAGE REASONING TASKS

As thinking mode might have a significant impact on reasoning tasks, we conduct further experiments to evaluate the impact of the different thinking modes on our Spoken Language Reasoning evaluation task suites. More specifically, we leverage Gemini-2.5-Flash with two different thinking modes: (1) Disabled Thinking, and (2) Dynamic Thinking. Our empirical study, observed in Table 9, reveals that Gemini-2.5-Flash achieves 7.64 absolute points of performance gain when *dynamic thinking mode* is enabled, demonstrating the essence of thinking mode on the spoken language reasoning tasks.

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995

996 **Table 9: Spoken language reasoning tasks’ performance on Gemini-2.5-Flash with various thinking**
 997 **modes** We evaluate the impact of different thinking modes of compatible LALMs on Spoken Reasoning tasks.
 998 Our empirical study reveals that enabled thinking can have a positive impact on reasoning tasks with average
 999 reasoning gain of 7.64 absolute points over no-thinking model counterpart.

Thinking Mode	Speech-FC				Speech-to-Coding		Speech-IF			Speech Math					
	simple	para	multi	multi-para	BFCL_Score (↑)	irrelevance	Avg	EM (↑) Exec_Acc (↑)	Speech-Spider	IF-Score	MT_Judge (↑)	Speech-IEEval	Speech-MTBench	Speech-GSM8K	Reasoning Avg (↑)
Thinking Disabled	98	93	95.5	93.5	88.75	93.75	54.65	78.59		66.94		90.3		76.85	
Dynamic Thinking	96.75	92.5	96	90.5	90.42	93.23	77.12		86.28	75.31		90.52		84.49	

1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025