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ABSTRACT

Large Audio Language Models (LALMs) are rapidly advancing, but evaluating
them remains challenging due to inefficient toolkits that limit fair comparison and
systematic assessment. Current frameworks suffer from three critical issues: slow
processing that bottlenecks large-scale studies, inconsistent prompting that hurts
reproducibility, and narrow task coverage that misses important audio reasoning
capabilities. We introduce AU-Harness, an efficient and comprehensive evalu-
ation framework for LALMs. Our system achieves a speedup of up to 127%
over existing toolkits through optimized batch processing and parallel execution,
enabling large-scale evaluations previously impractical. We provide standard-
ized prompting protocols and flexible configurations for fair model comparison
across diverse scenarios. Additionally, we introduce two new evaluation cate-
gories: LLM-Adaptive Diarization for temporal audio understanding and Spoken
Language Reasoning for complex audio-based cognitive tasks. Through evalua-
tion across 380+ tasks, we reveal significant gaps in current LALMs, particularly
in temporal understanding and complex spoken language reasoning tasks. Our
findings also highlight a lack of standardization in modalities of user-provided
instructions existent across audio benchmarks, which can lead to performance dif-
ferences of up to 7.1 absolute points on challenging complex instruction follow-
ing downstream tasks. AU-Harness provides both practical evaluation tools and
insights into model limitations, advancing systematic LALM development. 1

1 INTRODUCTION

The emergence of Large Audio Language Models (LALMs) has opened new frontiers, extending
capabilities beyond textual inputs to speech, sounds, and multimodal inputs (Tang et al., 2023;
Cui et al., 2024). This progress has accelerated the development of frontier LALMs and audio-
focused benchmarks. Recent multimodal LALMs like Gemini 2.5 (Comanici et al., 2025), Qwen2.5-
Omni (Xu et al., 2025) have demonstrated substantial audio understanding capabilities well beyond
the traditional Automatic Speech Recognition (ASR) tasks. However, despite these advances, audio
evaluation toolkits have received comparatively little attention. Thus, there is a need for efficient,
customizable, and consistent evaluation frameworks for fair model comparisons which can evolve
as audio tasks and model complexities grow.

Existing efforts including AIR-Bench (Yang et al., 2024), AudioBench (Wang et al., 2025a), Kimi-
Eval (Ding et al., 2025), and DynamicSUPERB-2.0 (Huang et al., 2024b) have broadened task
coverage from ASR to spoken question answering and scene understanding. However, prevailing
toolkits still face three persistent limitations. First, throughput: many pipelines under-utilize batch-
ing and parallelism, creating bottlenecks that preclude large-scale, systematic comparisons. Second,
reproducibility: ad-hoc prompting and non-standardized input formatting lead to evaluation vari-
ance across setups. Third, task scope: evaluations rarely probe prompted temporal understanding
(e.g., diarization) or spoken reasoning with unified, reproducible protocols.

Most current evaluation frameworks depend on simplistic yet inefficient input processing pipelines
that struggle to scale with the increasing volume and complexity of audio benchmarks and LALMs.
These limitations not only constrain the throughput of large-scale evaluations but also hinder fair and

1We will open-source AU-Harness upon acceptance to encourage future audio research.
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reproducible comparisons across models of different sizes and architectures. As the field progresses
toward more diverse and challenging audio tasks, the shortcomings of current evaluation infrastruc-
ture may pose a critical bottleneck, ultimately hampering the potential progress of LALMs. Unlike
previous evaluation frameworks, we introduce an efficient vLLM batching orchestration together
with effective data sharding to scale the evaluations across multiple nodes and hardware architec-
tures, leading to improved efficiency for audio benchmark evaluations.

Beyond computational efficiency, existing toolkits also suffer from a notable lack of customizable
configurations for different audio task configurations, severely limiting their utility for diverse re-
search and application needs. Insufficient attention to task-specific prompting remains a significant
challenge for LALM evaluation and comparison across different benchmarks. Prompt sensitivity
further compounds customizability concerns, since LALMs’ outcomes might significantly change
when slight variations in prompt phrasing (Cui et al., 2024).

In addition, audio benchmarks and evaluation kits remain restricted to spoken language understand-
ing and observational audio reasoning (analyzing audio content). To advance toward practical appli-
cations, we focus on operational spoken reasoning 2 tasks that require executing instructions deliv-
ered through speech, such as function calling, code generation, and complex instruction following.
This complements existing benchmarks like MMAR (Ma et al., 2025), MMAU-PRO (Kumar et al.,
2025), and MMSU (Wang et al., 2025b) that evaluate observational reasoning over mixed audio
scenes. We construct and integrate operational spoken reasoning tasks with our evaluation kit for
comprehensive agentic audio-to-text generation support. In addition, we also provide support for
LLM-adaptive diarization evaluation where LLM prompting results in different I/O formats. To
the best of our knowledge, our proposed evaluation kit is the first to introduce operational spoken
reasoning tasks and support LLM-Adaptive Diarization evaluations.

Our contributions are as follows:

• We propose an efficient evaluation engine that leverages vLLM batching and dataset
sharding to scale evaluations to multi-node infrastructures without sacrificing fidelity.

• A unified, configurable framework that standardizes prompting and metrics across bench-
marks, enabling fair, reproducible comparisons and easy task integration.

• Expanded evaluation coverage with LLM-Adaptive Diarization and Spoken Language
Reasoning to assess temporal grounding and audio-conditioned reasoning in LALMs.

2 RELATED WORK

Audio Benchmarks. Benchmarks play a critical role in the development of LALMs. SU-
PERB (Yang et al., 2021) established core task axes (Content, Speaker, Semantics, Paralinguis-
tics) for audio model evaluation. DynamicSUPERB (Huang et al., 2024b) and DynamicSUPERB-
2.0 (Huang et al., 2024a) expanded coverage to instruction-tuned and sequence generation tasks
across speech, music, and environmental audio. Instruction-following and agentic behaviors have
been probed by AIR-Bench (Yang et al., 2024) and VoiceBench (Chen et al., 2024). More recently,
AudioBench (Wang et al., 2025a) unified eight task families over 26 datasets for AudioLLMs.

Complementary efforts in 2025 broaden the breadth and depth with observational audio reason-
ing: X-ARES (Zhang et al., 2025) systematically assesses general audio encoders across domains,
AHELM (Lee et al., 2025) aggregates multi-aspect evaluation for audio-language models (reason-
ing, robustness, safety, multilinguality), MECAT (Niu et al., 2025) targets fine-grained audio un-
derstanding with expert-guided captions and QA. MMAR (Ma et al., 2025), MMAU-PRO (Kumar
et al., 2025), and MMSU (Wang et al., 2025b) focus on understanding and analyzing complex audio
scenes, spatial relationships, and mixed-audio reasoning. CodecBench (Wang et al., 2025c) bench-
marks codecs from acoustic and semantic perspectives. While these benchmarks excel at observa-
tional tasks, few evaluate operational spoken reasoning where models must execute tasks through
speech instructions, or prompted diarization with reproducible protocols. This gap motivates our
focus on operational reasoning capabilities like function calling, code generation, and complex in-

2Throughout this work, we use the term Spoken Language Reasoning to refer to our pre-defined Operational
Spoken Reasoning, unless stated otherwise.
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struction following delivered through speech, complementing the observational reasoning emphasis
of existing benchmarks.

Audio Evaluation Kits. In contrast with Audio Benchmark development, Audio Evaluation Kits
have received less attention. This can be primarily attributed to the straightforward nature and mini-
mal setup requirements of the early audio tasks, as presented in Huang et al. (2024b) and Yang et al.
(2024). However, the rapid growth of LALMs and the increasing complexity of newly curated audio
benchmarks have underscored the critical need for comprehensive evaluation kits, as exemplified
through the development of extensive evaluation kits (Ding et al., 2025; Wang et al., 2025a; Chen
et al., 2024). For instance, AudioBench (Wang et al., 2025a) offers versatile evaluation support for
up to 8 tasks across 26 datasets. VERSA (Shi et al., 2025) introduces a comprehensive framework
to evaluate the quality of various speech, audio and music signals, with the focus on text-to-audio
applications. Despite these advancements, most current evaluation kits operate on the simplified
assumption that a single model is evaluated against a single benchmark per run. Addressing this
limitation, we introduce an efficient, customizable evaluation kit to support the massive growth of
the current LALMs and audio benchmarks as summarized in Table 1.

3 LALM EVALUATION CHALLENGES

Table 1: Feature comparison of contemporary LALM evaluation toolkits. We evaluate key technical capa-
bilities across existing frameworks: multilingual support for evaluating models across diverse languages, vLLM
integration for efficient batching, multi-turn dialogue support for conversational scenarios, LLM-Adaptive
Diarization for temporal understanding through prompting, Spoken Language Reasoning for complex audio-
conditioned cognitive tasks, and configurable prompt customizations for flexible evaluation design. Our frame-
work is the first to provide comprehensive support across all dimensions.

EvalKit Multilingual Support vLLM support Multi-turn LLM-Adaptive Diarization Spoken Language Reasoning Configurable Prompt Customizations
AudioBench ✓ ✗ ✗ ✗ ✗ ✗
Kimi-Eval ✓ ✗ ✗ ✗ ✗ ✗

VoiceBench ✓ ✗ ✗ ✗ ✗ ✗
AU-Harness ✓ ✓ ✓ ✓ ✓ ✓

3.1 INFERENCE EFFICIENCY

Table 2: Throughput efficiency comparison across
LALM evaluation frameworks. Results averaged
over 500 samples from LibriSpeech-test-clean (1.05
hours total audio). Real-time Factor (RTF, ↓ bet-
ter) measures processing time relative to audio dura-
tion. Processed Samples per Second (↑ better) quan-
tifies raw throughput. Our framework achieves 48.75%
RTF reduction and 95.19% throughput increase over the
best competing baseline, demonstrating substantial effi-
ciency gains through vLLM integration and request or-
chestration.

EvalKit RTF (↓) Processed Samples per Second (↑)
AudioBench 19.9 0.66
Kimi-Eval 7.1 1.87

VoiceBench 87.9 0.15
AU-Harness 3.6 (↓48.75%) 3.65 (↑ 95.19%)

Existing LALM evaluation kits have been de-
signed based on the assumption that a sin-
gle model should be evaluated against a sin-
gle benchmark per run. However, this con-
strains researchers from conducting systematic,
large-scale comparisons across LALMs and au-
dio benchmarks efficiently, slowing the itera-
tive process of model development and refine-
ment. The current evaluation kits also under-
utilize parallel processing capabilities available
in the high-performance computing clusters, re-
sulting in failures in incorporating benefits of
available hardware infrastructures.

Two essential task-agnostic metrics for evaluat-
ing the efficiency of LALM evaluation frame-
works are Real-time Factor (RTF) and Pro-
cessed Samples per Second. RTF measures the
processing time of an evaluation framework rel-
ative to the duration of the processed audio Arriaga et al. (2024). Lower RTF is more desirable,
indicating a more efficient audio evaluation framework. On the other hand, Processed Samples per
Second directly quantifies the model’s processing speed by measuring the average number of audio
samples processed per second. It serves as a complementary measure to RTF, providing a more
granular view of the model’s throughput and computational efficiency.

3
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To quantify the efficiency of existing evaluation frameworks, we conduct a study on 500 audio
samples (approximately 1.05 hours) of Librispeech-test-clean (Panayotov et al., 2015). As observed
in Table 2, existing audio evaluation kits exhibit high RTF and slow sample processing speed. As the
number of samples continues to increase with more diverse datasets, this challenge can significantly
slow down the inference progress at scale.

3.2 CUSTOMIZABLE EVALUATION CONFIGURATIONS

Despite the strong support for various tasks and LALMs, current LALM evaluation kits provide
insufficient customizations for evaluation configurations.

Multi-turn Dialogue Support Previous audio evaluation toolkits have largely been constrained to
tasks centered on single-turn user interactions. However, as the field moves toward building interac-
tive and context-aware voice assistants, the ability to evaluate multi-turn tasks becomes increasingly
critical. Multi-turn evaluation enables a more realistic assessment of dialogue continuity, contextual
reasoning, and the model’s capacity to adapt dynamically across extended conversations. Without
such support, current evaluation approaches risk overlooking key aspects of usability and robustness
that are essential for next-generation LALMs in realistic agentic voice systems.

Customizable Filtering. The lack of customizable filtering poses a significant barrier for re-
searchers aiming to conduct in-depth analyses of current LALM limitations. Without the ability
to refine evaluation datasets based on specific criteria, it is challenging to gain granular understand-
ing of model performance across diverse audio conditions. For instance, while certain LALMs
might perform reliably on 10-second audio chunks, they might be unable to handle short-form audio
typically encountered in dialogue-state tracking systems.

Task Hierarchical Structure & Task-Metric Aggregation. While DynamicSUPERB-2.0 Huang
et al. (2024b) provides a comprehensive set of tasks (up to 180 tasks), it lacks mechanisms for
categorizing and conducting targeted evaluation runs on specific task categories. This limitation re-
duces its practical value for researchers and practitioners aiming to benchmark or improve LALMs’
capabilities on targeted task categories.

3.3 COMPREHENSIVE TASK CATEGORY COVERAGE

As demonstrated in Table 8, despite the wide coverage of tasks, existing benchmarks fail to support
more complex audio reasoning and fine-grained diarization tasks.

LLM-Adaptive Diarization. A key limitation of prior evaluation kits is the lack of support for
diarization tasks adapted to the prompting-focused capabilities and requirements of contemporary
LALMs. To address this gap, we define LLM-adaptive Diarization as a class of tasks aimed at
identifying “who says what and when” given continuous audio inputs purely through prompting
rather than neural modeling. Unlike conventional audio understanding tasks, these tasks require
models to segment the audio streams and localize the timing of specific information with them.
Exemplars include speaker diarization (Anguera et al., 2012) and emotion diarization (Wang et al.,
2023), both of which demand precise timestamp predictions for accurate evaluation. In the con-
text of LALMs, this poses additional challenges, particularly regarding the precision of temporal
predictions — an issue frequently observed in text-based LLMs (Feng et al., 2025). As a result,
LLM-Adaptive Diarization calls for the development of specialized prompting strategies and adap-
tive evaluation metrics tailored to the unique characteristics of LALMs beyond the traditional widely
adopted Diarization Error Rate metric (Galibert, 2013).

Spoken Language Reasoning. Existing benchmarks remain largely centered on the audio under-
standing tasks, with limited emphasis on tasks requiring deeper cognitive and reasoning abilities
(Peng et al., 2024). Following the Natural Language Processing (NLP) community, we define Spo-
ken Language Reasoning tasks as those that involve integrating information from multiple sources
to derive new conclusions without relying solely on models’ memorization, knowledge-based stor-
age and provided context (Yu et al., 2024). Unlike existing observational audio reasoning bench-
marks (Wang et al., 2025b; Ma et al., 2025; Kumar et al., 2025), our task suite is designed to evalu-
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Config User-friendly customizable configuration setups for evaluation runs 

x
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AU-Harness

ASR-WER Engine

Length Filter
[1.0, 3.0] 

System Prompts
 You are an expert at audio-based

emotion and sentiment recognition. 

Prompt add-ons
Choose from the following options:
Anger, Disgust, Fear, Joy, Neutral,

Sadness, Surprise.

Score Aggregations
["llm_judge_binary",

"emotion_recognition"]

Runspecs
["meld_emotion_test", "llm_judge_binary"]

"iemocap_emotion_recognition",
"llm_judge_binary"

Request Controller
Grants request tokens to inference/evaluation modules across all engines, while pulling

and returning to model-specific token pools

GPT-4o Judge

20 50 100
90 90 90

Evaluation

Qwen-2-Audio
Kimi-Audio

GPT-4o Judge
GPT-4o Judge

"emotion_recognition": {
     "PHI4_MULTI_MODAL": {
        "llm_judge_binary": 80.20
      }
   }

Metric Report

Figure 1: Architecture overview of AU-Harness evaluation framework. Our system comprises three core
components: (1) Config module for hierarchical task configuration and standardized prompting, (2) Request
Controller managing token-based concurrency limits across all engines with adaptive retry mechanisms, and
(3) Concurrent Engines executing parallel model evaluation with dataset sharding. The Request Controller
maintains a global token pool accessible to all engines, enabling efficient resource utilization and scalable
throughput. Multiple concurrent connections between the controller and inference models illustrate parallel
request dispatch, with each engine supporting multi-model evaluation on targeted datasets.

.

ate operational reasoning competencies, including: function calling, code generation and multi-turn
complex instruction following capabilities.

4 AU-HARNESS

In response to the presented challenges of current audio understanding evaluation toolkits, we pro-
pose a standardized, efficient, highly customizable evaluation framework, AU-Harness, as detailed
in Figure 1.

AU-Harness is composed of 3 primary components: Config, Request Controller and Concurrent
Engines. The Config module defines a structured and hierarchical representation of customizable
configurations, enabling flexible and transparent evaluation settings. The Request Controller is re-
sponsible for managing token requests and coordinating execution across the framework. Finally, the
Concurrent Engines module carries out task-specific evaluations in parallel, where each engine can
support multi-model evaluations tailored to particular tasks. In the following sections, we introduce
our architecture design in detail to address the presented challenges in Section 3.

4.1 INFERENCE EFFICIENCY

As illustrated in Figure 1, AU-Harness maximizes inference efficiency through a token-based request
scheduling architecture. More specifically, we introduce a Central Request Controller that maintains
and regulates a pool of available tokens which are accessible to all models across all evaluation en-
gines. Here, a token refers to a concurrency slot representing permission to issue one inference
request (not a model input token), which is acquired before dispatch and released upon completion.
Each concurrent engine-specific requester periodically draws from the global pool. Within each
engine, multiple models are executed concurrently on a targeted dataset, with inference calls dis-
patched in parallel to fully exploit available computational resources. This architecture ensures that
evaluation throughput is not bottlenecked by model or engine-specific constraints, but rather gov-
erned solely by user-defined request limits set globally, providing both scalability and predictable
performance guarantees. Furthermore, we allow user-specified retry counts on request errors, en-
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abling users to set higher request limits with the assurance that occasional failures will be re-tried
and successfully completed, thereby offering a tunable balance between throughput and reliability.

Furthermore, AU-Harness implements a layered request synchronization strategy that adaptively
staggers request wait times across concurrent models. This design increases the probability that all
models processing a given dataset segment complete their inference in a temporally aligned manner.
By reducing discrepancies in model response times, the strategy minimizes idle periods within each
engine, thereby mitigating intra-engine waiting time and improving overall throughput efficiency.
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Figure 2: Task distribution and coverage in AU-
Harness. Our framework encompasses six ma-
jor categories with balanced representation. It re-
flects coverage from basic perception to complex
reasoning, with novel emphasis on prompted tem-
poral understanding and audio-conditioned cogni-
tive tasks.

Additionally, we implement dataset sharding, which
partitions the evaluation dataset into disjoint subsets
to enable parallel processing across multiple model
endpoints. To maximize efficiency, sharding is per-
formed proportionally to each endpoint’s capacity
for concurrent requests, ensuring balanced utiliza-
tion of heterogeneous resources. This enables near-
linear scaling of inference throughput, effectively
distributing the computational workload and mini-
mizing bottlenecks. Finally, our native integration
with vLLM leverages a range of inference-level opti-
mizations, further accelerating model execution and
overall evaluation system.

4.2 CUSTOMIZABLE
EVALUATION CONFIGURATIONS

AU-Harness is highly customizable with structured
task coverage as presented in Figure 2, from dataset
usage to inference to evaluations.

Decoupling Inference and Model Hosting. AU-
Harness decouples predictive inference and metric
computation from model hosting infrastructure. In
this way, regardless of whether the model is served
through vLLM, a third-party API, or a lightweight FastAPI (Ramirez, 2018) deployment, the request
handler requires only a standardized model specification to integrate seamlessly with the inference
pipeline. This separation not only promotes modularity and extensibility of the evaluation frame-
work but also enables straightforward integration via simplified future integration of alternative in-
ference strategies.

Wide Model Support. AU-Harness is designed for broad model compatibility, enabling out-of-
the-box evaluation across diverse inference backends. It provides native support for vLLM compat-
ible models, which deliver high-throughput and memory-efficient inference. Models not integrated
with vLLM are also supported, as long as they expose a standard /v1/chat/completions endpoint.
This flexibility maximizes model coverage by enabling seamless evaluation across both vLLM- com-
patible and non-compatible models. To facilitate the integration, we provide boilerplate FastAPI
server implementations that make it easy to build lightweight inference endpoints. Alternatively,
developers can also bring their own optimized inference stacks and wrap them with FastAPI to
integrate smoothly with AU-Harness, ensuring minimal overhead and maximum compatibility.

Multi-turn Dialogue support. By using synchronous, turn-based evaluation chains that append
model outputs to the context, AU-Harness supports multi-turn evaluation of both audio and text
datasets across LALMs. The simplicity and conciseness of our implementation allows for future
contributions for more complex and custom multi-turn tasks as well.

Customizable Filtering. Great effort has been made into making AU-Harness as customizable as
possible, while still being intuitive to use. First, any number of open-source and proprietary models,
across any number of datasets, can be run. Each model can have its own specific temperature
and max-token settings, which can override customizable, task-specific, temperature settings. Each
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model endpoint also has specific run specifications that can be changed, such as concurrently allowed
requests, error retry limit, timeout before retry, and audio chunk size. This maximizes resource
utilization while minimizing the overall evaluation time.

Evaluation customization. AU-Harness is also designed for granular control over evaluation steps
by allowing for customizable metric assignment on a per-dataset and per-task basis. For instance,
LLM-as-judge supports configurable concurrency to maximize the throughput for evaluation stage.
For a more comprehensive understanding of model performance, the framework offers configurable
aggregation metrics. This capability allows for the multi-dimensional analysis of task and metric
results, providing a holistic view that extends beyond simple, individual scores or sub-tasks.

4.3 COMPREHENSIVE TASK CATEGORY COVERAGE

LLM-Adaptive Diarization Following Wang et al. (2024), we adapt diarization tasks as a spe-
cial category of ASR. More specifically, to alleviate the potential issues of (1) precise temporal
predictions and (2) timing mismatch of ASR and Diarization systems, we incorporate the speaker
information into the transcripts and prompt LLMs to generate the ASR hypotheses. The generated
hypotheses are then post-processed and evaluated on the word-level via Word-diarization Error Rate
(WDER) (Shafey et al., 2019) and concatenated minimum-permutation word error rate (cpWER)
(Watanabe et al., 2020). Further details of the aforementioned difference in conjunction with de-
tailed empirical study on temporal understanding of LALMs are provided in Appendix A.5.

Spoken Language Reasoning Derived from text-based reasoning tasks, we introduce three novel
audio-based reasoning tasks by converting the audio instructions into audio context via Text-to-
Speech (TTS) system. Our work centers on 3 major reasoning tasks, including:

• Speech Function Calling (Speech-FC): Speech Function Calling aims to assess the
LALMs’ comprehension of spoken instructions and their ability to map spoken natural
language queries into structured, executable function calls with appropriate arguments. We
achieve the goal by expanding BFCL-v3 (Patil et al., 2024) by systematically converting
textual instructions into spoken counterparts.

• Speech-to-Coding: Speech-to-Coding evaluates LALMs’ capability to translate spoken
instructions into a formal programming language. Adapted from the renowned Spider text-
to-SQL benchmark (Yu et al., 2018), we construct the Speech-Spider benchmark where
LALMs are expected to convert spoken instructions into valid SQL commands.

• Speech Instruction Following (Speech-IF): Proficiency in interpreting and executing in-
tricate, potentially multi-step audio instructions is a critical skill for LALMs. To evaluate
this capability, we develop Speech-MTBench benchmarks, deriving from the well-know
text-based MTBench (Zheng et al., 2023).

5 RESULTS & DISCUSSION

Empirical evaluations across all task categories using our proposed AU-Harness are provided in
Table 6. Following Wang et al. (2025a), we adopt GPT-4o-mini as judge for LLM-judge metrics due
to its advanced capability. Further details of datasets and metrics are provided in Appendix A.1. For
conciseness, we centralize the discussion on most of our introduced benchmarks shown in Table 3.

5.1 INFERENCE EFFICIENCY

Evaluation Settings. We perform an empirical evaluation to compare AU-Harness against exist-
ing evaluation kits: AudioBench (Wang et al., 2025a), VoiceBench (Chen et al., 2024), and Kimi-
Eval (Ding et al., 2025). Our analysis focuses on the two key metrics RTF and Processed Samples per
Second detailed in Section 3.1. We leverage 500 audio samples from 3 diverse datasets: librispeech-
clean-test, ClothoAQA (Lipping et al., 2022), and MELD-Emotion (Poria et al., 2019) as detailed in
Table 7. The evaluation is conducted on three different LALMs, including: Qwen2.5-Omni-7B Xu
et al. (2025), Phi-4-Multimodal Abouelenin et al. (2025) and Voxtral-Mini-3B Liu et al. (2025).
For conciseness, we report the averaged metric across all 3 LALMs. Additional runtime setups,
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Table 3: LALM performance on spoken language reasoning tasks. We evaluate representative LALMs
from different spectra: Open-source LALMs(small-sized, medium-sized, large-sized), Proprietary LALMs and
Cascaded System LALMs across reasoning-focused tasks. Metrics include LLM-as-judge evaluations using
GPT-4o-mini and task-specific automatic metrics. Reasoning Avg aggregates performance across different
reasoning tasks where Exec Acc of Speech-Spider is used for averaging calculation. Results reveal significant
capability gaps, particularly in complex instruction-following scenarios. Bold: highest; underline: second
highest. Refer to Appendix A.1.2 for metric abbreviations and detailed explanations.

Models Speech-FC Speech-to-Coding Speech-IF Speech Math
BFCL Score (↑) EM (↑) | Exec Acc (↑) IF-Score MTJudge (↑) EM (↑)

simple para multi multi-para irrelevance Avg Speech-Spider Speech-IFEval Speech-MTBench Speech-GSM8K Reasoning Avg (↑)
Small-sized Audio Language Models (<5B parameters)

Voxtral-Mini 97.75 78.5 96 56 62.5 78.15 29.87 | 61.14 40.02 63.19 70.05 62.51
Qwen2.5-Omni-3B 82.5 62 59 35 54.17 58.53 32.07 | 58.44 40.91 58.75 14.10 46.15

Medium Sized Large Audio Language Models (5B-20B parameters)
Phi-4-Multimodal 10.5 36.5 24.5 24.5 81.67 35.53 7.69 | 39.46 44.51 65.44 73.54 51.70
Qwen2.5-Omni-7B 89.5 67.5 76 41 66.25 68.05 38.76 | 71.73 50.83 62.88 84.23 67.54
Kimi-Audio 1.5 15 5.5 17 73.33 22.47 31.47 | 63.84 46.11 60.88 72.55 53.17

Large Sized Large Audio Language Models (> 20B parameters)
Voxtral-Small 98.25 87 97.5 73.5 77.92 86.83 40.16 | 74.73 66.83 69.25 87.57 77.08
Qwen3-Omni-30B-A3B-Thinking 86.25 19 79 35.5 87.08 61.37 54.25 | 79.62 82.38 75.25 93.56 78.44

Proprietary Audio Language Models
GPT-4o-mini-audio 97.25 82 96 68 89.58 86.57 44.76 | 73.13 70.47 64.06 87.79 76.40
Gemini-2.5-Flash 96.75 92.5 96 90.5 90.42 93.23 34.37 | 77.12 86.28 75.31 90.52 84.49

Cascaded Systems
Whisper-Large-v3 + GPT-OSS-20B 97.25 83 95.5 65.5 87.08 85.67 36.36 | 74.93 73.72 68.31 91.58 78.84
GPT-4o-transcribe + GPT-4.1-mini 98.75 78.5 97 58 83.33 83.12 39.46 | 74.13 66.69 67.06 90.75 76.35

namely Sequential and Parallel, to assure a comprehensive and fair comparison among all existing
evaluation kits are also examined as detailed in Appendix A.2.

MELD Librispeech ClothoAQA Sequential Parallel
Runtime Type
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Figure 3: Efficiency comparison across evaluation frameworks and runtime scenarios. (a) Processed Sam-
ples per Second (↑ better) and (b) Real-time Factor (↓ better) measured across three datasets (MELD-Emotion,
LibriSpeech-test-clean, ClothoAQA) and three runtime conditions: Individual (dataset-specific), Sequential
(worst-case serialized execution), and Parallel (optimal concurrent execution). AU-Harness consistently out-
performs existing toolkits across all scenarios, with most significant gains in parallel execution, demonstrating
effective utilization of concurrent processing capabilities.

Evaluation Comparison As shown in Figure 3, AU-Harness consistently outperforms existing
evaluation kits across all runtime scenarios in two key efficiency metrics. Sspecifically, AU-
Harness achieves up to a 127% improvement in Processed Samples per Second and 59% reduction in
RTFs compared to the next most competitive evaluation frameworks. More importantly, our Parallel
runtime, illustrated in Figure 4, is significantly more efficient than competing frameworks. These
empirical results validate our framework as a highly efficient tool for LALM evaluation.

5.2 INSTRUCTION MODALITY GAP

When text-based benchmarks are converted to the audio-based counterparts, the impact of instruc-
tion modality is often overlooked. However, this distinction can have a significant impact on the
downstream task evaluation performance, especially for more complex instruction-following tasks.
As observed in Table 4, leveraging audio instruction modality instead text can have a major im-
pact on the performance evaluation. For instance, on challenging task of Audio Function Calling
(i.e. Speech-BFCL), we observe a performance degradation of up to 7.1 points. This observation
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Figure 4: Parallel runtime efficiency analysis across evaluation frameworks. Scatter plot com-
paring frameworks under optimal parallel execution conditions, plotting Real-time Factor (x-axis, ↓
better) against Processed Samples per Second (y-axis, ↑ better). Our framework (rightmost cluster)
achieves superior performance in both dimensions, demonstrating the effectiveness of token-based
request scheduling, dataset sharding, and vLLMintegration for large-scale LALM evaluation.

Table 4: Empirical evaluations to assess the impact of different instruction modalities on Spoken Lan-
guage Reasoning tasks with Qwen3-Omni-30B-A3B-Thinking reveals the significant performance gap be-
tween Audio and Text instructions, highlighting the need for a more thorough investigation when instruction-
following benchmarks are converted from text to audio.

Instruction Modality Speech-IFEval (↑) Speech-BFCL (↑) Speech-Spider (↑) Speech-MTBench (↑) Speech-GSM8K (↑) Reasoning Avg (↑)
Text 87.56 68.43 82.12 81.06 95.3 82.89

Audio 82.38 61.37 79.62 75.25 93.56 78.44

highlights a potential core limitation of the contemporary LALMs in following audio instructions.
Therefore, a careful and thorough reassessment of different instruction modality is needed to accu-
rately measure a model’s true reasoning capabilities in a multimodal context.

6 CONCLUSION

We introduced a modular and extensible evaluation framework for large audio-language models
that emphasizes broad task coverage, ease of use, and adaptability. Its modular design enables re-
searchers and practitioners to extend the codebase, customize benchmarks, and integrate new models
or tasks without major restructuring. While efficiency gains are realized through dataset sharding
proportional to endpoint capacity and seamless vLLM integration, the broader value of our frame-
work lies in enabling flexible, large-scale evaluations that were previously difficult to conduct in a
reproducible and accessible manner. By lowering the barrier to benchmarking and fostering cus-
tomization, we aim to support both systematic research and practical deployment, contributing a
more standardized and transparent evaluation ecosystem for LALMs.

LIMITATIONS

Backend dependency and reproducibility. Our efficiency gains rely on vLLM integration, mod-
els without mature backends revert to conventional execution with reduced throughput. Support
for closed-source endpoints depends on chat-completions APIs, limiting batching control and in-
troducing provider rate limits. Even with deterministic configs, runs may vary due to endpoint
queueing and transient failures, requiring documentation of capacity and request budgets for cross-
institutional comparability.
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Standardization vs. task fidelity. Standardized prompting improves reproducibility but cannot
eliminate prompt sensitivity. For open-ended tasks, canonical prompts may bias results toward
specific behaviors. Our LLM-Adaptive Diarization uses word-level metrics (WDER, cpWER) as
proxies for temporal precision, which remains imperfect under speech overlap or rapid transitions.
The community needs multiple documented prompt families and complementary temporal measures
to triangulate performance fairly.

Coverage and generalization gaps. While we extend beyond ASR to diarization and spoken rea-
soning, coverage remains skewed toward English and common domains. Environmental audio,
music understanding, and low-resource languages are underrepresented. Moreover, the relationship
between standardized benchmark performance and real-world audio-language capabilities where
contexts are noisier, more diverse, and less structured requires further empirical validation.

These limitations highlight challenges in audio-language evaluation. Achieving reproducible, com-
prehensive, and valid assessment requires community coordination around prompting standards,
temporal diagnostics, and multilingual breadth. Our framework is designed to enable practical, sys-
tematic progress in these areas across the broader ecosystem.

ETHICS STATEMENT

Our work focuses on responsible development of audio language model evaluation infrastructure.
We have taken care to ensure that all audio datasets used in our benchmarks respect copyright and
privacy guidelines, with particular attention to speaker consent in diarization tasks. While our frame-
work enables large-scale evaluation of LALMs, we cannot guarantee that models evaluated through
AU-Harness will not generate harmful or biased audio-related outputs. Researchers and practi-
tioners are strongly encouraged to implement appropriate content filtering and bias detection when
deploying LALMs in production environments. Our speech synthesis components for creating rea-
soning benchmarks use only publicly available, ethically sourced voice models. Additionally, we
acknowledge that our current task coverage is skewed toward English and common domains, which
may inadvertently reinforce existing representational biases in audio AI systems. We encourage the
community to extend our framework to include more diverse languages and cultural contexts.

Regarding language model usage in manuscript preparation, we utilize them solely to refine the
language used in paper to improve clarity and correctness, without generating any substantial content
or claims.

REPRODUCIBILITY STATEMENT

We are committed to full reproducibility of our evaluation framework and experimental results. All
AU-Harness code, configuration files, evaluation scripts, and documentation will be publicly re-
leased under an open-source license upon acceptance. We provide comprehensive implementation
details including all hyperparameters, model endpoints, dataset preprocessing steps, and evaluation
metrics in our appendices. For efficiency comparisons, we document exact hardware specifications,
vLLM versions, concurrent request limits, and retry policies used across all experiments. Our newly
introduced reasoning benchmarks include complete details on text-to-speech synthesis parameters
and prompt templates. To ensure consistent reproduction, we provide Docker containers with fixed
dependency versions and detailed setup instructions for multi-node evaluation. All random seeds,
sampling parameters, and LLM-as-judge configurations are specified to enable identical result repli-
cation across different research groups.
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A APPENDIX

A.1 COMPREHENSIVE AUDIO EVALUATION

A.1.1 BENCHMARK DETAILS

We present a comprehensive benchmark suite comprising 56 diverse datasets spanning six funda-
mental task categories in audio and speech understanding. Our benchmark encompasses Audio Un-
derstanding (6 datasets), evaluating models’ capabilities in audio scene analysis and music compre-
hension; Paralinguistics (12 datasets), assessing speech characteristics including emotion, gender,
accent recognition, and speaker-related tasks; Safety and Security (2 datasets), examining robustness
against adversarial inputs and spoofing; Spoken Language Reasoning (5 datasets), testing complex
reasoning abilities from mathematical problem-solving to code generation from speech; Spoken Lan-
guage Understanding (21 datasets), the largest category covering speech question-answering, intent
classification, and translation tasks; and Speech Recognition (15 datasets), establishing baselines for
automatic speech recognition across multiple languages and acoustic conditions.

A.1.2 METRIC DETAILS

• Word Error Rate (WER) – Measures automatic speech recognition (ASR) errors via in-
sertions and deletions in transcribed text. Lower is better.

• LLM-Judge (MJ) – LLM-based evaluation of response quality. Higher is better. Reported
metrics:

– Binary (LB) – Binary LLM-based pass/fail correctness judgment.
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Table 5: Comprehensive Audio and Speech Datasets Overview. Listing of 56 datasets across 6 task cate-
gories: Speech Recognition, Paralinguistics, Audio Understanding, Spoken Language Understanding, Spoken
Language Reasoning, and Safety & Security.

Task Category Task Type Dataset Name Description License

Speech
Recognition

ASR AISHELL-1 High-quality Mandarin speech recognition dataset Apache 2.0
ASR AMI Meeting Corpus Multispeaker meeting recordings for ASR and diarization CC BY 4.0
ASR CallHome (ENG) Conversational speech corpus across multiple languages LDC User Agreement for Non-Members
ASR Common Voice Crowdsourced multilingual speech dataset from Mozilla CC0 1.0 Universal
ASR FLEURS EN-US Multilingual speech dataset for ASR and translation CC BY 4.0
ASR GigaSpeech Large-scale audio and transcription corpus for end-to-end ASR Apache 2.0
ASR LibriSpeech Audiobook-derived speech corpus with clean and noisy subsets CC BY 4.0
ASR MNSC Large-scale multitask speech corpus MNSC: Publicly released
ASR Multilingual LibriSpeech (MLS) Extension of LibriSpeech with multiple European languages CC BY 4.0
ASR People’s Speech Large-scale open-source English speech recognition dataset CC-BY-SA
ASR SPGISpeech Transcriptions of financial meeting recordings Kensho User Agreement
ASR TEDLIUM3 Transcribed TED talks for ASR and speaker adaptation CC BY-NC-ND 3.0
ASR VoxPopuli Multilingual speech corpus from European Parliament recordings CC0
Code-switching ASR SEAME Mandarin-English code-switching speech dataset LDC2015S04
Long-form ASR Earnings21/22 Long-form earnings call dataset for speech recognition CC-BY-SA-4.0

Paralinguistics

Accent Recognition MNSC AR Dialogue Dataset for accent recognition in dialogue speech MNSC: Publicly released
Accent Recognition MNSC AR Sentence Dataset for accent recognition in sentence-level speech MNSC: Publicly released
Accent Recognition VoxCeleb Accent Speech dataset with diverse speakers for accent recognition CC BY 4.0
Emotion Recognition IEMOCAP Emotion Multimodal dataset for emotion recognition in speech GPL-3.0
Emotion Recognition MELD Emotion Multi-party conversation dataset for emotion recognition GPL-3.0
Emotion Recognition MELD Sentiment Multi-party conversation dataset for sentiment analysis GPL-3.0
Gender Recognition IEMOCAP Gender Multimodal dataset for gender recognition in speech GPL-3.0
Gender Recognition MNSC GR Dialogue Dataset for gender recognition in dialogue speech MNSC: Publicly released
Gender Recognition MNSC GR Sentence Dataset for gender recognition in sentence-level speech MNSC: Publicly released
Gender Recognition VoxCeleb Gender Speech dataset with diverse speakers for gender recognition CC BY 4.0
Speaker Diarization Callhome (ENG) Multilingual telephone conversations for speaker diarization CC-BY-NC-SA-4.0
Speaker Recognition MMAU-mini Multi-modal audio dataset for speaker recognition Apache 2.0

Audio
Understanding

Music Understanding MuChoMusic Benchmark for music understanding for LALMs CC-BY-SA-4.0
Scene Understanding AudioCaps Large-scale dataset for open-domain audio captioning MIT
Scene Understanding AudioCaps QA Dataset for question answering over natural audio scenes MIT
Scene Understanding Clotho AQA Dataset for answering natural-language questions about audio signals MIT
Scene Understanding WavCaps Large-scale weakly labeled dataset for audio captioning CC-BY-NC 4.0
Scene Understanding WavCaps QA Large-scale dataset for audio question answering CC-BY-NC 4.0

Spoken Language
Understanding

Intent Classification SLURP Multi-domain spoken dialogue understanding benchmark CC BY-NC 4.0
Speech QA Alpaca Audio Speech dataset for question answering with audio instructions Apache-2.0
Speech QA CN College Listen MCQ Multispeaker dataset for listening-based multiple-choice questions MERaLiON Public License
Speech QA Dream TTS MCQ Dialogue-based multiple-choice comprehension dataset with audio MIT
Speech QA MNSC SQA Benchmark for reasoning and understanding in spoken language NSC License
Speech QA OpenHermes Speech dataset for question answering with audio instructions CC-BY-NC
Speech QA Public-SG Speech question answering benchmark NSC License
Speech QA SLUE SQA Spoken Language Understanding Evaluation benchmark CC-BY-4.0
Speech QA Spoken Squad Speech dataset for extraction-based question answering CC-BY-SA-4.0
SQQA Big Bench Audio Benchmark for reasoning with audio and text input MIT
SQQA MMSU Multi-choice question answering dataset Apache-2.0
SQQA OpenBookQA Multi-choice question answering dataset Apache-2.0
SQQA SD-QA Multi-choice question answering dataset Apache-2.0
Translation CoVoST2 (zh→en) Large-scale multilingual dataset for speech translation CC-BY-NC-4.0

Spoken Language
Reasoning

Grade School Math GSM8k Speech-based dataset of grade school math word problems MIT (text dataset)
Speech Function Calling BFCL Speech dataset for complex function calling tasks Apache-2.0
Speech Instruction Following IFEVAL Speech dataset for complex instruction following Apache-2.0
Speech Instruction Following MTBench Speech dataset for multi-turn instruction following Apache-2.0
Speech-to-Coding SPEECH TO SQL Speech dataset for generating executable SQL code Apache-2.0

Safety &
Security

Safety Advbench Speech dataset for testing resistance to adversarial or harmful prompts Apache 2.0
Spoofing ASVpoof2017 Speech dataset for spoofing attack detection in real-world conditions CC BY-NC 4.0
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– Detailed (LD) – Detailed multi-level llm judgement across multiple dimensions.
– BigBench Audio (LBBA) – LLM-based evaluations for BigBench-like audio tasks.
– RedTeaming (SafetyJudge) – LLM-based evaluations for red-teaming and safety.
– MT-Bench (MTJudge) – LLM-based evaluation for multi-turn systems.

• BLEU – N-gram overlap score for comparing generated and reference text. Higher is
better.

• BFCL Score Patil et al. (2024) – Measuring structured logic form comparison between
predicted and reference outputs. Higher is better.

• SQL Score Yu et al. (2018) – Measuring the correctness of generated SQL code in two
major metrics: (1) Exact Match: generated SQL code has similar syntax as the ground
truth, (2) Exec Acc: execution accuracy of the SQL code. Higher is better.

• Instruction Following Score (IFScore) Zhou et al. (2023) – Measuring instruction follow-
ing capability in natural language tasks via averaging accuracy across (1) strict-prompt, (2)
strict-instruction, (3)loose-prompt and (4) loose-instruction scenarios.

• Word-Diarization Error Rate (WDER) Shafey et al. (2019) Diarization-relevant metrics
whose goal is to measure the percentage of words in the transcription that has the correctly
assigned speaker tag.

• Concatenated minium-permutation Word Error Rate (cpWER) Watanabe et al. (2020)
Metric accounting for both word recognition errors and speaker attribution errors.

• Speaker Count Error: Simple calculation of error in speaker attribution given the refer-
ence and hypothesis transcripts.

Table 6: Comprehensive LALM performance across diverse audio understanding tasks. We evaluate
three representative models: Voxtral-Mini-3B, Qwen2.5-Omni-7B, GPT-4o, and Gemini-2.5-Flash —across 19
tasks spanning Speech Recognition, Paralinguistics, Spoken Language Understanding, Audio Understanding,
Spoken Language Reasoning, and Safety & Security. Metrics include standard benchmarks (WER, BLEU)
and LLM-as-judge evaluations using GPT-4o-mini. Results reveal significant capability gaps, particularly in
temporal reasoning (diarization) and complex instruction-following scenarios. *Performance affected by Azure
OpenAI content filtering. LB: LLM-Judge-Binary metric, LBBA: LLM-Judge-Big-Bench-Audio, LD: LLM-
Judge-Detailed, MTJudge: Multi-turn LLM-Judge

Task Category Task Name Dataset Metric Voxtral-Mini-3B Qwen2.5-Omni-7B GPT-4o Gemini-2.5 Flash
Speech Recognition ASR Librispeech WER (↓) 2.1 1.74 6.25 2.75

Paralinguistics

Emotion MELD LB (↑) 28.4 49.8 20.2 30.0
Gender IEMOCAP LB (↑) 54.9 85.8 –* 85.50
Accent VoxCeleb LB (↑) 13 28.7 –* 55.7

Speaker Recognition MMAU-mini LB (↑) 45.8 62.3 42 61.5
Speaker Diarization CallHome WDER (↓) 35.38 35.40 37.12 41.83

Spoken
Language Understanding

Spoken QA Public-SG LD (↑) 62.12 69.4 70.2 74.34
Spoken Query QA Big Bench Audio LBBA(↑) 43.5 53.8 65 90.4
Speech Translation Covost2 (zh-CN → EN) BLEU (↑) 15.27 28.41 21.68 27.1

Spoken Dialogue Summarization MNSC SDS(P3) LD (↑) 52.2 52 61.2 62.8
Intent Classification SLURP LB (↑) 42.5 57 48 79

Audio Understanding Scene Understanding AudioCaps QA LD (↑) 14.96 38.4 15.08 34.82
Music Understanding MuChoMusic LB (↑) 45.4 59.3 50.2 72.9

Spoken
Language Reasoning

Speech Function Calling Speech BFCL BFCL Score (↑) 78.15 68.05 86.57 93.23
Speech-to-Coding Speech-Spider EM (↑) | Acc (↑) 29.87 | 61.14 38.76 | 71.73 44.76 | 73.13 34.37 | 77.12

Speech Instruction Following Speech MTBench MTJudge (↑) 63.19 62.88 64.06 75.31
Speech Instruction Following Speech IFEval IFScore (↑) 40.02 50.83 70.47 86.28

Speech Math Speech-GSM8K EM (↑) 70.05 84.23 87.79 90.52

Safety and Security Safety AdvBench SafetyJudge (↑) 78.5 98.3 88.1 97.50
Spoofing ASVspoof LB (↑) 91.5 30 0* 80.50

A.2 INFERENCE EFFICIENCY EVALUATION SETTINGS

To provide a comprehensive and fair comparison with other evaluation kits, regardless of their un-
derlying implementation, we introduce two additional runtime scenarios beyond individual dataset
runtimes, namely Sequential and Parallel. First, Sequential runtime represents the most inefficient
runtime by assuming each benchmark is executed in a sequential manner, where no data or model
parallelization algorithms are introduced. On the other hand, Parallel presents the theoretical upper-
bound for optimal runtime. The final runtime is calculated by taking the longest runtime among
all evaluated datasets. This scenario presumes an ideal, zero-overhead parallelization environment
where communication protocols among parallel processes and other overheads do not impact the
runtime. This is considered a best-case runtime for our framework and existing evaluation kits
across all presented datasets and models.
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Table 7: Experimental setup for efficiency comparison across evaluation frameworks. We conduct con-
trolled experiments using 500 samples from three diverse datasets: MELD-Emotion (short emotional speech),
LibriSpeech-clean (medium-length read speech), and ClothoAQA (long-form descriptive audio). Total audio
duration varies from 1,476 to 11,376 seconds, enabling assessment across different audio characteristics and
evaluation modalities (LLM-judge vs. traditional metrics).

MELD-Emotion Librispeech-clean ClothoAQA

# Samples 500 500 500
Audio Duration (seconds) 1,476 3,780 11,376

Evaluation Metric LLM-Judge WER LLM-Judge

Table 8: Comprehensive task coverage analysis across audio evaluation benchmarks. We systematically
compare task support across major frameworks spanning 2021–2025, organized by six core categories: Speech
Recognition, Paralinguistics, Audio Understanding, Spoken Language Understanding, Spoken Language Rea-
soning, and Safety & Security. Our framework provides the most comprehensive coverage, uniquely supporting
LLM-Adaptive Diarization and novel Spoken Language Reasoning tasks (Speech Function Calling, Speech-to-
Coding) absent from prior work.

Task Category Task Name SUPERB
(2021)

DynamicSUPERB
(2024)

VoiceBench
(2024)

AIR-Bench
(2024)

AudioBench
(2025)

DynamicSUPERB-2.0
(2025) Ours

Speech Recognition
ASR ✓ ✗ ✗ ✗ ✓ ✓ ✓

Code-switching ASR ✗ ✗ ✗ ✗ ✓ ✓ ✓
Long-form ASR ✗ ✗ ✗ ✗ ✓ ✓ ✓

Paralinguistics

Emotion Recognition ✓ ✓ ✗ ✓ ✓ ✓ ✓
Gender Recognition ✗ ✗ ✗ ✓ ✓ ✓ ✓
Accent Recognition ✗ ✓ ✗ ✗ ✓ ✓ ✓
Speaker Recognition ✓ ✓ ✓ ✓ ✓ ✓ ✓
Speaker Diarization ✓ ✗ ✗ ✗ ✗ ✗ ✓

Audio Understanding Music Understanding ✗ ✗ ✓ ✓ ✓ ✗ ✓
Scene Understanding ✗ ✓ ✗ ✓ ✓ ✓ ✓

Spoken
Language Understanding

Speech QA ✗ ✗ ✓ ✓ ✓ ✗ ✓
Spoken Query QA ✗ ✗ ✓ ✗ ✓ ✗ ✓
Speech Translation ✗ ✗ ✗ ✗ ✗ ✗ ✓

Dialogue Summarization ✗ ✗ ✗ ✗ ✗ ✗ ✓
Intent Classification ✓ ✓ ✗ ✓ ✗ ✓ ✓

Spoken
Language Reasoning

Speech Function Calling ✗ ✗ ✗ ✗ ✗ ✗ ✓
Speech-to-Coding ✗ ✗ ✗ ✗ ✗ ✗ ✓

Speech Instruction Following ✗ ✗ ✓ ✗ ✓ ✓ ✓
Speech Math ✗ ✗ ✗ ✗ ✗ ✗ ✓

Safety & Security Safety ✗ ✓ ✓ ✓ ✗ ✓ ✓
Spoofing ✗ ✓ ✗ ✗ ✗ ✓ ✓

A.3 CONTEMPORARY EVALUATION KITS

There are a few evaluation kits that we have built upon and been inspired by, both in evaluation
framework design and task coverage.

• AudioBench Wang et al. (2025a): A comprehensive open-source audio evaluation frame-
work encompassing eight core tasks and more than twenty-six curated datasets, with cover-
age continuing to expand. AudioBench supports both open and closed-source models and
provides standardized evaluation pipelines using conventional metrics such as Word Error
Rate (WER) and METEOR, alongside LLM-as-a-judge scoring for instruction-following
and reasoning tasks.

• Kimi-Eval Ding et al. (2025): A multilingual and multi-model evaluation suite designed
to assess leading Chinese and English large language models, including the Baichuan se-
ries, Qwen, GLM, and Kimi itself. The benchmark spans automatic speech recognition
(ASR), multiple choice question answering (MQA), open question answering (OpenQA),
and reference-based question answering (RefQA), enabling a broad assessment of both
comprehension and generative audio capabilities.

• VoiceBench Chen et al. (2024): A focused benchmark evaluating thirty-five-plus state-of-
the-art speech models across seven carefully selected datasets. While the total number of
datasets is smaller than in AudioBench, the high task complexity and distinctive challenge
of each dataset provide a useful test suite.
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(a) Batch size effect (b) Throughput scaling (c) Latency trade-offs

Figure 5: Inference efficiency ablations in AU-Harness. We examine three factors: (a) impact of batch
size on execution time, (b) throughput gains from parallel execution, and (c) latency reduction through replica
scaling.

<speaker 1>: hey
<speaker 2>: how are you
<speaker 1>: quite busy

0.0s 0.3299s 2.9610s 3.2399

<speaker 1>: (0.0, 0.3299)
<speaker 2>: (0.3299, 2.9610) 
<speaker 1>: (2.9610, 3.299)

LLM-Adaptive Traditional

Figure 6: LLM-Adaptive Diarization methodology comparison. 3 Traditional diarization (top, bottom-
right) outputs time-stamped audio segments with speaker annotations, ideal for specialized neural architectures.
LLM-Adaptive approach (bottom-left) integrates speaker information directly into transcripts, enabling evalu-
ation through prompting-based generation evaluated via word-level metrics (WDER, cpWER). This approach
leverages LALMs’ inherent language modeling capabilities while addressing temporal precision challenges
through specialized evaluation protocols.

A.4 INFERENCE EFFICIENCY ABLATIONS

To assess the scalability and efficiency of AU-Harness, we conduct three controlled ablations: (a)
varying batch size, (b) throughput gains from parallel execution, and (c) latency trade-offs with
replica scaling. The experimental setup follows Table 7, except for (c), where we use the full
LibriSpeech-clean dataset to ensure sufficient workload for scalability analysis.

Figure 5 presents the results. Increasing batch size reduces execution time substantially, though
benefits taper off at higher scales. Parallel execution yields up to a 3.5× improvement in through-
put over sequential execution, confirming the efficiency of concurrent scheduling. Replica scaling
further lowers latency, with near-linear improvements observed up to 25 replicas.

Overall, these ablations highlight that AU-Harness is both scalable and adaptable. By leveraging
batching, parallelism, and replica scaling, it can be tuned for diverse deployment scenarios ranging
from high-throughput evaluation to low-latency inference.

3Figure is adapted from NeMo documentation
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Figure 7: LLM-Adaptive Diarization Empirical Results across LALMs. LLM-Adaptive Diarization allows
for temporal audio understanding evaluation with word-level metrics (WDER, cpWER, Speaker Count Error).
All metrics require “lower is better”. Contemporary LALMs remain struggling with diarization tasks with
high WDER and Speaker Count Error, necessitating future attention towards building and evaluating training
paradigms for temporal understanding tasks.

.

A.5 TEMPORAL UNDERSTANDING VIA SPEAKER DIARIZATION

LLM-Adaptive Diarization vs Neural Diarization Figure 6 further illustrates the key differences
between LLM-Adaptive Diarization and Neural Diarization presented in Section 3.3 and 4.3. Due
to the nature of LLM-prompting, precise timestamp predictions are unrealizable, especially when
working with proprietary models such as Gemini-2.5 or GPT-4o.

Empirical study of LLM-Adaptive Diarization As introduced in Section 4.3, we broaden the
task coverage by integrating LLM-Adaptive Speaker Diarization with our proposed AU-Harness.
The empirical results, as outlined in Figure 7, reveals the ongoing challenges of temporal under-
standing among LALMs. Specifically, Voxtral-Mini achieves significantly high Speaker Count Error
metric, demonstrating its struggle with the accurate temporal localization and correct identification
of speaker turn-taking in complex yet realistic audio streams. This performance gap underscores a
critical area for future work, requiring future enhanced training paradigms to enhance the temporal
understanding capabilities for LALMs.

A.6 IMPACT OF THINKING MODE OF LALMS FOR SPOKEN LANGUAGE REASONING TASKS

As thinking mode might have a significant impact on reasoning tasks, we conduct further experi-
ments to evaluate the impact of the different thinking modes on our Spoken Language Reasoning
evaluation task suites. More specifically, we leverage Gemini-2.5-Flash with two different thinking
modes: (1) Disabled Thinking, and (2) Dynamic Thinking. Our empirical study, observed in Table
9, reveals that Gemini-2.5-Flash achieves 7.64 absolute points of performance gain when dynamic
thinking mode is enabled, demonstrating the essence of thinking mode on the spoken language rea-
soning tasks.
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Table 9: Spoken language reasoning tasks’ performance on Gemini-2.5-Flash with various thinking
modes We evaluate the impact of different thinking modes of compatible LALMs on Spoken Reasoning tasks.
Our empirical study reveals that enabled thinking can have a positive impact on reasoning tasks with average
reasoning gain of 7.64 absolute points over no-thinking model counterpart.

Thinking Mode Speech-FC Speech-to-Coding Speech-IF Speech Math
BFCL Score (↑) EM (↑) | Exec Acc (↑) IF-Score MTJudge (↑) EM (↑)

simple para multi multi-para irrelevance Avg Speech-Spider Speech-IFEval Speech-MTBench Speech-GSM8K Reasoning Avg (↑)
Thinking Disabled 98 93 95.5 93.5 88.75 93.75 54.65 78.59 66.94 90.3 76.85
Dynamic Thinking 96.75 92.5 96 90.5 90.42 93.23 77.12 86.28 75.31 90.52 84.49
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