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ABSTRACT

Modeling the evolution of physical systems is critical to many applications in
science and engineering. As the evolution of these systems is governed by par-
tial differential equations (PDEs), there are a number of computational simula-
tions which resolve these systems with high accuracy. However, as these sim-
ulations incur high computational costs, they are infeasible to be employed for
large-scale analysis. A popular alternative to simulators are neural network sur-
rogates which are trained in a data-driven manner and are much more compu-
tationally efficient. However, these surrogate models suffer from high rollout
error when used autoregressively, especially when confronted with training data
paucity. Existing work proposes to improve surrogate rollout error by either in-
cluding physical loss terms directly in the optimization of the model or incorporat-
ing computational simulators as ‘differentiable layers’ in the neural network. Both
of these approaches have their challenges, with physical loss functions suffering
from slow convergence for stiff PDEs and simulator layers requiring gradients
which are not always available, especially in legacy simulators. We propose the
Hybrid PDE Predictor with Reinforcement Learning (HyPER) model: a model-
agnostic, RL based, cost-aware model which combines a neural surrogate, RL
decision model, and a physics simulator (with or without gradients) to reduce
surrogate rollout error significantly. In addition to reducing in-distribution roll-
out error by 47%-78%, HyPER learns an intelligent policy that is adaptable to
changing physical conditions and resistant to noise corruption. Code available at
https://github.com/scailab/HyPER.

1 INTRODUCTION

Scientific simulations have been the workhorse enabling novel discoveries across many scientific
disciplines. However, executing fine-grained simulations of a scientific process of interest is a costly
undertaking requiring large computational resources and long execution times. In the past decade,
the advent of low-cost, efficient GPU architectures has enabled the re-emergence of a powerful func-
tion approximation paradigm called deep learning (DL). These powerful DL models, with the ability
to represent highly non-linear functions can be leveraged as surrogates to costly scientific simula-
tions. Recently, the rapid progress of DL has greatly impacted scientific machine learning (SciML)
with the development of neural surrogates in numerous application domains. Some highly-impactful
applications include protein structure prediction, molecular discovery Schauperl & Denny (2022);
Smith et al. (2018) and domains governed by partial differential equations (PDE) Brunton & Kutz
(2024); Raissi et al. (2019); Lu et al. (2021b). Neural surrogates have also been successfully em-
ployed for modeling fluid dynamics in laminar regimes like modeling blood flow in cardiovascular
systems Kissas et al. (2020) and for modeling turbulent Duraisamy et al. (2019) and multi-phase
flows Muralidhar et al. (2021); Raj et al. (2023); Siddani et al. (2021).

Neural Surrogates are Data Hungry. Although neural surrogates are effective at modeling com-
plex functions, this ability is usually conditioned upon learning from a large trove of representative
data. The data-hungry nature of popular neural surrogates like neural operators is well known in
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existing work (Li et al., 2020; Lu et al., 2021a; Tripura et al., 2024; Howard et al., 2023; Lu et al.,
2022). However, many scientific applications suffer from data paucity due to the high cost of the
data collection process (i.e., primarily due to high cost of scientific simulations). Hence, neural
surrogates employed to model a scientific process of interest, need to address the data paucity bot-
tleneck by learning effectively with a low volume of training data.

Rollout Errors in Neural Surrogates. Although computational simulations have been designed
for modeling various types of physical systems, those exhibiting transient dynamics are espe-
cially challenging to model. Solutions to systems exhibiting transient dynamics are usually

Figure 1: Cumulative MSE depicting rollout
error for a single trajectory of HyPER vs sur-
rogate only methods. x’s mark the timesteps
during the trajectory where our RL policy calls
the simulator.

obtained by discrete-time evolution of the dynam-
ics. Simulators used to model such systems are in-
voked autoregressively and thereby encounter nu-
merical instability and error buildup over long es-
timation horizons. Such error buildup during au-
toregressive invocation is termed rollout error. Ef-
fective techniques have been developed to reduce
rollout error of computational simulations and in-
crease their numerical stability over long rollouts.
Although autoregressive rollout of neural surro-
gates is also affected by rollout error, solutions to
minimize this error buildup have not been widely
investigated. Recently, (Margazoglou & Magri,
2023) has inspected the stability of echo-state net-
works during autoregressive rollout and List et al.
(2024); Carey et al. (2024); Lippe et al. (2024)
have characterized rollout errors in more general
neural surrogates. However, a systematic solution
to alleviate rollout error in neural surrogates for
modeling transient dynamics is still lacking.

Knowledge-Guided Neural Surrogates. One popular method of addressing errors due to data
paucity in neural surrogates is to leverage knowledge of the theoretical model governing the scien-
tific process. Previous efforts have incorporated domain knowledge (as ODEs, PDEs) while training
the DL surrogate to develop knowledge-guided learning pipelines (Raissi et al., 2019; Karpatne
et al., 2022; Rackauckas et al., 2020; Gao et al., 2021). Most of these approaches incorporate the
PDE governing the system dynamics as soft regularizers while training the neural surrogates. A
majority of such approaches exhibit slow convergence and catastrophic failures in challenging, stiff
PDE conditions (Krishnapriyan et al., 2021; Wang et al., 2022).

Hybrid-Modeling All approaches discussed thus far are so-called surrogate-only (SUG) ap-
proaches. Here, the computational simulator is employed only as a means of generating data to train
the neural surrogate and discarded post the training. SUG approaches employ only the pre-trained
neural surrogate during inference. Although SUG provide instantaneous responses relative to com-
putational simulations, they generally have limited generalization ability outside the domain of the
training data. An effective complement to SUG approaches are hybrid-modeling approaches (Kurz
et al., 2022; Karpatne et al., 2022), that jointly resolve a query by incorporating surrogates in con-
junction with computational solvers. Otherwise stated, hybrid-modeling pipelines employ a ‘solver-
in-the-loop’ (Um et al., 2020) approach. In addition to neural surrogates, there exist a number of
classical hybrid modeling techniques which combine a full order model (FOM) with a reduced order
model (ROM) such as proper orthogonal decomposition (Willcox & Peraire, 2002), dynamic model
decomposition (Kutz et al., 2016), and multi-scale methods. While these methods are used to accel-
erate scientific simulations, they are often limited in expressivity, especially in modeling complex
non-linear dynamics. Recent hybrid models (Suh et al., 2023) generally have a static coupling be-
tween the components in the model and require a static interaction/transition between the FOM and
the ROM, while our method proposes an adaptable and learnable interaction between the neural sur-
rogate and the simulator. Our proposed method allows dynamic integration of an FOM (fine-grained
simulator) with ROM (neural surrogate) using reinforcement learning.

Knowledge-Guidance with Hybrid-Modeling. Hybrid-modeling approaches are inherently
knowledge-guided. A majority of the recent hybrid-modeling approaches are based on directly
incorporating PDE solvers as additional layers in the deep learning architecture of neural surro-
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Figure 2: Overview of Hybrid PDE Predictor with RL (HyPER) with example rollout. Here πθ is
the decision model, fϕ is the surrogate, and S is the simulator. At t = 9.0 in the above trajectory,
the decision policy invokes the simulator, correcting the trajectory to reduce rollout error. The effect
of this knowledge-guided correction can be observed by a reduction in absolute error (dotted green
circle) in the figure.

gates (Chen et al., 2018; Belbute-Peres et al., 2020; Donti et al., 2021; Pachalieva et al., 2022).
While such approaches address the issues of large errors under data paucity and during rollout,
inherent in SUG approaches, they impose the crippling restriction of differentiability on the com-
putational solvers to be incorporated as part of the DL pipeline. Most solvers and computational
simulations are NOT differentiable out-of-the-box and hence imposing such differentiability con-
straints drastically curtails the applicability of current hybrid-modeling approaches.

To address the existing challenges with surrogate-only and hybrid modeling approaches, we propose
the Hybrid PDE Predictor with RL (HyPER) framework. HyPER is a model-agnostic, simulator-
agnostic framework that learns to invoke the costly computational simulator (in a cost-aware man-
ner) as knowledge-guided correction to alleviate the effects of rollout errors in surrogates trained
with low volumes of training data. Fig. 2 depicts the proposed HyPER framework. Our contribu-
tions are as follows.

• HyPER is a first of its kind knowledge-guided correction mechanism that incorporates simulators
in the loop without the requirement of the simulators to be differentiable.

• HyPER is model agnostic (i.e., functions with any neural surrogate, scientific simulator) and
trained in a cost-aware manner, to intelligently invoke the simulator to correct the rollout error of
the neural surrogates.

•We demonstrate through rigorous experimentation on in-distribution, out-of-distribution and noisy
data that HyPER significantly reduces rollout error relative to SUG approaches by comparing with
state-of-the-art neural surrogates.

2 METHOD

2.1 PDE PREDICTION

We aim to solve PDEs involving spatial dimensions x = [x1, x2, . . . , xm] ∈ Rm and scalar time t ∈
[0, T ]. These PDEs relate solution function u(x, t) : Rm×[0, T ]→ Rn to its partial derivatives over
the domain. We assume we have initial conditions u(x, t = 0) and boundary conditions uB(x =
xB , t) which define the field values at time 0 and at the boundaries of the domain respectively. These
time-dependent PDEs can be generally defined as:

∂u

∂t
= F(x, t,u,

∂u

∂x
,
∂2u

∂x2
, . . .) (1)

We focus on autoregressive rollout of these PDEs over time, which can be defined with an function
g taking current state and time as inputs and producing the next state:

g(u(x, t),∆t) = u(x, t+∆t) (2)
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Note that the equation above can be applied autoregressively over any number of timesteps to unroll
a PDE trajectory. The cumulative error of this autoregressive process is defined as the rollout error,
which we aim to minimize.

2.2 HYPER COMPONENTS

Surrogate ML Model For the sake of conciseness, we shorten u(x, t) to ut. We begin with a
machine learning model fϕ(ut), which we denote as the surrogate. This model can be any deep
learning model with parameters ϕ that predicts next state ut+1 given starting state and time ut.

Simulator We also define a PDE simulator S(ut) which numerically solves the PDE to find the
next state ut+1. Crucially, this simulator is only required to return the next state without any gradient
information during training and inference.

Decision Model Finally, we have a decision model dθ(ut) which takes current state at time t and
outputs a next action: either call the surrogate fϕ or the simulator S. In HyPER we implement our
decision model as a learned policy πθ which we train using reinforcement learning (RL).

We formalize our decision model using a Markov Decision Process (MDP) which is a tuple
(S,A, P, r). Our states S consist of current state u and current time t. Our action space is binary at
each timestep and defined as a : {0 = call surrogate, 1 = call simulator}. Our reward function for a
trajectory of length T is:

R(a) =

T−1∑
t=0

−L(fϕ, S,ut,ut+1, at) + b(fϕ, S,ut)− C(a, λ, T ) (3)

Here L represents an error function, b is a baseline function, and C is a cost function. The baseline
function stabilizes the reward values and leads to better policy learning. The baseline function b we
use is the mean squared error of randomly calling the simulator the same number of times as our
current HyPER policy. Our error function is defined as the mean squared error of either calling the
surrogate or simulator according to the policy action:

L(fϕ, S,ut,ut+1, at) = (G(ut)− ut+1)
2 (4)

G(ut, at) =

{
fϕ(ut) when at = 0

S(ut) when at = 1
(5)

T is the length of the trajectory and λ is a hyperparameter set by the user to specify what percentage
of the trajectory to call the simulator. For example, if λ = 0.5 then the cost function will penalize
the reward if the simulator is not called 50% of the time. Our cost function is defined as the absolute
difference between λ and the percent of the trajectory that our policy called the simulator:

C(a, λ, T ) =
∣∣∣∣∥a∥1T

− λ

∣∣∣∣ (6)

Intuitively, reward function 3 optimizes the RL decision model to minimize mean squared error
while calling the simulator for λ proportion of the trajectory. To learn a policy πθ(a|ut) we use the
REINFORCE policy gradient algorithm (Sutton et al., 1999) training with the update:

∇θJ(θ) = Eπθ

[
T−1∑
t=0

∇θ log πθ(at | ut) ·R(a)

]
(7)

For the full training algorithm and details of HyPER see Appendix A.1.

2.3 EXPERIMENTS

2D Navier Stokes Dataset. We create a 2D incompressible Navier Stokes fluid flow dataset using
ΦFlow (Holl & Thuerey, 2024) and follow the example of Gupta & Brandstetter (2022). We use the
Navier-Stokes equations in vector velocity form along with an additional scalar field representing
particle concentration:

∂v

∂t
= −v · ∇v + µ∇2v −∇p+ f (8)
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f = {0, 0.5c} (9)

∇ · v = 0 (10)
∂c

∂t
= −v · ∇c (11)

Eq. 8 comprises a convection term −v · ∇v, diffusion term µ∇2v where µ indicates kinematic
viscosity, a pressure term ∇p, and external force term f . Eq. 9 defines the buoyant force which is
applied in the y-direction. The velocity divergence term Eq. 10 enforces conservation of mass. Eq.
11 models the particle concentration field c that is advected by the velocity vector field v. Note that
c influences v through force f and v affects c through Eq. 11, creating complex dynamics between
fields. For our experiments, we generate 1,000 trajectories of 20 timesteps with ∆t = 1.5s at a grid
size of 64x64, and diffusion coefficient µ = 0.01. We set our velocity boundary condition to v = 0
(Dirichlet) and our concentration boundary condition to ∂c/∂x = 0 (Neumann). While we simulate
all the fields above, our experiments focus on predicting the particle concentration field c. We split
our 1000 trajectories into 3 sets: 400 for surrogate training, 400 for RL training, and 200 for testing.
Our RL model selects 4 actions at a time, however HyPER puts no restrictions on action selection.

Subsurface Flow Dataset. To evaluate HyPER’s ability to work with different PDEs and problem
scales, we generate a subsurface flow dataset using the Julia-based DPFEHM (Pachalieva et al.,
2022) simulator. We use DPFEHM to generate a 2D dataset of subsurface fluid flows modeled by
the Richards equation:.

∂θ

∂t
= ∇ ·K(h)(∇h+∇z)− T−1 (12)

Eq. 12 models fluid flow underground in an unsaturated medium. θ represents the volumetric fluid
content, K(h) is the unsaturated hydraulic conductivity, h is the pressure, ∇z is the geodetic head
gradient, and T−1 is the fluid sink term. We generate 500 trajectories of 100 timesteps each with
a grid size of 50x50 and timestep size of 10 seconds. Out of the 500 trajectories, 200 are used
for surrogate training, 200 are used for RL training, and 100 are used for testing. We use Dirchlet
boundary conditions (0) for volumetric flux on all sides of our domain but inject fluid at the top
center of the domain at a rate of 0.01m/s. In our experiments, we predict the pressure field h.

3 RESULTS AND DISCUSSION

In this section, we investigate the effectiveness of HyPER to model transient PDE systems effi-
ciently and with minimal rollout error compared to surrogate-only (SUG) rollout. We compare
with state-of-the-art neural surrogates including UNet and Fourier Neural Operator (FNO), MPP,
and PDE-Refiner. Specifically, we investigate the effectiveness of HyPER rollouts under chang-
ing PDE dynamics and in noisy data settings. Further, we also demonstrate the surrogate-agnostic
and simulator-agnostic nature of HyPER. Our experiments seek to answer the following research
questions:

• RQ1: How effective are HyPER rollouts compared to SUG rollouts for transient PDE systems?

• RQ2: Are HyPER rollouts effective under changed physical conditions?

• RQ3: Are HyPER rollouts effective under noisy data conditions?

• RQ4: How crucial is the intelligent decision model for effective HyPER rollouts?

•RQ5: What is the error/efficiency trade-off between SUG, HyPER, and simulator-only paradigms?

3.1 RQ1: HYPER ROLLOUTS VS SUG

We begin by comparing HyPER to six SUG baselines: UNet, FNO, UNet-Multistep, MPP-ZS, MPP,
and PDE-Refiner. All baselines except UNet-Multistep are trained in a one-step-ahead manner i.e.,
given the current state of the resolved field they are trained to predict the next state. Mean squared
error (MSE) loss is used to train all surrogates over the full resolution trajectory. Note that all these
baselines except MPP-ZS are trained with the same dataset that HyPER is trained with. For full
training details see Appendix A.1 and for baseline details see Appendix A.6.

The UNet model is based on the modern UNet architecture in PDEArena (Gupta & Brandstetter,
2022) while the FNO model is built with the neuraloperator library (Kovachki et al., 2021; Li et al.,
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Table 1: 2D Navier-Stokes results with best results in bold. Notice that HyPER rollout incurs
significantly lower rollout (cumulative) error compared to SUG models.

2D Navier-Stokes UNet FNO UNet-Multistep MPP-ZS MPP PDE-Refiner HyPER

Final MSE 0.019 0.053 0.016 0.22 0.036 0.024 0.011
Cumulative MSE 0.312 0.882 0.311 4.495 0.747 0.405 0.164

Figure 3: Predictions and absolute error snapshots of HyPER rollout for two distinct trajectories.

2020). UNet-Multistep is trained to specialize for rollout trajectory prediction, i.e. it minimizes
MSE for 20-step autoregressive prediction. MPP-ZS (zero-shot) and MPP (McCabe et al., 2023)
are large transformer based multi-task models which have been pretrained on a variety of fluid pre-
diction tasks. MPP-ZS is the off-the-shelf pretrained model, while MPP is finetuned on our data.
PDE-Refiner (Lippe et al., 2024) is a modern diffusion based model which both predicts the next
timestep while adding a multi-step noising/denoising process and has been shown to reduce rollout
error. HyPER utilizes a UNet model that is pretrained on 400 trajectories while the RL model of
HyPER is trained on a separate set of 400 trajectories with λ = 0.3. All SUG baselines are trained
using 800 trajectories (same as HyPER RL plus surrogate dataset) for 200 epochs. Table 1 shows the
MSE of the final trajectory state (Final MSE) as well as the aggregated MSE (Cumulative MSE) over
all trajectory states in a rollout. Both metrics are calculated as an average across 200 test trajectories
for both SUG and HyPER rollouts. HyPER outperforms all baselines significantly, with an average
improvement in cumulative rollout error of 68.30%. While UNet-Multistep seems to be the best
performing SUG method, because it trains across the full trajectory it learns a smoothed prediction
that has poor high frequency detail (suffering from spectral bias) in comparison to UNet (see A.4
for examples). By incorporating the simulator, HyPER yields significantly lower cumulative roll-
out error while only invoking the simulator during ∼ 30% of the trajectory for knowledge-guided
correction of surrogate rollout.

In Figure 1 we plot the rollout MSE performance of HyPER versus the surrogate only (SUG) meth-
ods for a single sample trajectory. Note that HyPER outperforms both SUG models by a large
margin while only invoking the simulator six times in the 20-step trajectory. Also see Figures 3(a)
and 3(b) which depict qualitative snapshots from two distinct HyPER rollouts.

3.2 RQ2: HYPER ROLLOUTS WITH CHANGING PHYSICAL CONDITIONS

Pretrained neural surrogates are often confronted with modeling contexts with similar PDE dynam-
ics but varied initial / boundary conditions. Effective rollouts under changing physical conditions is
hence a crucial requirement for the effective use of neural surrogates in computational science. To
this end, we inspect rollout errors of SUG and HyPER, under changing boundary conditions. Specif-
ically, to test the adaptability of HyPER, we investigate HyPER rollouts with changing boundary
conditions in our Navier-Stokes experiment. We generate a separate Navier-Stokes dataset which
follows the same initial conditions of our previous experiment, but comprises a different velocity
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boundary condition at the top boundary of the domain. Specifically, the velocity at the top boundary
of the domain is increased from 0.0 to 0.5 m/s (imposing an intermittent external forcing effect caus-
ing the fluid to escape from the top of the domain) for four intermediate time-steps of the trajectory
(timesteps 12-16). Following this, the boundary condition is reverted back to 0.0 for the rest of the
trajectory. This results in the fluid escaping out of the top during these time steps changing the PDE
dynamics significantly.

Table 2: Results depict rollout error for 2D Navier-Stokes with changing boundary conditions. No-
tice that HyPER accumulates lower rollout error compared to SUG approaches.

Changing Boundary UNet-P FNO-P UNet FNO HyPER

Final MSE 0.362 0.412 0.014 0.027 0.027
Cumulative MSE 1.84 2.538 0.92 0.969 0.527

In this case, surrogates UNet-P and FNO-P are not re-trained with the changed boundary condition
and hence show poor performance accumulating significant rollout error. UNet and FNO are trained
on the changing boundary data (the same dataset as HyPER), but still suffer from poor rollout error.
We train our HyPER RL policy with a pretrained surrogate (not trained on to the changed boundary
setting) and a simulator (fully aware of the changed boundary condition). The RL policy of HyPER
is trained with 400 of these changed trajectories to learn the optimal policy of (frugally) invoking
the simulator to apply knowledge-guided correction to reduce surrogate rollout errors. As shown in
Table 2, HyPER reduces cumulative error in this scenario by 71.36% and 79.20% relative to UNet-
P and FNO-P rollout errors respectively. Even when compared to surrogates trained on the changing
boundary data UNet and FNO, HyPER reduces rollout error by 42.72% and 45.61% respectively.
In Figure 4a we demonstrate that HyPER has much lower rollout error than the UNet-P and FNO-
P models. Figure 4b shows sample qualitative predictions of HyPER and SUG rollouts under the
changing boundary scenario of interest, to further reinforce our point. As illustrated, our model
prediction is much closer to the ground truth after the boundary condition has changed and fluid has
escaped the box owing to the appropriately invoked knowledge-guided correction by the learned RL
policy in response to increasing surrogate rollout error. Fig. 4a shows the significantly lower rollout
error for HyPER rollout relative to UNet-P and FNO-P models.

Figure 4: Predictions and absolute error of HyPER vs UNet and FNO for a single trajectory and
timestep. Fig. 4a shows the rollout error accumulation over the trajectory with ‘x’ marking the times
the simulator is called. Fig. 4b shows the resolved system state for a the same trajectory at a single
timestep. Fig. 4b(i) shows the ground truth field while Fig. 4b(ii)-(iv) indicate the result of UNet,
FNO and HyPER rollouts respectively. Fig. 4b(v)-(vii) depict the corresponding absolute errors. We
notice that only HyPER rollouts capture the correct characteristics relative to the ground truth owing
to the knowledge-guided correction while SUG models are unable to faithfully resolve the trajectory
under changing physical conditions.

3.3 RQ3: HYPER ROLLOUTS WITH NOISY DATA

Neural surrogates, in addition to being data hungry and accumulating rollout error, have also been
known to exhibit catastrophic failures in challenging PDE conditions (e.g., stiff PDEs) Krish-
napriyan et al. (2021). As neural surrogates are a crucial part of HyPER rollouts, it is imperative
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Table 3: Results depicting rollout error for the 2D-Navier-Stokes experiment, with random Gaussian
noise added to inputs, at timesteps 12-16. σ2 is the scale of the noise. The percentage reduction of
cumulative MSE rollout error by HyPER, over the best performing SUG model is in parentheses.

Experiment Cumulative MSE
UNet-P FNO-P UNet FNO HyPER

Unimodal σ2 = 1.0 2.931 2.523 1.61 1.713 1.291 (19.81%)
Unimodal σ2 = 0.75 1.746 1.916 1.013 1.291 0.8 (21.03%)
Unimodal σ2 = 0.5 1.009 1.487 0.642 1.137 0.49 (23.68%)
Unimodal σ2 = 0.25 0.612 1.246 0.519 0.862 0.26 (49.90%)

to investigate whether HyPER is capable of adapting to such failures by invoking the knowledge-
guided correction (i.e., the simulator) to minimize the propagation (and accumulation) of such local
failures over the remaining trajectory rollout. Further, another crucial property to investigate is the
robustness of the intelligent decision mechanism in HyPER, to noisy, low-quality surrogate predic-
tions. To jointly investigate both goals, we consider a simple (contrived) context with noisy inputs
supplied to the HyPER RL policy. This additive noise, injected at specific steps to corrupt the surro-
gate output in the trajectory, serves to mimic low-quality surrogate predictions. Hence, experiments
with such noisy inputs help characterize the ability of HyPER to adapt to sudden local changes
during rollout (like catastrophic surrogate failure) in addition to demonstrating its ability for robust
decision-making under noisy data conditions.

To carry out this investigation, we add random Gaussian noise with mean 0 at four separate variance
(σ2) scales at fixed timesteps of our trajectory. The UNet-P and FNO-P surrogate models are never
trained with this noisy data and therefore perform poorly when encountering it. The UNet and FNO
models are trained with the noisy data and show improvement. We train the RL policy of HyPER
with a small set (400) of these noisy trajectories while keeping our surrogate model static (using
the UNet-P model). We test two different noise corruption scenarios added to a 20 step trajectory
rollout. (i) unimodal noise: a case where noise is added at timesteps [12-16] and (ii) bimodal noise:
a more sophisticated case where noise is added at two different time windows of [2-4] and [15-16].
The unimodal noise results are presented in Table 3, where we see that HyPER rollouts outper-
form state-of-the-art SUG approaches. In this case we notice a reduction in cumulative MSE by
19.81%-49.90% across the four noise scales. Note that HyPER achieves this significant reduction in
rollout error while using the un-specialized UNet-P surrogate, demonstrating that HyPER succeeds
in adapting pretrained models to noisy data.

3.4 RQ4: INVESTIGATING HYPER ROLLOUTS VS. RANDOM POLICY ROLLOUTS

To evaluate whether HyPER learns an effective RL policy, we compare it to a Random Policy base-
line. This baseline is designed to invoke the simulator the same number of times as the HyPER RL
policy for a particular rollout, but with uniform random probability over each timestep. By com-
paring the HyPER policy rollout to a Random Policy rollout with the same budget, we show that
HyPER learns a superior performing policy in our experimental scenarios.

Table 4: HyPER versus a random policy which calls the simulator the same number of times.

Experiment Final MSE Cumulative MSE Cumulative Wins %
Random Policy HyPER Random Policy HyPER HyPER

Noise Free 0.011 0.011 0.186 0.164 57.00%
Bimodal σ2 = 1.0 0.121 0.07 2.443 1.706 73.00%
Bimodal σ2 = 0.75 0.055 0.025 1.305 0.739 84.50%
Bimodal σ2 = 0.5 0.037 0.027 0.891 0.683 67.00%
Bimodal σ2 = 0.25 0.022 0.019 0.495 0.424 61.00%
Changing Boundary 0.149 0.027 0.865 0.527 80.50%
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We summarize these results in Table 4, which also shows the percentage of trajectories over which
HyPER reduces MSE compared to Random Policy (Cumulative Wins %). A ‘win’ is characterized
by a HyPER rollout that yields a lower cumulative MSE than the corresponding Random Policy roll-
out. In the ‘Noise Free’ trajectories, HyPER only wins for 57% of the trajectories because the MSEs
at each timestep in the Noise Free case have low variance, so a uniform Random Policy performs
fairly well. However, in the bimodal noise scales (with fast and large rollout error accumulation),
precise invocation of the simulator for knowledge-guided correction is imperative to prevent error
accumulation. Hence, we see HyPER owing to its intelligent (RL-based) decision policy, has a
higher percentage of wins (≈ 70%) and significantly lower cumulative MSE at higher noise scales.
We also see the strength of HyPER’s learned policy when considering the changing boundary condi-
tion experiment which has a 80.50% win rate over the Random Policy and reduces cumulative MSE
by 39.08%. This result demonstrates the effectiveness of HyPER in realistic physical scenarios and
noisy conditions.

3.5 RQ5: COST VERSUS ACCURACY TRADE-OFF

Figure 5: Figure 5(a) shows the average time of PDE prediction of a full trajectory for each method.
Figure 5(b) illustrates the error per unit time (lower is better) for each method. We do not show the
Sim-Only case here as we assume error is effectively zero for the simulator.

A natural question is how much of a cost we pay in wall clock time when utilizing HyPER compared
to baselines? We evaluate this by measuring the average time of each method on our 200 test
trajectories and show results in Figure 5(a). While the wall clock time of SUG methods is lower than
HyPER, our method has much lower rollout error, which we illustrate in Figure 5(b). Here we show
the error per unit time (lower is better) and we see that HyPER has lower rollout error per second
by a large margin in comparison to the baselines (note this plot is on a log scale). While calling
the simulator incurs a time cost, the user can specify the λ parameter to adjust to their requirements
allowing HyPER to be flexible in varying settings.

3.6 SURROGATE-AGNOSTIC AND SIMULATOR-AGNOSTIC DESIGN OF HYPER

To demonstrate the model-agnostic capability of HyPER, we train it on the subsurface flow task
(dataset details in Sec. 2.3), comprising longer (i.e., 100 step) trajectories. In this case, we train Hy-
PER using the Julia simulator DPFEHM, which simulates underground fluid flow in porous media.
As we see in Table 5, HyPER outperforms both SUG baselines by a cumulative MSE per timestep

Table 5: 2D Subsurface flow experiment results for a 100 timestep trajectory.

Experiment Cumulative MSE per timestep
UNet-P FNO-P HyPER

Subsurface 4.345 10.938 0.271

reduction of 93.76% and 97.52%. The integration of a distinct Julia-based simulator in a scenario
with larger physical scales and times, shows that HyPER is surrogate and simulator agnostic and can
perform well and reduce rollout error in multiple problem settings.
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4 RELATED WORK

SUG approaches circumvent the use of computational simulations during inference and only em-
ploy simulations to generate training data. The U-Net (Ronneberger et al., 2015) model is a popular
approach owing to its ability to capture spatial and temporal dynamics at multiple scales. This
model has recently (Gupta & Brandstetter, 2022) demonstrated state of the art performance on var-
ious fluid dynamics benchmarks. Operator learning (Kovachki et al., 2021) approaches that learn
function families of PDEs rather than single PDE instances have also been investigated to be ef-
fective neural surrogates. Two notable operator learning models are the deep operator network (Lu
et al., 2021a) and the Fourier neural operator (FNO) (Li et al., 2020) models. Multiple investigations
have been carried out employing operator learning techniques including extending them to multi-
resolution (Howard et al., 2023; Lu et al., 2022) settings. Recently Takamoto et al. (2022) have also
demonstrated that FNOs yield state-of-the-art results on benchmark tasks.

Knowledge-guided SUG approaches like the popular Physics-informed neural network
(PINN) (Raissi et al., 2019; Jagtap & Karniadakis, 2020; Cuomo et al., 2022) have also been ef-
fectively employed for improved generalization. A related paradigm of Universal Differential Equa-
tions (Rackauckas et al., 2020) utilizes data-driven surrogates to estimate focused sub-components
of governing equations for better process modeling. Such approaches assume end-to-end gradient
based training in a physics-informed manner and are known to converge slowly and to trivial solu-
tions under data paucity and stiff PDE conditions Krishnapriyan et al. (2021) owing to catastrophic
gradient imbalance Wang et al. (2021) between data-driven and physics-guided loss terms.

SUG for Transient PDE Dynamics. All SUG approaches struggle to model transient PDE systems
in an autoregressive manner and incur rollout error (Carey et al., 2024). In the work of Lippe et al.
(2024), it is demonstrated how the spectral bias of traditional neural surrogates leads to significant
error accumulation and they propose an initial refinement solution inspired by the process in diffu-
sion modeling. Separately, List et al. (2024) have conducted a characterization of SUG rollout error
and comment about the significant improvement obtainable by incorporating simulators in-the-loop.

Hybrid-modeling for Transient PDE Dynamics. Hybrid-modeling approaches retain the simula-
tion and resolve each query employing the neural surrogate and the simulator ‘in-the-loop’. One
recent example is Zhang et al. (2022) which selects between a simulator and a surrogate (in a pre-
defined rule-based maner) to resolve a PDE trajectory. In their work, the simulator and surrogate
are each invoked a pre-fixed number of times. In contract, HyPER learns a dynamic policy, capa-
ble of adapting to scenarios such as changing boundary conditions. Another major drawback with
many such approaches (Chen et al., 2018; Belbute-Peres et al., 2020; Um et al., 2020; Donti et al.,
2021; Pachalieva et al., 2022) is the requirement of simulators to be differentiable as they are mostly
employed as additional layers in the neural network architecture, to be trained end-to-end with the
neural surrogates.

5 CONCLUSION AND FUTURE WORK

This work presents a first of its kind knowledge-guided correction mechanism to reduce rollout
errors in neural surrogates that model transient PDE systems. Our proposed method Hybrid PDE
Predictor with RL (HyPER) learns a reinforcement learning based cost-aware control policy to par-
simoniously invoke (costly) simulation steps to correct erroneous surrogate predictions. In contrast
to existing approaches that employ simulators ‘in-the-loop‘ with neural surrogates, HyPER does not
impose any differentiability restrictions on the computational simulations. Further, HyPER is sur-
rogate and simulator agnostic and is applicable to any neural surrogate and off-the-shelf simulator
capable of resolving transient PDE systems.

We have demonstrated the effectiveness of our proposed HyPER model in traditional in-distribution
rollouts, under changing physical conditions and under noisy data conditions. Overall HyPER yields
significant improvements of cumulative rollout error over state-of-the-art surrogate-only approaches
with an average 68.30% improvement for in-distribution rollouts, 75.28% improvement for rollouts
under changing physical conditions and 28.61% improvement for rollouts under noisy data condi-
tions. In the future, we will investigate more sophisticated actor-critic based RL policies based to
further improve the sample efficiency of HyPER. We will also explore extensions of HyPER to more
challenging problems in multi-physics contexts as well as multi-phase flows.
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A APPENDIX

A.1 HYPER TRAINING PROCEDURE

Below we detail the RL training procedure of HyPER.

Algorithm 1 HyPER Training Algorithm

Require: Dataset: D, Pretrained Surrogate Model: fϕ, Simulator: S, Decision Model: dθ,
Trajectory length: τ , Simulator proportion hyperparameter: λ, Learning rate: η,
Error function (MSE in our case): ℓ, Cost function: c

1: for u, z ∈ D do ▷ For every trajectory in dataset, get field u and conditional features z
2: k ← 0 ▷ Initialize number of simulator calls
3: Rd ← [ ] ▷ Initialize decision model rewards list
4: Rb ← [ ] ▷ Initialize baseline rewards list
5: L← [ ] ▷ List to store log probabilities of each action
6: û(x,−1)← 0 ▷ Set initial field prediction to 0
7: for t ∈ [0, τ ] do ▷ For every time-step in trajectory
8: p← dθ(û(x, t− 1), z, t) ▷ Get RL model probabilities for next action
9: a ∼ Bernoulli(p) ▷ Sample next action

10: L += a log(p) + (1− a) log(1− p) ▷ Store log probability of action
11: if a = 0 then
12: û(x, t)← fϕ(û(x, t− 1), t) ▷ Call surrogate for next step prediction
13: else if a = 1 then
14: û(x, t)← S(û(x, t− 1), t) ▷ Call simulator for next step prediction
15: k += 1 ▷ Track number of times simulator called
16: end if
17: Rd += −ℓ(û(x, t),u(x, t))− c(λ, k, τ) ▷ Store policy reward based on MSE and

cost function
18: end for
19: I ∼ UniformWithoutReplacement([0, τ ], k) ▷ Sample k times between [0, τ ] without

replacement, this list will contain the time-
steps at which the random baseline will call
the simulator

20: for t ∈ [0, τ ] do ▷ Run random baseline for trajectory
21: if t /∈ I then
22: û(x, t)← fϕ(û(x, t− 1), t) ▷ Call surrogate for next step prediction
23: else if t ∈ I then
24: û(x, t)← S(û(x, t− 1), t) ▷ Call simulator for next step prediction
25: end if
26: Rb += −ℓ(û(x, t),u(x, t))− c(λ, k, τ) ▷ Store baseline reward using MSE

and cost function
27: end for
28: ∇θJ ← −∇θL · StopGradient(Rd −Rb) ▷ Calculate policy gradient, this is done

element-wise and then summed
29: θ ← θ − η∇θJ ▷ Update RL decision model parameters
30: end for

A.2 RQ3: HYPER ROLLOUTS WITH NOISY DATA: BIMODAL NOISE EXPERIMENTS

Table 6 depicts the performance of HyPER in the bimodal noise case. We notice results similar to the
unimodal noise case, with a reduction in cumulative MSE error of 41.46%-65.24%. We believe this
improved performance in a more complex noise distribution is a result of our RL policy learning the
more complex error distribution while the SUG methods accumulate larger error over two different
noise windows.
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Table 6: Results depicting rollout error for the 2D-Navier-Stokes experiment with random Gaussian
noise added at timesteps 2-4, 15-16. σ2 is the scale of the noise. The percentage reduction of
cumulative MSE rollout error by HyPER, over the best performing SUG model is in parentheses.

Experiment Final MSE Cumulative MSE
UNet-P FNO-P HyPER UNet-P FNO-P HyPER

Bimodal σ2 = 1.0 0.844 0.097 0.07 6.648 2.914 1.706 (41.46%)
Bimodal σ2 = 0.75 0.25 0.079 0.025 3.436 2.126 0.739 (65.24%)
Bimodal σ2 = 0.5 0.087 0.07 0.027 1.942 1.576 0.683 (56.67%)
Bimodal σ2 = 0.25 0.046 0.068 0.019 1.095 1.266 0.424 (61.28%)

Figure 6: Average Cumulative MSE over all test trajectories of HyPER vs. UNet and FNO.

A.3 HYPER AVERAGE PERFORMANCE

Figure 6 shows the average rollout error of HyPER versus UNet and FNO methods for all 200
Navier-Stokes test trajectories. This demonstrates that HyPER is effective in reducing rollout error
significantly over a large set of unseen test trajectories.

A.4 UNET-MULTISTEP PREDICTION QUALITY

In Figure 7 below we show five different sample predictions of UNet versus UNet-Multistep. Our
investigations revealed that in comparison to UNet, all UNet-Multistep predictions look ”smoothed”.
Essentially we found that while UNet-Multistep had reasonably low MSE, it failed to capture high
frequency detail and suffered from spectral bias. Thus, UNet was chosen as our surrogate model in
HyPER across all experiments because it showed comparable cumulative MSE to UNet-Multistep
(Table 1).

A.5 HYPER VERSUS UNET PREDICTION

We contrast the predictions and errors of a HyPER rollout and UNet rollout in Figure 8. Notice that
at t = {16.5s, 21.0s}, UNet suffers from spectral bias and has high error on the plume edges where
high frequency detail is required. We see that HyPER successfully mitigates this spectral bias error
by incorporating the simulator, thereby significantly reducing rollout (cumulative) error over the full
trajectory.
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Figure 7: Sample predictions of UNet vs UNet-Multistep on five different noise free trajectories.
Note that UNet-Multistep predictions suffer from spectral bias and have poor high frequency detail.

A.6 MODEL ARCHITECTURES AND PARAMETERS

A.6.1 MODEL TRAINING DETAILS

We build and train all our neural surrogate models using the PyTorch library on a single Nvidia RTX
A6000 GPU. The ΦFlow simulator used in the Navier-Stokes experiment runs on the same GPU.
The DPFEHM Julia simulator runs using multi-threading on an Intel(R) Xeon(R) Platinum 8358
CPU @ 2.60GHz.

The UNet, FNO, UNet-Multistep, MPP, and PDE-Refiner baselines are trained with same number
of samples as HyPER for the sake of fair comparison. The UNet-P and FNO-P baseline models
are trained with a smaller dataset of 400 trajectories which are separate from the 400 trajectories
HyPER’s RL policy is trained with. All baselines are trained for 200 epochs.
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Figure 8: Sample trajectory predictions and absolute errors of HyPER vs UNet. At various timesteps
including t = 21.0s, we see that UNet has high error on the edges of the plume where high frequency
behavior is present while HyPER successfully reduces this error.

We only train the HyPER RL ResNet model for 30 epochs to demonstrate that HyPER does not
require extensive training to outperform the baselines.
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Table 7: Model training times and datasets for SUG methods and HyPER.

Model Training Time (Hours) Epochs Dataset Size (# Trajectories)
UNet-P 1.46 200 400
FNO-P 0.55 200 400
UNet 3.29 200 800
FNO 2.02 200. 800
UNet-Multistep 4.10 200 800
MPP 9.58 200 800
PDE-Refiner 3.66 200 800
HyPER 5.21 30 400

A.6.2 MODEL PARAMETERS

Our UNet model is built on top of the PDEArena modern UNet architecture with wide residual
blocks and training parameters in Table 8.

Table 8: UNet parameters.

Parameter Value
Model Size (# parameters) 12,295,233
Hidden Channels 64
Activation Function GELU
Channel Multipliers [1, 2, 2]
Num Residual Blocks Per Channel 2
Sinusoidal Time Embedding Yes
Learning Rate 1e-4
Optimizer Adam
Loss Function MSE
Epochs 200

Our FNO model is built using the neuraloperator library and is constructed to have a similar number
of parameters as our UNet for a fair comparison. See Table 9 for details.

Table 9: FNO parameters.

Parameter Value
Model Size (# parameters) 12,437,057
Number of Fourier Modes 27
Hidden Channels 64
Lifting Channels 256
Projection Channels 256
Learning Rate 1e-5
Optimizer Adam
Loss Function MSE
Epochs 200

The HyPER RL model is a lightly modified version of the ResNet34 model from the Torchvision
library. See Table 10 for parameters.

The Multiple Physics Pretrained model (MPP) is adapted from MPP github. Note that we train this
model for 200 epochs while UNet and FNO are only trained for 50. See Table 11 for details.
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Table 10: RL ResNet parameters.

Parameter Value
Model Size (# parameters) 11,751,300
Number of Layers [3, 4, 6, 3]
Hidden Channels 64
Sinusoidal. Time Embedding Yes
Activation Function ReLU
Learning Rate 1e-5
Optimizer Adam
Reward Function Equation 3
Epochs 30

Table 11: Multiple Physics Pretraining parameters.

Parameter Value
Model Size (# parameters) 28,979,436
Patch Size 16x16
Embedding Dimension 384
Number of Axial Attention Heads 6
Number of Transformer Blocks 12
Epochs 200

The PDE-Refiner model was adapted from PDE-Refiner to work with our UNet model. Note that
we train this model for 200 epochs while UNet and FNO are only trained for 50. See Table 12 for
details.

Table 12: PDE-Refiner parameters.

Parameter Value
Model Size (# parameters) 12,378,241
Number of Refinement/Denoising Steps 3
Minimum Noise Scale 4e-7
Hidden Channels 64
Activation Function GELU
Channel Multipliers [1, 2, 2]
Num Residual Blocks Per Channel 2
Sinusoidal Time Embedding Yes
Learning Rate 1e-4
Optimizer Adam
Loss Function MSE
Epochs 200
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