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Abstract

The paper presents a scalable approach for learning spatially distributed visual representations
over individual tokens and a holistic instance representation simultaneously. We use self-
attention blocks to represent spatially distributed tokens, followed by cross-attention blocks
to aggregate the holistic image instance. The core of the approach is the use of extremely
large token masking (75%-90%) as the data augmentation for supervision. Our model, named
ExtreMA, follows the plain BYOL approach where the instance representation from the
unmasked subset is trained to predict that from the intact input. Instead of encouraging
invariance across inputs, the model is required to capture informative variations in an image.
The paper makes three contributions: 1) It presents random masking as a strong and
computationally efficient data augmentation for siamese representation learning. 2) With
multiple sampling per instance, extreme masking greatly speeds up learning and improves
performance with more data. 3) ExtreMA obtains stronger linear probing performance than
masked modeling methods, and better transfer performance than prior contrastive models.

1 Introduction

Masked modeling (Devlin et al., 2019) has emerged as a viable approach for visual representation learning.
On a generic transformer architecture (Vaswani et al., 2017), it optimizes a learning objective based on the
masked signal prediction popularized in natural language understanding (Devlin et al., 2019), without reliance
on heavily engineered image augmentations (Wu et al., 2018; Chen et al., 2020b; Grill et al., 2020). Superior
finetuning performance has been demonstrated with this approach; however, the pretrained representation
does not work competitively off-the-shelf (Bao et al., 2021), e.g., for k-nearest-neighbor retrieval.

On the other hand, Siamese networks trained with contrastive objectives (Oord et al., 2018) are strong for
learning off-the-shelf representations (Radford et al., 2021). This fundamental difference lies in the way they
represent data. Siamese networks extract a holistic instance representation for an image, whereas masked
modeling acquires a spatially distributed representation over individual tokens that comprise an image 1. No
instance representation is explicitly modeled or provided supervision in masked modeling approaches (Devlin
et al., 2019; Bao et al., 2021).

In this paper, we study the connections between the instance and the distributed representations, and we
explore self-supervision for learning these representations. We start with an observation that random masking
could be viewed as a novel data augmentation scheme not previously exploited in Siamese networks. For
the masked area, its potential degrees of freedom grow combinatorially large with its size, allowing for
richer self-supervision than conventional augmentations such as cropping and scaling, which are heavily

1In this paper, the term instance representation refers to the feature representation for the holistic image, not for object
instances used in instance segmentation literatures. The term distributed representation intends to mean that the image is
represented by a pattern of activity distributed over patch tokens.
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biased towards areas around the image center (He et al., 2022). More importantly, the self-supervision from
conventional augmentations lead to a common representation vector that encompasses multiple augmentations
of an instance (Tian et al., 2020; Purushwalkam & Gupta, 2020), and this invariance may degrade the
sensitivity of the representation to spatial locality. On the contrary, random masking preserves the original
content of the unmasked area and the geometrical structure of the data.

We propose a simple model, called ExtreMA, where the instance representation from masked input is trained
to predict that from the full view, in a plain BYOL fashion (Grill et al., 2020). The information gap created
by masking encourages the student network to encode as much information as possible, and hence bootstrap
the teacher network to be stronger. We adopt the vision transformer ViT (Dosovitskiy et al., 2021) to
embed distributed representations over patches, and this is followed by cross-attention blocks (Touvron et al.,
2021b) to aggregate the distributed representations into the instance representation. The instance-level
learning objective provides the supervision for both of the representations. In our model, the distributed
representations are only implicitly learned without the corresponding token-level objective used in masked
modeling. However, through investigating and visualizing the attention maps (in Figure 1), we find that
the output representations of our model maintain accurate correspondences with the input tokens and that
semantic clusters tend to emerge from the learned distributed representations.

A notable distinction of this model is its effectiveness with an extremely large masking ratio (75% - 90%),
while typical masked modeling approaches work best between the range of 50% to 75% (El-Nouby et al., 2021;
Bao et al., 2021; He et al., 2022). Besides the computational efficiency that this brings, a key aspect of extreme
masking is the complementarity that arises among multiple samples. Due to the high redundancy in visual
data, the visible content for samples with different masking becomes independent only when the masking
ratio becomes large. In addition, multiple masks speed up learning and convergence significantly, making the
system a fast learner that is hungry for more data. In practice, multiple sampling is also computationally
appealing, as the teacher network for processing the full content needs only to be forwarded once.

ExtreMA enjoys the favorable properties of Siamese representation learning. The instance representation
from the model can be used off-the-shelf for measuring semantic similarities. The framework also welcomes
other data augmentations besides masking for applications with different ends. However, unlike conventional
contrastive learning, ExtreMA does not rely on data augmentation induced invariances to achieve generalization.
Rather, ExtreMA preserves all possible useful information from the masked view in order to recover the full
image. The generative aspects of our model are exhibited in Figure 2. It can faithfully inpaint the masked
pixels through network inversion (Zhao et al., 2020). Moreover, the instance representation is shown to be
sensitive to spatial and scale variations for localizing objects in Figure 3. These properties demonstrates that
ExtreMA learns both instance and distributed representations that well captures scale, location, and color
intensities.

In the experiments, we systematically study the model behavior under different masking ratios, its convergence
properties using multiple masks on larger datasets, and integration with various other data augmentations.
Based on the study observations, we also propose a new augmentation scheme which uses shared image
crops but different colors for the two input views. Our main results on ImageNet1k outperform prior masked
modeling approaches on both finetuning and linear probing metrics. Notably, this is achieved by training
ExtreMA using a single node of 8×V100 GPUs in about two days for a ViT-Base model. We also evaluate
the transfer performance for semi-supervised learning and semantic segmentation. For both applications,
ExtreMA produces superior results compared with prior arts.

2 Related Works

In self-supervised representation learning, labels are mined from the data itself to achieve generalization
beyond that from human annotations, especially when the training data is at scale. Past works demonstrate
generalization through k-nearest-neighbors (Wu et al., 2018) and zero-shot classification on the learned
features (Radford et al., 2021), or finetuning the model for a limited schedule (Chen et al., 2020c; He et al.,
2022). The central problem under investigation is how to extract the training labels automatically and
formulate the pretext tasks. In high-level vision, such pretext tasks include predicting colors from a grayscale
image (Zhang et al., 2016), inpainting pixels given the spatial context (Doersch et al., 2015) or through
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autoregression (Chen et al., 2020a), predicting the orientation of a rotated image (Komodakis & Gidaris,
2018), solving a jigsaw puzzle given shuffled patches (Noroozi & Favaro, 2016), and others (Donahue &
Simonyan, 2019; Zhang et al., 2017). The key idea is that the network has to learn semantics in order to solve
the pretext tasks. Recently, there has been a resurgence of the context prediction pretext task (Bao et al.,
2021; Li et al., 2021) that has accompanied the rise of vision transformers (Dosovitskiy et al., 2021). Input
tokens are masked, and the model is trained to predict the masked tokens from the visible tokens in a BERT
fashion. The target tokens could be represented by dVAE tokens (Bao et al., 2021), raw pixel values (He
et al., 2022), or features (Wei et al., 2022; Dong et al., 2021) from an online learned encoder (Zhou et al.,
2021; El-Nouby et al., 2021; Baevski et al., 2022; Chen et al., 2022; Tao et al., 2022). Such representations
are shown to surpass prior art when finetuned for downstream tasks (He et al., 2022).

Contrastive learning is a special pretext task of instance discrimination to learn view-invariant representations
from data augmentations. It encourages different views of an image instance to have similar representations
relative to negative samples (Wu et al., 2018; He et al., 2020; Chen et al., 2020a), negative clusters (Caron
et al., 2020), or even without using negatives (Grill et al., 2020) at all. Views of an image are commonly
processed by a Siamese network (Chen et al., 2020b; Li et al., 2022) with a momentum encoder (He et al.,
2020) on one of its branches. To boost performance, the community has crafted various data augmentations
including color jittering (Wu et al., 2018), Gaussian blurring (Chen et al., 2020b), solarization (Grill et al.,
2020), and copy-and-paste (Zhao et al., 2021), as well as determined their optimal hyper-parameters. Multiple
augmentations (Fort et al., 2021) per input are investigated to improve test time performance and convergence
speed for supervised learning. In self-supervised learning, DINO uses 8 local crops to improve representation
quality. Its effect on convergence speed remains under explored. Contrastive models trained at scale are shown
to perform on par with supervised learning (Goyal et al., 2019; 2021). The contrastive learning framework
has the flexibility to handle various data augmentations, while traditional pretext tasks need non-trivial
engineering to be trained in a multi-task manner (Doersch & Zisserman, 2017). Recently, there have been
efforts (El-Nouby et al., 2021; Zhou et al., 2021; Mishra et al., 2022) to combine contrastive learning with
masked modeling objectives in a multi-task manner. The two tasks complement each other, but the intrinsic
connection remains unclear.

The technique of masking originates from representation learning on languages (Devlin et al., 2019; Liu et al.,
2019) and is especially suited for transformer architectures. In computer vision, block-wise masking (Bao
et al., 2021) and random masking (He et al., 2022) are investigated to cope with the 2D nature of images.
Aside from BERT-like training approaches (Bao et al., 2021; He et al., 2022; El-Nouby et al., 2021; Zhou
et al., 2021; Baevski et al., 2022), a special type of random masking in the form of small local image crops
has also been adopted in contrastive models (Caron et al., 2021; 2020). However, the local crop augmentation
introduced in (Caron et al., 2020) is mainly designed for computational efficiency, without revealing the impact
of substantial content removal on representation quality. A recent work MSN (Assran et al., 2022) explores
the application of masking in Siamese networks. However, its masking ratio is low (30% for ViT-base), and
it heavily relies on other augmentations besides masking to work. ADIOS (Shi et al., 2022) adversarially
optimizes masking as a novel data augmentation for contrastive learning. It shows masking is complementary
to existing conventional image augmentations. Data2vec (Baevski et al., 2022) formulates a masked image
prediction task, with the prediction target bootstrapped from a momentum encoder. Similar to Data2vec, our
work explores representation learning with the Siamese architecture and the masking mechanism. Differently,
our model predicts the holistic instance representation without using the mask token throughout the network.
Hybrid models (Zhou et al., 2021; Tao et al., 2022; Mishra et al., 2022) of contrastive learning and masked
image modeling formulate a multi-task problem to enjoy the best of two paradigms. However, the technique of
masking is mainly to supervise masked modeling, not as an augmentation for contrastive learning. Specifically,
Zhou et al. (2021) finds that adding masking augmentation actually hurts representation quality. Our work
reveals the power of masking even when used as a data augmentation, without explicit supervision for
token-level predictions.

3 The ExtreMA Approach

This work explores the use of random masking as data augmentation for Siamese representation learning with
instance-level supervision. The model uses an architecture of two parallel networks, where the momentum
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Figure 1: Overview of ExtreMA. Our model follows the Siamese network approach for representation
learning. The momentum encoder processes the full view while the base encoder processes a partial view from
extreme masked sampling. Input tokens are encoded into distributed representations via vision transformers
and gathered into an instance representation via cross-attention blocks with an appended [CLS ] token.
Self-supervision is applied at the instance level. We visualize attention maps for four query patches in the
last layer of ViT and cross attention for the class token.

encoder processes the full image crop and the base encoder processes the masked image crop. The information
gap, i.e. the masked image region, is the basis of the supervision for training the base encoder. An overview
of our approach is illustrated in Figure 1. We describe details about masking and the model architecture as
follows.

Extreme Masking. Given an image, we first divide it into non-overlapping patches to be fed into the
vision transformer. A fixed sinusoidal positional encoding is added to each embedded patch, and a few of the
embedded patches are sampled randomly (He et al., 2022) according to the masking ratio.

A key aspect of our approach is that it achieves its best performance with an extremely large masking ratio
of 75%-90%, leaving the base encoder to process just a fraction (10%-25%) of the patches. This is in contrast
to masked image modeling where the performance degrades when the masking ratio exceeds 75% (He et al.,
2022). The extremely high masking ratio sets a very hard pretext task for the network. We hypothesize
that the ability of ExtreMA to succeed with extreme masking is in part due to the momentum encoder
processing the entire image, whereas the encoder in masked image modeling never receives the full view as
input. This may create train-test discrepancy for masked modeling, as the attention blocks need to generalize
from processing a fraction of the tokens to the full set.

Extreme masking can be further assisted with the multi-masking technique, where multiple paralleled base
encoders processing different masked versions of the image are used to accelerate learning. Multiple student
networks can share the same learning target from the momentum encoder, which makes multi-masking an
efficient learner. We note that such a multi-masking technique is not immediately applicable or efficient for
masked modeling since the decoder needs to run independently for each masked input without being able to
share the learning target.

Extreme masking also introduces new challenges. We observe that extreme masking tends to overfit to the
training data especially when multi-masking is enabled. Concretely, the model obtains good classification
performance on the training dataset, but less generalizable to unseen data. This is different from “cheating”,
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Figure 2: Generative properties of the distributed representations at various masking ratios.
We use the deep image prior technique to invert the representations. Our reconstruction result shows the
best quality overall. Supervised ViT fails to produce meaningful content. MAE fails to inpaint proper colors
due to the use of normalized pixels. DINO loses information about spatial locality.

as the feature effectively learns semantics on the training data from self-supervision. Using more unlabeled
training data is a viable way to mitigate the overfitting phenomenon. This is discussed further in the
experiment section.

Distributed and Instance Representations. We adopt the vision transformer (Dosovitskiy et al., 2021)
for its efficiency and flexibility in handling input content of variable size. The vision transformer embeds
the input visual tokens into a spatially distributed representation via the self-attention mechanism. An
instance representation is desired in order to allow supervision from the instance level. To achieve this, we
use cross-attention blocks (Touvron et al., 2021b) to aggregate the distributed patch-level representations
into a single representation with an additional appended class token. Only the class token acts the query
in the cross-attention blocks while the patch tokens remain frozen without updates. This makes the cross-
attention blocks lightweight with O(N) complexity compared to O(N2) in self-attention. The overall encoder
architecture follows CaiT-style (Touvron et al., 2021b) design. The projection head and the prediction head
follow the instance representation.

We have investigated two other alternatives to represent an instance, but neither works well. If we feed the
instance token as an input to the transformer as in ViT, optimization becomes unstable, potentially due to
the large masking rate for the input. With average pooling over the token representations as the instance
representation, the model finds a shortcut on learning averaged patch features without learning attention
across patches. Details are provided in the appendix.
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Learning Objective. The instance representation from the masked input is trained to predict that from
the unmasked input by simply minimizing the cosine distance between the two representations. We primarily
follow BYOL for simplicity in this paper, but our approach is also found to work with the contrastive loss (Wu
et al., 2018; Oord et al., 2018) in our experiments. Our learning objective differs with the conventional
BYOL in the following aspect. Conventional BYOL adopts a symmetric loss where the two views are learned
to predict each other. This will drive the representation to find the common subspace shared by the two
views, with invariance over other information (Tian et al., 2020). In our case, since the shared information
between the two views is obvious, finding the commonality between the views does not make for meaningful
self-supervision. Thus, we adopt the asymmetric loss where only the masked view is trained to predict the
intact view. The information gap created by masking encourages the network to extrapolate the masked
regions, instead of seeking a shared subspace.

Compared with masked modeling approaches, our learning objective is fundamentally different. The instance
level supervision does not explicitly enforce spatial reasoning for each individual token. Nonetheless, we find
strong evidence that our model learns a distributed representation over the tokens. We visualize the attention
maps for four query patches in the last layer of the transformer block in Figure 1. The shown visualization is
averaged across 12 attention heads. We observe that patch tokens tend to group into meaningful semantic
clusters.

BYOL Details. Our design choices for the projection and the prediction head are even simpler than the
original BYOL (Grill et al., 2020). We replace the BatchNorm with LayerNorm and the ReLU activations
with GeLU activations, making the overall framework free of BatchNorm and consistent with the rest of the
transformer blocks. Our work also incidentally demonstrates that BYOL does not rely on BatchNorm to
prevent collapse (Richemond et al., 2020). The projection head and the prediction head have 3 and 2 hidden
layers respectively, a hidden dimension of 4096, and an output dimension of 256, following the original design.

Limitations. It remains as a limitation without being able to fully understand why CaiT-style architec-
ture (Touvron et al., 2021b) is crucial for stable convergence and why conventional ViT architecture fails.
More discussions to this problem is included in the appendix. When training the ExtreMA model on a
dataset, the training epochs may need to be validated and tuned in order to prevent overfitting. The optimal
masking ratio may also varies depending on the property of the dataset.

4 Representation Properties

To understand the distributed representation and the instance representation trained with extreme masking
augmentation, we invert the distributed representations into the pixel space and examine the sensitivity to
locality of the instance representation. These results give further evidence that the model learns a meaningful
distributed representation without a BERT-like objective, and that the instance representation preserves
detailed visual information. The following analysis is not meant to compare different models in a quantitative
way, but to provide intuitive insights on what have been learned by the models.

Generative Properties. Given a pretrained model and a masked image, we can encode the visible patches
using the distributed representations, and invert these partial representations back to the pixel space to
reconstruct the masked patches. Specifically, we follow the technique of deep image prior (Ulyanov et al., 2018)
and minimize the L2 distance on the visible representations between the masked image and the reconstruction.
Details of the method is included in the appendix. This reconstruction technique allows us to examine the
content of the encoded features without the need to further train a new generative model. Figure 2 shows the
reconstruction result. We vary the masking ratio and compare results with supervised DeiT (Touvron et al.,
2021a), DINO and MAE 2 using this inversion method. Supervised DeiT is unable to produce any meaningful
content. MAE fails to inpaint proper colors due to the use of normalized pixels. DINO is inaccurate with
spatial localities. Our result is spatially smooth and accurate in color. The inversion technique suffers when
the masking ratio is very large, due to limited ability to inpaint unseen semantic areas.

2We acknowledge that MAE is able to do amazing reconstruction using its decoder. The inversion experiment for MAE is
mainly to investigate its encoder in a fair comparison with competing approaches.

6



Published in Transactions on Machine Learning Research (03/2023)

query crop prediction candidate crops query crop prediction candidate crops

Figure 3: ExtreMA is sensitive to spatial and scale variations. We randomly sample 25 candidate
bounding boxes of 5 scales and 5 random locations from a test image and we use the query crop to retrieve
the closest bounding box in the test image. The highest ranked crop is shown as the prediction. The instance
representation from our model is able to identify the correct scale and location, suggesting that ExtreMA is
sensitive to information beyond semantics.

Table 1: Mask ratio.
ratio ft. lin.
50% 81.9 36.3
70% 82.3 64.4
80% 82.4 67.3
85% 82.4 66.3
90% 82.3 61.6
95% 81.6 49.3

Table 2: Multi-masks trained on IM1k.
ratio 75% ratio 80% ratio 90%

num ft. lin. num ft. lin. num ft. lin.
1 82.4 64.8 1 82.4 67.3 1 82.3 61.6
2 82.7 67.2 2 82.6 68.8 2 82.5 64.0
4 82.9 67.7 4 82.8 67.5 4 82.7 63.1

5 82.9 67.1 8 82.9 60.3
10 83.0 59.3

Table 3: Trained on IM22k.
ratio 90%

num ft. lin.
1 82.5 60.4
2 82.7 65.6
4 83.0 69.0
8 83.2 71.4
10 83.2 72.0

Locality Properties. We use the k-nearest neighbor technique to probe the instance representation. We
first generate a small gallery set by random sampling of image crops that vary spatially and in scale from a
single image. We then use another query image crop from the same semantic category to rank the gallery set.
We resize these image crops to 224 × 224 and extract the instance representations for measuring similarities.
In Figure 3, the top nearest retrieval returns the image bounding box with the closest spatial and scale
configuration as the query crop. The results suggest that the instance representation is sensitive to spatial
and scale changes, and the learned high-level representation is not a result of invariance but is more powerful
and generalizable. This example also demonstrates a form of zero-shot detection using exemplars (Malisiewicz
et al., 2011).

5 Experiments

5.1 Ablation Studies

We pretrain the representation on ImageNet and evaluate it on finetuning (ft) and linear probe (lin) in our
ablations. We finetune the model on top of the distributed representation, and conduct linear probes with
the instance representation. The evaluation protocol mainly follows BEiT and MAE.

Implementation Details. We use the original ViT-base (Dosovitskiy et al., 2021) as the backbone
architecture without the layer scale technique (Touvron et al., 2021b). The class attention follows the original
design in (Touvron et al., 2021b) with a default of two transformer blocks and a layer scale hyper-parameter
of 0.1. We train our model using the AdamW optimizer (Loshchilov & Hutter, 2018) with a batch size of
2048, an initial base learning rate of 1.5e-4, and a weight decay of 0.1. The exponential averaging weight for
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Figure 4: Convergence curves for multi-masking on ImageNet1k. Each plot shows kNN accuracy on the
validation set with respect to training epochs. Multi-masking with 80% and 90% ratio enjoys steep learning
curves, but suffers from overfitting on ImageNet1k.

Table 4: Other augmentations.

augment 1 aug 2 augs
ft. lin. ft. lin.

none 82.3 55.1 - -
color 82.5 62.0 83.3 62.4

rand size crop 82.6 68.8 82.2 66.8
crop + color 82.6 69.0 83.1 73.3

shared crop + color - - 83.3 73.1

Table 5: Cross attention block.
#blocks ft. lin.

1 82.6 66.2
2 82.6 68.8
3 82.6 68.5

Table 6: Training loss.
objective ft. lin.
BYOL 82.6 68.8

InfoNCE 82.8 66.8

the momentum encoder is initialized to 0.996 and increased to 1.0 following a cosine schedule. The default
augmentation is random resized cropping and random flipping. All models are trained for 300 epochs.

Masking Ratio. We first vary the masking ratio using a single mask for training. In Table 1, the finetuning
performance plateaus across a wide range from 70% to 90%, while the linear probe performance peaks at
ratio 80%. Notably, an extremely large masking ratio of 90% also achieves reasonably good performance.
The performance degrades beyond 90%.

Multi-Masking and Convergence Speed. For each image instance, we generate multiple masks without
replacement for the student network. The loss as well as the gradient are averaged over multiple masked
inputs for each parameter update. The learning rate schedule is unaffected by multi-masking and kept
unchanged with single masking. We investigate the behavior of multi-masking under the ratios of 75%, 80%,
and 90% in Table 2. Finetuning performance consistently improves with more masked inputs. However,
the linear probe performance degrades when too many masks are used, especially when the masking ratio
gets larger. We take a close look at this phenomenon and find that the training accuracy for linear probing
actually improves with greater multi-masking. This suggests that the model overfits to the training data
without using labels. In Figure 4, we plot the k-nearest-neighbor classification curves on the validation set
with respect to training epochs. The hyper-parameter k is set to 200 and the gallery is set to 10% of the
ImageNet training set. Masking with ratio 75% does not suffer from overfitting with multi-masking, but
converges less quickly. Multi-masking with extreme ratio 90% has the steepest learning curve, but it tends to
saturate and degrade after 120 epochs. We hypothesize that this is because masked inputs become more
independent and bring complementary learning signal when the masking ratio grows larger.

To combat overfitting while preserving fast learning, a straightforward solution is to use larger datasets. We
therefore study multi-masking on ImageNet22k, which is about 10 times larger in total images. We train the
model for 30 epochs, which maintains the effective number of optimization iterations and reveals the impact
solely from data scale. The evaluations for finetuning and linear probing are all conducted with ImageNet1k.
In Table 3, at the masking ratio of 90%, ExtreMA no longer suffers from overfitting as the number of masks
increases. The model performance is also consistently better than using ImageNet1k training data. This
shows that our model benefits from more data for large-scale representation learning.

Other Augmentations. Supervision at the instance level enables integration of other augmentations for
both the student and teacher networks. We set the default masking ratio to 80% with two masks in the
following ablations, as it does not suffer from overfitting. We consider the augmentations of cropping (random
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Table 7: ImageNet1k classification comparison.

methods epochs ViT-S ViT-B
ft. lin. ft. lin.

MoCo-v3 300 81.5 73.1 83.2 76.2
DINO 400 81.7 77.0 83.6 78.2
MSN 600 81.6 76.9 83.4 76.8
BEiT 800 - - 83.2 37.6
MAE 1600 - - 83.6 67.8

Data2vec 800 - - 84.2 60.8
ExtreMA (1k) 300 81.8 69.4 83.7 73.3
ExtreMA (22k) 30 81.5 65.7 83.9 74.5

Table 8: ViT-B Wall-clock time comparison using
a single node of 8×V100 GPUs.

methods epochs time
DINO 400 300 hrs
MSN 600 700 hrs
BEiT 800 240 hrs
MAE 1600 650 hrs

Data2vec 800 250 hrs
ExtreMA (80% ratio ×1) 300 29 hrs
ExtreMA (80% ratio ×2) 300 36 hrs
ExtreMA (80% ratio ×5) 300 60 hrs

resized crop + flipping) and color (color jittering and random grayscaling). We do not consider Gaussian
blurring and solarization as their effects are marginal.

We first examine the case of a single augmentation, where the input of the teacher branch is augmented
and the student branch takes a random masking sample of the teacher’s input. Such a scheme is akin to
enlarging the training dataset without introducing other supervision from augmentations. As reported in
Table 4, by just using a center crop, our model achieves a reasonable result of 82.3% finetuning and 55.1%
linear probing performance. Color and cropping augmentations improve the overall performance individually
but their effects are marginal when both are used.

We next consider two independent augmentations, one for the student and one for the teacher, with the
student’s input undergoing masking as well. The self-supervision in such a scheme introduces invariance, such
as spatial, scale, and color intensity, similar to prior contrastive models (Caron et al., 2021; Chen et al., 2021).
Crucially, we find that adding spatial and scale invariance by two crops of an image may hurt representation
quality, with finetuning decreased by 0.4% and linear probing decreased by 2.0%. On the other hand, color
invariance is shown to be beneficial, leading to a significant 0.8% gain from 82.5% to 83.3%. Using cropping
and color augmentations combined, the linear probing performance improves substantially to 73.3% while the
finetuning performance drops 0.2% as spatial invariance may hurt generalization.

Based on these observations, we propose another augmentation scheme that uses a shared spatial crop for
the two network branches, but two different color augmentations. Such scheme achieves the best overall
performance for finetuning and linear probing.

Cross Attention Blocks. We use cross-attention heads (Touvron et al., 2021b) to aggregate the distributed
representations into the instance representation. We ablate the number of blocks for this design in Table 5.
The finetuning performance is not affected by the depth of the cross-attention blocks, while the linear probing
performance is improved by 2% with two blocks and saturates for more blocks.

Training Objective. Besides BYOL, ExtreMA also works with other Siamese representation learning
objectives, such as InfoNCE (Oord et al., 2018) with negatives. In Table 6, we provide the result with a
MoCo-v3 implementation using a contrast temperature of 0.2. Compared with the BYOL objective, the
finetuning performance is improved by 0.2% and linear probing drops by 2.0%.

5.2 ImageNet Comparisons with Previous Methods

We compare with representative contrastive methods MoCo-v3, DINO and MSN, as well as masked image
modeling methods BeiT, MAE and Data2vec on ImageNet classification. We use our strongest model with five
masks of ratio 80% and color augmentations. The finetuning takes 200 epochs for ViT-S and 100 epochs for
ViT-B following prior works. The results 3 are summarized in Table 7. Our approach outperforms MoCo-v3,
DINO, MSN, MAE, BEiT for finetuning evaluations but underperforms Data2vec. This is likely due to the
layer-averaged targets in Datavec provides substantial improvement. Our linear probing outperforms the
masked image modeling methods by a large margin but underperforms contrastive counterparts. This may

3We note that ExtreMA can be reproduced stably with small variance of 0.1% for linear evaluation and finetuning.
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Table 9: Semantic segmentation on ADE20K.
methods epochs mIoU
DINO 400 47.2
MSN 600 47.1

MoCo-v3 300 47.3
BEiT 800 47.1
MAE 1600 48.1

ExtreMA (1k) 300 47.9
ExtreMA (22k) 30 48.4

Table 10: Semi-supervised classification.
methods epochs 1% 10%
scratch - 9.0 44.8
BEiT 800 35.9 69.7
DINO 400 64.7 75.9

MoCo-v3 300 57.2 75.8
MSN 600 66.6 76.8
MAE 1600 52.7 72.1

ExtreMA (1k) 300 67.3 76.1

be due to the lack of global crops and other heavy image augmentations. Since no holistic representation is
modeled for the image in masked modeling, BEiT, MAE and Data2vec perform less competitive for linear
probing with features average pooled from tokens. The ViT-S model does not scale well with large data,
potentially limited by its model size.

A notable advantage for ExtreMA is its computational efficiency and fast convergence speed. This allows
us to train ViT-Base models of 300 epochs using a single node of 8×V100 GPUs for 29 hours to 60 hours
depending on the choice of multi-masking. Such hardware requirement is friendly to resource-limited academic
labs. On the contrary, prior self-supervised representation models require multi-node training and lengthy
optimization. We summarize the wall clock times of representative models in Table 8. Since official releases
of prior methods are reported with multi-node training, we estimate their wall-clock time using just a single
node of 8×V100 GPUs. ExtreMA achieves 5× to 10× speedups for visual representation learning.

5.3 Transfer Learning Results

We consider two transfer learning scenarios with limited target labels: semi-supervised image classification
and semantic segmentation. For both experiments, we use our strongest model with five masks of ratio 80%
and color augmentations.

Semi-supervised Learning. Given the pretrained model, we use a small fraction of the ImageNet1k training
labels (1% or 10%) for semi-supervised finetuning. We append the classification head on the first output
layer of the projection head following SimCLR-v2 Chen et al. (2020c). The finetuning protocol and data
augmentation mainly follows BEiT. The model is optimized using AdamW with an initial learning rate of 5e-6
for 1000 epochs and a batch size of 1024. Comparison results are shown in Table 10. ExtreMA outperforms
the masked image modeling approaches MAE and BEiT by a large margin of 12% and 30% using 1% of
the labels. Surprisingly, ExtreMA obtains better results than DINO, which is heavily tuned for ImageNet
classification with higher linear probing performance than our approach. ExtreMA is also on par with MSN
which is specifically designed for semi-supervised learning. The models pretrained with ImageNet22k perform
worse, because the majority of unlabeled classes are less relevant to the target 1k classes. We thus follow the
prior evaluation practice and omit the ImageNet22k entry.

Semantic Segmentation. We evaluate semantic segmentation performance on the ADE20K (Zhou et al.,
2017) dataset. Following prior works, we initialize the UperNet framework (Xiao et al., 2018) using our
pretrained model and finetune the segmentation model end-to-end. The model is optimized using AdamW for
80k iterations with an initial learning rate of 1e-4 and a batch size of 16. We set the weight decay to 0.05 and
layer-wise learning rate decay to 0.85. The results are shown in Table 9. Our method is able to outperform
competitive representation learning baselines such as DINO, MSN, MoCo-v3 and BEiT. Our model is even
comparable to MAE, which is trained with a much heavier schedule (300 epochs vs. 1600 epochs). By scaling
the training data to the larger ImageNet-22K dataset while keeping the total number of iterations unchanged,
our model performance improves by 0.5 mIoU, surpassing all prior arts by a significant margin. This indicates
that our model scales well with data.

Object Detection and Instance Segmentation. We evaluate the transfer performance on the MSCOCO
dataset. We adopt the Mask-RCNN framework for object detection and instance segmentation using the
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Table 11: Object detection and instance segmentation transfer on COCO.

methods epochs object detection instance segmentation
AP AP50 AP75 AP AP50 AP75

DINO 400 46.8 68.6 50.9 41.5 65.3 44.5
MSN 600 45.8 68.2 49.5 40.6 64.8 43.2

MoCo-v3 300 45.5 67.1 49.4 40.5 63.7 43.4
BEiT 800 42.1 63.3 46.0 37.8 60.1 40.6
MAE 300 45.4 66.4 49.6 40.6 63.4 43.7
MAE 1600 48.4 69.4 53.1 42.6 66.1 45.9

ExtreMA (1k) 300 47.5 68.9 51.9 42.0 65.6 45.1
ExtreMA (22k) 30 48.5 69.8 53.1 42.7 66.5 46.0

ViT-base architecture. We fine-tune the model for 12 epochs and evaluate the performance on the validation
set. The results are summarized in Table 11. ExtreMA outperforms DINO/MSN/MoCo-v3/BEiT while
using a lot less compute. ExtreMA outperforms MAE with the same number of pretraining epochs, but
underforms MAE if MAE is trained longer. When pretrained on the ImageNet22k dataset, ExtreMA improves
the performance by about 1% AP.

6 Conclusions

This work explores masking as a novel augmentation for Siamese representation learning. The investigated
approach, ExtreMA, learns strong instance and distributed representations through data augmentations
without masked modeling supervision. This work is inspired by the masking operation in masked modeling.
However, it makes no claims that ExtreMA works in a similar way as masked modeling, since the learning
objectives are different. ExtreMA exhibits several unique characteristics: 1) the use of extremely large
masking ratios, 75%-90%; 2) fast convergence speed with multi-masking and scalability to large data; 3) low
consumption of computational resources. Its ability on encoding precise locality for the instance representation
may open up a new possibility for detection transfer.

Broader Impacts

The proposed method learns representations from a specific dataset and as such may reflect biases contained
in the dataset. Building a downstream application which finetunes the model on a customized dataset may
also reflect bias and potentially negative societal impacts in the pretrained representations. The study in this
paper is limited to curated datasets, and research on uncurated datasets warrants future research.
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A Discussions on CaiT-Style Architecture

ExtreMA follows the CaiT-style transformer architecture Touvron et al. (2021b), where the class token is
appended later in the attention blocks. We find that such design is critical for ExtreMA to stabilize learning,
whereas the conventional ViT class token design failed to converge properly. Additionally, we also investigate
a third option on using average pooling across tokens to aggregate the holistic representation. In Figure 5,
we plot the training loss and the kNN classification accuracy for different class token designs. The ViT
class token design leads to unstable optimization, and average pooling finds a representation shortcut. The
CaiT-style architecture works as desired.

It remains as a limitation of this work to fully understand the training dynamics for the class token design.
We hypothesize that the problem originates from the Siamese networks processing input sequences with very
different lengths. This makes the learning of the class token representation harder, when it is processed
throughout the network.
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Figure 5: Training loss and kNN accuracy curves for three class token designs: ViT, average pooling, and
CaiT. The network is trained with the ExtreMA objective with masking ratio 90% of 8 crops, using the
ViT-small architecture.

B Multi-masking Performance Efficiency

ExtreMA greatly accelerates learning by multi-masking because the momentum encoder for processing the full
tokens may be shared for multiple students. In the following Table 12, we further investigate its performance
efficiency. We compare the model trained with 2 masks and 300 epochs against the model trained with
a single mask and 600 epochs. The performance for these two settings are similar while multi-masking is
significantly faster.

Table 12: Multi-masking performance efficiency.
ratio 75% ratio 80% ratio 90%

mask num. epochs ft. lin. time ft. lin. time ft. lin. time
1 300 82.4 64.8 30 hrs 82.4 67.3 29 hrs 82.3 61.6 28 hrs
2 300 82.7 67.2 40 hrs 82.6 68.8 36 hrs 82.5 64.0 30 hrs
1 600 82.6 67.8 60 hrs 82.6 69.1 58 hrs 82.5 63.4 58 hrs

C Technical Details of the Generative Property

The pretrained ExtreMA model is able to inpaint the masked region given the visible patches. We follow
the method of Deep Image Prior Ulyanov et al. (2018) to invert the representation back to pixels. Denote
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the pretrained ViT encoder as f(x) and an additional reconstruction network as rθ(z0), where z0 is a fixed
random noise and θ is the network parameter. Given an input image x processed by a random mask M , the
ViT encoder f(M · x) extracts feature representations for the visible tokens. The reconstruction network
rθ(z0) generates a full image x0, which is then passed to the encoder f(x0). We minimize a L2 energy function
on the visible token representations between the masked input image and the reconstruction,

minθE (f(M · x), M · f(x0)) , x0 = rθ(z0). (1)

The optimization takes 3000 iterations with an Adam optimizer of learning rate 0.001. The pretrained ViT
encoder remains fixed and the reconstruction network is optimized per input image. x0 is the inpainted
image.

D Additional Comparisons of Locality Properties

We compare the performance on localization with other works, MAE / DINO / MoCo-v3. We use the [cls]
token representation from these models. In Figure 6, we find that DINO performs favorably well, and that
MAE / MoCo-v3 degrades the performance notably. MAE does not supervise an instance representation
in the formulation, and hence its instance representation is weaker. MoCo-v3 suffers from the heavy use of
spatial cropping augmentation, and DINO improves by using small local crops for localization.

query      candidate crops    MAE             DINO         MoCo-v3          ours

Figure 6: State-of-the-art comparisons with other models for localization.

E Details of Evaluation Protocols

The evaluation protocols for end-to-end finetuning and linear probing largely follow BEiT and MAE. The
hyper-parameter configurations are detailed in Table 13 and Table 14. We finetune ViT-Small models for
200 epochs and ViT-Base models for 100 epochs. We use a base learning rate 1e-3 and layer decay 0.75 for
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ImageNet1k pretrained models, and a slightly smaller learning rate 5e-4 and a smaller layer decay 0.65 for
ImageNet22k pretrained models. The linear probing configuration is adopted consistently for all reported
entries.

Table 13: End-to-end fine-tuning protocol.
config value
optimizer AdamW
base learning rate 1e-3
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay 0.75
batch size 1024
learning rate schedule cosine decay
warmup epochs 5
training epochs 200 (S), 100 (B)
augmentation RandAug (9, 0.5)
label smoothing 0.1
mixup 0.8
cutmix 1.0
drop path 0.1

Table 14: Linear probing protocol.
config value
optimizer LARS
base learning rate 0.1
weight decay 0
optimizer momentum 0.9
batch size 4096
learning rate schedule cosine decay
warmup epochs 10
training epochs 90
augmentation RandomResizedCrop
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F Additional Visualizations

We provide additional visualizations on the generative aspects of our model in Fig. 7, and attention maps of the
distributed representations in Fig. 9. Both visualizations reveal properties of the distributed representations.
These representations maintain accurate correspondences with the input tokens, while inferring meaningful
semantic relationships among tokens. We also append failure examples on the reconstructions in Figure 8.
The feature inversion technique fails to inpaint novel semantic areas especially when the masking ratio is
large.
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Figure 7: Additional examples of inpainting at various masking ratios.
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Figure 8: Failure examples of our reconstructions on the generative aspect of our model.
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Figure 9: Attention maps on the last layer of the ViT encoder. We average the responses for 12
attention heads for visualization. Our model produces diverse and distributed attention maps, whereas
DINO Caron et al. (2020) mainly attends to the foreground object, ignoring the others. The border color of
the attention map corresponds to the colored query in the input image.
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