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Abstract

Recent advances in self-supervised learning have dramatically improved the state
of the art on a wide variety of tasks. However, research in language model pre-
training has mostly focused on natural languages, and it is unclear whether models
like BERT and its variants provide the best pre-training when applied to other
modalities, such as source code. In this paper, we introduce a new pre-training
objective, DOBEF, that leverages the structural aspect of programming languages
and pre-trains a model to recover the original version of obfuscated source code.
We show that models pre-trained with DOBF significantly outperform existing
approaches on multiple downstream tasks, providing relative improvements of up
to 12.2% in unsupervised code translation, and 5.3% in natural language code
search. Incidentally, we found that our pre-trained model is able to deobfuscate
fully obfuscated source files, and to suggest descriptive variable names.

1 Introduction

Model pre-training with self-supervised methods such as BERT |Devlin et al.| [2018]], RoOBERTa Liu
et al. [2019], XLM |Lample and Conneau [2019] or XLNet|Yang et al. [2019]], has become ubiquitous
in Natural Language Processing (NLP), and led to significant improvements in many tasks. These
approaches are based on the Masked Language Modeling (MLM) objective, which consists in
randomly masking words from an input text, and training a model to recover the original input.
In the original approach proposed by |Devlin et al. [2018], a fraction of selected masked words is
replaced by masked tokens, another is replaced by random words, and another remains unchanged.
Since then, a myriad of studies have proposed to modify the MLM objective, either by masking
contiguous spans of text/Song et al.|[2019]], Joshi et al.|[2020], masking named entities and phrases
Sun et al. [2019], sampling masked words according to their frequencies Lample and Conneau [2019],
replacing words with plausible alternatives|Clark et al.|[2020], etc. Overall, most of these pre-training
objectives boil down to denoising auto-encoding tasks with different methods to add noise to the
input, using arbitrary noise functions. In our case, we are interested in pre-training deep learning
models for programming languages. As in natural language, pre-training was shown to be effective
for source code Feng et al. [2020], Roziere et al. [2020]. However, these studies both rely on the
original MLLM objective proposed by |Devlin et al. [2018], which was initially designed for natural
languages and does not leverage the particular structure of source code. We argue that this objective
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is actually suboptimal in the context of programming languages, and propose a new objective based
on deobfuscation of identifier names in source code.

Code obfuscation consists in modifying source code in order to make it harder for humans to
understand, or smaller while keeping its behaviour unchanged. In some ancient interpreted languages,
name minimization could also reduce the memory usage of the program. Today, it is used to protect
intellectual property by preventing people from understanding and modifying the code, to prevent
malware detection, and to compress programs (e.g. Javascript code) to reduce network payload sizes.
Moreover, C compilers discard variable names, and current rule-based and neural-based decompilers
generate obfuscated C code with uninformative variable names Fu et al.|[2019]. Obfuscators typically
apply several transformations to the code. While some operations can be reversed (e.g. dead code
injection), the obfuscation of identifier names—renaming every variable, method and class with
uninformative names—is irreversible and has a substantial impact on code comprehension |Gellenbeck
and Cook [[1991]], Takang et al.|[1996]], Lawrie et al.[[2006].

By analyzing the overall structure of an obfuscated file, an experienced programmer can always, with
time, understand the meaning of the obfuscated code. For instance, in the obfuscated example in
Figure[l] one can recognize the function and guess that it implements a breadth-first search algorithm.
We also expect neural networks, that excel in pattern recognition, to perform well on this task. We
propose to pre-train a model to revert the obfuscation function, by training a sequence-to-sequence
(seq2seq) model to convert obfuscated functions, where names of functions and variables have been
replaced by uninformative names, back to their original forms. Suggesting proper variable and
function names is a difficult task that requires to understand what the program does. In the context
of source code, it is a more sensible, but also a more difficult task than MLM. Indeed, we observe
(c.f. Figure[T) that predicting the content of randomly masked tokens is usually quite simple, as it
often boils down to making syntax related predictions (e.g. predicting that was has been masked
out is a parenthesis, a semi-column, etc.). These simple predictions actually provide little training
signal to the model. In practice, MLM also masks out variable names, but if a given variable appears
multiple times in a function, it will be easy for the model to simply copy its name from one of the
other occurrences. Our model does not have this issue, as all occurrences of masked variables are
replaced by the same VAR_i special tokens.

In this paper, we make the following contributions:

* We present DOBF, a new pre-training objective based on deobfuscation, and show its
effectiveness on multiple programming languages.

* We show that DOBEF significantly outperform MLM (e.g. BERT) on multiple tasks such
as code search, code summarization or unsupervised code translation. We show that pre-
training methods based on DOBF outperform all existing pre-training methods on all the
considered tasks.

* We show that, by design, models pre-trained with DOBF have interesting applications and
can be used to understand functions with uninformative identifier names. Besides, the model
is able to successfully deobfuscate fully obfuscated source files.

Our method improves other machine learning methods for programming languages. Automatic deob-
fuscation and identifier name proposal can also make code more accessible, and facilitate innovation
and malware detection. Conversely, automatic deobfuscation could facilitate theft of proprietary code,
therefore hindering the distribution of software and reducing investments in innovative softwares.
Socially undesirable uses of our work (e.g. intellectual property theft) are targetable legally, while
desirable ones (e.g. malware detection, IDE tools) can be seen as primarily technical problems.
Therefore, we believe that the impact of our work will be mostly positive.

2 Related work

Masked Language Modeling pre-training. Large pre-trained transformers such as BERT Devlin
et al. [2018] or RoBERTa |L1u et al.|[2019] led to significant improvements in the majority of natural
language processing tasks. The quality of pre-training mainly comes from the MLM objective (i.e.
the cloze task), that allows the model to make predictions by leveraging left and right contexts, unlike
causal language modeling (CLM) where the model predictions are only conditioned on previous
words. In MLM, the model takes as input a sentence and uniformly selects 15% of its tokens. Of the
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Figure 1: Illustration of the MLM and DOBF objectives. Given an input function, the masked language
modeling (MLM) task randomly samples tokens to mask out. With source code, a large fraction of these tokens
are related to the language syntax (e.g. commas, parentheses, etc.) that are trivial for the model to predict, and
provide a poor training signal. Instead, we propose to obfuscate the code by masking the name of functions and
variables, and to train the model to recover the original function by deobfuscating the code (DOBF). When a
variable is masked out, we mask all occurrences of this variable with the same mask symbol (e.g. all occurrences
of “visited” are replaced by “V0”) to prevent the model from copying names. The DOBF objective is more
difficult and provides a better learning signal.

selected tokens, 80% are replaced by a special symbol [MASK], 10% are left unchanged, and the
remaining 10% are replaced by random tokens from the vocabulary. The MLM objective consists in
recovering the initial sentence given the corrupted one. Lample and Conneau|[2019] noticed that the
masked words are often easy to predict, and proposed to sample the 15% masked words according
to their frequencies instead of uniformly. This way, rare words are sampled more often, making the
pre-training task more difficult for the model, which results in a better learning signal and faster
training. [Sun et al.|[2019] also noticed that recovering the tokens masked by MLM is too simple in
some contexts (e.g. predicting the two tokens “Harry Potter” is much harder than predicting only
“Harry” if you know the next word is “Potter””). To address this issue, they proposed to mask phrases
and named entities instead of individual tokens. Joshi et al. [2020] and [Song et al. [2019] made
a similar observation and proposed to mask random spans of text. They showed that this simple
modification improves the performance on many downstream NLP tasks.

Alternative objectives. Other pre-training objectives have been proposed in addition to MLM.
For instance, |[Devlin et al.|[2018] also uses the next sentence prediction (NSP) objective, a binary
classification task that consists in predicting whether two input sentences follow each other in
the original corpus. The NSP objective was originally designed to improve the performance on
downstream NLP tasks, but recent studies Lample and Conneau [2019], Liu et al. [2019] showed that
training MLM on a stream of sentences to leverage longer context, and removing the NSP objective
improves the quality of pre-training. To improve the sample-efficiency of MLM (where only 15% of
tokens are predicted), Electra |Clark et al.|[2020] proposed to replace (and not mask) some tokens with
plausible alternatives, and to train a network to detect the tokens that have been replaced. They showed
that this new Replaced Token Detection (RTD) objective matches the performance of RoOBERTa while
using four times less computational resources. [Dong et al.|[2019] proposed a model that combines
multiple pre-training tasks, including bidirectional, but also left-to-right and right-to-left language
modeling objectives. [Lewis et al. [2019] also proposed different pre-training objectives, to detect
whether input sentences have been permuted, tokens have been deleted or inserted, etc.

Code Generation Pre-training. Recent studies showed that pre-training methods developed for
natural language processing are also effective for programming languages. For instance, [Feng et al.
[2020] proposed CodeBERT, a RoBERTa-based model trained on source code using the MLM and
RTD objectives. With GraphCodeBERT |Guo et al. [2020], the MLM objective is complemented by
an edge-prediction objective, in which the model predicts edges in the data flow graph to make the



model understand the structure of the code. InJain et al. [2020], a model is trained on javascript
code using a contrastive loss ensuring that the representations are robust to some semantic-preserving
transformations. They showed that their model performs well on downstream code generation tasks
and outperforms previous pre-training approaches. [Kanade et al. [2020] applied MLM and the
next sentence prediction objectives to pre-train models on Python code. More recently, Roziere
et al.|[2020] applied the unsupervised machine translation principles of Lample et al. [2018alb] to
monolingual source code from GitHub. They showed that the resulting model, TransCoder, was able
to translate source code between Python, Java, and C++, in a fully unsupervised way. In this paper,
we propose to use a code-specific objective to better pre-train models designed to be fine-tuned on
code generation tasks: code deobfuscation. Machine learning is frequently used on tasks involving
programming languages, including code completion |Li et al. [2018], [L1u et al. [2020], Kim et al.
[2020], Svyatkovskoy et al. [2020], bug detection and code repair |Allamanis et al.|[2018], [Wang
et al. [2017],|Chen et al. [2019], Murali et al. [2020], [Tufano et al. [2019], Tarlow et al. [[2020], code
summarization |Alon et al. [2019a], [Hu et al.|[2018], Xie et al. [2021], clone detection |Wei and Li
[2017],|A1n et al. [2019], [Wang et al. [2020]], code search|Gu et al.|[2018]], [Cambronero et al. [2019]
and code translation |Chen et al. [2018], [Roziere et al.|[2020]. Most of these tasks can benefit from
pre-trained models that capture the semantics of the code.

Code deobfuscation. Empirical studies show that naming conventions and the use of informative
identifier names make code more understandable, easier to maintain and lead to fewer bugs Takang
et al.|[1996], [Liblit et al.|[2006], Butler et al.|[2009]. It motivated other works studying deobfuscation
of identifier names and identifier name proposal using n-grams Allamanis et al.| [2014, [2015],
probabilistic models [Raychev et al.|[2015], Bichsel et al. [2016], [Vasilescu et al.|[2017],/Alon et al.
[2018], and recurrent neural networks Bavishi et al. [2018], [Lacomis et al. [2019]. |Alon et al.
[2018] extract features from Abstract Syntax Tree (AST) paths and train a Conditional Random
Field to predict variable and method names, and infer types for several languages. DIRE |Lacomis
et al. [2019] uses a commercial decompiler to obtain C code with uninformative identifier names
from binaries. They also use AST features, which go through a Graph Neural Network trained
jointly with a LSTM model on the sequence of C tokens to retrieve relevant identifier names. More
recently, David et al.|[2020] used a transformer together with augmented representations obtained
from static analysis to infer procedure names in stripped binary files. These models are already used
to understand obfuscated and compiled source code. However, none of these studies investigated the
use of deobfuscation for model pre-training.

3 Model

3.1 MLM and denoising for Programming Languages

A countless number of pre-training objectives have been introduced in the literature Devlin et al.
[2018], (Clark et al.|[2020], |[Lewis et al./[2019],|L1iu et al. [2019], Dong et al. [2019]. Most of them
rely on hyper-parameters and seemingly arbitrary decisions (Should we mask individual tokens or
spans? Which fraction of them? What do we do with masked out tokens? etc.). These choices are
typically based on intuition and validated empirically on natural language processing tasks. However,
source code is much more structured than natural language, which makes predicting masked tokens
much easier for programming languages.

The first row in Figure|l|shows an example of input / output for the MLM objective. We can see that
the majority of tokens are composed of Python keywords or symbols related to syntax: , [ while
= if ) return. These symbols are easy to recover, and a model will quickly learn to predict them
with perfect accuracy. This effect is accentuated by the verbosity of the language. For instance,
we would see significantly more of these tokens in Java. Retrieving the obfuscated graph token
is also relatively simple: the model only needs to retrieve the most relevant variable in the scope.
More generally, retrieving an identifier name is often easy when given its full context, including its
definition and usages. The denoising-auto-encoding (DAE) objective [Vincent et al.|[2008], which
trains an encoder-decoder model to retrieve masked token and recover randomly modified input
sentences, is quite similar to MLM and the model can also retrieve identifier names easily by finding
their definition or usages. Overall, we suspect that the MLM objective is too simple in programming
languages and we introduce a new objective, DOBF, which encourages the model to learn a deeper
understanding of code semantics.



3.2 Deobfuscation Objective

Instead of MLM, we propose a new pre-training objective, DOBF, that leverages the particular
structure of programming languages. We obfuscate code snippets by replacing class, function and
variable names with special tokens, and train a model to recover the original names. When an
identifier is selected, all of its instances in the code are replaced by the same special token. This
differs from MLM where the name of a variable can appear multiple times while being masked
a single time. For instance, in Figure [T, DOBF will replace the two occurrences of node by the
same symbol V5, while MLM will only mask one of these occurrences. As a result, the fraction of
meaningful tokens masked by the objective is language independent: for more verbose languages
(e.g. Java), the less informative syntax-related tokens will not be masked out by the DOBF objective.

Each identifier is replaced with probability p., s € [0, 1]. We ensure that the original input is modified:
if no identifier is replaced, we draw a random one to obfuscate. When p,;,; = 0, we always obfuscate
exactly one random identifier in the input. When po,¢ = 1, we obfuscate all the identifiers defined in
the file. We ensure that the obfuscated code has the same behavior as the original. The second row in
FigureE shows an example of obfuscated code with po,r = 1, where we obfuscate a function bfs
which implements a breadth-first search. The function append is not obfuscated as it is a standard
Python function not defined in the file. The model is given the obfuscated code as input and has to
restore the original name of each special token CLASS_i, FUNC_i and VAR_i. In other words, the
model needs to output a dictionary mapping special tokens to their initial values.

Finding informative names for obfuscated identifiers requires the model to learn a deep understanding
of code semantics, which is desirable for a pre-training task. MLM will mask only some of the
occurrences of the identifiers and leave the other ones unchanged so that the model can simply copy
identifier names. In Figure [T, with MLM masking, the model can simply notice that a variable
named queue is called on the fourth line. Since the variable is not defined, the model can easily
guess that queue has to be defined on the third line, and infer the value of the corresponding [MASK]
token. With the deobfuscation objective, the model needs to analyze code patterns and understand
the semantics of the variable to infer that, since its elements are popped with . pop (0), the variable
V3 implements a queue. If its elements were popped with . pop (), our model would name it stack
instead of queue (c.f. Figure[7)in the appendix).

3.3 Implementation

Overall, the deobfuscation objective operates like a supervised machine translation objective, where a
seq2seq model is trained to map an obfuscated code into a dictionary represented as a sequence of to-
kens. At inference time, the model is able to suggest meaningful class, function and variable names for
a piece of code with an arbitrary number of obfuscated identifiers. Obfuscated classes, functions, and
variables, are replaced with associated special tokens: CLASS_O ... CLASS_N, FUNC_O ... FUNC_N
and VAR_O ... VAR_N. We serialize the output dictionary as a sequence of tokens where the entries
are separated by a delimiter symbol |.

4 [Experiments

We train DOBF with the deobfuscation objective. First, we evaluate our model on two straightforward
deobfuscation applications. Then, we show its performance on multiple downstream tasks.

4.1 Deobfuscation

We evaluate our model on two applications of the deobfuscation task: when p,;; = 0 (the model has
to retrieve a single identifier name), and popy = 1 (the model has to retrieve all the identifier names).

Deobfuscating a single identifier When p,,; = 0, only one identifier is obfuscated. In that case,
the model has to propose a relevant name for that identifier using the rest of the non-obfuscated file
as context. It can be used as a tool that suggests relevant variable names. Integrated development
environments (e.g. PyCharm, VSCode) already perform this task, often using handcrafted rules.

*In the obfuscated example given in Figure [I| the model is trained to generate: FUNC_O bfs | VAR_O
graph | VAR_1 root | VAR_2 visited | VAR_3 queue | VAR_4 neighbor | VAR_5 node.



Deobfuscating all identifiers Obfuscators are commonly used to make code smaller and more
efficient or to protect it by making it more difficult to understand and reuse. They typically apply
several transformations, one of them being to replace every identifier name with short and uninfor-
mative names (e.g. a, b, ¢). In our work, such a transformation corresponds to obfuscating a file
with po,s = 1. To measure our model’s ability to revert the obfuscation operation, we evaluate its
accuracy when obfuscating all identifier names. Another application would be to help understand
source code written with uninformative variable names.

Evaluation metric We evaluate the ability of our model to retrieve identifier names from the
original non-obfuscated code. We report the accuracy, which is the percentage of recovered tokens
that exactly match the ground truth. Following previous works |Allamanis et al. [2015,2016], Alon
et al.|[2018,2019b], we also report the subtoken score, a more flexible metric which computes the
precision, recall, and F1 scores for retrieving the original case-insensitive subtokens. Each token is
broken into subtokens using uppercase letters for camlCase and underscores for snake_case. For
instance, decoderAttention would be considered to be a perfect match for decoder_attention
or attentionDecoder. attention would have a perfect precision but a recall of 0.5, so a F1 score
of 66.7. crossAttentionDecoder would have a perfect recall but a precision of %, corresponding
to a F1 score of 80.0. We compute the overall subtoken precision, recall and F1 scores averaged over
each file in our validation and test datasets.

4.2 Fine-tuning on downstream tasks

In order to evaluate DOBF as a pre-training model, we fine-tune DOBF on TransCoder and on three
tasks from CodeXGLUE [Lu et al.[[2021]], a benchmark for programming languages. The data, code
and models from CodeXGLUE and TransCoder are available respectively under the MIT and the
Creative Commons license. We only consider the Java and Python tasks with an encoder in the model
architecture for which the training, validation, and test sets are publicly available.

CodeXGLUE Clone Detection This task is a binary classification problem where the model has to
predict whether two code snippets are semantically equivalent. It is evaluated using the macro F1
score. The model is composed of a single encoder and a classification layer. An input consists in two
snippets of code, which are concatenated before being fed to the model. This task is available in Java.

CodeXGLUE Code Summarization Given a code snippet, the model is trained to generate the
corresponding documentation in natural language. The architecture is a sequence-to-sequence
transformer model evaluated using BLEU score [Papineni et al. [2002]. The dataset includes both
Java and Python source code.

CodeXGLUE NL Code Search Given a code search query in natural language the model has to
retrieve the most semantically related code within a collection of code snippets. This is a ranking
problem evaluated using the Mean Reciprocal Rank (MRR) metric. The model is composed of two
encoders. The natural language query and the code are encoded separately, and we compute the dot
product between the first hidden states of the encoders’ last layers. This task is available in Python.

TransCoder TransCoder Roziere et al.| [2020] is an unsupervised machine translation model which
translates functions and methods between C++, Java, and Python. A single seq2seq model is trained
for all languages. In the original work, TransCoder is pre-trained with MLM, and trained with
denoising auto-encoding and back-translation. TransCoder is evaluated using the Computational
Accuracy metric, which computes the percentage of correct solutions according to series of unit tests.
We only consider a single model output (CA@1), with beam sizes of 1 and 10.

4.3 Experimental details

Model Architecture We consider a seq2seq model with attention, composed of an encoder and a
decoder using a transformer architecture [Vaswani et al. [2017]. We train models with the same
architecture and tokenizer as CodeBERT |[Feng et al.| [2020] and GraphCodeBERT |Guo et al.| [[2020]]
in order to provide fair comparisons: 12 layers, 12 attention heads and a hidden dimension of 768.
We also train a model with the same parameters as TransCoder (see Figure[d]in the Appendix).

Training dataset As in|Roziere et al.| [2020], we use the GitHub public dataset available on Google
BigQuery and select all Python and Java files within the projects with licenses authorizing use for



def FUNC_O(VAR_O, VAR_1): def bfs(graph, start):

VAR_2 = [VAR_1] visited = [start]
VAR_3 = [VAR_1] queue = [start]
while VAR_3: while queue:
VAR_4 = VAR_3.pop(0) node = queue.pop(0)
for VAR_5 in VAR_O[VAR_4]: for neighbor in graph[node]:
if (VAR_5 not in VAR_2): if (neighbor not in visited):
VAR_2.add(VAR_5) visited.add(neighbor)
VAR_3.append (VAR_5) queue. append (neighbor)
return VAR_2 return visited

Figure 2: Full deobfuscation of a breadth-first-search function by DOBF. The code on top has been fully
obfuscated. The code on the bottom was recovered using DOBF by replacing the function name and every
variable name using the generated dictionary. DOBF is able to suggest relevant function and variable names. It
makes the code much more readable and easier to understand.

research purposes. Following [Lopes et al.|[2017] and |Allamanis|[|2019], we remove duplicate files.
We also ensure that each fork belongs to the same split as its source repository. We obfuscate each file
and create the corresponding dictionary of masked identifier names, resulting in a parallel (obfuscated
file - dictionary) dataset of 19 GB for Python and 26 GB for Java. We show some statistics about this
dataset in Table[3]in the appendix. For comparison purposes, we apply either the BPE codes used by
Roziere et al.|[2020] or by [Feng et al.|[2020]. In practice, we train only on files containing less than
2000 tokens, which corresponds to more than 90% and 80% of the Java and Python files respectively.

Training details We train DOBF to translate obfuscated files into lists of identifier names. During
DOBEF training, we alternate between batches of Java and Python composed of 3000 tokens per GPU.
We optimize DOBF with the Adam optimizer |Kingma and Ba|[2014] and an inverse square-root
learning rate scheduler [Vaswani et al. [2017]. We implement our models in PyTorch |Paszke et al.
[2019] and train them on 32 V100 GPUs for eight days. We use floatl6 operations to speed up
training and to reduce the memory usage of our models. We try different initialization schemes:
training from scratch and with a Python-Java MLM model following |Roziere et al.|[2020]]. We train
DOBF with three different obfuscation probability parameters: p,yy € {0,0.5,1}. For each p,p ¥
value, we train models with multiple initial learning rates ranging from 10~ to 3.10~* and select the
best one using the average subtoken F1 score computed on the validation dataset.

Fine-tuning details Depending on the fine-tuning tasks, we consider different model architectures:
seq2seq models with encoder and decoder, architectures with two encoders or a single encoder. In
all cases, we initialize the encoders of these models with the encoder of DOBF and fine-tune all
parameters. For fair comparison, we rerun all baselines, and train models with the same architectures,
number of GPUs, batch sizes and optimizers. For CodeXGLUE, we noticed that the tasks are quite
sensitive to the learning rate parameter used during fine-tuning. We perform a grid search on five
learning rate parameters ranging from 5.107% to 10~* and we select the best parameter on the
validation dataset. For TransCoder, we use a learning rate of 10~* as in Roziere et al. [2020] and we
train the models for 2 day on 32 Tesla V100 GPUs.

5 Results

5.1 Deobfuscation

In Table[T, we evaluate the ability of our model to recover identifier names, either when only one
identifier is obfuscated (po,y = 0) or when all identifiers are obfuscated (popy = 1), for models
trained with po,y € {0,0.5,1}. Even when evaluating with poy¢ = 0, training with poyp = 0 is
less efficient than p,, s = 0.5 since the model is only trained to generate a single variable for each
input sequence. Training with po,y = 0.5 is a more difficult task that requires the model to learn and
understand more about code semantics. Forcing the model to understand the structure of the code may
be useful even when testing with p,, s = 0, as some identifier names cannot be guessed only from the
names of other identifiers. When DOBF has to recover a fully obfuscated function, it obtains the best
accuracy when trained with p,, s = 1. It manages to recover 45.6% of the initial identifier names. We
also observe that, for every configuration, initializing DOBF with MLM improves the performance.

Figure2]shows an example of a fully obfuscated function recovered by our model. DOBF successfully
manages to understand the purpose of the function and to predict appropriate variable names. Figure[3]
shows examples of function name proposal by DOBF for functions implementing matrix operations in



Input Code

Function Name Proposals

def FUNC_O (m1, m2):

assert ml.shape == m2.shape matrix_add 25.9%
n, m = ml.shape matrixAdd 22.5%
res = [[0 for _ in range(m)] for _ in range(n)] matrixadd 18.8%
for i in range(n): matrix_sum 16.7%
for j in range(m): matrix_addition 16.1%
res[il [j] = m1[i][j] + m2[i][j]
return res
def FUNC_O (matrix): transpose 36.7%
n, _ = matrix.shape rotate 29.5%
for i in range(n): rotate_matrix 17.1%
for j in range(i,n): symmetric 8.9%
matrix[i] [j], matrix[jI1[i] = \ rotate_matrix_by_row 7.7%
matrix[j][i], matrix[i][j]
def FUNC_O (m1, m2):

nl, ml = ml.shape
n2, m2 = m2.shape matrix_product 28.8%
assert n2 == ml mat_mult 23.8%
res = [[0 for _ in range(m2)] for _ in range(n1)] matmul_mat 17.0%
for i in range(nl): matprod 16.0%
for j in range(m2): matrixProduct 14.4%

res[il [j] = sum([m1[i] [k] * m2[k] [j]

for k in range(n2)])
return res

Figure 3: Additional examples of function name proposals for matrix operations in Python. DOBF is
able to find the right name for each matrix operation, showing that it learned to attend to the most important parts
of the code. Even when the functions are similar, DOBF successfully and confidently (c.f. scores) understands
the semantics of the function and its purpose.

Table 1: Results on partial and full deobfuscation. Token accuracy and subtoken F1 score of DOBF evaluated
with popy = 0 (i.e. name proposal, where a single token is obfuscated) and po,y = 1 (i.e. full deobfuscation,
where all tokens are obfuscated). We consider models trained with different obfuscation probabilities poy .
DOBFy 5 performs well for both tasks, and it even performs better than DOBF for Identifier Name Proposal.
DOBF, and DOBF; perform poorly when evaluated on other p,, s parameters. Pre-training DOBF with MLM
further improves the performance.

Eval pops = 0 Eval pops = 1

Acc F1 Acc F1
DOBF, 56.3 68.0 04 0.9
DOBF 5 61.1 71.2 41.8 54.8
DOBF; 18.1  27.0 45.6  58.1
DOBFj 5 init MLM 67.6 76.3 45.7  58.0
DOBF; init MLM 20.0 28.3 49.7 61.1

Python. We observe that DOBF manages to identify the key tokens and to properly infer the purpose
of similar but very different functions. Figures 4] [5] and [6]in the appendix show additional examples
of function name proposals by DOBF in Java and Python. Figure[/|in the appendix shows additional
examples where we show that DOBF also leverages non-obfuscated identifier names to understand
the meaning of input functions. Figures[8 and[9 in the appendix show examples of deobfuscation
of fully obfuscated Python code snippets using DOBF. It is able to understand the semantics and
purposes of a variety of obfuscated classes and functions, including a LSTM cell.

5.2 Downstream tasks

Our results on downstream task using the same architecture as CodeBERT and GraphCodeBERT are
shown in Table 2 and discussed below. Our results using the architecture of TransCoder are shown
on Table E in the Appendix. For fine-tuning, we considered models pre-trained with p,,; = 0.5



Table 2: Results on downstream tasks for different pre-training configurations. Models pre-trained with
DOBEF initialized with MLM significantly outperform both CodeBERT and models trained with MLM only.
DOBF+DAE outperforms other models on every task but clone detection, on which CodeBERT scores much
higher than our MLM. It outperforms GraphCodeBERT by 0.02 MRR (+5.3%) on natural language code search
(NLCS), and by 4.6% in Java — Python computational accuracy with beam size 10 (+12.2% correct translations).
The tasks where MLM provides large improvements over the transformer baseline (first row, no pre-training) are
also the tasks where DOBF provides the largest gains (clone detection, NL code search, unsupervised translation).
The DAE baseline (initialized with MLM) already provides substantial improvements over MLM on most tasks
and yields the best results for Python to Java translation while its results are poor for Java to Python.

Clone Det  Code Sum Java Code Sum Python =~ NLCS | Python—Java Java—Python

(F1 score) (BLEU) (BLEU) (MRR) (CA@I]) (CA@l)
k=1 k=10 k=1 k=10
Transformer 88.14 16.58 16.43 0.025 240 284 29.0 29.7
MLM 91.89 18.59 17.95 0.308 | 44.8 454 345 35.6
DAE 96.30 19.19 18.28 0.380 | 48.3 49.2 321 328
CodeBERT 96.50 18.25 18.22 0.315 | 40.8 45.6 36.5 36.7
GraphCodeBERT 96.38 18.78 18.51 0377 | 443 441 356 378
DOBEF init scratch 96.52 18.19 17.51 0.272 | 439 441 352  34.7
DOBF 95.87 19.05 18.24 0.383 | 435 44.1 387 40.0
DOBF+DAE 95.82 19.36 18.58 0.397 | 46.6 473 40.6 424

and popy = 1. Since they gave very similar results on downstream tasks, we only use models
pre-trained with p,,; = 0.5 in the rest of the paper. We initialize DOBF with MLM as it leads to
better performance on our deobfuscation metrics. We still consider DOBF initialized randomly as a
baseline in Table[2, We also consider a version where DOBF is trained together with a denoising
auto-encoding (DAE) objective |Vincent et al.| [2008], which was shown to be effective at learning
code representations in|Roziere et al.|[2020]. With DAE, the model is trained to recover the original
version of a sequence which has been corrupted (by removing and shuffling tokens). As baselines,
we consider a randomly initialized model and a model pre-trained with MLM only, and a model
pre-trained with denoising and initialized with MLM. For CodeXGLUE tasks, we also consider
CodeBERT as a baseline. We compare results for DOBF trained from scratch and DOBF initialized
with MLM, and report results in Table[2! The randomly initialized model is useful to measure the
importance of pre-training on a given task. Pre-training is particularly important for the NLCS task:
without pre-training, the model achieves a performance of 0.025 MMR while it goes up to 0.308 with
MLM pre-training. The main differences between our MLM baseline and CodeBERT, are that 1)
CodeBERT was trained on a different dataset which contains functions with their documentation, 2)
it uses an additional RTD objective, and 3) is initialized from a RoOBERTa model. Although code
summarization and NL code search involve natural language and may benefit from CodeBERT’s
dataset that contains code documentation, we obtained very similar results on this task using a simpler
dataset. However, our MLM baseline did not match their performance on clone detection. We also
tried to initialize our MLM model with RoBERTa, but did not observe any substantial impact on the
performance on downstream tasks.

The models based on DOBF obtain state-of-the-art results on all downstream tasks, outperforming
GraphCodeBERT, CodeBERT and MLM. The deobfuscation objective is already effective as a
pre-training task. Even when initialized randomly, it leads to results comparable to MLM on most
tasks and is much more effective on clone detection. The DOBF+DAE model outperforms MLM on
all downstream tasks, the major improvement being for NL code search, which is also the task that
benefited the most from MLM pretraining For unsupervised translation, DOBF+DAE increases the
computational accuracy by 1.9% when translating from Python to Java, and by 6.8% when translating
from Java to Python with beam size 10. Also, DOBF beats CodeBERT by a wide margin on NL
code search and code summarization, showing that programming language data aligned with natural
language is not necessary to train an effective model on those tasks. DOBF initialized with MLM and
combined with DAE yields higher scores than both DOBF alone and MLM, on most tasks. It shows
that objectives such as MLM and DAE that provide unstructured noise are complementary to DOBF.



6 Conclusion

In this paper, we introduce a new deobfuscation objective and show that it can be used for three
purposes: recover fully obfuscated code, suggest relevant identifier names, and pre-train transformer
models for programming language related tasks. Although it does not require any parallel corpora
of source code aligned to natural language, methods based on DOBF outperform GraphCodeBERT,
CodeBERT and MLM pre-training on multiple downstream tasks, including clone detection, code
summarization, natural language code search, and unsupervised code translation. These results show
that DOBF leverages the particular structure of source code to add noise to the input sequence in a
particularly effective way. Other noise functions or surrogate objectives adapted to source code may
improve the performance further. For instance, by training model to find the type of given variables,
the signature of a method, or to repair a piece of code which has been corrupted.

Since models pretrained on source code benefit from structured noise, it would be interesting to see
whether these findings can be applied to natural languages as well. Although ambiguous, natural
languages also have an underlying structure. Leveraging the constituency or dependency parse trees
of sentences (as opposed to abstract syntax trees in programming languages) may help designing
better pre-training objectives for natural languages.
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