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1. Introduction
In theoretical materials science, combining tra-

ditional modeling methods like density functional
theory (DFT) with data-driven approaches has be-
come one of the main trends of the last decade.
Machine learning models are now widely used for
structure-to-property predictions, modeling inter-
atomic interactions, and generating new molecules
and crystal structures. Among these, graph neural
networks (GNNs) stand out as a particularly popular
choice in many such applications [1]. The possibil-
ity of DFT/GNN combinations is caused by data ac-
cumulation led to creation a number of general pur-
pose (theMaterials Project, AflowLib, etc.) databases.
For specific problems, e.g., modeling catalytic pro-
cesses [2], doping effects on phase stability [3], etc.,
there are often no ready-made data collections, and
it is necessary to create new ones to build custom
data-driven solutions. Therefore, the development
of DFT/GNN approaches and their implementation
in a data-efficient manner are of particular interest.

2. Substantial section
2.1 Related works and data
Structural defects and chemical disorder can in-

fluence or even determine the properties of many
functional materials that are important for their
practical applications. From a modeling perspec-
tive, the main challenge is computational predic-
tion of the properties, overcoming high combinato-
rial complexity in disordered structures [4]. There-
fore, the need to develop newdatasets and heuristics
for reasonable and smart selection of training data
and search spaces, is beyond doubt. One of the re-
cent examples of such works is the 2D Material De-
fect (2DMD) dataset [5]. This collection includes DFT
properties of six base monolayers – MoS2, WSe2,
hBN,GaSe, InSe, andblackphosphorus –with vacan-
cies and substitutions.
Whenmodeling chemicalmodifications, compet-

ing phases of the same or different structural types
are important for assessing thermodynamic stabil-
ity within the standard convex hull approach [6].
Such phases, despite having a chemical composition
different from the target compound, can influence
the reference (convex hull) energies throughout the
search space, and therefore their determinationmay
require a separate study. In this study, we examine
the 2DMD dataset from this perspective.

2.2 Additional data
For easy access and re-evaluation of thermody-

namic properties of 2DMD, the previously developed
Python tool – 2DMD at a Glance [7] – is used. Among
the 2DMD base monolayers, the subsets with the
MoS2 – WSe2 and GaSe – InSe compositions (here-
after referred to as MeX2 andMeX sets, respectively)
can be combined because of the same structural
types. The corresponding 2DMD entries represent
binary, ternary, and quaternary compounds that can
be shown in a 3D simplex – amultidimensional poly-
tope suitable for mapping chemical compositions –
as depicted in Fig. 1 forMeX2. Due to theminormod-
ification of the chemical composition at both the low
(LDC) and high defect contents (HDC) introduced in
the original work [5], the 2DMD entries combined in
the above manner represent narrow ranges of com-
positions in the simplex.

Fig. 1: 3D simplex of quaternary Mo–W–S–Se sys-
tems considered in this study and loaded from the
2DMD dataset [5]

In this study, we address thermodynamic proper-
ties within the inner part of the simplex (see Fig. 1),
i.e. potential competing phases for the 2DMD struc-
ture with the same structural type, but in wider
chemical compositions. Since in practice thismeans
accounting for up to 100% of the defect content, we
create a set of competing phases and develop a hy-
brid DFT/GNN approach to efficiently estimate its
thermodynamic properties.
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To keep the combinatorial complexity reasonable
for the entire screening space, 2x2x1 supercells are
set for the chosen monolayers. The only limitation
in generating complete composition/configuration
spaces (CCSs) is the absence of more than half of
the vacant positions in the both metallic and non-
metallic sublattices. Thus, we exclude from further
consideration entries for which DFT relaxation may
lead to significantly different structural types and
chemical compositions compared to the selected
base monolayers. Despite the relatively small super-
cells and the above-mentioned vacancy content lim-
itation, all possible chemical modifications of MeX2

amounted to a total of 11159 structures, if only sym-
metrically nonequivalent ones are considered. For
the MeX set, this results in 797500 nonequivalent
structures.
The former introduced set is convenient for de-

veloping and testing the approach to predicting the
thermodynamic properties of competing phases.
The MeX set, in turn, is of interest for further ap-
plication of the developed approach in data-efficient
manner, due to the obvious impossibility of carry-
ing out DFT evaluation of its entries completely. The
assessment of thermodynamic properties in the de-
veloped hybrid approach is based on a combina-
tion of DFT modeling and the use of structure-to-
property predictions (the Allegro [8] and NequIP [9]
GNNs). Universal interatomic potentials are also
considered as an independent branch of this re-
search and demonstrate similar quality of predic-
tions.

3. Results and discussion
Using the high-symmetry (HS) samples of the

introduced CCSs as training sets, we obtain the
RMSE scores collected in Table 1 for the MeX2 low-
symmetry (LS) hold out test structures. The same ar-
chitectures trained on the augmented 2DMD targets
– formation energies with respect to the neat con-
stituents – are considered additionally.

Table 1: Test scores within the developed DFT/GNN
approach applied to theMeX2 set part comprising
structures with 10+ atoms.

Training
dataset
(structures)

Pre-
training

Allegro
RMSE,
eV/atom

NequIP
RMSE
eV/atom

2DMD – 0.064 0.067
(ca. 13K) Aflow 0.084 0.115
2DMD (LDC) – 0.069 0.093
(ca. 12K) Aflow 0.097 0.201
2DMD (HDC) – 0.069 0.055
(1000) Aflow 0.088 0.158
This work – 0.075 0.074
(492) Aflow 0.079 0.073

The lowest errors correspond to the models
trained on the 2DMD subsets – 1000 HDC and 12K+

LDC structures – clearly demonstrating its practical
applicability. The developed approach shows com-
parable results, but requires at least two times less
data, providing opportunities for subsequent im-
provements of the quality of predictions. Indeed,
a comparison of the obtained scores and the target
variations demonstrates the need for such an im-
provement regardless of the scheme used. First, it
may allow a rapid re-evaluation of thermodynamic
properties in terms of defect stability and drawing
conclusions about the magnitude of the influence of
competing phases. Secondly, the obtained most sta-
ble structures and energetically favorable arrange-
ments of defects canbe considered as an initial guess
for further in-depth search for stable structures of
defects with remarkable properties. The defect for-
mation energies from the 2DMD data set and the en-
ergy above the 4D convex hull of this work are com-
pared in Fig. 2.

Fig. 2: Comparison of the defect formation energies
from the 2DMD dataset and corresponding ener-
gies above the convex hull obtained in this work

As can be clearly seen in Fig. 2 (the MoS2 set),
omitting competing phases can result in overesti-
mated (up to 75 meV/atom) values of defect forma-
tion energies. Among the MoS2, WSe2, InSe, and
GaSe base materials studied, such an effect is ob-
served for three out of four sets already at the stage
of generating training data. Moreover, the negative
formation energies (see the WSe2 set in Fig. 2) can
correspond to the positive energies above the con-
vex hull, which directly points at the presence of a
competing phase defining the convex hull.
The authors believe that the developed approach

can become a tool for finding competing phases and
analyzing their influence in cases where the data ob-
tained using DFT is insufficient for the purposes of
reliable training of machine learning models.
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