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ABSTRACT

Supervised continual learning (CL) typically assumes that labels are available im-
mediately after each input arrives. This is unrealistic in many streaming applica-
tions, where annotation latency is the norm. When labels arrive late, supervision
for past tasks can spill into later tasks, entangling training signals and degrading
current performance. We study this delayed-label setting and analyze how differ-
ent delay regimes impact online CL. We then introduce a delay-aware instance
selection strategy that prioritizes which late-labeled examples to use for updates
based on a simple, model-utility criterion. By selecting only the most beneficial
delayed instances, our approach accelerates performance recovery after task shifts
and reduces the training budget when labels from multiple past tasks arrive simul-
taneously. Our contributions are: (i) a clear problem formulation and evaluation
protocol for online continual learning with delayed labels; (ii) an empirical anal-
ysis across delay regimes showing how label latency mixes supervision across
tasks; and (iii) a delay-aware instance-selection method compatible with replay-
based CL. Experiments indicate consistent improvements in current-task accuracy
and stability, with fewer update steps than delay-agnostic baselines.

1 INTRODUCTION

Supervised Learning is an Artificial Intelligence paradigm that presented remarkable results for last
decades due to the ability of modeling data by mapping features and labels f : X → Y (Bishop &
Nasrabadi, 2006; Mitchell, 1997). However, in many real-world deployments, systems operate on
non-stationary data streams in which the underlying distribution drifts over time (Gama et al., 2014).
In these settings, models must update continually to remain accurate on the current distribution, a
challenge studied in Online Continual Learning (OCL) (Delange et al., 2021).

Although the OCL literature has advanced considerably, introducing methods that learn from un-
bounded data streams and progressively extend acquired knowledge while mitigating catastrophic
forgetting (McCloskey & Cohen, 1989), most advances implicitly assume that labels are immedi-
ately available. This assumption is unrealistic in many real-world pipelines, where annotation is
delayed by human labeling cycles, batched ingestion, privacy reviews, or edge-to-cloud transfer.
When labels arrive late, updates for earlier inputs spill into later phases of the stream, interfering
with learning on the current task.

Concretely, inputs xt are observed at time t, but their labels yt become available at t+∆t, with ∆t >
0 drawn from a delay regime. Under distribution shifts (task boundaries), late supervision from
earlier tasks spills into later tasks, entangling training signals across tasks and degrading current-
task performance and stability. Figure 1 illustrates this effect: relative to immediate labels, delayed
labels depress accuracy and slow recovery after a shift.

Our empirical study shows that the nature of the delay regime matters. With small delays, supervi-
sion drift is mild but non-negligible; with moderate delays, the training signal substantially overlaps
multiple tasks; with large or bursty delays, the learner faces update floods where labels from several
past tasks arrive simultaneously. In all cases, blindly consuming every delayed label wastes updates
and can bias the model away from the current distribution.
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Figure 1: Effect of label latency on online CL. Orange ( ): accuracy per task with immediate
labels. Blue ( ): accuracy when labels arrive late, causing updates for past inputs to occur in later
tasks and depressing current-task performance.

To address this, we introduce a plug-and-play delay-aware instance selection strategy. Rather than
updating on all delayed labels, we estimate a model-utility criterion for each labeled past instance
and select only those expected to maximize current progress. This prioritization accelerates recovery
after task shifts and reduces the training budget, especially under bursty arrivals. Our method is
architecture-agnostic and compatible with standard replay-based CL pipelines.

Our contributions are threefold: (i) a clear problem formulation and evaluation protocol for online
continual learning with delayed labels; (ii) an empirical analysis across delay regimes that quantifies
how label latency mixes supervision and impacts stability; and (iii) a delay-aware instance-selection
method that can be dropped into replay-based CL without modifying model architectures.

Experiments indicate consistent improvements in current-task accuracy and stability with fewer up-
date steps than delay-agnostic baselines, demonstrating that carefully choosing which delayed in-
stances to learn from is both effective and efficient. We hope this setting and baseline will help the
community systematically study label latency in OCL and develop delay-robust learners.

2 PROBLEM DEFINITION

In OCL, the learner is confronted with a potentially never-ending stream of data. At every time step,
a sequence of labeled examples (xt, yt), with xt ∈ X and yt ∈ Y , is produced from a distribution
Dt, which may shift to Dt+1 at a task switch, requiring the learner to adapt to new data while
mitigating forgetting of previously acquired knowledge.

Following the approach presented by Caccia et al. (2021), the learner is neither explicitly informed
when a task switch occurs nor provided with a task identifier during training. On the other hand, in
the OCL setting, a model receives a single pass over data stream and must update on the fly under
limited memory and compute. We focus on the Online Task-Incremental setting, in which new tasks
arrive over time with disjoint class sets and evaluation is performed per task, i.e., The task identity
is accessible exclusively at test time and is used for evaluation purposes (Mai et al., 2022). In our
setting, predictions are made across the classes of all tasks. This more challenging scenario is often
termed the single-headed setup, where a single output head covers all task classes (Van de Ven et al.,
2020; Farquhar & Gal, 2018).

In the recent OCL literature, most algorithms are designed for streams where the label becomes
available immediately after prediction, that is, the learning process assumes no delay in label avail-
ability (Davalas et al., 2024; Van de Ven et al., 2022; Soutif-Cormerais et al., 2023; Bidaki et al.,
2025). This assumption often fails in real-world systems, since labels may be delayed or missing
due to transmission failures, data acquisition errors, or limited access to qualified annotators.

The relationship between the presence of labels and their availability can be formally expressed
as a temporal-mapping function T (·) that precisely extracts discrete time unit t when xt and yt are
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available. Based on this function, Gomes et al. (2022) identifies four distinct definitions that describe
the relationships between data and label availability in streaming data scenarios:

1. Immediate and fully labeled: ∀xt ∈ X, ∀yt ∈ Y, ∆t = T (yt)−T (xt) = 1. The latency
validation between xt and yt corresponds exactly to a one-time unit.

2. Delayed and fully labeled: ∀xt ∈ X, ∀yt ∈ Y, ∆t = T (yt)− T (xt) = R, where R is a
random variable that represents the discrete delay between xt and yt. The discrete delay is
limited by the finite range R ∈ Z+.

3. Immediate and partially labeled: Similarly to 1, the latency validation is a one-time unit.
However, only partially X has a corresponding entry on Y . In that case, the sequence of
labeled examples is ∃xt ∈ X, ∄yt ∈ Y, (xt, ?), ∆xt

= T (yt)− T (xt) = ∞.

4. Delayed and partially labeled: Based on 2 and 3, some labels are delayed, and others are
missing (infinitely delayed).

In this work, we focus on Scenario 2, and we model the availability of current and delayed instances
as mini-batches. Let the stream be partitioned into a sequence of tasks T = {τ1, τ2, . . .}, arriving
sequentially over time. Each task τi ∈ T contains instances whose labels belong to a subset Ci ⊆ C,
where C is the global label set and |Ci| = mi denotes the number of classes in the i-th task. Let
B = (B1,B2, . . .) denote the sequence of mini-batches. During the time interval of task τi, the
learner receives the contiguous subsequence

Bi:i+Li−1 = (Bi,Bi+1, . . . ,Bi+Li−1),

where Li ∈ N is the number of mini-batches assigned to task τi. Each mini-batch Bb contains nb

labeled instances and is written as

Bb =
{
(xbj , ybj)

}nb

j=1
, xbj ∈ X, ybj ∈ Y.

Equivalently, with input and label collections

X(b) = {xbj}nb
j=1, Y (b) = {ybj}nb

j=1, we write Bb =
(
X(b), Y (b)

)
.

In our experimental setup, an OCL method may use one or more subsets of mini-batches to update
the model. To reflect limited resources, training consumes a single mini-batch at a time. When
multiple mini-batches are chosen, the updates are applied sequentially.

3 RELATED WORK

In OCL, label delay is a significant, yet often overlooked, challenge. In this direction, Csaba et al.
(2024) propose Importance Weighted Memory Sampling (IWMS), which samples from the memory
buffer so that the selected set matches the distribution of the newest unlabeled data. The process has
two stages: first, at each time step the model makes predictions on unlabeled samples and selects la-
beled samples from memory whose true labels match these predictions; second, it computes feature
similarity between each unlabeled sample and the selected memory samples using cosine similarity
on the learned representations. From this pool, the method samples the most relevant labeled exam-
ples according to their similarity scores. In this way, training rehearses memory samples that share
the predicted labels of the unlabeled inputs and exhibit high feature similarity to them. Under the
setting in Section 2, this approach is not applicable. Selecting instances from memory to infer labels
for unlabeled data presupposes that batches from the current task are already available with labels.
In contrast, our setting is Online Task-Incremental with delayed labels, tasks arrive sequentially
without overlap, and labels may become available only after their corresponding inputs.

One of the central challenges in OCL is updating on the current stream without catastrophically for-
getting previous knowledge. A simple and effective solution is Experience Replay (ER) (Chaudhry
et al., 2019; Rolnick et al., 2019; Bellitto et al., 2024; ?). ER is a rehearsal-based strategy commonly
used in continual learning, which maintains a fixed-size memory buffer M that stores a subset of
samples encountered during training. At each learning step, the model is trained on the incoming
data stream also on a batch of previously stored samples drawn from M (Caccia et al., 2021). When
new data arrives, it is added to the buffer, and if the buffer is already full, a replacement policy e.g.,
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reservoir sampling, ring buffer, or random replacement determines which stored sample will be dis-
carded. This mechanism ensures that the memory contains a representative set of past experiences
despite the memory size being limited. By interleaving replayed samples from the buffer with the
current data, ER mitigates catastrophic forgetting, allowing the model to retain knowledge of ear-
lier tasks while still adapting to new ones. However, the algorithm’s effectiveness strongly depends
on the memory size, the replacement strategy, and the balance between new and replayed samples
during training.

Experience Replay has also become a standard component in Reinforcement Learning, which im-
proves both sample efficiency and training stability (Rolnick et al., 2019; Mnih et al., 2015; Fedus
et al., 2020; Zuffer et al., 2025; Bellitto et al., 2024; Wang et al., 2025; Urettini & Carta, 2025; Nori
et al., 2025), and has been increasingly applied in continual learning. Early approaches concentrated
on the controlled sampling of stored memories for replay (Aljundi et al., 2019), reducing interference
between tasks, such as using asymmetric cross-entropy to limit representation overlap (Caccia et al.,
2021), and combining ER with knowledge distillation from past tasks (Buzzega et al., 2020). More
recent methods enhance memory management and knowledge transfer, including dual-memory sys-
tems that align decision boundaries with semantic memories (Arani et al., 2022), and strategies that
enforce prediction consistency, allowing the current model to mimic future experiences while the
previous model distills past knowledge (Zhuo et al., 2023). While these studies have advanced the
application of experience replay, they fail to address the OCL setting with delayed labels, which is
the focus of our proposed approach.

OCL methods typically assume an unlimited computational budget for training on incoming data
streams. This assumption has been increasingly contested, with recent work evaluating continual
learning in scenarios where the data stream advances uninterrupted, offering no pause for model
training before new samples require prediction (Csaba et al., 2024; Alfarra et al., 2025; Wang et al.,
2024). This setup offers a more realistic evaluation of OCL under label-delay scenarios, where the
data arrival rate may exceed the model’s training capacity. Their results show that, under these
conditions, all evaluated OCL algorithms perform worse than the simple ER baseline.

In this work, based on the results of Csaba et al. (2024), we examine the ER method with appropriate
adaptations as a baseline, comparing it to our proposed approach for the Online Task-Incremental
setting with label delays and constrained computational resources.

4 PROPOSED APPROACH: EXPERIENCE-DELAYED REPLAY (EDR)

In a recent large-scale study, Ghunaim et al. (2023) showed that a simple ER baseline often out-
performs more complex OCL methods. Based on this finding, we examine how ER-style learners
behave under label-delay regimes. Figure 2 illustrates the setup: the stream is partitioned into tasks
Task 0, Task 1, Task 2, ..., and colored rectangles denote mini-batches whose labels become avail-
able within the corresponding task. Shaded rectangles indicate batches whose labels are delayed. In
Task 0, for example, three green batches are labeled immediately, while a fourth (shaded green) is
revealed during Task 1, as indicated by the black arrow.

In Task 1, one delayed mini-batch from Task 0 (green) arrives together with three mini-batches from
the current task (blue). Under classical ER with a limited update budget, as is typical in practice,
the learner consumes the earliest available batches, i.e., the delayed green batch plus the first blue
batches. As a result, a non-trivial share of the update budget that should target the current task is
spent on past-task data. Ideally, most updates in Task 1 should be allocated to current-task examples,
while the previous task is represented only through reservoir samples (gray), rather than through late,
full mini-batches. In Task 2, the issue is amplified, i.e., early training on the red task is flooded by
delayed mini-batches from Tasks 0 (green) and 1 (blue). Consequently, the model under ER spends
a substantial portion of its initial update budget on past-task supervision, and current-task accuracy
improves only later, once ER finally processes Task-2 examples.

To mitigate this issue, we make a minimal change to ER: Random Experience Replay (RER). In-
stead of consuming labeled mini-batches strictly in arrival order, RER forms each update batch by
sampling uniformly at random from all labeled examples available at the current time. This breaks
the front-loading of delayed past-task labels and increases the share of current-task updates. In Task
1, for instance, with one delayed green batch (Task 0) and three blue batches (current task), RER,
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Figure 2: Data streams are represented by a sequence of tasks composed of mini-batches. To illus-
trate, colored rectangles show mini-batches whose labels are available within the current task, while
shaded rectangles indicate delayed labels revealed in later tasks (black arrows). Gray rectangles are
data from the reservoir used by ER methods. The execution of the ER, RER, and EDR methods are
represented by the way how instances are selected from current and delayed mini-batches.

a

by expectation, allocates more updates to Task 1 than to Task 0, better aligning the training budget
with the current distribution.

Unfortunately, this benefit holds only when the available labeled pool is dominated by current-task
data. As delays accumulate (see Task 2), the backlog of past-task labels grows, and under uniform
sampling the chance of selecting current-task instances drops proportionally. The result is, again,
early updates skewed toward outdated supervision.

We address this with Delayed Experience Replay (EDR), a variant of ER that down-weights delayed
labels. At each update, examples are sampled with probabilities that decrease with their delay, so
late mini-batches from past tasks are less likely to dominate early training. Prior exposure to earlier
tasks is maintained via the reservoir. However, delay alone should not determine selection: EDR
also accounts for task performance/utility. Under a test-then-train strategy, for instance, past-task
instances with high current loss (or low confidence) remain eligible to improve the model. Formally,
p(xt) ∝ l(xt)w(∆xt), where l(xt) encodes utility (e.g., loss-, margin-, or gradient-based scoring)
and w(∆t) is a decreasing function of delay for the instance xt. As shown in Tasks 1 and 2, current-
task mini-batches receive higher priority because they exhibit smaller delays and larger losses while
the model is still adapting to the current distribution. In Task 2, instances from Task 1 are also
preferentially sampled: they have shorter delays than those from Task 0 and often higher utility,
since many Task-0 examples were already consumed in Task 1 and are represented in the reservoir,
reducing their novelty and loss.

A simple way to quantify the importance of delayed versus current instances is given by Eq. 1,
which weights the loss by a delay-dependent factor. In this scheme, misclassified instances have
their contribution attenuated by a factor k > 0 according to the delay magnitude.

I
(
(xt, yt),∆t

)
=

−
|C|∑
c=1

yt,c log ŷt,c

 · e−k·∆t (1)

5 EXPERIMENTAL METHODOLOGY

We evaluate the impact of label delays in OCL using an experimental setup implemented in Capy-
MOA (Gomes et al., 2025), a machine-learning library for data streams. To simulate incremen-
tal learning, classes are partitioned into sequential tasks. Performance is measured with a test-
then-train protocol, such that each incoming instance is first evaluated and then used for updat-
ing. In the Online Task-Incremental setting, the task identity is provided at test time, and pre-
dictions are restricted to the corresponding task’s label space. The evaluation stream may con-
tain instances from current and past tasks, and, as previously mentioned, we do not assume un-
limited computational budget. Consequently, delayed instances arrive concurrently with instances
from the current task. In our experiments, we assess how different approaches handle all avail-
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able instances under this overlap. Code and datasets used in this experiments are available at
https://anonymous.4open.science/r/CapyMOA-4AD7.

Learning Model. We assess how learning reacts to label delays on computer-vision tasks using
deep neural networks based on published architectures. Our aim is not to improve these backbones,
but to evaluate their behavior under delay. Accordingly, we adopt standard implementations and
training protocols from the literature and hold architectures fixed across OCL methods. In summary,
the adopted architecture was based on a two-layer MLP with a ReLU nonlinearity between layers,
optimized with Adam and a learning rate of 0.001.

Datasets. As is common in OCL studies, we evaluate on three image datasets: MNIST, Fashion-
MNIST, and CIFAR-10. We deliberately avoid more complex datasets, since their substantially
lower baseline accuracy would confound the analysis of errors attributable to label delays rather
than model capacity. All benchmarks were evaluated under the Online Task-Incremental setting,
where the dataset was divided into five disjoint tasks, each containing two classes.

Evaluation. We evaluated our experiments by running each experiment 30 times to mitigate chance
findings, and we report the mean and variance across runs. For qualitative analysis, we plot per-task
accuracy over time using Online Windowed Accuracy under a test-then-train protocol (computed per
window). For quantitative analysis, we report final test-then-train Cumulative Accuracy, Accuracy
Seen Avg, Accuracy All Avg, and Anytime Accuracy Avg. Cumulative Accuracy is defined as
the average performance over all tasks evaluated at the end of training, making it a key metric to
capture the trade-off between learning new information and retaining past knowledge. Accuracy
Seen Avg measures the performance exclusively on previously seen tasks after completing training
on each task. Accuracy All Avg measures the average accuracy across all tasks, including unseen
ones, after the model completes training on each task. Anytime Accuracy Average quantifies a
continuous learning model’s performance throughout training. Computed by averaging periodic
accuracy measurements taken during the learning with the results of Accuracy Seen and All. This
metric captures both learning dynamics and knowledge retention, providing a more comprehensive
view of model performance than final-task accuracy alone.

Delay Setup. In our experiments, we set the probability of no delay to 40%. If a batch is marked
as delayed, it is presented to the system after 100 batches. These values were chosen to ensure that
delayed batches are shown in both the current and the next task, while not extending beyond the
duration of their originating task. We employed a buffer size of 128 instances for experience replay
(ER) to balance memory efficiency with effective knowledge retention.

6 EXPERIMENTS

The first result (Figure 3) analyzes the impact of delays on the MNIST dataset. In all experiments,
no delay was applied to the first task, simulating an initial deployment in which the system classifies
specific targets whose data distribution changes over time.

Figure 3: Accuracy on the MNIST dataset. After the initial task, with no delay, EDR recovers
fastest, followed by RER, while ER shows the slowest recovery.
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As expected, from the second task onward, ER requires more time to recover its previous perfor-
mance. This occurs because ER was not originally designed to handle delayed data; hence, delayed
instances from earlier tasks interfere with training on the current one. By randomly selecting in-
stances (RER), instances from the current task are more likely to be sampled, which improves task
performance. With EDR, the classifier recovers fastest by selecting instances that best support train-
ing, i.e., balancing loss and delay.

There are two important observations about the RER results. First, when labels (current and de-
layed) are uniformly distributed, this strategy tends to yield good performance; however, under
skewed distributions with high delay levels, its behavior approaches that of ER. Second, for sim-
ple classification tasks, a small number of examples can restore prior performance, whereas more
complex tasks require additional batches to recover.

In the following experiments (Figure 4), we compare the best OCL (EDR) method with a “fair”
execution of ER. Here, ER performs multiple training passes to process all available instances, both
delayed and current. Overall, the two approaches perform similarly, with EDR showing a slight
advantage on some tasks. The main benefit, however, is efficiency: EDR reaches comparable (or
better) accuracy with fewer training iterations.

Figure 4: Comparing EDR and ER efficiency on MNIST. EDR and a robust version of ER (ER 2B)
achieve similar peak accuracies. However, EDR reaches this performance with significantly fewer
training iterations.

Using the same protocol, Figure 5 reports results on FashionMNIST. From the second task onward,
both EDR and ER improve over the baseline, with EDR consistently leading. This gap aligns with
EDR’s prioritization criterion, balancing loss and delay, which better focuses updates on informative,
timely instances as delayed data arrives.

Figure 5: Accuracy on the FashionMNIST dataset. As previous results, EDR recovers fastest, fol-
lowed by RER, while ER shows the slowest recovery.
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Allowing ER to process all available examples (Figure 6), EDR and ER achieve similar accuracy.
This parity is noteworthy for EDR: it reaches the same performance with fewer training updates
(i.e., processing fewer examples), demonstrating superior sample/compute efficiency under delayed
data.

Figure 6: Comparing EDR and ER efficiency on FashionMNIST. EDR and a robust version of ER
(ER 2B) achieve similar peak accuracies. Again, EDR reaches this performance with significantly
fewer training iterations.

In the final experiment (Figure 7), we evaluate on the more complex CIFAR-10 dataset. Delays
have a pronounced impact here: models require substantially more examples to recover prior per-
formance. Across most settings, EDR achieves significantly better accuracy than the baselines. The
exception is the extreme-delay condition, where all methods degrade because a portion of delayed
instances (last task) falls beyond the evaluation window and never arrives.

Figure 7: Accuracy on the CIFAR-10 dataset. In a more complex dataset, EDR achieves significantly
better accuracy than RER and ER.

Finally, Figure 8 shows that EDR delivers even stronger results. Unlike ER, which requires re-
peated passes to process all available instances, EDR prioritizes the most relevant data (i.e., low-loss,
current-task examples) and limits the influence of delayed labels during updates, yielding consistent
gains in overall accuracy with fewer training iterations.

After performing a visual inspection, we have analyzed the performance of the OCL methods in a
quantitative way. Table 1 mirrors the visual trends: across MNIST and FashionMNIST, EDR is best
or co-best on all aggregate metrics, matching (MNIST) or slightly exceeding (FashionMNIST) the
“fair” ER variant (ER 2B) in Cumulative Accuracy while maintaining strong Seen, All, and Any-
time averages. RER is competitive in streaming-style performance and attains the highest Anytime
accuracy on FashionMNIST, consistent with uniform replay sampling more current-task examples;
however, its end-of-stream accuracy remains below EDR. On the more challenging CIFAR-10 set-
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Figure 8: Comparing EDR and ER efficiency on CIFAR-10. In this experiment, using a more
complex dataset, EDR presented the best overall results.

ting, delays have a larger impact and EDR separates clearly on every metric (e.g., markedly higher
Cumulative Accuracy) compared to both RER and ER 2B, indicating that prioritizing informative,
timely instances, by balancing loss and delay, becomes increasingly important as task complexity
and delay effects grow.

Table 1: Comparison of Cumulative Accuracy, Accuracy on Seen tasks, Accuracy on All tasks, and
Anytime Accuracy across different strategies (EDR, RER, ER, ER-2B) on MNIST, Fashion-MNIST,
and CIFAR-10 datasets.

Dataset Strategy Cum. Acc. Acc. Seen Avg. Acc. All Avg. Anytime Acc. Avg.

MNIST

EDR 81.66± 1.11 34.98± 0.11 21.00± 0.06 20.35± 0.09
RER 78.12± 1.22 34.74± 0.15 20.81± 0.08 20.15± 0.08
ER 45.01± 1.05 33.96± 0.17 20.33± 0.10 18.66± 0.10

ER 2B 81.83± 1.06 35.84± 0.16 21.50± 0.08 20.44± 0.08

Fashion EDR 75.87± 1.77 34.18± 0.33 20.70± 0.17 19.93± 0.13

MNIST RER 73.65± 1.17 33.98± 0.21 20.69± 0.11 20.69± 0.11
ER 42.42± 1.55 32.63± 0.37 19.86± 0.31 18.35± 0.24

ER 2B 75.12± 1.25 34.42± 0.18 20.73± 0.13 20.14± 0.10

CIFAR10

EDR 37.59± 3.00 19.11± 0.74 11.03± 0.41 10.92± 0.35
RER 30.66± 3.05 20.31± 0.42 11.99± 0.32 11.54± 0.27
ER 18.04± 2.30 18.43± 0.60 10.65± 0.22 10.69± 0.24

ER 2B 22.06± 3.02 19.25± 0.38 11.07± 0.30 11.08± 0.26

7 FINAL REMARKS

In this work, we introduced a novel investigation on online continual learning in the realistic setting
of delayed labels. Our empirical analysis demonstrates that label latency introduces a critical chal-
lenge by entangling training signals from past and current tasks, leading to degraded performance.
To address this, we proposed Experience-Delayed Replay (EDR), a delay-aware instance selection
strategy that intelligently prioritizes which late-labeled examples to use for model updates. Our re-
sults show that EDR consistently outperforms delay-agnostic baselines, including ER and its random
variant (RER), by accelerating performance recovery after task shifts and improving current-task ac-
curacy and stability. By selectively using only the most beneficial delayed instances, EDR achieves
these improvements while using a smaller training budget, highlighting a clear efficiency advantage.
This work not only provides a foundational understanding of the delayed-label problem but also
offers a practical solution compatible with existing replay-based CL methods, paving the way for
more robust and realistic continual learning systems. Limitations include our focus on supervised
classification and assumed access to label arrival times, future work includes extending EDR to
unsupervised or self-supervised streams, and adaptive delay estimation.
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