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Abstract

Scaling recommendation models into large recommendation models has become one of the
most widely discussed topics. Recent efforts focus on components beyond the scaling em-
bedding dimension, as it is believed that scaling embedding may lead to performance degra-
dation. Although there have been some initial observations on embedding, the root cause of
their non-scalability remains unclear. Moreover, whether performance degradation occurs
across different types of models and datasets is still an unexplored area. Regarding the
effect of embedding dimensions on performance, we conduct large-scale experiments across
10 datasets with varying sparsity levels and scales, using 4 representative classical architec-
tures. We surprisingly observe two novel phenomenon: double-peak and logarithmic. For the
former, as the embedding dimension increases, performance first improves, then declines,
rises again, and eventually drops. For the latter, it exhibits a perfect logarithmic curve.
Our contributions are threefold. First, we discover two novel phenomena when scaling col-
laborative filtering models. Second, we gain an understanding of the underlying causes
of the double-peak phenomenon. Lastly, we theoretically analyze the noise robustness of
collaborative filtering models, with results matching empirical observations.

1 Introduction

Scaling up Transformer (Vaswani, 2017) parameters to boost performance in NLP tasks is a key reason
behind the success of large language models. Therefore, a natural question arises: can we replicate similar
success in collaborative filtering? It is widely agreed that embedding dimension is one of the key controllable
parameters in collaborative filtering. However, there is also a consensus that scaling the embedding dimension
may leads to performance degradation (Guo et al., 2024; Ardalani et al., 2022; Zhang et al., 2024; Ye et al.,
2025; Xu et al., 2025; Peng et al., 2025). For example, Guo et al. (2024) argues: “Worsely, increasing the
embedding dimension does not sufficiently improve the performance or even hurts the model”, and Zhang
et al. (2024) believes: “. . . Merely expanding the sparse component of a model does not enhance its ability to
capture the complex interactions . . . ”. As a result, recent works (Zhang et al., 2024; Guo et al., 2024) on
scaling recommendation models bypass the seemingly unviable path of expanding embedding dimension.

A further question arises: why do scaling embedding dimensions fail to improve recommendation perfor-
mance? Guo et al. (2024) observe that when the embedding dimensions are scaled, embedding will collapse.
Specifically, they conduct a spectral analysis based on singular value decomposition of the learned embed-
ding matrices and find that most of the singular values are extremely small. Furthermore, several studies
on efficient recommendation Liu et al. (2020); Qu et al. (2023); Wang et al. (2024); Luo et al. (2024); Liu
et al. (2021) treat the embedding dimensionality as a learnable parameter and optimize it through prede-
fined objectives, thereby enhancing the model’s overall effectiveness. Because, they think that there exists
an optimal dimensionality for embeddings. In other words, performance exhibits a single-peak phenomenon
as the embedding is scaled. Overall, previous works observed that increasing the dimensionality not only
worsens performance but also causes changes in the singular values of the embedding.

In this paper, we are more interested in understanding why the performance deteriorates with scaling and
what the underlying causes are. Would it follow the previously observed single-peak phenomenon?
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Figure 1: Double-peak: first rising, then
falling, followed by another rise and decline;
logarithmic, performance follows a logarith-
mic increase.

To enable a comprehensive investigation, we conducted large-
scale experiments across 10 datasets with varying sizes and
sparsity levels (Table 3), using 4 representative collabora-
tive filtering models (reason at D.4). Surprisingly, we observe
two novel phenomena: double-peak and logarithmic (Figure 1),
apart from the common single-peak. Additionally, we have
two observations, for the same model, some datasets exhibit a
double-peak trend, while others show a logarithmic increase.
More interestingly, we also find that even within the same
dataset, the phenomena are not always consistent. For exam-
ple, BPR (Rendle et al., 2009) exhibits a double-peak pattern,
while SGL (Wu et al., 2021) follows a logarithmic trend.

Clearly, we prefer the logarithmic scaling for its expected
stable performance, while the emergence of the double-peak
phenomenon indicates a limitation in scalability. Since both
phenomena appear across different datasets within the same
model, we boldly speculate that this is due to certain negative factors in the interactions. Inspired by He
et al. (2022), we concluded that the issue originates from the noise present in the data, and we conducted a
thorough analysis of the causes of noise at each stage. We also conducted an in-depth analysis of the noise
resistance and robustness of various collaborative filtering models and the results are generally consistent
with the empirical evidence.

Our contributions are summarized as follows.

• To the best of our knowledge, our work is the first report of the double-peak and logarithmic phenomenon.
In the realm of collaborative filtering, there has long been a perplexing question: why does expanding em-
bedding dimensions not always result in performance enhancements? Our research make further additions
to it.

• Through in-depth analysis, we identified interaction noise, in addition to overfitting, as the key factors
causing the double-peak phenomenon. To test this idea, we propose a simple yet effective sample drop
strategy that helps collaborative filtering models scale more effectively. For instance, the embedding
dimensions can be expanded up to 32,768 without significant risk of collapse.

• We theoretically analyzed the noise robustness of BPR, NeuMF, LightGCN, and SGL, with results largely
aligning with empirical observations, indirectly validating our analysis. For instance, BPR shows poor
noise robustness and more frequently exhibits the double-peak phenomenon, while SGL is more robust
and tends to follow a logarithmic pattern.

The implications for future research.

• Transformer-based LLMs have garnered significant attention. Most of researches (Zhang et al., 2024; Xu
et al., 2024) aim to bring the success of the Transformer architecture into recommendation models to
achieve superior scaling performance. However, in this paper, we explore a different path: finding the
"Transformer" within collaborative filtering models. We discovered that SGL possesses structural advan-
tages in this regard. Therefore, future research directions may focus on better filtering clean interactions
and further scaling up SGL for enhanced performance.

2 Background: Collaborative Filtering

Notations. We use lowercase letters for scalars. Denote the set of real numbers by R. We use bolded
lowercase letters p to represent the entire embedding, and subscripts to refer to specific embedding pu. We
use calligraphic letters e.g., N to denote the value spaces (other notions in Appendix A).

User and Item Embedding. In collaborative filtering, the core components involve representing users
and items using embedding vectors. The user embedding contains the user’s preference information, which
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can better capture the similarity between different users. Similarly, the item embedding contains the item’s
feature information. Let us define: pu ∈ Rk as the embedding vector for user u, where i = 1, 2, . . . , m.
qi ∈ Rk as the embedding vector for item i, where j = 1, 2, . . . , n. k is the dimensionality of the embedding.

Collaborative Filtering. To compute the preference score r̂ij of user u for item i, many powerful and rep-
resentative collaborative filtering models have been proposed, such as BPR (Rendle et al., 2009), NeuMF (He
et al., 2017), LightGCN (He et al., 2020) and SGL (Wu et al., 2021).

❶ BPR (Rendle et al., 2009) calculates the preference score as the inner product of user and item embeddings,
or employs a neural network to capture nonlinear interactions:

r̂ij = p⊤
u qi =

k∑
l=1

uil · vjl, r̂ij = fMLP(pu, qi),

where uil and vjl are the l-th components of pu and qi, respectively.

❷ NeuMF (He et al., 2017) is a representative deep learning-based collaborative filtering model with a classic
two-tower architecture. It fuses Generalized Matrix Factorization (GMF) and Multi-Layer Perceptron (MLP)
to capture both linear and nonlinear user–item interactions:

r̂GMF
ij = p⊤

u qi, r̂MLP
ij = fMLP([pu∥qi]),

where [·∥·] denotes vector concatenation. The final prediction r̂ij is computed by combining the outputs
from GMF and MLP, typically through a fully connected layer.

❸ LightGCN (He et al., 2020) simplifies GCN by removing feature transformation and nonlinear activation
to better capture high-order connectivity in user-item graphs. It adopts symmetric normalization in the
graph convolution process, aggregating embeddings from neighboring nodes using a degree-aware weighting
scheme:

p(l+1)
u =

∑
i∈Nu

1√
|Nu||Ni|

q(l)
i , q(l+1)

i =
∑

u∈Ni

1√
|Ni||Nu|

p(l)
u .

This symmetric normalization allows the model to more accurately propagate information and better capture
user interests.

❹ SGL (Wu et al., 2021) introduces self-supervised learning by augmenting graph structure and node features,
incorporating contrastive objectives to improve robustness and alleviate sparsity:

L = LBPR︸ ︷︷ ︸
collaborative filtering

+γ Lcont︸ ︷︷ ︸
contrastive

,

where LBPR is the Bayesian Personalized Ranking loss −
∑

(u,i,j)∈D ln σ
(
p⊤

u qi − p⊤
u qj

)
and Lcontrastive is the

contrastive loss encouraging consistency between augmented views. In addition, γ controls the contrastive
task’s contribution.

3 Analysis of Scaling: Scale it up! Scale it up again!

We focus on three points: First, what strategy we use to increase embedding size. Second, what phenomenon
we observe in experiments. Third, why these phenomena happen.

3.1 Observation Settings

Our experiments are based on the RecBole 1 (Xu et al., 2023). We select four popular collaborative filtering
models: BPR (Rendle et al., 2009), NeuMF (He et al., 2017), LightGCN (He et al., 2020) and SGL (Wu
et al., 2021), along with ten classic datasets, covering different level of scale and sparsity. These datasets

1https://www.recbole.io/docs/index.html
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are described in the Appendix 3. To ensure a thorough investigation, our experiments were conducted on a
setup equipped with 8*80G GPUs. Other settings regarding all model parameters, optimizer, learning rate,
etc. are in the Appendix D.1.

3.2 Double-peak and Logarithmic Phenomenon

In the past understanding, when the embedding dimension increases, the performance shows a single-peak
phenomenon of first increasing and then decreasing. However, we believe that this understanding lacks
microscopic and extensive observations. Through large-scale experiments (Figure 2), we find that on the ML-
100K dataset, when the embedding dimension increases, the overall performance of the BPR model is indeed
consistent with previous studies, showing an overall trend of first increasing and then decreasing. However,
we discovere more details for the first time: as the embedding dimension increases, the recommendation
performance initially increases significantly, then decreases, then increases slightly, and finally decreases
again. We call this new trend double-peak phenomenon (as shown in Figure 2 (b, c, e, f)). Moreover, we
noticed that the most of peak performance occurs at 29, which are different from the traditional settings of
32, 64, and 128. But unexpectedly, in LightGCN and SGL, this phenomenon is alleviated a lot, and SGL
alleviates it better than LightGCN (as shown in Figure 2 (k, h)). In addition, our experiments show that on
the Modcloth dataset, BPR, NeuMF, LightGCN, and SGL all show a continuous upward trend. For example,
even when the dimension is set to 214, the performance of LightGCN is still rising. We call this ideal trend
the logarithmic phenomenon (as shown in Figure 2 (a)), that is, as the embedding dimension increases,
the performance will continue to rise, but the increase amplitude will gradually decrease. The logarithmic
phenomenon completely exceeds the past understanding. Compared with the NDCG@20 at 128 dimensions,
the performance has increased by 25.57%. On the contrary, if we only set the dimension to 128, we will lose
34.36% of the potential performance improvement. Currently, most research in the recommendation field,
such as debiasing (Chen et al., 2021; 2023) and denoising (Wang et al., 2021; He et al., 2024), believes that a
10% performance improvement is meaningful. However, in our observations, simply increasing the dimension
can achieve a performance improvement far exceeding that of elaborately designed methods.

To ensure the generality of the phenomenon, we design a series of experiments, conducting observations
across other 7 datasets (E.1) and also analysis the results in detail. Empirical results confirm that the
phenomenon is indeed widespread.

Two Observations. ❶ The same model exhibits different phenomenons across different datasets. As
shown in Figure 2 (a, d), BPR exhibits a double-peak phenomenon on the ML-100K dataset, while showing
logarithmic growth on the Modcloth dataset. This seems to be due to some negative factor in ML-100K that
causes scaling to fail. ❷ The same dataset exhibits different phenomena across different models. As shown
in Figure 2 (a, b, c), we observe that BPR exhibits a double-peak phenomenon, while LightGCN and SGL
show logarithmic growth. Moreover, we believe this might be because the structures of LightGCN and SGL
incorporate mechanisms that mitigate negative factors. Moreover, the logarithmic growth of SGL appears
to be more ideal.

3.3 Why Two Phenomenon Occur

Based on the previous two observations, we believe this is due to the presence of certain negative factors
in the dataset that BPR and NeuMF cannot resist, while LightGCN and SGL can. When these negative
factors are mitigated, a logarithmic trend emerges, whereas if influenced by these factors, a double-peak
pattern is observed. In addition, the difficult-to-understand aspect of the double-peak phenomenon lies in
the third stage, where performance rises again. If this stage were absent, with performance simply rising and
then falling, it could easily be explained as overfitting. However, the appearance of the third stage prevents
us from attributing it to overfitting, and we believe this is the key to understanding this phenomenon. For
logarithmic phenomenon, this is an ideal trend. If every model can exhibit this trend on every dataset, it
would be wonderful.

Upon close examination of Figures 2, 4, 5, we observe that SGL tends to exhibit such a logarithmic trend.
We attribute this behavior to the contrastive learning framework in SGL, which provides both regularization
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(a) ModCloth - BPR (b) Douban - BPR (c) ML-100k - BPR

(d) ModCloth - NeuMF (e) Douban - NeuMF (f) ML-100k - NeuMF

(g) ModCloth - LightGCN (h) Douban - LightGCN (i) ML-100k - LightGCN

(j) ModCloth - SGL (k) Douban - SGL (l) ML-100k - SGL

Figure 2: Scale the embedding dimension exponentially by a factor of 2 across different collaborative filtering
models and datasets. Each row corresponds to a model (BPR, LightGCN, SGL, NeuMF), and each column
represents a dataset (Modcloth, Douban, ML-100k).

and robustness enhancement. In contrast, other methods lack such a mechanism, which may explain their
deviation from this desirable pattern.

Noisy Interactions Induces the Double-peak Phenomenon. For the double-peak phenomenon, this is
a novel phenomenon. Our approach to analyzing this phenomenon was inspired by two phenomena in machine
learning: the memorization effect on noisy labels (Zhang et al., 2017) and the sparse double descent (He
et al., 2022) which found that the sparsity of model parameters and the level of label noise jointly affect the
model’s performance (more about noisy interactions at B.3).
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(a) ML-100K (b) Douban

Figure 3: Comparing the standard BPR with the denoising strategy-based BPR_Drop in ML-100K and
Douban, we can clearly observe that the performance degradation has significantly improved.

Definition 1 (Sparse Double Descent) (He et al., 2022) is a phenomenon that occurs during model
pruning. It is characterized by the model’s test performance first decreasing due to overfitting as sparsity
increases, then improving once overfitting is alleviated after reaching a certain level of sparsity, and finally
decreasing again as sparsity increases, due to the loss of useful information.

We think that scaling the embedding dimension is related to the sparsification of neural networks in rec-
ommendation tasks, as increasing the dimension effectively reduces the sparsity of the neural network. In
the first stage, the cleaning learning stage, the model initially learns from clean interactions. As the dimen-
sionality of the embedding increases, the model has more space to accommodate user interests, leading to
performance improvements. In the second stage, the noise memorization stage, the presence of interaction
noise, combined with a dimensionality large enough to accommodate noisy interactions, causes the model
to begin learning from these noisy interactions, resulting in performance degradation. In the third stage,
the sweet stage, the embedding space enlarges to adapt to interaction noise, thereby enhancing the model’s
robustness. In the fourth stage, the overfitting stage, the continuous increase in embedding dimensions leads
to a higher fit to the training dataset, which subsequently reduces generalization performance.

4 One of the Keys to Scaling: Improve Robustness to Noisy Interactions

In this section, we conduct a detailed analysis based on the models and explore the characteristics of each
model, focusing on three main questions: Why are BPR and NeuMF easily affected by noise? Why does
graph collaborative filtering exhibit noise resistance? Why does graph self-supervised learning perform better
than graph collaborative filtering?

4.1 Analysis of the Resistance to Noise of BPR

We first analyze why the BPR model is particularly sensitive to noisy interactions. Our analysis is based on
the degradation of representation quality under noisy preference distributions.

Definition 2 (Representation Quality) Let Θ∗ = {p∗
u, q∗

i } denote the ideal latent representations
learned from clean data D0, and Θ = {pu, qi} be any learned parameters. The representation quality is
defined as:

Q(Θ) := ∥Θ−Θ∗∥2
F =

∑
u

∥pu − p∗
u∥2

2 +
∑

i

∥qi − q∗
i ∥2

2. (1)

Theorem 1 (Representation Perturbation Under Noisy Interactions) Let Θ0 be the minimizer of
the clean empirical loss Ex∼D0 [ℓ(Θ; x)], and consider a noisy interaction distribution Dδ := (1− δ)D0 + δN ,
where N is a noise distribution and δ ∈ [0, 1] is the noise ratio. Define the noise gradient shift as ∆noise :=
Ex∼N [∇Θℓ(Θ0; x)] − Ex∼D0 [∇Θℓ(Θ0; x)]. Assume the loss ℓ(Θ; x) is twice differentiable and the expected
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clean loss is locally strongly convex around Θ0. Then, for sufficiently small δ, the representation quality
satisfies:

Q(Θδ) := ∥Θδ −Θ0∥2
F ≤ δ2 · ∥H−1∆noise∥2

F + o(δ2), (2)
where Θδ is the minimizer under Dδ, and H := ∇2

ΘEx∼D0 [ℓ(Θ; x)]|Θ=Θ0 is the Hessian at the clean optimum.
The complete proof can be found in C.1

Remark 1 Theorem 1 reveals that the degradation in representation quality under noisy interactions is
quadratically proportional to the noise ratio δ, and linearly controlled by ∥∆noise∥, which is dictated by the
model architecture.

Lemma 1 (High Gradient Sensitivity in BPR) In BPR, the scoring function is defined as f(u, i, j) =
p⊤

u (qi − qj), which is linear in its parameters. Therefore, the per-sample gradient is:

∇Θℓ(Θ; x) ∝ (qj − qi, pu,−pu), (3)

with unbounded norm when embeddings grow. As a result, ∥∆noise∥ tends to be large, making BPR more
vulnerable to noisy samples.

Remark 2 This explains the double-peak phenomenon observed in BPR training, especially under large
embedding dimensions, due to overfitting to noise.

Experimental Evidence. To validate the robustness of BPR, we adopted a simple strategy: we applied
denoising collaborative filtering methods to observe whether there would be an improvement in performance,
particularly when the embedding dimensions are high (Code at D.2).

Θt+1 ← Θt − η∇ℓBPR
(
Θt; {xi | L (xi) ≤ τ}

)
. (4)

This equation illustrates a dynamic sample-dropping strategy (Wang et al., 2021) to enhance BPR’s noise
robustness. During gradient updates, only samples with losses below threshold τ are retained, filtering out
high-loss interactions likely to be noise. Experiments show this approach effectively mitigates noise in high-
dimensional embedding spaces while improving recommendation performance (as shown in Figure 3). The
threshold generally depends on the dropout rate: higher dropout leads to a lower threshold, and vice versa.
We conducted extra experiments on Figure 7 with different dropout rates for further evidence.

4.2 Analysis of the Resistance to Noise of NeuMF

We now analyze the noise sensitivity of NeuMF from a Jacobian-based perspective. Despite the inclusion
of nonlinear components, the gradient propagation through multiple nonlinear layers can amplify noise,
depending on the Jacobian of the model output with respect to the parameters.

Lemma 2 (Noise-Induced Gradient Amplification) Let f(u, i) be the NeuMF prediction function, and
let Θ ∈ Rd denote all model parameters. Define the Jacobian matrix of the scoring function with respect to
parameters as Jx := ∇Θf(u, i) ∈ R1×d for input x = (u, i). Then for a noisy interaction x ∼ N , the norm
of the loss gradient is bounded by:

∥∇Θℓ(Θ; x)∥ ≤ Lℓ · ∥Jx∥, (5)
where Lℓ is the Lipschitz constant of the loss function. Hence, the gradient norm is directly governed by the
spectral norm ∥Jx∥ of the Jacobian.

Theorem 2 (Gradient Instability in NeuMF) Let f(u, i) = MLP([pu; qi]) + p⊤
u qi be the NeuMF scor-

ing function, where MLP has L layers with weight matrices W (1), . . . , W (L), each with spectral norm ∥W (l)∥2.
Then the Jacobian satisfies:

∥Jx∥ =
∥∥∥∥∂f(u, i)

∂Θ

∥∥∥∥ ≤
(

L∏
l=1
∥W (l)∥2

)
· ∥∇zℓ(f(u, i), y)∥, (6)

which grows multiplicatively with depth, implying NeuMF can have exponentially amplified gradient sensitivity
under noisy interactions. The proof precess are at C.2.
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Corollary 1 (Comparative Noise Sensitivity: NeuMF vs. BPR) Although BPR has unbounded in-
ner product gradients w.r.t. embeddings, its Jacobian norm is linear in embedding size, i.e., ∥JBPR

x ∥ ∝
∥pu∥ + ∥qi∥. In contrast, NeuMF’s Jacobian grows with the product of layer spectral norms, potentially
leading to

∥JNeuMF
x ∥ > ∥JBPR

x ∥, (7)

in deep or poorly regularized MLPs. Hence, NeuMF may not exhibit superior robustness, and may in fact be
more susceptible to gradient perturbations from noise.

4.3 Analysis of the Resistance Noise of Graph Collaborative Filtering

LightGCN exhibits a relatively expected logarithmic growth pattern. We believe this is likely due to the
inherent noise-resistant structure of LightGCN. We think that the process of aggregating information from
a user’s neighboring nodes in graph convolution (He et al., 2020) is highly consistent with Mixup (Zhang
et al., 2018).

(ũ, ṽ) =
(

1
|Ni|

∑
k∈Ni

uk, vi

)
︸ ︷︷ ︸

graph convolution

;

(ũ, ṽ) =
(

N∑
i=1

λiui,

N∑
i=1

λivi

)
︸ ︷︷ ︸

Mixup

, s.t.
N∑

i=1
λi = 1.

(8)

Specifically, first-order neighbors aggregate information about items, while second-order neighbors aggregate
information from other users. Since Mixup is regarded as noise-resistant, we hypothesize that graph-based
collaborative filtering possesses similar noise-resistant capabilities. Moreover, this idea aligns with findings
in Han et al. (2024).

(ũ, ṽ) =
(

1
|Ni|

∑
k∈Ni

uk, vi

)

=
(∑

k∈Ni

1
|Ni|

uk,
∑

k∈Ni

1
|Ni|

vi

)
λi= 1

|Ni|=
(∑

k∈Ni

λiuk,
∑

k∈Ni

λivi

)
.

(9)

This makes it easy to understand why LightGCN is noise-resistant, as Mixup, being a classic and popular
method for domain generalization, is effective in mitigating noise disturbances. Next, we analyze from the
spectral perspective.

Definition 3 (Spectral Representation of Graph Convolution) Let the adjacency matrix of the user-
item interaction graph G be A ∈ R(m+n)×(m+n), and the degree matrix be D. The normalized adjacency
matrix is Ã = D−1/2AD−1/2. Performing eigendecomposition on Ã:

Ã = UΛUT , Λ = diag(λ1, λ2, . . . , λm+n), (10)

where |λ1| ≥ |λ2| ≥ · · · ≥ |λm+n|, and U is the orthogonal eigenvector matrix.

Definition 4 (Low-Rank Property of Graph Convolution) The embedding propagation in LightGCN
(Eq.2) can be represented as a spectral filtering process. After L layers of propagation, the final user/item
embeddings are:

pu =
L∑

l=0
βlÃ

lp(0)
u , qi =

L∑
l=0

βlÃ
lq(0)

i , (11)
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where βl = 1
L+1 . In the spectral domain, this is equivalent to applying a low-pass filter to the initial embed-

dings:

pu = U

(
L∑

l=0
βlΛl

)
UT p(0)

u . (12)

The filter coefficient matrix
∑L

l=0 βlΛl attenuates high-frequency components (small |λk|) while preserving
low-frequency components (large |λk|), leading to low-rank embeddings. The complete proof can be found
in C.4.

4.4 Analysis of the Resistance Noise of Self-supervised Graph Collaborative Filtering

Self-supervised graph collaborative filtering (SGL) is a subset of graph-based collaborative filtering. Natu-
rally, we can also infer that self-supervised graph collaborative filtering inherently possesses the ability to
resist interaction noise due to the graph convolution mechanism. Moreover, in most cases, SGL outperforms
LightGCN. So, what additional module plays a crucial role in this difference?

SGL adopts self-supervised contrastive learning. SGL generates multi-view representations via stochastic
graph perturbations and optimizes contrastive loss. For view generation, we create augmented graphs G′ and
G′′ by: edge dropout: Remove edges with probability ρ and feature masking: zero out embedding dimensions
with probability ρ. For contrastive loss, we maximize consistency between views for the same node:

Lcont = −
∑
u∈U

log exp (sim(z′
u, z′′

u)/τ)∑
v∈U exp (sim(z′

u, z′′
v)/τ) , (13)

where sim(·) is cosine similarity, τ is a temperature hyperparameter, and z′
u, z′′

u are augmented embeddings
of u.

Definition 5 (Mutual Information Objective in Contrastive Learning) SGL maximizes the mutual
information I(z′

u; z′′
u) between augmented views z′

u and z′′
u via the contrastive loss Lcont. By the information

bottleneck principle:
I(z′

u; z′′
u) = H(z′

u)−H(z′
u|z′′

u), (14)
where H(·) denotes entropy. Minimizing Lcont forces z′

u and z′′
u to share noise-invariant information.

Theorem 3 (Embedding Space Constraint via Contrastive Learning) Let the noise perturbation δu

satisfy δu ⊥ S, where S is the subspace of clean interaction signals. The contrastive loss in SGL implicitly
constrains the embedding vectors zu to lie within S:

∀u, ∥ProjS⊥(zu)∥2 ≤ ϵ, (15)

where ϵ is a constant related to noise level, and S⊥ is the orthogonal complement of S. The complete proof
can be found in C.3.

Corollary 2 (Noise Filtering in SGL) As demonstrated in Theorem 3, SGL achieves noise resistance by
employing low-pass filtering in graph convolution to attenuate high-frequency noise while retaining essential
low-frequency components, and by imposing a subspace constraint in contrastive learning to further reduce
noise variance and improve noise robustness. Mathematically, SGL embeddings are:

zu = ProjS(z∗
u)︸ ︷︷ ︸

low-rank signal

+ ProjS⊥(δu)︸ ︷︷ ︸
noise

, (16)

where ∥ProjS⊥(δu)∥2 ≤ ϵ, and ϵ decreases with contrastive learning strength γ.

5 Discussion

The quality of the recommendation dataset is more important than we thought. The quality
of the dataset, especially noisy interactions, yields a substantial influence on the scaling recommendation
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performance. When the dataset contains less noise, the model can scale more smoothly, with algorithms
adapting and expanding more efficiently to handle larger volumes of data. Conversely, a high level of noise
data muddles the underlying patterns, undermining the model’s ability to scale effectively and leading to
suboptimal performance as the scale increases.

Collaborative filtering models with noise-resistant structures have more advantages when it
comes to scaling. We can clearly see that, compared to BPR, NeuMF and LightGCN, SGL demonstrates
stronger scaling capabilities. Even when the embedding dimensions are significantly increased, SGL main-
tains stable performance or stays close to peak performance, unlike BPR, which experiences a sharp decline.
This advantage stems from the inherent noise resistance of SGL’s structure. We believe that further explo-
ration of this structure could potentially lead to the emergence of a "Transformer" in the field of collaborative
filtering.

6 Conclusion and Limitations

Conclusion. Our contributions lie in the discovery of two new phenomena (double-peak and logarithmic),
the interpretation of their causes, and the theoretical analysis of noise robustness in representative col-
laborative filtering models. Specifically, to investigate whether scaling embedding dimensions can improve
collaborative filtering models, we conducted extensive observational experiments across 10 datasets and 4
representative models. Compared to the previously recognized single-peak phenomenon, we identified two
novel phenomena: double-peak and logarithmic. We conducted a detailed analysis of the underlying cause of
the double-peak effect and found it to result from noise interactions. To empirically validate our hypothesis,
we introduced a denoising loss function, which supported our explanation. Furthermore, we provided a
theoretical analysis of the models’ robustness to noise with results aligned with our empirical observations.

Limitations. Due to limitations in available computational resources, we were unable to conduct ex-
periments on a broader range of collaborative filtering models. Additionally, our observations were based
primarily on the Top@K metric with K set to 20. With sufficient resources, future work could explore addi-
tional values of K (e.g., 5, 10) and incorporate more fine-grained evaluation metrics to further validate the
generality of the observed phenomena.
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A Notions

Table 1: Symbol Definitions

Symbol Description

u, v Indices representing users.
i, j Indices representing items.
pu ∈ Rk Latent representation vector for user u.
qi ∈ Rk Latent representation vector for item i.
Θ = {pu, qi} Set of all user and item latent representations.
Θ∗ = {p∗

u, q∗
i } Ideal set of user and item latent representations satisfying true preference relations.

Θ0 Optimal representations by minimizing the loss function without noise.
Θη Optimal representations by minimizing the loss function with noise proportion η.
D0 Set of authentic (noise-free) interaction triples (u, i, j).
Dη Set of noisy interaction triples (u, j, i).
D = D0 ∪ Dη Combined set of authentic and noisy interaction triples.
η ∈ (0, 1) Proportion of noisy interactions in the dataset.
λ > 0 Regularization parameter in the loss function.
σ(z) = 1

1+e−z Sigmoid function.
L0(Θ) Loss function without noise.
Lη(Θ) Loss function component due to noisy interactions.
L(Θ) Total loss function with noise = L0(Θ) + Lη(Θ).
Q(Θ) Representation quality metric.
∥ · ∥F Frobenius norm.
∥ · ∥2 Euclidean (L2) norm.
µ > 0 Strong convexity parameter.
c > 0 Lower bound constant related to noisy interactions.

B Related Work

B.1 Scaling Recommendation.

Large language models (LLM) have shone brightly in today’s era, and one of the key reasons is that the
performance of the foundational Transformer (Vaswani, 2017) model can scale with parameter expansion.
Recently, a few efforts (Ardalani et al., 2022; Zhang et al., 2023; 2024; Guo et al., 2024; Xu et al., 2024; Ye
et al., 2025; Xu et al., 2025; Peng et al., 2025; Loveland et al., 2025) in the recommendation field have explored
a similar idea: whether the performance of recommendation models can increase with parameter scaling.
(Ardalani et al., 2022) explores the scaling properties of recommendation models across data, compute, and
parameters, revealing that parameter scaling has limited impact on performance compared to data scaling,
and highlights the need for future advancements in model architecture and system design. (Guo et al., 2024)
identifies the embedding collapse phenomenon as the inhibition of scalability, where the embedding matrix
leans towards occupying a low-dimensional subspace. It demonstrates a two-sided effect of feature interaction
in recommendation models, with collapsed embeddings restricting learning and worsening the collapse.

B.2 Efficient Recommendation.

How to set the dimension of embeddings is a common question for almost everyone studying collaborative
filtering. This is because one of the core aspects of collaborative filtering is representing users or items with
embeddings, and the quality of these embeddings directly determines the performance of the recommendation
system. Reflecting on the efforts of recent years, to determine the optimal embedding dimension, many
researchers have learned the embedding dimension automatically from the perspectives of neural architecture
search (Liu et al., 2020; Qu et al., 2023), weight pruning (Wang et al., 2024; Luo et al., 2024; Liu et al.,
2021; Tran et al., 2025) or exploring mixed dimension (Ginart et al., 2021). These methods seem to have
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yielded notable results. The implicit assumption of these methods is that there exists an optimal dimension,
meaning the performance exhibits a single-peak phenomenon.

B.3 Denoising Recommendation

In recommendation systems based on implicit feedback, user behaviors (e.g., clicks, views) often contain
noisy interactions—signals that do not truly reflect user preferences, such as clicks driven by item position
or popularity rather than genuine interest Chen et al. (2025); Yang et al. (2024; 2025). These biases degrade
model generalization and make learning reliable user preferences challenging. One of the simplest and most
practical approaches is the drop-based method, which identifies noisy samples based on their loss values:
samples with higher loss are more likely to be noisy, while those with lower loss are considered clean. drop-
based method filters out noisy interactions before training. For example, T-CE (Wang et al., 2021) finds that
noisy samples tend to have higher loss values, which can be used as a denoising signal. AutoDenoise (Lin
et al., 2023) models denoising as a search-and-decision process and applies reinforcement learning to automate
it. DCF (He et al., 2024) further improves performance by distinguishing between noisy interactions and
hard samples, and by relabeling the noisy ones.

C Theoretical Discussions

C.1 Proof of Theorem 1

Proof. Since Θ0 minimizes the clean objective, we have the first-order optimality condition:

∇ΘEx∼D0 [ℓ(Θ0; x)] = 0. (17)

Let us denote the noisy objective as:

Lδ(Θ) := Ex∼Dδ
[ℓ(Θ; x)] = (1− δ)Ex∼D0 [ℓ(Θ; x)] + δEx∼N [ℓ(Θ; x)]. (18)

Then the gradient of the noisy objective at the clean optimum Θ0 is:

∇ΘLδ(Θ0) = (1− δ)∇ΘEx∼D0 [ℓ(Θ0; x)] + δ∇ΘEx∼N [ℓ(Θ0; x)]
= δ ·∆noise.

Assume the loss is twice continuously differentiable and the clean loss is locally µ-strongly convex. Let
H := ∇2

ΘEx∼D0 [ℓ(Θ; x)]|Θ=Θ0 ≻ 0 be the positive definite Hessian. Then, using Taylor expansion:

∇ΘLδ(Θδ) ≈ ∇ΘLδ(Θ0) + H(Θδ −Θ0) + R, (19)

where R ∈ O(∥Θδ −Θ0∥2).

At the noisy optimum, the gradient vanishes:

0 = ∇ΘLδ(Θδ)⇒ Θδ −Θ0 ≈ −H−1(δ ·∆noise). (20)

Now compute:

Q(Θδ) = ∥Θδ −Θ0∥2
F

≈ ∥δH−1∆noise∥2
F

= δ2 · ∥H−1∆noise∥2
F + o(δ2).

C.2 Proof of Theorem 2

Proof. Let f(u, i) = MLP([pu; qi])+p⊤
u qi, and define the loss ℓ(Θ; x) := ℓ(f(u, i), y) for a sample x = (u, i, y).

The gradient of the loss with respect to model parameters Θ satisfies the chain rule:

∇Θℓ(Θ; x) = ∇zℓ(f(u, i), y) · ∇Θf(u, i), (21)
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where z := f(u, i) ∈ R is the scalar output score.

Let Jx := ∇Θf(u, i) denote the Jacobian of the scoring function. Taking norms on both sides yields:

∥∇Θℓ(Θ; x)∥ ≤ ∥∇zℓ(f(u, i), y)∥ · ∥Jx∥. (22)

We now analyze ∥Jx∥. The scoring function can be decomposed as:

f(u, i) = MLP([pu; qi]) + p⊤
u qi. (23)

The Jacobian of the inner product term is linear in pu and qi, and contributes only a bounded term
proportional to ∥pu∥+ ∥qi∥. We focus on the MLP term, which dominates in depth.

Let the MLP be defined recursively as:

h(0) = [pu; qi],
h(l) = σ(l)(W (l)h(l−1)), for l = 1, . . . , L,

where σ(l) is a pointwise activation function (e.g., ReLU or sigmoid), and W (l) ∈ Rdl×dl−1 is the weight
matrix at layer l. Then the gradient of the output with respect to parameters is:

∂f(u, i)
∂Θ = ∂MLP(h(0))

∂Θ + ∂(p⊤
u qi)

∂Θ . (24)

Focusing on the MLP term, its Jacobian w.r.t. h(0) is:

∂MLP(h(0))
∂h(0) =

L∏
l=1

D(l)W (l), (25)

where D(l) := diag(σ′(l)(W (l)h(l−1))) is a diagonal matrix of activation derivatives.

Taking operator norms, we get:

∥∥∥∥∂MLP(h(0))
∂h(0)

∥∥∥∥ ≤ L∏
l=1
∥D(l)∥2 · ∥W (l)∥2. (26)

Since ∥D(l)∥2 ≤ maxx |σ′(l)(x)|, which is bounded for standard activations like ReLU (bounded by 1) or
sigmoid (bounded by 1/4), we conclude:

∥∥∥∥∂f(u, i)
∂Θ

∥∥∥∥ ≤ Cσ ·
L∏

l=1
∥W (l)∥2, (27)

for some constant Cσ > 0 depending on activation functions.

Combining this with the earlier chain rule, we obtain:

∥∇Θℓ(Θ; x)∥ ≤ ∥∇zℓ(f(u, i), y)∥ · Cσ ·
L∏

l=1
∥W (l)∥2. (28)

Hence, the gradient norm can grow multiplicatively with the spectral norms of the MLP layers, implying
exponential sensitivity in depth.
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C.3 Proof of Theorem 3

Proof. Decompose the embedding as zu = z∗
u + δu, where z∗

u ∈ S is the clean signal and δu ∈ S⊥ is noise.
The contrastive loss requires:

cos(z′
u, z′′

u) = (z∗
u + δ′

u)T (z∗
u + δ′′

u)
∥z∗

u + δ′
u∥∥z∗

u + δ′′
u∥
≈ 1. (29)

Expanding this approximation:

1− ∥δ
′
u − δ′′

u∥2

2∥z∗
u∥2 ≈ 1 =⇒ ∥δ′

u − δ′′
u∥2 ≈ 0. (30)

Since δ′
u and δ′′

u are i.i.d., the expected variance is:

E[∥δ′
u − δ′′

u∥2] = 2E[∥δu∥2]− 2E[δ′T
u δ′′

u]] = 2Var(δu). (31)

Thus, Var(δu) ≤ ϵ2, constraining noise to low variance and ensuring embeddings primarily reside in S.

C.4 Derivation of Definition 4

Derivation. We begin by recursively applying the propagation rule described in Eq. (12). The embeddings
of the l-th layer are given by:

P(l) = ÃP(l−1), (32)

where P(0) represents the initial embeddings, and Ã is the normalized adjacency matrix. This recurrence
relation reflects the embedding propagation at each layer of the graph convolutional network.

The final embeddings after L layers of propagation are obtained by taking the weighted sum across all layers:

P =
L∑

l=0
βlÃ

lP(0), (33)

where βl = 1
L+1 is the weight for the l-th layer.

Substituting the spectral decomposition of Ã into this expression, we get:

Ã = UΛUT , (34)

where U is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues of Ã. Therefore, we can
rewrite the embeddings as:

P =
L∑

l=0
βl(UΛlUT )P(0). (35)

Using the associativity of matrix multiplication, this simplifies to:

P = U

(
L∑

l=0
βlΛl

)
UT P(0). (36)

Now, let us analyze the behavior of the filter coefficients
∑L

l=0 βlΛl in the spectral domain. For each
eigenvalue λk of Ã, the corresponding coefficient behaves as follows:

For λk ≈ 1 (low-frequency components), we have:

L∑
l=0

βlλ
l
k ≈

L∑
l=0

1
L + 1 · 1

l = 1. (37)

This means that low-frequency components are preserved.
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For λk ≈ 0 (high-frequency components), we have:

L∑
l=0

βlλ
l
k ≈

L∑
l=0

1
L + 1 · 0

l = 0. (38)

This means that high-frequency components are attenuated, effectively suppressing noise.

Thus, the filter
∑L

l=0 βlΛl acts as a low-pass filter that suppresses high-frequency components and retains
the low-frequency components of the embeddings.

As a result, the final embedding matrix P is dominated by the low-frequency components, and the rank of
P is bounded by the number of significant eigenvalues (those corresponding to low-frequency components).
Specifically, if r is the number of significant eigenvalues, we can conclude that the rank of P is bounded by
r:

rank(P) ≤ r. (39)

This establishes the low-rank property of the embeddings after L layers of propagation in the LightGCN
model.

D Experimental Settings

D.1 Hyperparameters

We pick the most commonly used Top-k metrics NDCG@k to measure performance, as well as for a com-
prehensive view of the phenomenon, we set k to be 20. We set the embedding dimensions as powers of 2,
starting from 2 and going up to 216. We train the model for 300 epochs with a batch size of 2,048 using the
Adam optimizer. The learning rate is fixed at 0.001 without weight decay (L2 regularization), and we disable
gradient norm clipping. For negative sampling during training, we adopt a static strategy with 1 negative
item per positive interaction, sampled uniformly from the item space. We evaluate the model after every
training epoch and implement early stopping if validation performance does not improve for 10 consecutive
epochs. All models operate in essentially the same way; apart from differences in architecture, aspects like
training loss are nearly identical.

D.2 Pytorch Code of BPR_Drop

Code of BPR_Drop
class BPRdropLoss(nn.Module):

"""BPRLoss, based on Bayesian Personalized Ranking

Args:
- gamma(float): Small value to avoid division by zero

Shape:
- Pos_score: (N)
- Neg_score: (N), same shape as the Pos_score
- Output: scalar.

Examples::

>>> loss = BPRLoss()
>>> pos_score = torch.randn(3, requires_grad=True)
>>> neg_score = torch.randn(3, requires_grad=True)
>>> output = loss(pos_score, neg_score)
>>> output.backward()

"""
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def __init__(self, save_ratio, get_low, gamma=1e-10):
super(BPRdropLoss, self).__init__()
self.gamma = gamma
self.save_ratio = save_ratio
self.get_low = get_low

def forward(self, pos_score, neg_score):
# loss = -torch.log(self.gamma + torch.sigmoid(pos_score - neg_score)).mean()
per_sample_losses = -torch.log(self.gamma + torch.sigmoid(pos_score - neg_score))

num_samples = per_sample_losses.size(0)
k = int(num_samples * self.save_ratio)

k = max(k, 1)

if self.get_low == 1:
_, indices = torch.topk(per_sample_losses, k, largest=False)

else:
_, indices = torch.topk(per_sample_losses, k, largest=True)

selected_losses = per_sample_losses[indices].mean()
return selected_losses

D.3 Detailed description of the datasets

In our research, we utilized four distinct datasets to ensure the comprehensiveness and robustness of our anal-
ysis. Each dataset contributes unique characteristics to our study. Table 3 summarizes the statistics of the
10 datasets used in our experiments, demonstrating the comprehensiveness of our evaluation. The datasets
span a wide range of interaction scales, from Small (e.g., ML-100K) to X-Large (e.g., Amazon_Books), and
cover various sparsity levels, from relatively dense (e.g., ML-1M) to extremely sparse (e.g., Amazon_Beauty).
Notably, the majority of datasets fall into the Ultra-sparse category, reflecting the real-world challenge of
data sparsity in recommendation. This diversity ensures a thorough and robust evaluation of model per-
formance across different data regimes. The color-coded annotations provide intuitive insights into dataset
characteristics.

D.4 Reason for Choosing Models

BPR (Rendle et al., 2009) is a classic collaborative filtering model known for its simplicity and ease of use.
Many subsequent influential methods have been developed based on it. NeuMF (He et al., 2017), in contrast,
is a highly representative deep learning-based model that adopts a classic two-tower architecture, combining
linear modeling via matrix factorization with nonlinear interaction modeling through neural networks. As
research progressed, it became clear that the relationships between users and items can be naturally mod-
eled as graph structures. This insight led to the emergence of numerous graph-based collaborative filtering
approaches, such as LightGCN (He et al., 2020). Building upon graph structures, graph self-supervised mod-
els—such as SGL (Wu et al., 2021)—further enhance performance by leveraging both feature and structural
information, attracting significant attention. These are the reasons why we chose to focus on these three
categories of models. The more specific information is at Table 2.

E Experiments

E.1 All Observations

we present additional experimental results on various datasets. As shown in Figures 4, 5, and 6, SGL
demonstrates a slower performance degradation trend compared to LightGCN, which in turn outperforms
NeuMF, while BPR performs similarly to SGL. These results are consistent with our theoretical analysis,
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Table 2: collaborative filtering models and their publication details

Model Paper Title Year Venue Citation

BPR BPR: Bayesian Personalized Ranking from Implicit Feed-
back

2009 UAI 8,232

NeuMF Neural Collaborative Filtering 2017 WWW 8,052
LightGCN LightGCN: Simplifying and Powering Graph Convolution

Network for Recommendation
2020 SIGIR 4,358

SGL Self-supervised Graph Learning for Recommendation 2021 SIGIR 1,423

Table 3: Statistics of the 10 benchmark datasets used in our experiments, highlighting both the dataset
scale and sparsity level. Scale is categorized based on the number of interactions: Small (<1M), Medium
(1M–5M), Large (5M–10M), and X-Large (>10M). Sparsity Level is categorized based on the sparsity ratio:
Dense (<0.6), Semi-sparse (0.6–0.95), Sparse (0.95–0.99), and Ultra-sparse (≥0.99). Colored backgrounds
provide intuitive cues for comparison across datasets.

Dataset #Users #Items #Interactions Sparsity Scale Sparsity Level
ML-100K 943 1,682 100,000 0.93695 Small Semi-sparse
Modcloth 9,000 10,000 500,000 0.99945 Small Ultra-sparse

Amazon_Baby 531,890 64,426 915,446 0.99997 Small Ultra-sparse
ML-1M 6,040 3,706 1,000,209 0.97570 Medium Sparse
Douban 11,257 2,281 1,330,000 0.99945 Medium Ultra-sparse
Pinterest 55,187 9,911 1,445,622 0.99736 Medium Ultra-sparse

Amazon_Beauty 1,210,271 249,274 2,023,070 0.99999 Medium Ultra-sparse
Yelp 1,326,101 174,567 5,261,669 0.99998 Large Ultra-sparse

Gowalla 107,092 1,280,969 6,442,892 0.99990 Large Ultra-sparse
Amazon_Books 8,026,324 2,330,066 22,507,155 0.99990 X-Large Ultra-sparse

confirming the validity of our investigation into the noise robustness of different models. Additionally, we
observed a double-peak phenomenon in other datasets as well (e.g., Figure 4 (b, e, h)), along with an
logarithm phenomenon (e.g., Figure 4 (j, k, l)). Moreover, the single-peak phenomenon widely discussed in
prior work is also clearly present in our experiments (e.g., Figure 5 (a, b, c, etc.)). We argue that SGL’s
ability to maintain or even improve performance as the embedding dimension increases is largely due to the
regularization and robustness enhancement effects introduced by contrastive learning. In contrast, LightGCN
lacks auxiliary training signals and regularization methods beyond supervised learning, making it more prone
to overfitting or performance degradation in high-dimensional settings. Overall, these experimental results
further validate the generality of the newly observed phenomena and confirm that the observed performance
trends are well aligned with our theoretical analysis.

E.2 Effect of Varies Dropping Ratio

The Figures 7 show the NDCG@20 of BPR_Drop with different save-ratios and standard BPR on ML -
100K and Douban datasets as embedding size varies. In Figure (a) for ML-100K, BPR_Drop with save
- ratios 0.95, 0.9, 0.85, 0.8 and BPR are compared as embedding size ranges from 29 to 215. BPR_Drop
exhibits distinct trends, indicating sensitivity to scaling. In Figure (b) for Douban, similar comparisons
are made. BPR_Drop’s performance curves show unique patterns with embedding size changes, suggesting
better scalability than standard BPR. These plots offer insights into BPR_Drop’s scaling behavior for
optimization in different datasets.
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(a) Amazon Beauty- BPR (b) Amazon Baby - BPR (c) Amazon Books - BPR

(d) Amazon Beauty - NeuMF (e) Amazon Baby - NeuMF (f) Amazon Books - NeuMF

(g) Amazon Beauty - LightGCN (h) Amazon Baby - LightGCN (i) Amazon Books - LightGCN

(j) Amazon Beauty - SGL (k) Amazon Baby - SGL (l) Amazon Books - SGL

Figure 4: Scale the embedding dimension exponentially by a factor of 2 across different collaborative filtering
models and datasets. Each row corresponds to a model (BPR, LightGCN, SGL, NeuMF), and each column
represents a dataset (Amazon Beauty, Amazon Baby, Amazon Books).
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(a) Yelp - BPR (b) Gowalla - BPR (c) Pinterest - BPR

(d) Yelp - NeuMF (e) Gowalla - NeuMF (f) Pinterest - NeuMF

(g) Yelp - LightGCN (h) Gowalla - LightGCN (i) Pinterest - LightGCN

(j) Yelp - SGL (k) Gowalla - SGL (l) Pinterest - SGL

Figure 5: Scale the embedding dimension exponentially by a factor of 2 across different collaborative filtering
models and datasets. Each row corresponds to a model (BPR, LightGCN, SGL, NeuMF), and each column
represents a dataset (Yelp, Gowalla, Pinterest).
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(a) ML-1M - BPR (b) ML-1M - LightGCN (c) ML-1M - SGL

Figure 6: Scale the embedding dimension exponentially by a factor of 2 across different collaborative filtering
models and datasets.

(a) ML-100K (b) Douban

Figure 7: Comparing the standard BPR with the denoising strategy-based BPR_Drop in ML-100K and
Douban, we can clearly observe that the performance degradation has significantly improved.
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