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ABSTRACT

The performance of large language models (LLMs) is highly sensitive to the input
prompt, making prompt optimization a critical task. However, real-world appli-
cation is hindered by three major challenges: (1) the black-box nature of pow-
erful proprietary LLMs, (2) the need for high sample efficiency due to query
costs, and (3) the desire for privacy-preserving collaboration among multiple
users. To address these challenges simultaneously, we introduce a novel frame-
work for sample-efficient federated prompt optimization based on multi-armed
bandits (MABs). The MAB framework is uniquely suited for this problem as it is
(1) inherently a black-box optimization method, (2) practically sample-efficient,
and (3) enables collaborative learning with theoretically guaranteed benefit from
more participating agents. We first propose the Federated Prompt Optimization
via Bandits (FedPOB) algorithm, a federated variant of the Linear UCB algo-
rithm, where agents collaborate by sharing model parameters instead of raw data.
We then extend our approach to the practical setting of comparative user feedback
by introducing FedPOB with Preference Feedback (FedPOB-Pref), an efficient
algorithm based on federated dueling bandits. Extensive experiments demonstrate
that both FedPOB and FedPOB-Pref significantly outperform existing base-
lines and that their performance consistently improves as more agents participate
in the collaboration, validating the effectiveness of our federated approach.

1 INTRODUCTION

Large language models (LLMs) have achieved impressive performance in a variety of real-world
applications (Guo et al., 2025). However, the performance of LLMs has been shown to be highly
sensitive to the input prompt (Zhou et al., [2023; |Lin et al., 2024b). Consequently, prompt optimiza-
tion, in which we aim to find the best prompt for a task, has emerged as a critical research area.
Despite its growing popularity, the widespread real-world adoption of prompt optimization is still
hindered by three important challenges.

The first challenge is black-box access. Some of the most powerful LLMs, such as ChatGPT and
Gemini (OpenAll 2023bj [Team et al., [2023)), are proprietary, black-box models that are only acces-
sible via API queries. This limited access creates an immense challenge to prompt optimization.
The second challenge is sample efficiency. Since querying powerful LLMs is often costly in both
time and financial resources, it is of paramount importance to develop methods that can identify the
optimal prompt for a given task using a small number of interactions. The third challenge is en-
abling collaboration among multiple users. As LLMs become more widely adopted, a natural and
important question arises: how can multiple users, each with their own prompt optimization tasks,
collaborate to accelerate their progress? A key constraint in such a collaborative setting is user pri-
vacy, as participants are typically unwilling to share their proprietary data, such as the history of
tested prompts and their corresponding performance scores. This scenario naturally aligns with the
principles of federated learning (FL) (Kairouz et al., 2019;[McMahan et al., |2017)), where distributed
agents collaborate on their machine learning tasks without exposing their raw data. As an example,
federated prompt optimization enables multiple hospitals to collaboratively learn improved prompts
for LLM-assisted tasks (e.g., generating diagnosis suggestions) without sharing sensitive patient
data due to privacy regulations. Similarly, it allows mobile users to collaboratively learn improved
prompts for on-device assistant tasks (e.g., drafting personal emails or managing schedules) without
exposing their private interaction history.
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Figure 1: An overview of our proposed federated prompt optimization frameworks. FedPOB han-
dles direct score feedback, while FedPOB-Pref is designed for pairwise preference feedback.

To tackle the combined challenges of black-box access, sample efficiency and privacy-preserving
collaboration, we propose a new class of federated prompt optimization algorithms built upon the
multi-armed bandit (MAB) framework (Lattimore & Szepesvaril, 2020). MABs are exceptionally
well-suited for this problem for three main reasons. First, MAB algorithms do not require gradient
information and are inherently black-box optimization methods. Second, they are designed to
efficiently balance the exploration-exploitation trade-off, enabling them to solve complex black-box
optimization problems in a sample-efficient manner, a property that has been successfully leveraged
in recent work on prompt optimization (Lin et al.|[2024b; Wu et al., 2024). Thirdly, federated MAB
algorithms (Shi & Shen, [2021; [Dubey & Pentland,2020; Dai et al., 2023) provide strong theoretical
guarantees, ensuring that performance improves as more agents participate in the collaboration
(Wang et al., 2020).

Our first contribution is the Federated Prompt Optimization via Bandits (FedPOB) algorithm. This
method is based on a federated variant of the classic Linear Upper Confidence Bound (LinUCB)
algorithm (Abbasi-Yadkori et al., 2011} |Wang et al.l |2020). In our FedPOB algorithm, each agent
utilizes a pre-trained embedding model to represent the prompts and a linear model to predict their
performance. Collaboration is achieved by having agents periodically exchange and aggregate their
LinUCB parameters, thereby learning from the collective experience of all agents without requiring
them to share any sensitive raw data. Importantly, thanks to the solid theoretical guarantees of the
federated LinUCB algorithm (Wang et al., [2020), the performance of our FedPOB algorithm is
theoretically guaranteed to improve with a larger number of collaborating agents.

In addition, we consider the highly practical setting of prompt optimization with preference feed-
back, where explicit performance scores are unavailable and we are only able to observe relative
preference feedback (e.g., the user prefers the response from prompt A than that from prompt B).
This problem was recently introduced by |Lin et al.|(2024al) to address scenarios where user feedback
is inherently comparative. To enable sample-efficient federated prompt optimization in this novel
setting, we introduce our second algorithm, FedPOB with Preference Feedback (FedPOB-Pref).
This algorithm is a practical adaptation and modification of the federated linear dueling bandit
framework proposed by [Huang et al.| (2025). Specifically, our FedPOB-Pref algorithm signifi-
cantly reduces the communication complexity of the methods from Huang et al.|(2025) while main-
taining the strong empirical performance. An overview of both FedPOB and FedPOB-Pref is
illustrated in Fig.[T}

We conduct extensive experiments to validate our proposed methods. The results demonstrate that
both FedPOB and FedPOB-Pref achieve considerably better performance than the previous base-
line methods in various tasks. Furthermore, we empirically verify that the performance of our al-
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gorithms consistently improves as the number of participating agents increases, highlighting the
benefits of our collaborative approach. In summary, our key contributions are as follows:

e We propose FedPOB, a novel algorithm for sample-efficient federated prompt optimization that
enables multiple agents to collaborate on finding the best prompts without sharing their raw data.

e We extend our algorithm to the practical setting of preference-based feedback by introducing the
FedPOB-Pref algorithm, which is based on federated linear dueling bandits.

e We conduct extensive experiments to validate our approach, demonstrating that our algorithms
significantly outperform existing baselines and scale effectively with more agents.

2 PROBLEM SETTING

Prompt Optimization. We address the problem of black-box prompt optimization, where the ob-
jective is to find an optimal prompt p that maximizes the performance of a black-box LLM on a
given task D = (X,Y). The task consists of a set of queries X = {x}} and their corresponding
ground-truth answers Y = {y;}. Since the internal parameters of the black-box LLMs (e.g., GPT-
40-mini) are inaccessible and only API queries are allowed, we model the performance of the LLM
via an external score function. Specifically, we define

$(p | D) = Eqe yen [m(LLM(p, 2),9)] M

in which m is a metric function that compares the model response LLM(p, x) induced by the prompt
p with the ground-truth answer y and provides a score s(p | D). The optimization target is then
formulated as

p* = argmaxs(p | D), (2)
p€EP
where PP denotes the space of all possible prompts.

Federated Prompt Optimization. We extend the black-box prompt optimization problem to the
federated setting, which involves multiple agents. We consider a scenario with a set of N > 1
agents, denoted by A, who all aim to solve the same task . To account for agent heterogeneity, we
allow each agent a € A to have its own prompt space denoted as IP,. This increases the generality of
our setting by allowing each user to define a prompt space uniquely suited to their own preferences.
Furthermore, each agent can generate its local prompt space P, using existing techniques (Zhou
et al., 2023)) and does not need to share its local prompt space with other agents. This allows every
agent to keep its own local set of prompts private and hence aligns well with the federated setting.
As a result, the federated prompt optimization problem can be expressed as follows:

pa = arg pmeaé( E(z,y)en [m(LLM(pa, x),y)|, Va € A 3)
Here, each agent o € A aims to find the optimal prompt p’, from its own prompt space PP, that maxi-
mizes its performance on the task ID. To achieve greater sample efficiency, all agents in A collaborate
without sharing their raw data (i.e., the history of tested prompts and their scores). This problem
formulation naturally aligns with common paradigms in the federated bandit literature (Wang et al.,
2020; Dati et al., 2023). Therefore, we adopt the federated bandit framework to tackle this problem.

Feedback Model. To solve the federated black-box prompt optimization problem, we cast the opti-
mization process into an iterative protocol, where we sequentially select candidate prompts for eval-
uation. At each round ¢, each agent a selects one or two candidate prompts and receives feedback.
The selection of the prompts is guided by theoretically principled bandit policies, which leverage the
collective observation history from all agents to achieve sample-efficient optimization (more details
in Sec. [3). Depending on the type of feedback available, we consider two settings:

o Score feedback: In this setting, each agent selects a single prompt p; , at each round ¢, and
receives a numeric score 3; , as feedback, which directly reflects the performance of the prompt
Dt,q on task . Specifically, given a validation set Dy representing the task I, the score can be

obtained as follows: 8; o = E(; )en, [m(LLM(pt,a, x),y)|-

o Preference feedback: In this setting, every agent a selects a pair of prompts (pia, pia) at round
t, and observes a binary signal indicating which of the two performs better, i.e., which prompt
yielded the better response. For example, such feedback may be directly provided by human
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Algorithm 1 FedPOB (Agent a € A)
1: Initialize: Wsync = Wnew,a = 0gxd, V;t,a = Mgxd, bsync = bnew,a = 0g, tast = 0
2: fort=1,2,...,T do
3:  Compute Vi o = AL + Wine + Whew,a

4:  Update local model ét,a — Vt,_al(bsync + bnew,a)

5:  Select prompt p; o < arg maxpep, (01.q, u(p)) + V| |u(p)\|V;Q1

6:  Query p; , to observe score feedback 5; ,

7. Update Wnew,a — Wnew,a + ut,auzaa bnew,a — bnew,a + ut,agt,a

8:  if (t — tias) - log(det Vo /det Viagi,o) > D then

9: Send a communication request to the central server

10:  if a communication round is started then
11: Upload {Whew.a, bnew.a } to the central server. Reset Wiewa = Odxd, bnewa = 04
12: Receive {Wync, beync } from server

Algorithm 2 FedPOB (Central Server)
1: if Central server receives a communication request from any agent then
Initiate a communication round
receive { Wiew o and bpew,q Jaca from each agent
: Update Wsync — Wsync + ZaGA Wnew,a ) bsync — bsync + ZaGA bnew,a
: Broadcast Wyne and bgyye to all agents

evaluators (Lin et al., [ 2024a)). Following the common practice from dueling bandits (Bengs et al.,
2022), we assume that the preference feedback is generated by the Bradley—Terry—Luce (BTL)
model (Hunter, 2004).

3 FEDERATED PROMPT OPTIMIZATION VIA BANDITS

We adopt linear models, rather than more complex ones such as neural networks, to learn the
unknown reward function for federated prompt optimization. Accordingly, our FedPOB and
FedPOB-Pref algorithms (illustrated in Fig. E]) are based on linear bandits (Abbasi-Yadkori et al |
2011) and linear dueling bandits (Bengs et al.l [2022), respectively. This choice is motivated by the
balance linear models offer between expressiveness, simplicity, and theoretical guarantees: (1) Mod-
ern text embedding techniques powered by transformers are sufficiently mature and effective (Shi
et al., 2024 Hu et al 2024)), enabling a simple linear function to model the relationship between
prompts and scores. (2) Linear models enable lightweight algorithmic designs. (3) Unlike feder-
ated neural bandits using neural networks for reward estimation (Dai et al. |2023)), federated linear
bandit methods provide theoretical guarantees on collaboration which ensure that the performance
improves as more agents join the federation (Wang et al., 2020).

3.1 THE FEDPOB ALGORITHM: SCORE FEEDBACK

Following recent works on black-box prompt optimization (Shi et al., 2024;|Hu et al., 2024), we first
map each discrete prompt p into a continuous embedding vector u(p) € U using a pre-trained model.
This allows us to leverage rich semantic representations and simplifies the optimization problem. We
then model the score of a prompt for each agent a using a linear model: s, = (6,, u(p,)), which is
standard in the multi-armed bandit literature (Abbasi-Yadkori et al., 2011]).

Local Prompt Selection. At the beginning of each round ¢, in lines 3-4 of Algo. [} each agent a
first updates its information matrix V; , and estimated linear parameters ét,a using (1) the aggregated
information from all agents received from the central server (i.e., Wync and bgync, more details below)
and (2) its newly collected local information (i.e., Whew,q and byew,o). Next, using the parameters
Vi,q and ét,aa agent q selects the next prompt to query following the Upper Confidence Bound (UCB)
strategy (line 5 of Algo.[1):

pr = axgmaell, )+ o)l @
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Algorithm 3 FedPOB-Pref (Agenta € A)

I Initialize: Wiyne = Whewa = Odxas fo ~ N(0, 021,) with small 2,

2: fort=1,2,...,T do

3:  Select first prompt p} , < arg max,cp, (011, u(p))

4 Select second prompt p7,, - arg maxpee, (0r—1,u(p) — u(pf.q)) + Billu(p) = u(pt o)l
5 Query p{ ,,p7, to observe preference feedback @y o = 1(p; , > P} ,) ,
6:  Update local model ; , < argminyep, Lt a(6) — (VLa(0;_1.4),0) + 2116 — 01|

7. Update VLo (0r.0) < VLa(0—1.0) — AOr.a — ;1)
8:  Compute Whewa = [u(pi o) — u(p? o)][u(pi o) — u(pi o)l
9:  Upload {Gt as VL, (Ht a)s Whewa | tO server

Here the parameter v balances exploitation (choosing prompts with large predicted rewards) and
exploration (choosing prompts with large uncertainty) Next, we test the selected prompt p; , using
the validation set Dy, to obtain score feedback 3, , (line 6 of Algo. EI) Then, we update the newly
collected local information Wiey,q and bpey.q (line 7 of Algo.[1).

Agent-Server Communication. To reduce the communication cost, we only start a communication
round when the new information collected by any agent exceeds a threshold D, i.e., when the cri-
terion in line 8 of Algo. [I]is satisfied. If a communication request is sent by any agent, the trusted
central server initiates a communication round (line 1-2 of Algo.[2)) and all agents upload their local
parameters Whey o and bpew o to the central server (lines 10-11). The central server then aggregates
these local parameters to produce synchronized parameters Wyne and bgyne (line 3-4 of Algo. @),
which are then broadcast to all agents. After the agents receive the aggregated parameters Wy, and
bsyne, they can use them to select the prompt in the next iteration, and the algorithm repeats.

3.2 THE FEDPOB-PREF ALGORITHM: PREFERENCE FEEDBACK

In many practical applications, obtaining explicit numerical scores is challenging, whereas collecting
pairwise preference feedback is often more natural and cost-effective. Specifically, in human-in-the-
loop scenarios, users can more reliably state a preference between two generated outputs than assign
them absolute scores (Yue et al., 2012; [Lin et al.| 2024a). For example, in LLM-based creative
writing, it is often more intuitive for users to express a preference between two generated articles
than to quantify subjective alignment with a numeric score. Similarly, in text-to-image generation, it
is often more practical to rely on pairwise comparisons than to capture complex aesthetic preferences
with a single numeric score. This setting, however, introduces a significant technical hurdle: the
parameter estimation for linear dueling bandits does not have a closed-form solution (Bengs et al.,
2022). This limitation prevents the use of the simple parameter aggregation strategy employed by
our FedPOB algorithm.

The absence of a closed-form solution naturally leads to gradient-based optimization approaches.
Recent work by Huang et al.[ (2025)) introduced federated linear dueling bandit algorithms (FLDB-
GD and FLDB-OGD) that achieve collaboration by aggregating local gradients. While theoreti-
cally sound, these methods face a practical dilemma: FLDB-GD incurs high communication costs,
whereas the more communication-efficient FLDB-OGD suffers significant performance degrada-
tion. We attribute this to the fact that preference feedback is inherently noisier and less informative
than numerical scores, making it particularly challenging to achieve both competitive performance
and communication efficiency. To overcome this, we draw inspiration from classical federated
learning for solving supervised learning problems (McMahan et al[2017). Specifically, instead of
aggregating gradients, we aggregate model parameters, which allows us to adopt a dynamic regu-
larization technique that has proven effective in federated learning (Acar et al.| [2021) for further
performance improvement. This leads to our proposed FedPOB-Pref algorithm (Algos. [3|and [).

Our FedPOB-Pref algorithm offers several key advantages: (1) it is highly sample-efficient, ca-
pable of learning the underlying reward model from a small number of preference queries; (2) it is
robust to agent heterogeneity, and its performance scales effectively with the number of collabo-
rating agents; and (3) when compared to the baselines from|Huang et al.[(2025), FedPOB-Pref si-
multaneously reduces communication costs and improves performance (Sec. 4.2).
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Algorithm 4 FedPOB-Pref (Central Server)

1: receive {ét,a, VLa(ét,a), Whewa }aca from each agent

2: Update server model 6, « L3 0, . — 13, 1V L, (6;,)
3: Update Wyne <= Wayne + 2 uca Whew,a

4:

Broadcast ét and Wy, to all agents

The overall workflow of FedPOB-Pref is outlined in Algorithms [3|and[d] At each round ¢, every
agent a selects a pair of prompts based on the global model 6,_1. The first prompt, pt{a, represents
pure exploitation (line 3), while the second, pf,a, incorporates an exploration bonus to discover
more informative options (line 4). This dueling selection strategy is grounded in the theory of
dueling bandits (Bengs et al.,|2022; |Verma et al.| 2024)). We then obtain binary preference feedback
we,a = L1 o2 for this pair of selected prompts (line 5). The core of our method lies in the local
model updéte (line 6), which optimizes an objective that combines the standard logistic loss with a
dynamic regularizer (Acar et al., |2021). The first component is the pairwise logistic loss over the
agent’s local history:

t—1

Lia(®) = = (wralogo (07 [u(ph,) — up2)]) +(1=wra)logo (07 [u(p? ) - u(pl,)]) ).

T=1

®)
This term is the negative log-likelihood of the observed preferences under the BTL model (Bengs
et al.| [2022). The second component is a dynamic regularization term consisting of (i) a linear
penalty, —<VLa(ét,17a), 0), which corrects for local gradient drift, and (ii) a quadratic penalty,
which prevents the local model from deviating excessively from the previous global model (Acar
et al., 2021). After this local update (lines 6-8), agents upload their new parameters to the
central server for aggregation, which then broadcasts the aggregated global parameters for the
next round. Of note, we conduct theoretical analysis to motivate the local objective function of
FedPOB-Pref (App.[E), providing theoretical justification for its strong performance (Sec. 4.2).

4 EXPERIMENTS

We adopt MPNet (Song et al., 2020) as the text embedding model, and use GPT-3.5-turbo (OpenAl,
2023a)) in the experiments unless specified otherwise. Of note, we also test two other models, GPT-
4o0-mini (OpenAll 2023b) and Qwen3-235B-A22B-2507 (Bai et al., [2023), in Sec. E} Evaluation is
performed on the Instruction Induction (Chen et al., [2023} [Lin et al.| |2024b) and BIG-Bench Hard
datasets (Suzgun et al., 2023)), which collectively cover over 50 tasks that span diverse areas such
as reasoning, language comprehension, and code generation. To account for agent heterogeneity,
we ensure that the prompt domains of all agents contain both shared prompts and unique prompts.
For fair comparisons, we ensure an equal validation query budget across all algorithms and ana-
lyze the corresponding communication costs in the federated setting. We defer more details on the
experimental setting to App.

4.1 SCORE FEEDBACK: FEDPOB

In the setting with score-based feedback, every tested prompt receives a numerical score indicating
the quality of its induced response. Here we assess performance of a prompt using a validation set
and adopt the validation accuracy as the corresponding score. The objective is to identify the optimal
prompt (i.e., the one that achieves the highest validation score). We compare our FedPOB with a
representative baseline method on federated prompt optimization: FedOne (Wang et al., [2025), as
well as two other baselines on standard prompt optimization: INSTINCT (Lin et al., |2024b) and
PromptBreeder (Fernando et al.| 2024).

Table [1] and [2] report the final scores achieved by the best prompt discovered by each algorithm
in various tasks. The results demonstrate the superior capability of our FedPOB, which achieves
the highest score on the majority of the tasks under the setting of ten agents. The results also
show the sample efficiency of our FedPOB since it achieves the best performance given a fixed
number of samples per agent. Fig.[2]depicts the performance of FedPOB across different iterations,
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Table 1: Average validation accuracy (with standard error) of the best prompt found by each al-
gorithm in the Instruction Induction dataset, averaged over 5 independent trials with different
random seeds. For clarity, only a representative subset of challenging tasks. The complete results
for all tasks are provided in Table[5|(App. [D.3) and the results are consistent.

Dataset INSTINCT PromptBreeder FedOne (10 agents) FedPOB (ours)
1 Agent 3 Agents 10 Agents

Active to Passive 0.940+0.053 1.00040.000 1.000+0.000 0.804£0.160 0.960+£0.014 0.972+0.023
Auto Categorization 0.313+0.012 0.220£0.020 0.264+0.004 0.272£0.030 0.308+0.018 0.288+0.023
Antonyms 0.767+0.023 0.840£0.020 0.870£0.005 0.792+0.046 0.812+£0.027 0.828+0.023
Common Concept 0.217+£0.040 0.118£0.010 0.136+£0.003 0.188+0.015 0.210£0.007 0.208+0.018
Informal to Formal 0.570+0.020 0.521£0.067 0.605+0.005 0.528+0.028 0.528+0.039 0.570+0.030
Larger Animal 0.993+0.012 0.987+0.012 0.829+0.037 0.984+0.017 0.992+0.011 0.98940.011
Negation 0.860+0.020 0.927+£0.012 0.897+0.010 0.856+0.061 0.940+0.014 0.92040.032
Orthography Starts With 0.767+0.214 0.813+0.061 0.436+0.024 0.804+0.100 0.828+0.056 0.832+0.087
Rhymes 0.493+0.142 0.393£0.031 0.916£0.027 0.664£0.120 0.776£0.187 0.844+0.106
Second Word Letter 0.847+£0.110 0.947£0.042 0.625+0.034 0.792£0.199 0.880£0.157 0.972+0.023
Sentence Similarity 0.467+0.031 0.380£0.020 0.360£0.035 0.540+£0.094 0.508+£0.082 0.448+0.018
Sentiment 0.973+0.012 0.993+0.012 0.996+0.002 0.988+0.018 0.972+0.023 0.972+0.027
Synonyms 0.327+0.150 0.333£0.115 0.320+0.023 0.324£0.103 0.296+0.041 0.384+0.124
Taxonomy Animal 0.947+0.023 0.967+0.042 0.805+0.026 0.924+0.073 0.980+0.024 0.9724+0.034
Translation En-De 0.820+0.020 0.820+0.060 0.927+0.004 0.820+£0.047 0.840+0.032 0.868+0.036
Translation En-Es 0.7474+0.042 0.746£0.023 0.950-£0.012 0.756£0.026 0.740£0.072 0.728+£0.030
Translation En-Fr 0.947+£0.023 0.920£0.040 0.919+0.005 0.944£0.033 0.940£0.283 0.948+0.018
Word in Context 0.553+0.058 0.620£0.040 0.409+0.091 0.460£0.084 0.640£0.020 0.608£0.036
Object Counting 0.520+0.106 0.473£0.110 0.497+0.019 0.520£0.074 0.616£0.039 0.588+0.050
Odd One Out 0.867+0.058 0.833£0.116 0.859+0.024 0.800£0.122 0.900-£0.000 0.900-£0.000
Word Sorting 0.753+0.058 0.753+£0.099 0.497+0.026 0.756£0.093 0.744+0.065 0.828+0.063
‘Word Unscrambling 0.687+0.012 0.687+0.023 0.728+0.005 0.724+0.046 0.716+0.026 0.720+0.028
Average (22 Tasks) 0.669 0.665 0.645 0.663 0.701 0.712

Table 2: Performance on the Big-Bench Hard (BBH) dataset under the same experimental settings.

Dataset INSTINCT  PromptBreeder FedOne (10 agents) FedPOB (ours)
1 Agent 3 Agents 10 Agents

Boolean Expressions 0.793£0.046 0.853+£0.012 0.883+0.003 0.800£0.025 0.836+0.021  0.844+0.026
Date Understanding 0.587+0.012 0.593+£0.030 0.633+£0.007 0.580£0.028 0.57640.033  0.57240.030
Disambiguation QA 0.713£0.031 0.753+£0.023 0.858+0.011 0.816+£0.026  0.84440.017 0.84040.032
Dyck Languages 0.713+£0.031 0.693+0.012 0.722+0.005 0.672£0.018  0.6684+0.023  0.680+0.032
Formal Fallacies 0.687+0.031 0.967+0.058 0.991+0.002 0.700+£0.121  0.8724+0.175 0.8124+0.172
Geometric Shapes 0.453+0.058 0.360+0.060 0.272+0.007 0.436+0.022  0.41240.039  0.448+0.036
Hyperbaton 0.91340.046 0.907+0.023 0.946+0.003 0.868+0.522  0.9284+0.027  0.948+0.018
Logical Deduction Five Objects 0.47340.046 0.460+0.053 0.466£0.009 0.464+0.041  0.4524+0.030  0.476+0.017
Logical Deduction Seven Objects 0.513£0.046 0.473+0.031 0.485+0.002 0.476£0.043  0.49240.046 0.488+0.415
Logical Deduction Three Objects 0.600£0.053 0.573+£0.046 0.635+0.009 0.604£0.033  0.6364+0.017  0.644+0.009
Movie Recommendation 0.820+£0.069  0.76740.023 0.688+0.004 0.720£0.037  0.72040.032  0.7324+0.027
Multistep Arithmetic Two 0.647+0.129 0.601+0.030 0.685+0.017 0.580+£0.105 0.6484+0.018  0.692+0.046
Navigate 0.707+0.031 0.760+0.020 0.755+0.028 0.688+0.052  0.72040.042  0.716+0.026
Penguins in a Table 0.577+0.031 0.694+0.016 0.581+0.031 0.56240.035 0.5844+0.031  0.605+0.015
Reasoning about Colored Objects 0.54740.023 0.59340.023 0.440+£0.008 0.548+0.036  0.528+0.034  0.568-0.027
Ruin Names 0.70740.023 0.767+0.042 0.625+0.003 0.688+0.039  0.660+0.042  0.724+0.067
Salient Translation Error Detection 0.573£0.012 0.633+£0.070 0.500+£0.055 0.584+£0.033 0.58840.018 0.600+0.028
Snarks 0.778+£0.022 0.770+0.051 0.675+0.003 0.779+£0.022  0.7914+0.012 0.7824+0.019
Sports Understanding 0.440£0.106 0.540+0.072 0.669+0.004 0.524+£0.114  0.55240.073  0.56410.078
Temporal Sequences 0.647+£0.050  0.47340.046 0.403+0.019 0.612+£0.058  0.6484+0.050 0.652+0.052
Tracking Shuffled Objects Five Objects 0.300+0.053 0.287+0.012 0.279+0.030 0.296+0.017 0.3044+0.017  0.328+0.023
Tracking Shuffled Objects Seven Objects ~ 0.280+£0.020  0.2534-0.042 0.281-£0.006 0.268+0.023  0.268+0.023  0.256+0.029
Tracking Shuffled Objects Three Objects  0.473+0.046  0.4404-0.020 0.413+0.018 0.43240.039  0.4201+0.049  0.400+0.014
Web of Lies 0.633£0.023 0.607£0.012 0.627+0.012 0.640£0.039  0.64440.043  0.63610.026
Average (24 Tasks) 0.607 0.618 0.605 0.596 0.616 0.625

where we observe a positive correlation between the number of agents and the achieved prompt
score, highlighting the benefits of multi-agent collaboration and improved sample efficiency with
more agents. In addition, FedPOB achieves a near-optimal score with a small batch of samples,
demonstrating its sample efficiency.

4.2 PREFERENCE FEEDBACK: FEDPOB—PREF

To simulate user preference feedback in our experiments, we adopt the protocol from |Lin et al.
(20244). For any pair of prompts (p; 1, pe,2), we first compute their ground-truth scores, s(p;. 1)
and s(p;2), on a validation set. The preference probability is then determined by the Bradley-
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Terry-Luce (BTL) model (Hunter, 2004): P(pi1 > pi2) = o(s(pi,1) — s(pe,2)). where o(-) is
the sigmoid function. A binary preference outcome y, = L(p;1 > p¢2) is then sampled from a
Bernoulli distribution with this probability. We compare FedPOB—-Pre f against federated baselines
FLDB-GD and FLDB-OGD (Huang et al.,|2025)), as well as standard prompt optimization methods
APOHF (Lin et al.,[2024a)) and DoubleTS (Dwaracherla et al., [2024)).

The results, summarized in Table [3] demonstrate that given the same number of samples per agent,
FedPOB-Pref consistently achieves the best performance across different numbers of agents. This
showcases the superior sample efficiency of our FedPOB-Pref. Our method establishes a superior
trade-off between performance and communication cost. Specifically, FedPOB-Pref matches the
communication efficiency of FLDB-OGD while delivering substantially better results. Conversely,
while FLDB-GD obtains the second-best performance, it does so at a considerably higher commu-
nication cost. Fig. [3] further highlights that the sample efficiency of FedPOB-Pref improves as
more agents collaborate. Additional results are available in Fig.[T0](App.[D.2).

Table 3: Score and number of communication rounds under
preference feedback.

e
>
5

. . 0.61 4
Method Agent Instruction Induction BBH .E e
Perf. Comm. Perf. Comm. £
4
APOHF - 07681 - 0.5838 - 5"
Double TS - 0.7859 - 0.5983 - 50ss
<
1 0.7624 1500 0.5868 1500 0571 - FedBOP(AgenS)
FLDB-GD 3 0.7959 1500 0.6204 1500 & FedBOP(Agent-10)
10 0.8244 1500 0.6457 1500 0.56 ‘ ‘ ‘ ‘
0 10 100 300 1000
1 0.6872 50 0.5286 50 Communication Threshold (log scale)
FLDB-OGD 3 0.7687 50 0.5880 50 ) .
10 08123 50 0.6271 50 Figure 4: Scores of FedPOB with
1 0.8000 50 0.6213 50 varying communication thresholds D.
FedPOB-Pref 3 0.8145 50 0.6357 50
10 0.8482 50 0.6583 50

5 ABLATION STUDY

Performance vs. Communication in FedPOB. In federated learning, communication is inher-
ently costly, making frequent interactions with the central server impractical. Thus, an effective
algorithm should maintain strong performance even with infrequent communications. Here we re-
duce the interaction frequency by varying the communication threshold D in FedPOB in the range:
{0, 10, 100, 300, 1000}. Note that a larger D results in less communication rounds, and we report
the number of communication rounds in App. [G.3] The results in Fig. ] reveal a clear trade-off
between performance and communication, i.e., fewer communication rounds (i.e., larger D) result
in worse performance. More importantly, our FedPOB still achieves strong performance even with
infrequent communications, demonstrating its robustness and practical effectiveness in realistic fed-
erated environments.

Generalization to Other LLMs. While the response quality of an LLM depends not only on the
prompt design but also on the inherent capability of the backbone model, we examine whether
the observed performance gains of our algorithms can generalize to other LLMs. To this end,
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Figure 5: The performance of FedPOB using GPT-40-mini and Qwen.

we replace the GPT-3.5-Turbo model used in our main experiments by GPT-40-mini and Qwen
(OpenAll 2023azb; Bai et al., [2023)), while keeping all other settings fixed. As shown in Fig. E[,
our FedPOB consistently discovers high-score prompts and achieves better performance with a
larger number of agents, regardless of the underlying LLM. Additional results on the performance
of FedPOB-Pref can be found in App. which lead to consistent observations.

Effectiveness of Dynamic Regularization in FedPOB-Pref. We further assess the neces-
sity of the dynamic regularization term in FedPOB-Pref, which mitigates the dynamic drift
among heterogeneous clients and accelerates collaboration. We compare the performance of
FedPOB-Pref with and without this term, the latter of which is equivalent to the classical Fe-
dAvg algorithm (McMahan et al 2017)). Fig. [6] shows that incorporating dynamic regularization
stabilizes performance, speeds up convergence, and reduces fluctuations caused by inter-agent het-
erogeneity. These results highlight its critical role in enabling efficient and robust federated prompt
optimization in heterogeneous federated environments.

Dataset

Instruction
Induction

Average Reward

Average Reward

Average Reward
=
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0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Iterations Iterations Iterations

o

Average Reward
Average Reward
Average Reward

—FedPOB-Pref —FedPOB-Pref FedPOB-Pref
--FedAvg FedAvg +FedAvg

0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
Iterations Iterations Iterations

Agent Number

Agent=1 Agent=3 Agent=10

Figure 6: Impact of the dynamic regularization term in FedPOB-Pref. FedAvg corresponds to
removing this term.

6 RELATED WORK

Federated Prompt Optimization. Federated Learning enables collaborative model training with-
out sharing private data (Kairouz et al., [2019; McMabhan et al.| [2017). However, applying FL to
LLMs faces a critical barrier: the prohibitive cost of communicating updates for models of such
massive scale. A natural workaround is to combine FL with parameter-efficient prompt tuning (Zhao
et al.;[2023;/Che et al.| 2023} |Deng et al.,[2024; Wei et al.,[2023), where only lightweight soft prompts
are trained and communicated. While resource-efficient, this paradigm operates in a white-box set-
ting and thus fails in API-based black-box scenarios. This limitation has motivated research on
black-box federated prompt optimization (Lin et al.|[2023a)). Early efforts such as FedBPT (Zhang
et al.| 2023) adopt soft prompts with gradient-free optimization, but remain incompatible with API-
only LLMs. More recent work addresses discrete prompt optimization, e.g., FedOne (Wang et al.,
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2025)), which learns categorical distributions to sample prompts. Despite solving discreteness, these
methods suffer from inefficiency and poor semantic quality, leaving open the challenge of develop-
ing a query-efficient federated method that produces semantically meaningful discrete prompts for
black-box LLMs. We defer a detailed discussion of the related works on standard non-federated
prompt optimization to App.|B|due to space constraint.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced FedPOB and FedPOB-Pref, novel algorithms for sample-efficient
federated prompt optimization. Built upon the theory of federated multi-armed bandits, our meth-
ods enable multiple agents to effectively collaborate to find optimal prompts for black-box LLMs
without sharing raw data. Extensive experiments demonstrate that our algorithms significantly out-
perform existing baselines under both score and preference feedback, with performance consistently
improving with an increasing number of participating agents. Notably, FedPOB—-Pref establishes
a superior performance-to-communication trade-off in the practical preference-based setting. A
promising future direction is extending our algorithms to the asynchronous communication setting.
In addition, our current study focuses on generative LLMs, and extending our framework to pure
encoder tasks (e.g., ROBERTa on GLUE) remains another interesting direction for future work.
Regarding FedPOB-Pref, promising future directions include establishing stronger theoretical
guarantees and exploring alternative pairwise comparison models beyond the BTL framework.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have uploaded the code in the supplementary material. We have also
clearly described all detailed experimental settings (Sec. {4|and App.|C) to ensure transparency and
reproducibility.
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A LLM USAGE DISCLOSURE

We acknowledge the ICLR 2026 policies on LLM usage. All scientific ideas, proofs, experimental
design, and conclusions are the original work of the human authors. LLMs were used solely as
writing assistants to polish the text for minor grammar correction and clarification. All LLM-assisted
text has been carefully reviewed by the authors.

B ADDITIONAL RELATED WORK

The performance of Large Language Models (LLMs) is highly sensitive to the quality of input
prompts (Zhou et al., |2023; [Lin et al., 2024b). While carefully handcrafted prompts (Brown et al.,
2020; [Wei et al., 2022) can substantially enhance model capabilities, the manual design process
is time-consuming and heavily reliant on expert intuition. To address this challenge, early studies
focused on white-box prompt optimization, including AutoPrompt (Shin et al.,2020), Prefix-Tuning
(Li & Liang} 2021), P-Tuning (Liu et al) 2021), and Prompt Tuning (Lester et al., 2021). More
recently, increasing attention has been devoted to black-box prompt optimization (Yang et al.|, |2024;
Manas et al., 2024 Juneja et al., [2025} |Schneider et al.| 2024), with representative methods such as
GRIPS (Prasad et al., 2023, BDPL (Diao et al.} 2023), PRewrite (Kong et al., [2024)), PromptAgent
(Wang et al 2024), and APO (Pryzant et al., 2023). RLPrompt (Deng et al., |2022) addresses
the discrete black-box setting by optimizing a probability distribution over prompts, from which
candidates are sampled to identify the optimal one. Evolutionary approaches, such as EvoPrompt
(Guo et al.| [2024) and Promptbreeder (Fernando et al.| [2024), employ mutation and crossover to
iteratively improve prompts. Zhou et al. (Zhou et al., 2023) introduced APE, which leverages an
LLM to generate candidate instructions and refines those with high evaluation scores. However,
these approaches often require extensive sampling and validation, making them sample-inefficient.
A key direction has been reframing black-box prompt optimization as a continuous problem, as in
InstructZero (Chen et al.,2023) and ZOPO (Hu et al., 2024). Building on this idea, INSTINCT (Lin
et al., [2024b)) employs neural bandits to sequentially select instructions to query, leveraging neural
networks to better capture the relationship between prompts and their performance, thereby enabling
more efficient optimization.

Recent work has investigated prompt optimization in scenarios where direct human feedback is
difficult to obtain and only preference feedback is available. BPO (Luo et al., [2023)) trains an in-
dependent optimizer that automatically rewrites initial prompts using paired preference data, en-
couraging black-box LLMs to produce better responses. Align-Pro (Ye et all [2023) develops a
theoretical framework based on the Bradley—Terry model to analyze and guide optimization through
pairwise comparisons. APOHF (Lin et al.| 2024a) formulates prompt optimization as a dueling
bandits problem, directly leveraging pairwise preferences (e.g., A is better than B) to efficiently
identify the best prompt among candidates. Building on this idea, PLHF (Yang et al., [2025)) extends
preference-based optimization to a few-shot setting, demonstrating that high-quality prompts can
be identified with only a small number of comparisons, thereby greatly reducing annotation costs.
In addition, the prompt selection strategy of our FedPOB-Pref algorithm is also related to the
best-arm-identification (BAI) version of the method from the work of |Liu et al.[|(2024), which also
aims to achieve exploration by encouraging the selection of a response with large uncertainty.

Private Evolution. A related line of work explores Private Evolution, which similarly utilizes scores
to guide iterative queries to black-box LLMs (Lin et al., [2023b} Xie et al.| 2024} Lin et al., [2025).
However, these methods differ fundamentally from our approach in their privacy mechanisms and
optimization frameworks. While the Private Evolution literature primarily leverages Differential
Privacy (DP) to generate synthetic data—with recent extensions to federated settings relying on
preference-optimized synthetic data (Hou et al.,|2025)—our framework adopts a Federated Learning
paradigm based on direct parameter aggregation without exposing raw data.
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C MORE DETAILS ON THE EXPERIMENTAL SETTING

C.1 DATASETS AND MODELS

Datasets. We use 29 tasks from the Instruction-Induction dataset (Lin et al.,|2024b)), excluding the
auto-debugging task which contains only 8 instances, and the Cause-and-Effect task. The Cause-
and-Effect task is an open-ended reasoning problem where multiple answers may be reasonable, but
only one ground-truth is provided. Existing metrics cannot accurately evaluate responses, and most
automatic scores are generally zero. For example, a few instances are:

* Cause: “The child hurt their knee.” Effect: “The child started crying.”
* Cause: “My car got dirty.” Effect: “I washed the car.”
* Cause: “Someone fainted.” Effect: “Someone called 911.”

For the BBH dataset (Suzgun et al.| 2023), we adopt 24 tasks, excluding 3 tasks that overlap with
Instruction-Induction to avoid double evaluation.

Models. Our experiments are conducted on three LLMs, OpenAl/GPT-3.5-turbo-0613,
OpenAl/GPT-40-mini, and Qwen/Qwen3-235B-A22B-2507 via the OpenRouter API. We use MP-
Net (Song et al.||2020) as the embedding model.

C.2 PROMPT SPACE GENERATION

To simulate a realistic federated setting, we adopt the APE algorithm (Zhou et al.| [2023)) to construct
a prompt pool from a small initial task description (i.e., a set of input—output exemplars). From this
pool, each agent samples both shared and personalized prompts, thereby capturing the inherent data
heterogeneity—where shared prompts model the common knowledge across agents, while personal-
ized prompts reflect the distinct distributions, preferences, and contextual variations specific to each
client.

Prompt Template. We follow INSTINCT (Lin et al., 2024b) for prompt template to automatically
generate prompt space. We use 5 exemplars in datasets to query LLM to induct prompt.

Prompt Generation Template

Input: [INPUT]
Output: [OUTPUT]
<More exemplars...>
Input: [INPUT]
Output: [OUTPUT]
The instruction was to

Figure 7: Prompt Generation template for prompt space generation.

Prompt Generation Example

Input: [Today is Christmas Eve of 1937. What is the date 10 days later?]

Output: [01/03/1938]

<More exemplars...>

Input: [Jane thought today is 3/11/2002, but today is in fact Mar 12, which is 1 day later.
What is the date 24 hours later?]

Output: [03/13/2002]

The instruction was to

Figure 8: Illustrative example of prompt generation with the template.
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C.3 IMPROVED EVALUATION METHOD

Evaluation Challenges. Due to the complex nature of the BBH tasks, we observed that large lan-
guage models (LLMs) often generate detailed explanations along with their final answers, unlike the
more direct outputs seen in the Instruction-Induction tasks. This behavior was particularly prevalent
when using models such as GPT-40-mini and Qwen3. A small number of tasks in the Instruction-
Induction dataset also exhibited this tendency toward verbose responses. Standard evaluation metrics
such as exact match, contain, or F1-score proved unreliable in this context. Since the ground-truth
answers are typically concise, the verbosity of model outputs frequently led to misclassification. In
some cases, a model’s response was fully correct from a human perspective, yet automated metrics
incorrectly assigned a score of zero.

Multi-choice Metric. To mitigate this issue, we designed a new evaluation metric, termed Multi-
choice, specifically tailored to handle the verbose outputs of LLMs on BBH tasks. Our approach
normalizes the model’s output and checks whether the ground-truth answer is present. In practice,
we extract the final sentence of the model’s prediction and verify if it contains the ground-truth
answer.

Metrics. For BBH, we evaluate on 24 tasks using the Multi-choice metric. For Instruction-Induction
(29 tasks), we follow [Lin et al.| (2024b) and adopt the same evaluation setup. Concretely, we use the
F1 metric for “Common concept” and “Informal to formal”; exact set matching for “Orthography
starts with” and “Taxonomy animal”; and label containment for “Synonyms”. For the remaining
tasks, we apply exact match. Additionally, for “Diff”” and “Odd one out”, when evaluated with GPT-
4o-mini or Qwen3 (where verbose explanations are frequent), we employ the Multi-choice metric
instead of exact match.

Cached Prompt Scoring. We leverage the alignment between prompts and their validation scores.
Since our validation set is relatively large (50 samples), we observed that the scores obtained for a
given prompt remain stable across repeated evaluations. Consequently, for all algorithms that require
optimization over a prompt space (excluding FedOne and PromptBreeder, which do not depend on a
prompt space), we evaluate each prompt once on the validation set and cache the resulting score for
subsequent use. This strategy substantially reduces computation time while maintaining evaluation
reliability.

C.4 HYPERPARAMETERS OF OUR ALGORITHMS

In FedPOB, we set A = 1, v = 0.3, D = 10.0, and d = 768, where d matches the output feature
dimension of MPNet (Song et al., 2020). For FedPOB-Pref, we set A = 1 and use a learning rate
of 0.001 to update &, , (line 7 of Algo. . Training is conducted for 30 iterations.

The parameter (3; is time-dependent. Following (Huang et al.| [2025)), we set

B = \/21og(1/5) +dlog(1 + %”)

where k,, denotes the number of agents and d is the feature dimension (here d = 768 for compati-
bility with MPNet).

C.5 HYPERPARAMETERS OF BASELINE AND FAIR COMPARISONS

To ensure fairness, we set the total number of validation queries to be the same across all methods
and report them consistently in our experimental results (see Tables[I} [2] and[3]in Sec. 4] as well as

Table[5]in App.[D).

For score feedback baselines, only INSTINCT and our method share the same evaluation protocol,
where each iteration queries the validation set once. Therefore, we ensure fairness by comparing
the best reward obtained within the first 50 validation queries, rather than rewards at every single
iteration. For preference-feedback baselines, all methods query the validation set twice per iteration,
as two prompts are sampled for pairwise comparison. Running 50 iterations thus corresponds to 100
validation queries in total. For consistency, we report the score of the first (exploitation) prompt
selected by each method. This is consistent with the work of |Lin et al.[|(2024a). The reward curves
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are plotted across iterations, where the x-axis represents the number of iterations (equivalently,
preference-feedback steps).

Table 4: Query settings and reported metrics for different methods.

Score Feedback
Method Queries/Iter Total Queries Reported Metric
FedPOB 1 50 Best reward at 50th iter.
INSTINCT 1 50 Best reward at 50th iter.
PromptBreeder 5 50 Best reward at 10th round.
FedOne 5 50 Best reward at 50th iter.
Preference Feedback

FedPOB-Pref 2 100 Best reward at 50th iter.
FLDB-OGD 2 100 Best reward at 50th iter.
FLDB-GD 2 100 Best reward at 50th iter.
APOHF 2 100 Best reward at 50th iter.
Double-TS 2 100 Best reward at 50th iter.

Score Feedback. For FedPOB, we run 50 iterations, thus querying the validation set 50 times. We
report the best reward at the 50th iteration. For INSTINCT, we follow the default settings from
their paper, which are consistent with our protocol (one query per iteration), and also report the
best reward at the 50th iteration. For PromptBreeder, which is an evolutionary algorithm, half of the
population queries the validation set in each round. With a population size of 10 (2 mutation prompts
x5 thinking styles), this results in 5 queries per round and 50 queries in total over 10 rounds; we
report the best reward at the 10th round. For FedOne, we follow the original paper and construct its
vocabulary using the PMI algorithm, sampling frequent and high-quality words or word pairs from
the large prompt domain generated by APE. The setup involves 10 agents, each sampling 5 prompts
per round for 50 iterations. To ensure a fair comparison with 50 validation queries, we pair agents
and take the maximum score among the prompts they generate as the final performance of FedOne.

Preference Feedback. For methods based on preference feedback, including FedPOB-Pref,
FLDB-OGD, FLDB-GD, APOHF, and Double-TS, each iteration samples two prompts and queries
the validation set twice to obtain a pairwise preference. Running for 50 iterations therefore requires
100 validation queries in total. We report the best reward at the 50th iteration (based on 100 queries
in total). Other hyperparameters follow their original settings to ensure a fair comparison.

D MORE EXPERIMENTAL RESULTS

D.1 ADDITIONAL EXPERIMENTS ON PROMPT DOMAIN GENERATION METHODS

Performance and Stability Across Different Prompt Domains. In the experiment section, we
use GPT-3.5-Turbo to generate the prompt domain via APE. To further validate that our algorithm
achieves superior performance across different prompt domains generated by different methods, we
replace GPT-3.5-Turbo with GPT-40-mini while keeping all other settings fixed, such as running
both our algorithm and the baselines under the same LLM model, GPT-3.5-Turbo. As shown in
Fig.[9l Our method consistently achieves strong performance across different prompt domains, un-
derscoring its robustness to domain variability. Beyond maintaining high accuracy, it is capable of
identifying near-optimal prompts in a sample-efficient manner, thereby reducing the overall cost of
API queries to LLMs.
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Figure 9: Performance across different prompt domains

D.2 COMPLETE RESULTS IN FEDPOB-PREF
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Figure 10: More detailed comparison for FedPOB-Pref using GPT-3.5-Turbo.

D.3 COMPLETE RESULTS FOR FEDPOB

Table 5: Performance comparison on the complete set of Instruction Induction tasks.
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Dataset INSTINCT PromptBreeder FedOne (10 agents) FedPOB
1 Agent 3 Agents 10 Agents

Active to Passive 0.94040.053 1.000-£0.000 1.000+0.000 0.804+0.160  0.960+0.014  0.972+0.023
Auto Categorization 0.313+0.012 0.220+0.020 0.264+0.004 0.272+0.030  0.308+0.018 0.288+0.023
Antonyms 0.767+0.023 0.840+0.020 0.870-£0.005 0.792+0.046  0.812+0.027  0.828+0.023
Common Concept 0.21740.040 0.1184+0.010 0.136+0.003 0.188+0.015  0.210+0.007  0.208+0.018
Diff 1.000-£0.000 1.000-£0.000 1.000+0.000 0.992+0.018  1.000+0.000  1.000-£0.000
First Word Letter 1.000+0.000 1.000+1.000 0.713+0.089 1.000+1.000 1.000-£1.000 1.000+1.000
Informal to Formal 0.570+0.020 0.521+0.067 0.605+0.005 0.528+0.028  0.528+0.039  0.570+0.030
Larger Animal 0.9931+0.012 0.987+0.012 0.829+0.037 0.984+0.017  0.9924+0.011  0.989+0.011
Letters List 1.000+0.000 1.000-£0.000 0.831+0.095 0.952+0.107  1.000+0.000  1.000-£0.000
Negation 0.860+0.020 0.927+0.012 0.897+0.010 0.856+0.061  0.940+0.014  0.920+0.032
Num to Verbal 1.000+0.000 1.000-£0.000 1.000-+0.000 1.000£0.000  1.000+0.000 1.000+0.000
Orthography Starts With  0.767+0.214 0.813+0.061 0.436+0.024 0.804+0.100  0.828+0.056  0.832+0.087
Rhymes 0.4931+0.142 0.393+0.031 0.916+0.027 0.664+0.120  0.776+0.187  0.844+0.106
Second Word Letter 0.847+0.110 0.94740.042 0.62540.034 0.7924+0.199  0.880+0.157  0.972+0.023
Sentence Similarity 0.46740.031 0.380+0.020 0.360+0.035 0.540+0.094 0.508+0.082 0.448+0.018
Sentiment 0.9734+0.012 0.993+0.012 0.996+0.002 0.988+0.018  0.972+0.023  0.972+0.027
Singular to Plural 0.9931+0.012 1.000+0.000 1.000-0.000 1.000£0.000  0.996+0.009 1.000-+0.000
Sum 1.000-£0.000 1.0000.000 1.000-£0.000 0.9844+0.036  1.000+£0.000 1.000--0.000
Synonyms 0.32740.150 0.333+0.115 0.320+0.023 0.3244+0.103  0.296+0.041  0.384+0.124
Taxonomy Animal 0.947+0.023 0.967+0.042 0.805+0.026 0.924+0.073  0.980+0.024  0.972+0.034
Translation En-De 0.820+0.020 0.820+0.060 0.927+0.004 0.820+0.047  0.840+0.032  0.868+0.036
Translation En-Es 0.747+0.042 0.746+0.023 0.950+0.012 0.756+0.026  0.7404+0.072  0.728+0.030
Translation En-Fr 0.947+0.023 0.920+0.040 0.919+0.005 0.944+0.033  0.940+0.283  0.948+0.018
Word in Context 0.553+0.058 0.620+0.040 0.409+0.091 0.460+0.084  0.640+0.020  0.608+0.036
Object Counting 0.520+0.106 0.473+0.110 0.497+0.019 0.5204+0.074  0.616£0.039  0.588=+0.050
0Odd One Out 0.867+0.058 0.833+0.116 0.859+0.024 0.800+0.122  0.90040.000  0.900-£0.000
Periodic Elements 1.000+0.000 1.000-£0.000 0.946+0.017 0.976+0.054  1.000+0.000 1.000-£0.000
Word Sorting 0.75310.058 0.753+0.099 0.497+0.026 0.756+0.093  0.744+0.065 0.828+0.063
Word Unscrambling 0.687+0.012 0.687+0.023 0.728+0.005 0.72440.046  0.716+0.026  0.720+0.028
Average 29 Task 0.7715 0.7687 0.7356 0.7637 0.7977 0.8068

D.4 FURTHER EVALUATION ACROSS LLM MODELS
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Figure 11: More detailed comparison for FedPOB-Pref using GPT-40-mini.
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E MATHEMATICAL PRINCIPLES OF THE LOCAL OBJECTIVE FUNCTION
ADOPTED BY FEDPOB-PREF

This section provides a rigorous mathematical analysis of the local objective function adopted by
FedPOB-Pref for federated optimization. We derive the first-order optimality conditions and
demonstrate the necessity of the linear dual term for ensuring convergence to a globally opti-
mal and consistent solution. The results here provide theoretical support for the design of our
FedPOB-Pref algorithm.

E.1 PROBLEM FORMULATION

The standard federated learning objective is to minimize a global function F'(6), defined as the
average of m local client objectives f; : R? — R:

FO) = — > 1)

For distributed optimization, this is equivalently formulated as a constrained problem with local
variables 6; and a global consensus variable 6:

> fill) st 0;—0=0, Vie{l,...,m} (6)

i=1

. 1
min —
0.40:}7, M

E.2 THE AUGMENTED LAGRANGIAN METHOD

The constrained problem in Eq. equation [6] can be solved using the Method of Multipliers. We
introduce a dual variable (Lagrange multiplier) a; € R? for each consensus constraint and add a
quadratic penalty term for the constraint violation. This forms the augmented Lagrangian function
L:

m

LH03.0.00h) = 37 Fi(0) + Y {as 0= 0) + 23" 16— 0],

i=1

where v > 0 is a penalty parameter. An iterative algorithm then seeks a saddle point of this function.

E.3 FIRST-ORDER STATIONARITY CONDITIONS

A stationary point of the augmented Lagrangian must satisfy Vg, £ = 0 and VoL = 0. These
first-order conditions are derived as follows.

The partial derivative with respect to a local variable 6; is:

oL 1
08, ~ Evfi(ei) +a; +7(0; —0) = 0. (7
The partial derivative with respect to the global variable 6 is:
8£ m m m m
%:—Zai—VZ(ﬁi—e):O — Zaz:—yzwz—ﬁ) (8)
i=1 i=1 i=1 i=1

To see the implication of these conditions, we sum Eq. equation[/|over all clients ::

%vai(ei) + Zai +VZ(91' —0)=0.
i=1 i=1 i=1

Substituting the expression for ) . a; from Eq. equationinto the above yields:
1 m m m
o SOV =Y (0:—0)+7 Y (0; —0) =0,
i=1 i=1 i=1
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which simplifies to:
1 m
— Y Vfi6;) =0.
mis

This proves that any stationary point of L satisfies that the average of the local gradients is zero. If
the solution is also primally feasible (i.e., #; = #), this condition becomes precisely the first-order
optimality condition for the original global problem:

%ini(e) =0 <<= VF@®) =0
=1

E.4 ANALYSIS OF THE FORMULATION
E.4.1 PROOF OF NECESSITY FOR THE LINEAR DUAL TERM

To prove that the linear term (a;, 6; — ) is necessary, we analyze the case where it is omitted, relying
solely on a quadratic penalty. The objective would be:

£= =3 500+ -0l

The first-order condition with respect to ; for this objective is:
1
—V fi(0; 0, —0) =0.
—V1i(0) + (0 - 0)

At a point of consensus where 6; = 6 for all 4, the penalty term vanishes, and the condition strin-
gently requires that:

%vﬁ(a):o —  Vfi(6)=0, Vi

This is a significantly stronger condition than global optimality, as it requires the solution 6 to be a
stationary point for every client’s objective function simultaneously. Such a point is generally non-
existent for heterogeneous data distributions where local minima differ. Therefore, the inclusion
of the linear dual term is mathematically essential to relax this condition to the correct global one,

> Vfi(0) =0.
E.4.2 INTERPRETATION OF THE DUAL VARIABLES AT CONVERGENCE

In iterative methods that solve for a saddle point of £, the dual variables are typically updated via
dual ascent:
aftt = af + (00 — o't ©)

If the algorithm converges to a primally feasible solution 6*, then 1imt_>oo(92t»+1 — 011 = 0. At
this limit, the stationarity condition from Eq. equation [/|must hold. As 6§; — 6* and 8 — 6*, the
equation implies that the dual variables converge to a fixed point a;:

1 1
—Vi@)+al +v40"—-0")=0 = af =——Vfi(6").
m m

This result provides a clear interpretation of the dual variable at the optimal solution: a is precisely
the negative of the i-th client’s scaled local gradient at the global optimum. The condition ), af = 0
(from Eq. equation 8 at convergence) then mathematically guarantees that ), V f;(6*) = 0. The
dual variables are thus the mechanism that allows local gradients to be non-zero while ensuring their
sum is zero.

F OPTIMIZED PROMPTS FROM FEDPOB AND FEDPOB—PREF

In this section, we present the optimized prompts together with their validation-set scores obtained
by our FedPOB and FedPOB-Pref across all 53 tasks in both the Instruction Induction and
BBH datasets after 50 optimization rounds. For each task in the tables, the upper row reports the
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prompt and score optimized by FedPOB, while the lower row corresponds to those optimized by
FedPOB-Pref.

Table 6: Optimized prompts and their scores for the Instruction Induction tasks

Task Prompt Score
. Passi Rewrite the sentence passively. 0.972
active to Passive The sentence should be changed to passive voice: “The sentence is to be changed 0.993
from active to passive voice.” :
antonyms change the prefix of the word to make it have the opposite meaning. 0.288
Y find the opposite of each given word. 0.293
- provide an appropriate category for each group of items. 0.828
auto categorization identify the category or group that each set of inputs belong to. 0.840
common concept provide a connection between two seemingly unrelated words or phrases. 0.208
P provide a connection between two seemingly unrelated items. 0.250
diff change the prefix of the word to make it have the opposite meaning. 1.000
. Find the disparity between the initial number and the subsequent number in every 1.000
input. ’
& a1 Return the initial letter of every word provided as input. 1.000
st word letter State the initial letter of the specified word. 1.000
rephrase the given sentences, not just provide synonyms. Here are the revised sen-
tences: Input: Can you complete all of these tasks? Output: Are you capable of
completing all of these tasks? Input: It is not advisable to take any action at this
inf Lo f 1 time. Output: It is not recommended to do anything right now. Input: I'll see you 0.570
tnformal to forma this evening. Output: I anticipate seeing you tonight. Input: Would you like me to
accompany you? Output: Do you want me to go along with you? Input: The entire
narrative was fabricated. Output: The entire story was created.
rephrase the sentences using different words or phrases with the same meaning. 0.607
lareer animal choose the animal with the larger size or more strength. 0.989
g choose the larger animal in each pair. 1.000
) i Add a space between each letter within a word. 1.000
etters list Show each individual letter of the given word with a space between each letter. 1.000
negation change the sentences to negative form, indicating that the statements are false. 0.920
& change the statements to the opposite meaning. 0.947
bal Create a program that translates a provided number into its equivalent word form. 1.000
num (o ver Write out the number in words from one to nine thousand, nine hundred and ninety- 1.000
nine. ’
obiect countin count the total number of animals/items mentioned in the input sentence. 0.588
) & count the number of items listed in the input. 0.660
ad Find the word that is not the same as the others in the group. 0.900
odd one out Select the word that is not related to the rest. 1.000
. . identify and output the word that starts with the specified letter. 0.832
orthography start with identify the word in the sentence that starts with the given letter. 0.907
eriodic element Give the names of the elements that match the provided atomic numbers. 1.000
P List the names of the elements corresponding to the provided atomic numbers. 1.000
find a word that rhymes with the given word, so in the case of ’buy”, the output would 0.844
rhymes be “buy” as it already rhymes with itself. ’
change the first letter of the word to make a new word. 0.993
d dal Retrieve the second letter from the given word. 0.972
second word letter Print the second-to-last letter of the input word. 0.980
determine the likelihood that the two sentences are talking about the same topic. The
sentence similarit outputs provided are the level of certainty in the similarity of the topics discussed in 0.448
¥ the sentences.
compare the similarity between two sentences using a scale from O to 5, with 0 being
“definitely not ” similar and 5 being “perfectly ” similar. The output provided for 0613
each pair of sentences indicates the level of similarity between them based on the :
comparison.

. classify the input as either positive or negative based on the given statement. 0.972
sentiment provide an output (positive or negative) based on the given input. 1.000
sineular to plural pluralize the given input words. 1.000

s p add the letter ”’s” to the end of the word. 1.000
sum Calculate the total by adding the two numbers given as input. 1.000
sum the two inputted numbers. 1.000

synonyms provide alternative words for the given inputs. 0.384

Continued on next page
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Table 6: Optimized prompts and their scores for the Instruction Induction tasks

Task Prompt Score
provide an antonym, synonym, or rhyme for the given word. 0.500
taxonomy animal list the animals from the input words. 0.972
Y List the animals from the given words. 1.000
lati d Translate the specified words from English into German. 0.868
translation en-de Ubersetze die gegebenen englischen Worter ins Deutsche. 0.887
lati traduce cada palabra al espafiol. 0.728
translation en-es Convert the following words from English to Spanish: 1. wardrobe - armario 2. care 0.807
- preocuparse 3. dissatisfaction - insatisfaccion 4. pond - estanque 5. trial - prueba :
lati f translate the words provided from the English language to French. 0.948
translation en-fr turn the words into French. 0.960
determine if the word is used in the same context in both sentences. In this case, the
di word “academy” is used in different contexts in the two sentences, so the output is 0.608
word in context “hot the same.”
determine if the two sentences provided have the same meaning based on the given 0.700
word. :
sort the words in the provided list in alphabetical order. Each output should be a single
. . 0.828
word sorting line of the sorted words, separated by spaces.
rearrange the words in the list in alphabetical order. 0.867
word unscramblin Solve the jumbled words provided. 0.720
& Arrange the scrambled words in the correct order. 0.793
Table 7: Optimized prompts and their scores for the BBH tasks
Task Prompt Score
boolean expressions Assess the provided logical expressions and produce the result. 0.844
P Assess the provided logical expressions and give the resulting output. 0.860
. determine the date a specific number of days or years ago from a given date. 0.572
date understanding . L
determine the date one week ago or one week from today based on the given informa- 0613
tion. .
identify the antecedent of the pronoun in each sentence or state if it is ambiguous.
The correct antecedent for each sentence is as follows: 1. (C) Ambiguous 2. (B) The 0.840
disambiguation qa office was Sam’s office 3. (A) The technician completed the repair 4. (A) Alex could ’
not meet 5. (B) Asked the cleaner
explain the antecedent of the pronoun in the given sentences or state if it is ambiguous. 0.793
The correct antecedent for each sentence is provided in the output. ’
Finish the remaining part of the series and ensure that all parentheses are closed cor- 0.680
dyck languages rectly. ’
Continue the sequence, ensuring that all parentheses are closed correctly. 0.740
determine if the argument, given the explicitly stated premises, is deductively valid or 0812
formal fallacies invalid. The output for all the provided inputs is “invalid.” .
determine whether the arguments, given the explicitly stated premises, are deductively 1.000
valid or invalid. ’
Identify the geometric shape represented by the given SVG path element, with the 0.448
geometric shapes provided outputs indicating the corresponding shape based on the paths. ’
Determine the shape illustrated by the given SVG path element. 0.487
choose the sentence with the correct adjective order, which is the order of opinion, 0.948
hyperbaton size, age, shape, color, origin, material, and purpose. ’
choose the sentence with the correct adjective order. 0.973
Jogical deduction five fietermm'e which f)b]egt is in a specific position in the given set of objects based on the 0476
obiects information provided in each paragraph.
) determine which object finished first in each scenario. The correct outputs are: 1. (C)
Ada finished first 2. (E) The falcon is the third from the left 3. (E) Amy finished first 0473
4. (D) The plums are the second-cheapest 5. (D) The orange book is the third from ’
the left.
Jogical deduction seven deter_mme which object is in a specific position in the set of seven objects based on 0.488
objects the given statements. . T . .
determine which object is in a specific position in the given arrangement of objects. 0.540
determine which object is in a specific position based on the given information. In
logical deduction three each case, the correct output is provided based on the logical consistency of the state- 0.644
objects ments within the paragraph.
determine which object is in the leftmost position based on the given information. 0.653

Continued on next page
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Table 7: Optimized prompts and their scores for the BBH tasks

Task Prompt Score
find a movie similar to the given list of movies. The correct options are selected based 0.732
movie recommendation on the similarity to the movies listed in the input. ’
find a movie similar to a given list of movies. The correct option for each set of movies
is as follows: 1. (C) The Usual Suspects 2. (D) Fargo 3. (A) Pulp Fiction 4. (B) The 0.780
Matrix 5. (A) Schindler’s List
Find the difference between the first set of parentheses and the second set, and then 0.692
multistep arithmetic two simplify the expression. ’
determine the outcome of the provided mathematical equation. 0.700
navieate ”Turn right. Take 10 steps. Turn around. Take 10 steps.” 0.716
& take 9 steps left, then 10 steps forward, then 9 steps right, and finally 10 steps back-
ward. By following these instructions, you would return to the starting point, so the 0.773
output is Yes.
determine specific information based on the given table of penguins and provide the 0.605
penguins in a table correct answer from the options provided. ’
determine specific information about the penguins based on the given data and answer 0.586
the questions accordingly. i
reasoning about colored determine the color or quantity of items based on their arrangement in a row. 0.568
objects determine the color of the item directly to the right of a specified color in a given 0.580
arrangement of items. i
identify the humorous edit of the artist or movie name, and the correct answer for each 0.724
ruin names input is provided in the output. .
find the humorous edit of the artist or movie name. 0.813
salient translation error Find the mistake in the given translations. 0.600
detection Find the mistake in the German to English translations given. 0.613
identify the sarcastic statement from the given options. The selected statement typ-
K ically conveys an opposite meaning or is exaggerated in a way that highlights the 0.782
snarks absurdity of the situation.
identify the sarcastic statement from the given options. In each case, the sarcastic
statement is one that implies the opposite of what it literally says, often highlighting 0.793
absurdity or exaggeration.
sports understandin determine if the sentences were plausible based on common sports terminology. 0.564
P & determine if the sentences provided are plausible in a sports context. 0.580
determine between what times the person could have gone to the specified location
based on the given information about their activities throughout the day. The correct 0.652
temporal sequence . . .
time range is then provided as the output.
determine between what times the person could have gone to a specific location based
on the given information. The correct options for each scenario are as follows: 1. 0.700
David could have gone to the construction site between 8am to 12pm (Option A). 2. :
Leslie could have gone to the market between 11am to S5pm (Option B).
tracking shuffled objects determine who Claire is dapcu}g w1lh. at th-e end Qf the dance. In the given scenario, 0.328
five obiects at the end of the dance, Claire is dancing with option (B) Sam.

) determine who ends up with a specific item or partner after a series of swaps or trades. 0.353
tracking shuffled objects determine the final position/book/ball of a specific person/player after a series of 0.256
seven objects SWaps.

determine the final partner, gift, ball, or book that a specific person has at the end of 0.293

the given scenario. o
tracking shuffled objects determine the final position or item that Bob ends up with after a series of swaps. 0.400
three objects determine who ends up with a specific item after a series of swaps in a white elephant 0433

gift exchange. ’

determine if Inga tells the truth based on the statements given by the other individuals.

In this case, the answer is "No” because Inga says Fidel tells the truth, but Fidel says 0.636
web of lies Vernell lies. Since there is a contradiction in the statements, Inga does not tell the .

truth.

determine if Christie tells the truth based on the statements of the other individuals.

Christie says that Teressa tells the truth. Since Teressa says that Leda lies, and Leda 0.667

says that Shaunda lies, and Shaunda says that Ryan tells the truth, we can conclude
that Christie is telling the truth.
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G ADDITIONAL ABLATION STUDY

G.1 EVALUATION UNDER HETEROGENEOUS AGENT CAPABILITIES

Since real-world deployments often involve agents equipped with LLMs of widely varying capac-
ities, it is important to assess whether weaker models can destabilize the optimization process. To
evaluate FedPOB’s robustness under such heterogeneous-agent settings, we constructed a mixed-
model setup using three LLMs with different capability levels. These models were combined into
two representative mixed-model groups:

e Group 1: GPT-3.5-turbo + Qwen3-235B + GPT-5-nano
e Group 2: Llama-3.2-1B + Qwen3-235B + GPT-5-nano

For the 3-agent setting, we directly mix the three models. For the 10-agent setting, we include four
weaker agents (GPT-3.5-turbo or Llama-3.2-1B) and three stronger agents.

Since different LLMs exhibit different score distributions, instead of averaging rewards across all
agents, we report the best reward of the mid-strength agent (Qwen3-235B, Fig.[T54d) and the strongest
agent (GPT-5-nano, Fig.[T5b) separately at iteration 50.

* Group 1: Performance steadily improves as the number of agents increases.

GPT-3.5-turbo—although weaker—still contributes meaningful exploration signals,
demonstrating that FedPOB can effectively handle heterogeneous agents.(See Fig.

* Group 2: Performance does not increase monitonously when more agents are added.
We find that llama-3.2-1B performs extremely poorly on the prompt-optimization task.
When multiple such weak agents participate, their noisy local updates can negatively affect
the stronger models.(See Fig.[T5d)
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Figure 15: Performance of heterogeneous mixed-model configurations across four representative
LLMs.
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Overall, these results show that FedPOB does not require agents to have similar capabilities, even
moderately weaker models can contribute useful exploration and improve performance. But ex-
tremely weak models may hinder performance when they participate in the optimization process.

G.2 TESTING THE REASONABLENESS OF LINEAR MODELS
G.2.1 REASONABLENESS OF LINEAR MODELS

To empirically justify the use of a linear model, we conducted a study to assess whether the mapping
from prompt embeddings to performance scores can be well-approximated by a linear function, or
whether a non-linear model provides substantial additional benefit.

The Experimental Setup is shown below:

e Objective: To compare the predictive performance of a linear regressor versus a non-linear
neural network regressor.

» Data: For each of the 53 tasks in our study, we used the full set of 500 prompt embeddings
as the input features (X) and their corresponding validation scores as the target variable

).

e Linear Model: We used L2-regularized linear regression (Ridge Regression). This model
directly corresponds to the linear model used by our algorithms.

* Non-linear Model: We used a Multi-Layer Perceptron (MLP) regressor with L2 regular-
ization. To ensure fair comparison, we adopted the same MLP architecture as APOHF
2024d) which used the same embedding model as our work.

Evaluation Protocol. To ensure a fair and robust comparison in the high-dimensional setting, we
evaluated both the L2-regularized linear model and the L2-regularized neural network using K-fold
cross-validation (CV) with K = 5. The L2 regularization hyperparameter for each model was tuned
via a nested CV loop exclusively on the training data within each outer fold. We report two metrics
here:

1. Cross-Validated R? (R%y,): The primary metric for generalization and predictive power
on unseen data, calculated from the out-of-sample predictions on the held-out validation
folds.

2. In-Sample (Training) R?: The R? score averaged across the training folds, used to assess
the degree of overfitting.

We averaged the R? scores across all 53 tasks, and the results are shown in the table below.

Table 8: Comparison of Linear and Non-Linear Models in Predicting Prompt Performance

Model RZ, (Predictive Power) R? (In-sample Fit)
Linear Model 0.502 0.740
Neural Network (MLP) 0.452 0.799

The results show that while the neural network achieves a higher in-sample R? (0.799 vs. 0.740),
its cross-validated R? is notably lower than the linear model’s (0.452 vs. 0.502). This indicates
that the non-linear neural network model is overfitting the training data and generalizes more poorly
than the simple linear model. These results strongly suggest that a linear model is not significantly
mis-specified and is a suitable choice for this problem. In addition, the reasonableness of linear
models is further justified by the outstanding performance of our methods in more than 50 tasks.

G.2.2 OUR METHODS ARE ROBUST AGAINST EMBEDDING MIS-SPECIFICATION

To evaluate the robustness of our method under embedding mis-specification, we conducted an abla-
tion study where we deliberately distorted the prompt embeddings. Specifically, we truncated each
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Figure 16: FedPOB performance with embedding misspecification.

768-dimensional embedding vector by removing its last 768/2 = 384 dimensions and then renor-
malized the resulting vectors. This produces a mis-specified scenario as the reviewer has suggested.

The results (Fig.[TI6) show that:

1.

2.

For 1-agent and 3-agent settings, the performance remains nearly unchanged compared
to the original results in Fig. 2]

For the 10-agent setting, the distorted embedding leads to a small performance drop,
indicating that FedPOB becomes slightly more sensitive to model mis-specification when
more agents are involved.

. Across all settings, the overall trend is preserved: increasing the number of agents gener-

ally improves performance.

These findings suggest that FedPOB maintains relatively stable behavior even under substantial
embedding mis-specification, and the benefits of more participating agents continue to hold.

G.2.3

COMPARISON WITH NEURAL BANDIT BASELINES

To compare our linear bandit-based approach with non-linear alternatives for federated black-box
prompt optimization, we evaluated two families of neural bandit baselines across 29 Instruction-
Induction tasks: federated neural bandits (score feedback) and federated neural dueling bandits
(preference feedback).

1.

Score Feedback Baseline: We compare against Federated Neural Bandit 2023),
a Neural-UCB-based federated bandit method. Since the original work does not include
prompt optimization and its network architecture is incompatible with high-dimensional
features (768-d embeddings), we adapt the neural architecture from APOHF
[2024a)), which uses the same embedding model as ours and ensures a fair, architecture-
aligned comparison.

. Preference Feedback Baseline: For preference feedback, we extend APOHF, a neural

dueling bandit method for prompt optimization, to the federated setting. To ensure consis-
tency and fairness, we adopt the FedAvg aggregation protocol, following Federated Neural
Bandit.

. Results: We report the best rewards across all 29 Instruction-Induction tasks under both

score-feedback and preference-feedback settings, comparing FedPOB and FedPOB-Pref
with their corresponding neural baselines in Fig.

Across both feedback types, compared with our FedPOB and FedPOB-Pref, the federated neural
bandit and neural dueling bandit baselines fail to scale effectively. Their performance does not

28



Under review as a conference paper at ICLR 2026

Comparison Comparison

| —@— Fed_neural_bandit
——- FedPOB

—@— Fed_neural_dueling_bandit
~— FedPOB-pref

0.807 0.854 0.848

0.798

0.776

Best Reward
o
~
o]

Best Reward

o
©
pt

0.7

o

~

o
o
©
o

0.7

o
N
[

e

g

©

Number of Agents Number of Agents

(a) Score-based setting (b) Preference-based setting

Figure 17: Comparison with neural bandit baselines under score-based and preference-based feed-
back.

consistently improve as the number of agents increases. This may be due to the non-convexity
of neural networks combined with data heterogeneity: local neural updates diverge across agents,
making it difficult for standard federated averaging to converge to a stable global model in a small
number of iterations. This in fact also aligns with theoretical results, since federated neural bandit
is not guaranteed to achieve better performance with more agents. In contrast,
the performance of federated linear bandits is theoretically guaranteed to improve as the number of
agents increases, which is one of our major motivations for adopting linear models.

Conclusion: These new findings together justify that the linear model is a reasonable and robust
choice in our problem, and performs better than non-linear bandits.

G.3 PARAMETERS EXCHANGED BETWEEN AGENTS AND THE SERVER

To better demonstrate our communication efficiency, we present additional results below to show
that the total number of triggers (i.e., communication rounds) and the total throughput are small for
both FedPOB and FedPOB-Pref. For throughput, we simply measure the total number of parameters
exchanged between agents and the server over 50 iterations.

G.3.1 SCORE FEEDBACK SETTING (FEDPOB)

In FedPOB, we set communication threshood D to limit unnecessary communication rounds un-
less local agents have collected enough information. The table below reports the total number of
communication rounds for different values of D over 50 iterations of FedPOB (average across all
Instruction-Induction tasks). To further quantify throughput, we compute the total number of pa-
rameters exchanged between the agents and the server over 50 iterations.

Table 9: Communication rounds for different values of D

D 0 10 100 300 1000
# Comm. Rounds (Agent=3) 50 12 4 2 1

# Comm. Rounds (Agent=10) 50 11.13 3.99 2 1
Throughput (Agent=3) 169.0M 40.56M 13.52M 6.75M  3.37M
Throughput (Agent=10) 5632M 1254M  4494M 22.53M  11.26M

As expected in Table 9] the frequency of communication declines sharply as the communication
threshold D increases. Fig. [ demonstrates that even when D is raised to 300 or 1000—limiting
communication to merely two rounds or a single round, respectively—our method remains highly
robust. It exhibits only a negligible reduction in reward, despite the substantial decrease in commu-
nication overhead.
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G.3.2 PREFERENCE FEEDBACK SETTING FEDPOB—PREF

In the preference-feedback setting, we similarly evaluate communication efficiency by examining
both the number of rounds and total throughput. We compare FedPOB-Pref to FLDB-GD and
FLDB-OGD (Table[I0]and Table[TT)) and observe:

* FedPOB-Pref outperforms FLDB-OGD by 5.9%, while using the same number of commu-
nication rounds.

* FedPOB-Pref matches FLDB-GD’s performance while requiring only 1/30 of its commu-
nication rounds.

* FedPOB-Pref remains robust even under much stricter communication constraints. When
we allow only one communication trigger every three iterations, the total number of com-
munication rounds and the overall throughput are reduced by 68%. Despite this substantial
reduction, the performance decreases by only 4.06% and 7.07% for 3 and 10 agents, re-
spectively. This demonstrates that FedPOB-Pref provides a reliable option in scenarios
where communication resources are highly limited or expensive.

Table 10: Performance comparison of different methods (Agent = 3).

Method Best Rewards Comm. Times Throughput
FedPOB-Pref 0.8145 50 169.1M
FedPOB-Pref (Less Comm.) 0.7814 16 54.11M
FLDB-GD 0.7959 1500 175.3M
FLDB-OGD 0.7687 50 169.0M

Table 11: Performance comparison of different methods (Agent = 10).

Method Best Rewards Comm. Times Throughput
FedPOB-Pref 0.8482 50 563.9M
FedPOB-Pref (Less Comm.) 0.7882 16 180.4M
FLDB-GD 0.8244 1500 584.4M
FLDB-OGD 0.8123 50 563.5M

G.4 SCALING LAW WITH AGENTS

To demonstrate the scalability of our methods to larger numbers of agents and reveal potential scal-
ing laws, we adopted the Instruction-Induction tasks (29 tasks), and increased the number of agents
to 25 and 100 under the same experimental setting (using gpt-3.5-turbo). The results in Fig. [I8]sum-
marize the final aggregated scores over all 29 tasks after 50 iterations, as well as the average reward
trajectories across iterations.

These results suggest a clear scaling pattern:

* Our method is indeed able to scale to a substantially larger number of agents (100).

* The performance of FedPOB improves consistently and monotonically as the number of
agents increases.

* As the number of agents increases, the marginal gain gradually diminishes. This suggests
a logarithmic-like scaling curve where performance gains eventually saturate, which is a
desirable and expected property in large-scale collaborative learning systems.

G.5 RESULTS WITH HETEROGENEITY IN TASKS

To simulate a realistic scenario in which agents share a common prompt pool but operate on het-
erogeneous tasks, we conduct an additional experiment where all agents use the same prompt set
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Figure 18: Scalability of FedPOB: performance improves consistently with more agents.
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Figure 19: FedPOB performance under heterogeneous task settings

(containing 500 prompts), while their respective tasks (i.e., reward functions) remain distinct. Con-
cretely, we induce task heterogeneity by perturbing the underlying reward function for each agent:
independent Gaussian noise is added to the original reward values, yielding a set of agent-specific
reward functions.

We evaluated this setting across all 29 Instruction-Induction tasks using GPT-3.5-turbo
[2023d) . The Fig. [I9] demonstrate that FedPOB continues to perform robustly under this
heterogeneous-task scenario. Even when the agents are optimizing against heterogeneous reward
functions, our algorithm successfully leverages collaboration to improve overall performance. This
confirms that FedPOB is adaptable to different types of federated heterogeneity, whether in the
prompt space or the task definition.
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