
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEDPOB: SAMPLE-EFFICIENT FEDERATED PROMPT
OPTIMIZATION VIA BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of large language models (LLMs) is highly sensitive to the input
prompt, making prompt optimization a critical task. However, real-world appli-
cation is hindered by three major challenges: (1) the black-box nature of pow-
erful proprietary LLMs, (2) the need for high sample efficiency due to query
costs, and (3) the desire for privacy-preserving collaboration among multiple
users. To address these challenges simultaneously, we introduce a novel frame-
work for sample-efficient federated prompt optimization based on multi-armed
bandits (MABs). The MAB framework is uniquely suited for this problem as it is
(1) inherently a black-box optimization method, (2) practically sample-efficient,
and (3) enables collaborative learning with theoretically guaranteed benefit from
more participating agents. We first propose the Federated Prompt Optimization
via Bandits (FedPOB) algorithm, a federated variant of the Linear UCB algo-
rithm, where agents collaborate by sharing model parameters instead of raw data.
We then extend our approach to the practical setting of comparative user feedback
by introducing FedPOB with Preference Feedback (FedPOB-Pref), an efficient
algorithm based on federated dueling bandits. Extensive experiments demonstrate
that both FedPOB and FedPOB-Pref significantly outperform existing base-
lines and that their performance consistently improves as more agents participate
in the collaboration, validating the effectiveness of our federated approach.

1 INTRODUCTION

Large language models (LLMs) have achieved impressive performance in a variety of real-world
applications (Guo et al., 2025). However, the performance of LLMs has been shown to be highly
sensitive to the input prompt (Zhou et al., 2023; Lin et al., 2024b). Consequently, prompt optimiza-
tion, in which we aim to find the best prompt for a task, has emerged as a critical research area.
Despite its growing popularity, the widespread real-world adoption of prompt optimization is still
hindered by three important challenges.

The first challenge is black-box access. Some of the most powerful LLMs, such as ChatGPT and
Gemini (OpenAI, 2023b; Team et al., 2023), are proprietary, black-box models that are only acces-
sible via API queries. This limited access creates an immense challenge to prompt optimization.
The second challenge is sample efficiency. Since querying powerful LLMs is often costly in both
time and financial resources, it is of paramount importance to develop methods that can identify the
optimal prompt for a given task using a small number of interactions. The third challenge is en-
abling collaboration among multiple users. As LLMs become more widely adopted, a natural and
important question arises: how can multiple users, each with their own prompt optimization tasks,
collaborate to accelerate their progress? A key constraint in such a collaborative setting is user pri-
vacy, as participants are typically unwilling to share their proprietary data, such as the history of
tested prompts and their corresponding performance scores. This scenario naturally aligns with the
principles of federated learning (FL) (Kairouz et al., 2019; McMahan et al., 2017), where distributed
agents collaborate on their machine learning tasks without exposing their raw data. As an example,
federated prompt optimization enables multiple hospitals to collaboratively learn improved prompts
for LLM-assisted tasks (e.g., generating diagnosis suggestions) without sharing sensitive patient
data due to privacy regulations. Similarly, it allows mobile users to collaboratively learn improved
prompts for on-device assistant tasks (e.g., drafting personal emails or managing schedules) without
exposing their private interaction history.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

FedPOB (Local)

What is

the moon?

Prompt:

Poetically LLM

Response:

The moon is a

silver lamp

Evaluator

Score: 0.8

Score Feedback

Agent
Federated Aggregation

Server

Global Model

Prompt SpaceLocal Model

Agent 2

Agent n

Local parameters

Global parameters

…

“Scientific”

Explain

gravity

Prompt 1:

Explain

gravity

Prompt 2:

LLM
Response 2:

Gravity makes

things fall

Response 1:

Gravity pulls

masses together

Preference Feedback

Agent

Agent 1

Vividly

Scientifically

FedPOB-Pref (Local)

I really like

response 2

Figure 1: An overview of our proposed federated prompt optimization frameworks. FedPOB han-
dles direct score feedback, while FedPOB-Pref is designed for pairwise preference feedback.

To tackle the combined challenges of black-box access, sample efficiency and privacy-preserving
collaboration, we propose a new class of federated prompt optimization algorithms built upon the
multi-armed bandit (MAB) framework (Lattimore & Szepesvári, 2020). MABs are exceptionally
well-suited for this problem for three main reasons. First, MAB algorithms do not require gradient
information and are inherently black-box optimization methods. Second, they are designed to
efficiently balance the exploration-exploitation trade-off, enabling them to solve complex black-box
optimization problems in a sample-efficient manner, a property that has been successfully leveraged
in recent work on prompt optimization (Lin et al., 2024b; Wu et al., 2024). Thirdly, federated MAB
algorithms (Shi & Shen, 2021; Dubey & Pentland, 2020; Dai et al., 2023) provide strong theoretical
guarantees, ensuring that performance improves as more agents participate in the collaboration
(Wang et al., 2020).

Our first contribution is the Federated Prompt Optimization via Bandits (FedPOB) algorithm. This
method is based on a federated variant of the classic Linear Upper Confidence Bound (LinUCB)
algorithm (Abbasi-Yadkori et al., 2011; Wang et al., 2020). In our FedPOB algorithm, each agent
utilizes a pre-trained embedding model to represent the prompts and a linear model to predict their
performance. Collaboration is achieved by having agents periodically exchange and aggregate their
LinUCB parameters, thereby learning from the collective experience of all agents without requiring
them to share any sensitive raw data. Importantly, thanks to the solid theoretical guarantees of the
federated LinUCB algorithm (Wang et al., 2020), the performance of our FedPOB algorithm is
theoretically guaranteed to improve with a larger number of collaborating agents.

In addition, we consider the highly practical setting of prompt optimization with preference feed-
back, where explicit performance scores are unavailable and we are only able to observe relative
preference feedback (e.g., the user prefers the response from prompt A than that from prompt B).
This problem was recently introduced by Lin et al. (2024a) to address scenarios where user feedback
is inherently comparative. To enable sample-efficient federated prompt optimization in this novel
setting, we introduce our second algorithm, FedPOB with Preference Feedback (FedPOB-Pref).
This algorithm is a practical adaptation and modification of the federated linear dueling bandit
framework proposed by Huang et al. (2025). Specifically, our FedPOB-Pref algorithm signifi-
cantly reduces the communication complexity of the methods from Huang et al. (2025) while main-
taining the strong empirical performance. An overview of both FedPOB and FedPOB-Pref is
illustrated in Fig. 1.

We conduct extensive experiments to validate our proposed methods. The results demonstrate that
both FedPOB and FedPOB-Pref achieve considerably better performance than the previous base-
line methods in various tasks. Furthermore, we empirically verify that the performance of our al-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

gorithms consistently improves as the number of participating agents increases, highlighting the
benefits of our collaborative approach. In summary, our key contributions are as follows:

• We propose FedPOB, a novel algorithm for sample-efficient federated prompt optimization that
enables multiple agents to collaborate on finding the best prompts without sharing their raw data.

• We extend our algorithm to the practical setting of preference-based feedback by introducing the
FedPOB-Pref algorithm, which is based on federated linear dueling bandits.

• We conduct extensive experiments to validate our approach, demonstrating that our algorithms
significantly outperform existing baselines and scale effectively with more agents.

2 PROBLEM SETTING

Prompt Optimization. We address the problem of black-box prompt optimization, where the ob-
jective is to find an optimal prompt p that maximizes the performance of a black-box LLM on a
given task D = (X,Y). The task consists of a set of queries X = {xk} and their corresponding
ground-truth answers Y = {yk}. Since the internal parameters of the black-box LLMs (e.g., GPT-
4o-mini) are inaccessible and only API queries are allowed, we model the performance of the LLM
via an external score function. Specifically, we define

s(p | D) = E(x,y)∈D

[
m(LLM(p, x), y)

]
, (1)

in which m is a metric function that compares the model response LLM(p, x) induced by the prompt
p with the ground-truth answer y and provides a score s(p | D). The optimization target is then
formulated as

p∗ = argmax
p∈P

s(p | D), (2)

where P denotes the space of all possible prompts.

Federated Prompt Optimization. We extend the black-box prompt optimization problem to the
federated setting, which involves multiple agents. We consider a scenario with a set of N > 1
agents, denoted by A, who all aim to solve the same task D. To account for agent heterogeneity, we
allow each agent a ∈ A to have its own prompt space denoted as Pa. This increases the generality of
our setting by allowing each user to define a prompt space uniquely suited to their own preferences.
Furthermore, each agent can generate its local prompt space Pa using existing techniques (Zhou
et al., 2023) and does not need to share its local prompt space with other agents. This allows every
agent to keep its own local set of prompts private and hence aligns well with the federated setting.
As a result, the federated prompt optimization problem can be expressed as follows:

p∗a = arg max
pa∈Pa

E(x,y)∈D

[
m(LLM(pa, x), y)

]
, ∀a ∈ A (3)

Here, each agent a ∈ A aims to find the optimal prompt p∗a from its own prompt space Pa that maxi-
mizes its performance on the task D. To achieve greater sample efficiency, all agents in A collaborate
without sharing their raw data (i.e., the history of tested prompts and their scores). This problem
formulation naturally aligns with common paradigms in the federated bandit literature (Wang et al.,
2020; Dai et al., 2023). Therefore, we adopt the federated bandit framework to tackle this problem.

Feedback Model. To solve the federated black-box prompt optimization problem, we cast the opti-
mization process into an iterative protocol, where we sequentially select candidate prompts for eval-
uation. At each round t, each agent a selects one or two candidate prompts and receives feedback.
The selection of the prompts is guided by theoretically principled bandit policies, which leverage the
collective observation history from all agents to achieve sample-efficient optimization (more details
in Sec. 3). Depending on the type of feedback available, we consider two settings:

• Score feedback: In this setting, each agent selects a single prompt pt,a at each round t, and
receives a numeric score ŝt,a as feedback, which directly reflects the performance of the prompt
pt,a on task D. Specifically, given a validation set DV representing the task D, the score can be

obtained as follows: ŝt,a = E(x,y)∈DV

[
m(LLM(pt,a, x), y)

]
.

• Preference feedback: In this setting, every agent a selects a pair of prompts (p1t,a, p
2
t,a) at round

t, and observes a binary signal indicating which of the two performs better, i.e., which prompt
yielded the better response. For example, such feedback may be directly provided by human

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 FedPOB (Agent a ∈ A)
1: Initialize: Wsync = Wnew,a = 0d×d, Vt,a = λId×d, bsync = bnew,a = 0d, tlast = 0
2: for t = 1, 2, . . . , T do
3: Compute Vt,a ← λI +Wsync +Wnew,a

4: Update local model θ̂t,a ← V −1
t,a (bsync + bnew,a)

5: Select prompt pt,a ← argmaxp∈Pa⟨θ̂t,a, u(p)⟩+ ν||u(p)||V −1
t,a

6: Query pt,a to observe score feedback ŝt,a
7: Update Wnew,a ←Wnew,a + ut,au

⊤
t,a, bnew,a ← bnew,a + ut,aŝt,a

8: if (t− tlast) · log(detVt,a/detVlast,a) > D then
9: Send a communication request to the central server

10: if a communication round is started then
11: Upload {Wnew,a, bnew,a} to the central server. Reset Wnew,a = 0d×d, bnew,a = 0d

12: Receive {Wsync, bsync} from server

Algorithm 2 FedPOB (Central Server)
1: if Central server receives a communication request from any agent then
2: Initiate a communication round
3: receive {Wnew,a and bnew,a}a∈A from each agent
4: Update Wsync ←Wsync +

∑
a∈A Wnew,a , bsync ← bsync +

∑
a∈A bnew,a

5: Broadcast Wsync and bsync to all agents

evaluators (Lin et al., 2024a). Following the common practice from dueling bandits (Bengs et al.,
2022), we assume that the preference feedback is generated by the Bradley–Terry–Luce (BTL)
model (Hunter, 2004).

3 FEDERATED PROMPT OPTIMIZATION VIA BANDITS

We adopt linear models, rather than more complex ones such as neural networks, to learn the
unknown reward function for federated prompt optimization. Accordingly, our FedPOB and
FedPOB-Pref algorithms (illustrated in Fig. 1) are based on linear bandits (Abbasi-Yadkori et al.,
2011) and linear dueling bandits (Bengs et al., 2022), respectively. This choice is motivated by the
balance linear models offer between expressiveness, simplicity, and theoretical guarantees: (1) Mod-
ern text embedding techniques powered by transformers are sufficiently mature and effective (Shi
et al., 2024; Hu et al., 2024), enabling a simple linear function to model the relationship between
prompts and scores. (2) Linear models enable lightweight algorithmic designs. (3) Unlike feder-
ated neural bandits using neural networks for reward estimation (Dai et al., 2023), federated linear
bandit methods provide theoretical guarantees on collaboration which ensure that the performance
improves as more agents join the federation (Wang et al., 2020).

3.1 THE FEDPOB ALGORITHM: SCORE FEEDBACK

Following recent works on black-box prompt optimization (Shi et al., 2024; Hu et al., 2024), we first
map each discrete prompt p into a continuous embedding vector u(p) ∈ U using a pre-trained model.
This allows us to leverage rich semantic representations and simplifies the optimization problem. We
then model the score of a prompt for each agent a using a linear model: sa = ⟨θa, u(pa)⟩, which is
standard in the multi-armed bandit literature (Abbasi-Yadkori et al., 2011).

Local Prompt Selection. At the beginning of each round t, in lines 3-4 of Algo. 1, each agent a
first updates its information matrix Vt,a and estimated linear parameters θ̂t,a using (1) the aggregated
information from all agents received from the central server (i.e., Wsync and bsync, more details below)
and (2) its newly collected local information (i.e., Wnew,a and bnew,a). Next, using the parameters
Vt,a and θ̂t,a, agent a selects the next prompt to query following the Upper Confidence Bound (UCB)
strategy (line 5 of Algo. 1):

pt,a = argmax
p∈Pa

⟨θ̂t, u(p)⟩+ ν||u(p)||V −1
t,a

(4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 3 FedPOB-Pref (Agent a ∈ A)

1: Initialize: Wsync = Wnew,a = 0d×d, θ̂0 ∼ N (0, σ2Id) with small σ2,
2: for t = 1, 2, . . . , T do
3: Select first prompt p1t,a ← argmaxp∈Pa

⟨θ̂t−1, u(p)⟩
4: Select second prompt p2t,a ← argmaxp∈Pa

⟨θ̂t−1, u(p)−u(p1t,a)⟩+βt||u(p)−u(p1t,a)||W−1
sync

5: Query p1t,a, p
2
t,a to observe preference feedback ω̂t,a = 1(p1t,a ≻ p2t,a)

6: Update local model θ̂t,a ← argminp∈Pa
Lt,a(θ)− ⟨∇La(θ̂t−1,a), θ⟩+ λ

2 ||θ − θ̂t−1||2

7: Update ∇La(θt,a)← ∇La(θt−1,a)− λ(θ̂t,a − θt−1)
8: Compute Wnew,a = [u(p1t,a)− u(p2t,a)][u(p

1
t,a)− u(p2t,a)]

⊤

9: Upload {θ̂t,a,∇La(θ̂t,a),Wnew,a} to server

Here the parameter ν balances exploitation (choosing prompts with large predicted rewards) and
exploration (choosing prompts with large uncertainty). Next, we test the selected prompt pt,a using
the validation set DV, to obtain score feedback ŝt,a (line 6 of Algo. 1). Then, we update the newly
collected local information Wnew,a and bnew,a (line 7 of Algo. 1).

Agent-Server Communication. To reduce the communication cost, we only start a communication
round when the new information collected by any agent exceeds a threshold D, i.e., when the cri-
terion in line 8 of Algo. 1 is satisfied. If a communication request is sent by any agent, the trusted
central server initiates a communication round (line 1-2 of Algo. 2) and all agents upload their local
parameters Wnew,a and bnew,a to the central server (lines 10-11). The central server then aggregates
these local parameters to produce synchronized parameters Wsync and bsync (line 3-4 of Algo. 2),
which are then broadcast to all agents. After the agents receive the aggregated parameters Wsync and
bsync, they can use them to select the prompt in the next iteration, and the algorithm repeats.

3.2 THE FEDPOB-PREF ALGORITHM: PREFERENCE FEEDBACK

In many practical applications, obtaining explicit numerical scores is challenging, whereas collecting
pairwise preference feedback is often more natural and cost-effective. Specifically, in human-in-the-
loop scenarios, users can more reliably state a preference between two generated outputs than assign
them absolute scores (Yue et al., 2012; Lin et al., 2024a). For example, in LLM-based creative
writing, it is often more intuitive for users to express a preference between two generated articles
than to quantify subjective alignment with a numeric score. Similarly, in text-to-image generation, it
is often more practical to rely on pairwise comparisons than to capture complex aesthetic preferences
with a single numeric score. This setting, however, introduces a significant technical hurdle: the
parameter estimation for linear dueling bandits does not have a closed-form solution (Bengs et al.,
2022). This limitation prevents the use of the simple parameter aggregation strategy employed by
our FedPOB algorithm.

The absence of a closed-form solution naturally leads to gradient-based optimization approaches.
Recent work by Huang et al. (2025) introduced federated linear dueling bandit algorithms (FLDB-
GD and FLDB-OGD) that achieve collaboration by aggregating local gradients. While theoreti-
cally sound, these methods face a practical dilemma: FLDB-GD incurs high communication costs,
whereas the more communication-efficient FLDB-OGD suffers significant performance degrada-
tion. We attribute this to the fact that preference feedback is inherently noisier and less informative
than numerical scores, making it particularly challenging to achieve both competitive performance
and communication efficiency. To overcome this, we draw inspiration from classical federated
learning for solving supervised learning problems (McMahan et al., 2017). Specifically, instead of
aggregating gradients, we aggregate model parameters, which allows us to adopt a dynamic regu-
larization technique that has proven effective in federated learning (Acar et al., 2021) for further
performance improvement. This leads to our proposed FedPOB-Pref algorithm (Algos. 3 and 4).

Our FedPOB-Pref algorithm offers several key advantages: (1) it is highly sample-efficient, ca-
pable of learning the underlying reward model from a small number of preference queries; (2) it is
robust to agent heterogeneity, and its performance scales effectively with the number of collabo-
rating agents; and (3) when compared to the baselines from Huang et al. (2025), FedPOB-Pref si-
multaneously reduces communication costs and improves performance (Sec. 4.2).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 4 FedPOB-Pref (Central Server)

1: receive {θ̂t,a,∇La(θ̂t,a),Wnew,a}a∈A from each agent
2: Update server model θ̂t ← 1

n

∑
a∈A θ̂t,a − 1

n

∑
a∈A

1
λ∇La(θ̂t,a)

3: Update Wsync ←Wsync +
∑

a∈A Wnew,a

4: Broadcast θ̂t and Wsync to all agents

The overall workflow of FedPOB-Pref is outlined in Algorithms 3 and 4. At each round t, every
agent a selects a pair of prompts based on the global model θ̂t−1. The first prompt, p1t,a, represents
pure exploitation (line 3), while the second, p2t,a, incorporates an exploration bonus to discover
more informative options (line 4). This dueling selection strategy is grounded in the theory of
dueling bandits (Bengs et al., 2022; Verma et al., 2024). We then obtain binary preference feedback
ωt,a = 1p1

t,a≻p2
t,a

for this pair of selected prompts (line 5). The core of our method lies in the local
model update (line 6), which optimizes an objective that combines the standard logistic loss with a
dynamic regularizer (Acar et al., 2021). The first component is the pairwise logistic loss over the
agent’s local history:

Lt,a(θ) = −
t−1∑
τ=1

(
ωτ,a log σ

(
θ⊤

[
u(p1τ,a)− u(p2τ,a)

])
+(1−ωτ,a) log σ

(
θ⊤

[
u(p2τ,a)− u(p1τ,a)

]))
.

(5)
This term is the negative log-likelihood of the observed preferences under the BTL model (Bengs
et al., 2022). The second component is a dynamic regularization term consisting of (i) a linear
penalty, −⟨∇La(θ̂t−1,a), θ⟩, which corrects for local gradient drift, and (ii) a quadratic penalty,
which prevents the local model from deviating excessively from the previous global model (Acar
et al., 2021). After this local update (lines 6-8), agents upload their new parameters to the
central server for aggregation, which then broadcasts the aggregated global parameters for the
next round. Of note, we conduct theoretical analysis to motivate the local objective function of
FedPOB-Pref (App. E), providing theoretical justification for its strong performance (Sec. 4.2).

4 EXPERIMENTS

We adopt MPNet (Song et al., 2020) as the text embedding model, and use GPT-3.5-turbo (OpenAI,
2023a) in the experiments unless specified otherwise. Of note, we also test two other models, GPT-
4o-mini (OpenAI, 2023b) and Qwen3-235B-A22B-2507 (Bai et al., 2023), in Sec. 5. Evaluation is
performed on the Instruction Induction (Chen et al., 2023; Lin et al., 2024b) and BIG-Bench Hard
datasets (Suzgun et al., 2023), which collectively cover over 50 tasks that span diverse areas such
as reasoning, language comprehension, and code generation. To account for agent heterogeneity,
we ensure that the prompt domains of all agents contain both shared prompts and unique prompts.
For fair comparisons, we ensure an equal validation query budget across all algorithms and ana-
lyze the corresponding communication costs in the federated setting. We defer more details on the
experimental setting to App. C.

4.1 SCORE FEEDBACK: FEDPOB

In the setting with score-based feedback, every tested prompt receives a numerical score indicating
the quality of its induced response. Here we assess performance of a prompt using a validation set
and adopt the validation accuracy as the corresponding score. The objective is to identify the optimal
prompt (i.e., the one that achieves the highest validation score). We compare our FedPOB with a
representative baseline method on federated prompt optimization: FedOne (Wang et al., 2025), as
well as two other baselines on standard prompt optimization: INSTINCT (Lin et al., 2024b) and
PromptBreeder (Fernando et al., 2024).

Table 1 and 2 report the final scores achieved by the best prompt discovered by each algorithm
in various tasks. The results demonstrate the superior capability of our FedPOB, which achieves
the highest score on the majority of the tasks under the setting of ten agents. The results also
show the sample efficiency of our FedPOB since it achieves the best performance given a fixed
number of samples per agent. Fig. 2 depicts the performance of FedPOB across different iterations,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Average validation accuracy (with standard error) of the best prompt found by each al-
gorithm in the Instruction Induction dataset, averaged over 5 independent trials with different
random seeds. For clarity, only a representative subset of challenging tasks. The complete results
for all tasks are provided in Table 5 (App. D.3) and the results are consistent.

Dataset INSTINCT PromptBreeder FedOne (10 agents) FedPOB (ours)

1 Agent 3 Agents 10 Agents

Active to Passive 0.940±0.053 1.000±0.000 1.000±0.000 0.804±0.160 0.960±0.014 0.972±0.023
Auto Categorization 0.313±0.012 0.220±0.020 0.264±0.004 0.272±0.030 0.308±0.018 0.288±0.023
Antonyms 0.767±0.023 0.840±0.020 0.870±0.005 0.792±0.046 0.812±0.027 0.828±0.023
Common Concept 0.217±0.040 0.118±0.010 0.136±0.003 0.188±0.015 0.210±0.007 0.208±0.018
Informal to Formal 0.570±0.020 0.521±0.067 0.605±0.005 0.528±0.028 0.528±0.039 0.570±0.030
Larger Animal 0.993±0.012 0.987±0.012 0.829±0.037 0.984±0.017 0.992±0.011 0.989±0.011
Negation 0.860±0.020 0.927±0.012 0.897±0.010 0.856±0.061 0.940±0.014 0.920±0.032
Orthography Starts With 0.767±0.214 0.813±0.061 0.436±0.024 0.804±0.100 0.828±0.056 0.832±0.087
Rhymes 0.493±0.142 0.393±0.031 0.916±0.027 0.664±0.120 0.776±0.187 0.844±0.106
Second Word Letter 0.847±0.110 0.947±0.042 0.625±0.034 0.792±0.199 0.880±0.157 0.972±0.023
Sentence Similarity 0.467±0.031 0.380±0.020 0.360±0.035 0.540±0.094 0.508±0.082 0.448±0.018
Sentiment 0.973±0.012 0.993±0.012 0.996±0.002 0.988±0.018 0.972±0.023 0.972±0.027
Synonyms 0.327±0.150 0.333±0.115 0.320±0.023 0.324±0.103 0.296±0.041 0.384±0.124
Taxonomy Animal 0.947±0.023 0.967±0.042 0.805±0.026 0.924±0.073 0.980±0.024 0.972±0.034
Translation En-De 0.820±0.020 0.820±0.060 0.927±0.004 0.820±0.047 0.840±0.032 0.868±0.036
Translation En-Es 0.747±0.042 0.746±0.023 0.950±0.012 0.756±0.026 0.740±0.072 0.728±0.030
Translation En-Fr 0.947±0.023 0.920±0.040 0.919±0.005 0.944±0.033 0.940±0.283 0.948±0.018
Word in Context 0.553±0.058 0.620±0.040 0.409±0.091 0.460±0.084 0.640±0.020 0.608±0.036
Object Counting 0.520±0.106 0.473±0.110 0.497±0.019 0.520±0.074 0.616±0.039 0.588±0.050
Odd One Out 0.867±0.058 0.833±0.116 0.859±0.024 0.800±0.122 0.900±0.000 0.900±0.000
Word Sorting 0.753±0.058 0.753±0.099 0.497±0.026 0.756±0.093 0.744±0.065 0.828±0.063
Word Unscrambling 0.687±0.012 0.687±0.023 0.728±0.005 0.724±0.046 0.716±0.026 0.720±0.028

Average (22 Tasks) 0.669 0.665 0.645 0.663 0.701 0.712

Table 2: Performance on the Big-Bench Hard (BBH) dataset under the same experimental settings.

Dataset INSTINCT PromptBreeder FedOne (10 agents) FedPOB (ours)

1 Agent 3 Agents 10 Agents

Boolean Expressions 0.793±0.046 0.853±0.012 0.883±0.003 0.800±0.025 0.836±0.021 0.844±0.026
Date Understanding 0.587±0.012 0.593±0.030 0.633±0.007 0.580±0.028 0.576±0.033 0.572±0.030
Disambiguation QA 0.713±0.031 0.753±0.023 0.858±0.011 0.816±0.026 0.844±0.017 0.840±0.032
Dyck Languages 0.713±0.031 0.693±0.012 0.722±0.005 0.672±0.018 0.668±0.023 0.680±0.032
Formal Fallacies 0.687±0.031 0.967±0.058 0.991±0.002 0.700±0.121 0.872±0.175 0.812±0.172
Geometric Shapes 0.453±0.058 0.360±0.060 0.272±0.007 0.436±0.022 0.412±0.039 0.448±0.036
Hyperbaton 0.913±0.046 0.907±0.023 0.946±0.003 0.868±0.522 0.928±0.027 0.948±0.018
Logical Deduction Five Objects 0.473±0.046 0.460±0.053 0.466±0.009 0.464±0.041 0.452±0.030 0.476±0.017
Logical Deduction Seven Objects 0.513±0.046 0.473±0.031 0.485±0.002 0.476±0.043 0.492±0.046 0.488±0.415
Logical Deduction Three Objects 0.600±0.053 0.573±0.046 0.635±0.009 0.604±0.033 0.636±0.017 0.644±0.009
Movie Recommendation 0.820±0.069 0.767±0.023 0.688±0.004 0.720±0.037 0.720±0.032 0.732±0.027
Multistep Arithmetic Two 0.647±0.129 0.601±0.030 0.685±0.017 0.580±0.105 0.648±0.018 0.692±0.046
Navigate 0.707±0.031 0.760±0.020 0.755±0.028 0.688±0.052 0.720±0.042 0.716±0.026
Penguins in a Table 0.577±0.031 0.694±0.016 0.581±0.031 0.562±0.035 0.584±0.031 0.605±0.015
Reasoning about Colored Objects 0.547±0.023 0.593±0.023 0.440±0.008 0.548±0.036 0.528±0.034 0.568±0.027
Ruin Names 0.707±0.023 0.767±0.042 0.625±0.003 0.688±0.039 0.660±0.042 0.724±0.067
Salient Translation Error Detection 0.573±0.012 0.633±0.070 0.500±0.055 0.584±0.033 0.588±0.018 0.600±0.028
Snarks 0.778±0.022 0.770±0.051 0.675±0.003 0.779±0.022 0.791±0.012 0.782±0.019
Sports Understanding 0.440±0.106 0.540±0.072 0.669±0.004 0.524±0.114 0.552±0.073 0.564±0.078
Temporal Sequences 0.647±0.050 0.473±0.046 0.403±0.019 0.612±0.058 0.648±0.050 0.652±0.052
Tracking Shuffled Objects Five Objects 0.300±0.053 0.287±0.012 0.279±0.030 0.296±0.017 0.304±0.017 0.328±0.023
Tracking Shuffled Objects Seven Objects 0.280±0.020 0.253±0.042 0.281±0.006 0.268±0.023 0.268±0.023 0.256±0.029
Tracking Shuffled Objects Three Objects 0.473±0.046 0.440±0.020 0.413±0.018 0.432±0.039 0.420±0.049 0.400±0.014
Web of Lies 0.633±0.023 0.607±0.012 0.627±0.012 0.640±0.039 0.644±0.043 0.636±0.026

Average (24 Tasks) 0.607 0.618 0.605 0.596 0.616 0.625

where we observe a positive correlation between the number of agents and the achieved prompt
score, highlighting the benefits of multi-agent collaboration and improved sample efficiency with
more agents. In addition, FedPOB achieves a near-optimal score with a small batch of samples,
demonstrating its sample efficiency.

4.2 PREFERENCE FEEDBACK: FEDPOB-PREF

To simulate user preference feedback in our experiments, we adopt the protocol from Lin et al.
(2024a). For any pair of prompts (pt,1, pt,2), we first compute their ground-truth scores, s(pt,1)
and s(pt,2), on a validation set. The preference probability is then determined by the Bradley-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Iterations
0 10 20 30 40 50

A
ve
ra
ge
	R
ew
ar
d

0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82

Agent=1
Agent=3
Agent=10

Iterations
0 10 20 30 40 50

A
ve
ra
ge
	R
ew
ar
d

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

Agent=1
Agent=3
Agent=10

(a) Instruction
Induction

(b) BBH

Figure 2: Performance of FedPOBwith varying
numbers of agents.

Iterations
0 10 20 30 40 50

Av
er
ag
e	
R
ew
ar
d

0.64

0.66

0.68

0.70

0.72

0.74

076

0.78

0.80

Agent=1
Agent=3
Agent=10

Iterations
0 10 20 30 40 50

Av
er
ag
e	
R
ew
ar
d

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Agent=1
Agent=3
Agent=10

(a) Instruction
Induction

(b) BBH

Figure 3: Performance of FedPOB-Pref with
varying numbers of agents.

Terry-Luce (BTL) model (Hunter, 2004): P (pt,1 ≻ pt,2) = σ(s(pt,1) − s(pt,2)), where σ(·) is
the sigmoid function. A binary preference outcome yt = 1(pt,1 ≻ pt,2) is then sampled from a
Bernoulli distribution with this probability. We compare FedPOB-Pref against federated baselines
FLDB-GD and FLDB-OGD (Huang et al., 2025), as well as standard prompt optimization methods
APOHF (Lin et al., 2024a) and DoubleTS (Dwaracherla et al., 2024).

The results, summarized in Table 3, demonstrate that given the same number of samples per agent,
FedPOB-Pref consistently achieves the best performance across different numbers of agents. This
showcases the superior sample efficiency of our FedPOB-Pref. Our method establishes a superior
trade-off between performance and communication cost. Specifically, FedPOB-Pref matches the
communication efficiency of FLDB-OGD while delivering substantially better results. Conversely,
while FLDB-GD obtains the second-best performance, it does so at a considerably higher commu-
nication cost. Fig. 3 further highlights that the sample efficiency of FedPOB-Pref improves as
more agents collaborate. Additional results are available in Fig. 10 (App. D.2).

Table 3: Score and number of communication rounds under
preference feedback.

Method Agent Instruction Induction BBH

Perf. Comm. Perf. Comm.

APOHF - 0.7681 - 0.5838 -
Double TS - 0.7859 - 0.5983 -

FLDB-GD
1 0.7624 1500 0.5868 1500
3 0.7959 1500 0.6204 1500
10 0.8244 1500 0.6457 1500

FLDB-OGD
1 0.6872 50 0.5286 50
3 0.7687 50 0.5880 50
10 0.8123 50 0.6271 50

FedPOB-Pref
1 0.8000 50 0.6213 50
3 0.8145 50 0.6357 50
10 0.8482 50 0.6583 50

0 10 100 300 1000
Communication	Threshold	(log	scale)

0.56

0.57

0.58

0.59

0.6

0.61

0.62

A
ve
ra
ge
	R
ew
ar
d

FedBOP(Agent=3)
FedBOP(Agent=10)

Figure 4: Scores of FedPOB with
varying communication thresholds D.

5 ABLATION STUDY

Performance vs. Communication in FedPOB. In federated learning, communication is inher-
ently costly, making frequent interactions with the central server impractical. Thus, an effective
algorithm should maintain strong performance even with infrequent communications. Here we re-
duce the interaction frequency by varying the communication threshold D in FedPOB in the range:
{0, 10, 100, 300, 1000}. Note that a larger D results in less communication rounds, and we report
the number of communication rounds in App. G.3. The results in Fig. 4 reveal a clear trade-off
between performance and communication, i.e., fewer communication rounds (i.e., larger D) result
in worse performance. More importantly, our FedPOB still achieves strong performance even with
infrequent communications, demonstrating its robustness and practical effectiveness in realistic fed-
erated environments.

Generalization to Other LLMs. While the response quality of an LLM depends not only on the
prompt design but also on the inherent capability of the backbone model, we examine whether
the observed performance gains of our algorithms can generalize to other LLMs. To this end,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Iterations
0 10 20 30 40 50

A
ve
ra
ge
	R
ew
ar
d

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Agent=1
Agent=3
Agent=10

(a) Instruction Induction
(GPT-4o-mini)

Iterations
0 10 20 30 40 50

A
ve
ra
ge
	R
ew
ar
d

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Agent=1
Agent=3
Agent=10

(b) BBH
(GPT-4o-mini)

Iterations
0 10 20 30 40 50

A
ve
ra
ge
	R
ew
ar
d

0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82

Agent=1
Agent=3
Agent=10

(c) Instruction Induction
(Qwen)

Iterations
0 10 20 30 40 50

A
ve
ra
ge
	R
ew
ar
d

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Agent=1
Agent=3
Agent=10

(d) BBH
(Qwen)

Figure 5: The performance of FedPOB using GPT-4o-mini and Qwen.

we replace the GPT-3.5-Turbo model used in our main experiments by GPT-4o-mini and Qwen
(OpenAI, 2023a;b; Bai et al., 2023), while keeping all other settings fixed. As shown in Fig. 5,
our FedPOB consistently discovers high-score prompts and achieves better performance with a
larger number of agents, regardless of the underlying LLM. Additional results on the performance
of FedPOB-Pref can be found in App. D.4, which lead to consistent observations.

Effectiveness of Dynamic Regularization in FedPOB-Pref. We further assess the neces-
sity of the dynamic regularization term in FedPOB-Pref, which mitigates the dynamic drift
among heterogeneous clients and accelerates collaboration. We compare the performance of
FedPOB-Pref with and without this term, the latter of which is equivalent to the classical Fe-
dAvg algorithm (McMahan et al., 2017)). Fig. 6 shows that incorporating dynamic regularization
stabilizes performance, speeds up convergence, and reduces fluctuations caused by inter-agent het-
erogeneity. These results highlight its critical role in enabling efficient and robust federated prompt
optimization in heterogeneous federated environments.

Agent=1 Agent=3 Agent=10

Dataset

Instruction
Induction

BBH

Agent Number

Figure 6: Impact of the dynamic regularization term in FedPOB-Pref. FedAvg corresponds to
removing this term.

6 RELATED WORK

Federated Prompt Optimization. Federated Learning enables collaborative model training with-
out sharing private data (Kairouz et al., 2019; McMahan et al., 2017). However, applying FL to
LLMs faces a critical barrier: the prohibitive cost of communicating updates for models of such
massive scale. A natural workaround is to combine FL with parameter-efficient prompt tuning (Zhao
et al., 2023; Che et al., 2023; Deng et al., 2024; Wei et al., 2023), where only lightweight soft prompts
are trained and communicated. While resource-efficient, this paradigm operates in a white-box set-
ting and thus fails in API-based black-box scenarios. This limitation has motivated research on
black-box federated prompt optimization (Lin et al., 2023a). Early efforts such as FedBPT (Zhang
et al., 2023) adopt soft prompts with gradient-free optimization, but remain incompatible with API-
only LLMs. More recent work addresses discrete prompt optimization, e.g., FedOne (Wang et al.,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

2025), which learns categorical distributions to sample prompts. Despite solving discreteness, these
methods suffer from inefficiency and poor semantic quality, leaving open the challenge of develop-
ing a query-efficient federated method that produces semantically meaningful discrete prompts for
black-box LLMs. We defer a detailed discussion of the related works on standard non-federated
prompt optimization to App. B due to space constraint.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced FedPOB and FedPOB-Pref, novel algorithms for sample-efficient
federated prompt optimization. Built upon the theory of federated multi-armed bandits, our meth-
ods enable multiple agents to effectively collaborate to find optimal prompts for black-box LLMs
without sharing raw data. Extensive experiments demonstrate that our algorithms significantly out-
perform existing baselines under both score and preference feedback, with performance consistently
improving with an increasing number of participating agents. Notably, FedPOB-Pref establishes
a superior performance-to-communication trade-off in the practical preference-based setting. A
promising future direction is extending our algorithms to the asynchronous communication setting.
In addition, our current study focuses on generative LLMs, and extending our framework to pure
encoder tasks (e.g., RoBERTa on GLUE) remains another interesting direction for future work.
Regarding FedPOB-Pref, promising future directions include establishing stronger theoretical
guarantees and exploring alternative pairwise comparison models beyond the BTL framework.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have uploaded the code in the supplementary material. We have also
clearly described all detailed experimental settings (Sec. 4 and App. C) to ensure transparency and
reproducibility.

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. In Proc. NIPS, 2011.

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Paul N. Whatmough Matthew Mattina,
and Venkatesh Saligrama. Federated learning based on dynamic regularization. In Proc. ICLR,
2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint
arXiv:2309.16609, 2023.

Viktor Bengs, Aadirupa Saha, and Eyke Hüllermeier. Stochastic contextual dueling bandits under
linear stochastic transitivity models. In Proc. ICML, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Proc. NeurIPS,
2020.

Tianshi Che, Ji Liu, Yang Zhou, Jiaxiang Ren, Jiwen Zhou, Victor Sheng, Huaiyu Dai, and Dejing
Dou. Federated learning of large language models with parameter-efficient prompt tuning and
adaptive optimization. In Proc. EMNLP, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lichang Chen, Jiuhai Li, Tiejun Zhang, and Bo Zhou. InstructZero: A preference-based iterative
prompt optimization framework. In Proc. EMNLP, 2023.

Zhongxiang Dai, Arun Verma Yao Shu, Flint Xiaofeng Fan, and Bryan Kian Hsiang Low. Federated
neural bandits. In Proc. ICLR, 2023.

Mingkai Deng, Jianyu Wang, Cheng-Ping Zhang, Han Li, Yaliang Chen, Lidong Zhao, Jing Liu,
Yang Chen, and Xiang Liu. RLPrompt: Optimizing discrete text prompts with reinforcement
learning. In Proc. EMNLP Findings, 2022.

Wenlong Deng, Christos Thrampoulidis, and Xiaoxiao Li. Unlocking the potential of prompt-tuning
in bridging generalized and personalized federated learning. In Proc. CVPR, 2024.

Shizhe Diao, Zhichao Huang, Ruijie Xu, Xuechun Li, Lin Yong, Xiao Zhou, and Tong Zhang.
Black-box prompt learning for pre-trained language models. Transactions on Machine Learning
Research, 2023.

Abhimanyu Dubey and Alex Pentland. Differentially-private federated linear bandits. In Proc.
NeurIPS, pp. 6003–6014, 2020.

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient
exploration for LLMs. In Proc. ICML, 2024.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
Promptbreeder: Self-referential self-improvement via prompt evolution. In Proc. ICLR, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Qingyan Guo, Rui Wang, Junzhe Guo, Boyu Li, Kai Song, Xu Tan, Guoqing Liu, Jiang Bian, and
Yanyang Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In Proc. ICLR, 2024.

Charlie Hou, Mei-Yu Wang, Yige Zhu, Daniel Lazar, and Giulia Fanti. Private federated learning
using preference-optimized synthetic data. arXiv preprint arXiv:2504.16438, 2025.

Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan Wu, Xiangqiang Lin, Zhongxiang Dai, See-Kiong
Ng, and Bryan Kian Hsiang Low. Localized zeroth-order prompt optimization. In Proc. NeurIPS,
2024.

Xuhan Huang, Yan Hu, Zhiyan Li, Zhiyong Wang, Benyou Wang, and Zhongxiang Dai. Federated
linear dueling bandits. arXiv preprint arXiv:2502.01085, 2025.

David R Hunter. Mm algorithms for generalized bradley-terry models. Annals of Statistics, 2004.

Gurusha Juneja, Gautam Jajoo, Nagarajan Natarajan, Hua Li, Jian Jiao, and Amit Sharma. Task
facet learning: A structured approach to prompt optimization. In Proc. ACL, 2025.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv:1912.04977, 2019.

Weize Kong, Spurthi Hombaiah, Mingyang Zhang, Qiaozhu Mei, and Michael Bendersky.
PRewrite: Prompt rewriting with reinforcement learning. In Proc. ACL Short Papers, 2024.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proc. EMNLP, 2021.

Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing continuous prompts for generation. In
Proc. ACL, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiaoqiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick Jaillet, and Bryan Kian Hsiang
Low. Prompt optimization with human feedback. arXiv preprint arXiv:2405.17346, 2024a.

Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick
Jaillet, and Bryan Kian Hsiang Low. Use your INSTINCT: Instruction optimization using neural
bandits coupled with transformers. In Proc. ICML, 2024b.

Zihao Lin, Yitao Zeng, Sicheng Yu, Lue Tao, Yuxin Chen, Wenhao Yu, and Lifu Huang.
Efficient federated prompt tuning for black-box large pre-trained models. arXiv preprint
arXiv:2310.03123, 2023a.

Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, and Sergey Yekhanin. Differentially
private synthetic data via foundation model apis 1: Images. arXiv preprint arXiv:2305.15560,
2023b.

Zinan Lin, Tadas Baltrusaitis, Wenyu Wang, and Sergey Yekhanin. Differentially private synthetic
data via apis 3: Using simulators instead of foundation model. arXiv preprint arXiv:2502.05505,
2025.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. GPT
Understands, Too. In Proc. ACL, 2021.

Zichen Liu, Changyu Chen, Chao Du, Wee Sun Lee, and Min Lin. Sample-efficient alignment for
llms. arXiv preprint arXiv:2411.01493, 2024.

Yichong Luo, Huaxiu Yao, Feng-Shih Chang, Zhi-Kai Zhang, and Jian-Yun Nie. Black-box
prompt optimization: Aligning large language models without model training. arXiv preprint
arXiv:2311.02646, 2023.

O. Mañas, P. Astolfi, M. Hall, C. Ross, J. Urbanek, A. Williams, A. Agrawal, A. Romero-Soriano,
and M. Drozdzal. Improving text-to-image consistency via automatic prompt optimization. arXiv
preprint arXiv:2403.17804, 2024.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-efficient
learning of deep networks from decentralized data. In Proc. AISTATS, 2017.

OpenAI. GPT-3.5: Openai language model. https://platform.openai.com/, 2023a. Ac-
cessed: 2025-09-24.

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023b.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. GrIPS: Gradient-free, edit-based in-
struction search for prompting large language models. In Proc. ACL, 2023.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with ”gradient descent” and beam search. In Proc. EMNLP, 2023.

L. Schneider, M. Wistuba, A. Klein, J. Golebiowski, G. Zappella, and F. A. Merra. Hyperband-based
bayesian optimization for black-box prompt selection. arXiv preprint arXiv:2412.07820, 2024.

Chengshuai Shi and Cong Shen. Federated multi-armed bandits. In Proc. AAAI, 2021.

Chengshuai Shi, Kun Yang, Jing Yang, and Cong Shen. Best arm identification for prompt learning
under a limited budget. arXiv preprint arXiv:2402.09723, 2024.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Auto-
Prompt: Eliciting knowledge from language models with automatically generated prompts. In
Proc. EMNLP, 2020.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
training for language understanding. In Proc. NeurIPS, 2020.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. In Proc. ACL Findings, 2023.

12

https://platform.openai.com/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Arun Verma, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, and Bryan Kian Hsiang Low.
Neural dueling bandits: Preference-based optimization with human feedback. arXiv preprint
arXiv:2407.17112, 2024.

Ganyu Wang, Yuekang Li, Yi Zeng, Tianyu Wang, Kang Yang, and Kai Chen. FedOne:
Query-efficient federated learning for black-box discrete prompt learning. arXiv preprint
arXiv:2502.04943, 2025.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P.
Xing, and Zhiting Hu. PromptAgent: Strategic planning with language models enables expert-
level prompt optimization. In Proc. ICLR, 2024.

Yuanhao Wang, Jiachen Hu, Xiaoyu Chen, and Liwei Wang. Distributed bandit learning: Near-
optimal regret with efficient communication. In Proc. ICLR, 2020.

Guoyizhe Wei, Feng Wang, Anshul Shah, and Rama Chellappa. Dual prompt tuning for domain-
aware federated learning. In Proc. ECCV Workshop, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V. Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In Proc.
NeurIPS, 2022.

Zhaoxuan Wu, Xiaoqiang Lin, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick
Jaillet, and Bryan Kian Hsiang Low. Prompt optimization with EASE? efficient ordering-aware
automated selection of exemplars. In Proc. NeurIPS, 2024.

Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A Inan, Harsha Nori, Hao-
tian Jiang, Huishuai Zhang, Yin Tat Lee, et al. Differentially private synthetic data via foundation
model apis 2: Text. arXiv preprint arXiv:2403.01749, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In Proc. ICLR, 2024.

Chun-Pai Yang, Kan Zheng, and Shou-De Lin. Plhf: Prompt optimization with few-shot human
feedback. arXiv preprint arXiv:2505.07886, 2025.

Ziyu Ye, Hao-Yang Chen, Yong-Qiang Hu, Zhen-Yu Su, Qing-An Yao, Yu-Hong Liu, Xiao-Rong
Lai, and Yi-Feng Wu. Align-Pro: A principled approach to prompt optimization for llm align-
ment. arXiv preprint arXiv:2308.11585, 2023.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
problem. Journal of Computer and System Sciences, 2012.

Ruichen Zhang, Zechu Li, Zhaoxuan Wu, Zhongxiang Dai, Yao Shu, and Bryan Kian Hsiang
Low. FedBPT: Efficient federated black-box prompt tuning for large language models. In Proc.
NeurIPS, 2023.

Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li, and Gongshen Liu. Fedprompt: Communication-
efficient and privacy-preserving prompt tuning in federated learning. In Proc. ICASSP, 2023.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In Proc. ICLR, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

We acknowledge the ICLR 2026 policies on LLM usage. All scientific ideas, proofs, experimental
design, and conclusions are the original work of the human authors. LLMs were used solely as
writing assistants to polish the text for minor grammar correction and clarification. All LLM-assisted
text has been carefully reviewed by the authors.

B ADDITIONAL RELATED WORK

The performance of Large Language Models (LLMs) is highly sensitive to the quality of input
prompts (Zhou et al., 2023; Lin et al., 2024b). While carefully handcrafted prompts (Brown et al.,
2020; Wei et al., 2022) can substantially enhance model capabilities, the manual design process
is time-consuming and heavily reliant on expert intuition. To address this challenge, early studies
focused on white-box prompt optimization, including AutoPrompt (Shin et al., 2020), Prefix-Tuning
(Li & Liang, 2021), P-Tuning (Liu et al., 2021), and Prompt Tuning (Lester et al., 2021). More
recently, increasing attention has been devoted to black-box prompt optimization (Yang et al., 2024;
Mañas et al., 2024; Juneja et al., 2025; Schneider et al., 2024), with representative methods such as
GRIPS (Prasad et al., 2023), BDPL (Diao et al., 2023), PRewrite (Kong et al., 2024), PromptAgent
(Wang et al., 2024), and APO (Pryzant et al., 2023). RLPrompt (Deng et al., 2022) addresses
the discrete black-box setting by optimizing a probability distribution over prompts, from which
candidates are sampled to identify the optimal one. Evolutionary approaches, such as EvoPrompt
(Guo et al., 2024) and Promptbreeder (Fernando et al., 2024), employ mutation and crossover to
iteratively improve prompts. Zhou et al. (Zhou et al., 2023) introduced APE, which leverages an
LLM to generate candidate instructions and refines those with high evaluation scores. However,
these approaches often require extensive sampling and validation, making them sample-inefficient.
A key direction has been reframing black-box prompt optimization as a continuous problem, as in
InstructZero (Chen et al., 2023) and ZOPO (Hu et al., 2024). Building on this idea, INSTINCT (Lin
et al., 2024b) employs neural bandits to sequentially select instructions to query, leveraging neural
networks to better capture the relationship between prompts and their performance, thereby enabling
more efficient optimization.

Recent work has investigated prompt optimization in scenarios where direct human feedback is
difficult to obtain and only preference feedback is available. BPO (Luo et al., 2023) trains an in-
dependent optimizer that automatically rewrites initial prompts using paired preference data, en-
couraging black-box LLMs to produce better responses. Align-Pro (Ye et al., 2023) develops a
theoretical framework based on the Bradley–Terry model to analyze and guide optimization through
pairwise comparisons. APOHF (Lin et al., 2024a) formulates prompt optimization as a dueling
bandits problem, directly leveraging pairwise preferences (e.g., A is better than B) to efficiently
identify the best prompt among candidates. Building on this idea, PLHF (Yang et al., 2025) extends
preference-based optimization to a few-shot setting, demonstrating that high-quality prompts can
be identified with only a small number of comparisons, thereby greatly reducing annotation costs.
In addition, the prompt selection strategy of our FedPOB-Pref algorithm is also related to the
best-arm-identification (BAI) version of the method from the work of Liu et al. (2024), which also
aims to achieve exploration by encouraging the selection of a response with large uncertainty.

Private Evolution. A related line of work explores Private Evolution, which similarly utilizes scores
to guide iterative queries to black-box LLMs (Lin et al., 2023b; Xie et al., 2024; Lin et al., 2025).
However, these methods differ fundamentally from our approach in their privacy mechanisms and
optimization frameworks. While the Private Evolution literature primarily leverages Differential
Privacy (DP) to generate synthetic data—with recent extensions to federated settings relying on
preference-optimized synthetic data (Hou et al., 2025)—our framework adopts a Federated Learning
paradigm based on direct parameter aggregation without exposing raw data.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C MORE DETAILS ON THE EXPERIMENTAL SETTING

C.1 DATASETS AND MODELS

Datasets. We use 29 tasks from the Instruction-Induction dataset (Lin et al., 2024b), excluding the
auto-debugging task which contains only 8 instances, and the Cause-and-Effect task. The Cause-
and-Effect task is an open-ended reasoning problem where multiple answers may be reasonable, but
only one ground-truth is provided. Existing metrics cannot accurately evaluate responses, and most
automatic scores are generally zero. For example, a few instances are:

• Cause: “The child hurt their knee.” Effect: “The child started crying.”
• Cause: “My car got dirty.” Effect: “I washed the car.”
• Cause: “Someone fainted.” Effect: “Someone called 911.”

For the BBH dataset (Suzgun et al., 2023), we adopt 24 tasks, excluding 3 tasks that overlap with
Instruction-Induction to avoid double evaluation.

Models. Our experiments are conducted on three LLMs, OpenAI/GPT-3.5-turbo-0613,
OpenAI/GPT-4o-mini, and Qwen/Qwen3-235B-A22B-2507 via the OpenRouter API. We use MP-
Net (Song et al., 2020) as the embedding model.

C.2 PROMPT SPACE GENERATION

To simulate a realistic federated setting, we adopt the APE algorithm (Zhou et al., 2023) to construct
a prompt pool from a small initial task description (i.e., a set of input–output exemplars). From this
pool, each agent samples both shared and personalized prompts, thereby capturing the inherent data
heterogeneity—where shared prompts model the common knowledge across agents, while personal-
ized prompts reflect the distinct distributions, preferences, and contextual variations specific to each
client.

Prompt Template. We follow INSTINCT (Lin et al., 2024b) for prompt template to automatically
generate prompt space. We use 5 exemplars in datasets to query LLM to induct prompt.

Prompt Generation Template

Input: [INPUT]
Output: [OUTPUT]
<More exemplars...>
Input: [INPUT]
Output: [OUTPUT]
The instruction was to

Figure 7: Prompt Generation template for prompt space generation.

Prompt Generation Example

Input: [Today is Christmas Eve of 1937. What is the date 10 days later?]
Output: [01/03/1938]
<More exemplars...>
Input: [Jane thought today is 3/11/2002, but today is in fact Mar 12, which is 1 day later.
What is the date 24 hours later?]
Output: [03/13/2002]
The instruction was to

Figure 8: Illustrative example of prompt generation with the template.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.3 IMPROVED EVALUATION METHOD

Evaluation Challenges. Due to the complex nature of the BBH tasks, we observed that large lan-
guage models (LLMs) often generate detailed explanations along with their final answers, unlike the
more direct outputs seen in the Instruction-Induction tasks. This behavior was particularly prevalent
when using models such as GPT-4o-mini and Qwen3. A small number of tasks in the Instruction-
Induction dataset also exhibited this tendency toward verbose responses. Standard evaluation metrics
such as exact match, contain, or F1-score proved unreliable in this context. Since the ground-truth
answers are typically concise, the verbosity of model outputs frequently led to misclassification. In
some cases, a model’s response was fully correct from a human perspective, yet automated metrics
incorrectly assigned a score of zero.

Multi-choice Metric. To mitigate this issue, we designed a new evaluation metric, termed Multi-
choice, specifically tailored to handle the verbose outputs of LLMs on BBH tasks. Our approach
normalizes the model’s output and checks whether the ground-truth answer is present. In practice,
we extract the final sentence of the model’s prediction and verify if it contains the ground-truth
answer.

Metrics. For BBH, we evaluate on 24 tasks using the Multi-choice metric. For Instruction-Induction
(29 tasks), we follow Lin et al. (2024b) and adopt the same evaluation setup. Concretely, we use the
F1 metric for “Common concept” and “Informal to formal”; exact set matching for “Orthography
starts with” and “Taxonomy animal”; and label containment for “Synonyms”. For the remaining
tasks, we apply exact match. Additionally, for “Diff” and “Odd one out”, when evaluated with GPT-
4o-mini or Qwen3 (where verbose explanations are frequent), we employ the Multi-choice metric
instead of exact match.

Cached Prompt Scoring. We leverage the alignment between prompts and their validation scores.
Since our validation set is relatively large (50 samples), we observed that the scores obtained for a
given prompt remain stable across repeated evaluations. Consequently, for all algorithms that require
optimization over a prompt space (excluding FedOne and PromptBreeder, which do not depend on a
prompt space), we evaluate each prompt once on the validation set and cache the resulting score for
subsequent use. This strategy substantially reduces computation time while maintaining evaluation
reliability.

C.4 HYPERPARAMETERS OF OUR ALGORITHMS

In FedPOB, we set λ = 1, ν = 0.3, D = 10.0, and d = 768, where d matches the output feature
dimension of MPNet (Song et al., 2020). For FedPOB-Pref, we set λ = 1 and use a learning rate
of 0.001 to update θt,a (line 7 of Algo. 3). Training is conducted for 30 iterations.

The parameter βt is time-dependent. Following (Huang et al., 2025), we set

βt =

√
2 log(1/δ) + d log

(
1 +

tκµ

dλ

)
,

where κµ denotes the number of agents and d is the feature dimension (here d = 768 for compati-
bility with MPNet).

C.5 HYPERPARAMETERS OF BASELINE AND FAIR COMPARISONS

To ensure fairness, we set the total number of validation queries to be the same across all methods
and report them consistently in our experimental results (see Tables 1, 2, and 3 in Sec. 4, as well as
Table 5 in App. D).

For score feedback baselines, only INSTINCT and our method share the same evaluation protocol,
where each iteration queries the validation set once. Therefore, we ensure fairness by comparing
the best reward obtained within the first 50 validation queries, rather than rewards at every single
iteration. For preference-feedback baselines, all methods query the validation set twice per iteration,
as two prompts are sampled for pairwise comparison. Running 50 iterations thus corresponds to 100
validation queries in total. For consistency, we report the score of the first (exploitation) prompt
selected by each method. This is consistent with the work of Lin et al. (2024a). The reward curves

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

are plotted across iterations, where the x-axis represents the number of iterations (equivalently,
preference-feedback steps).

Table 4: Query settings and reported metrics for different methods.

Score Feedback
Method Queries/Iter Total Queries Reported Metric
FedPOB 1 50 Best reward at 50th iter.
INSTINCT 1 50 Best reward at 50th iter.
PromptBreeder 5 50 Best reward at 10th round.
FedOne 5 50 Best reward at 50th iter.

Preference Feedback
FedPOB-Pref 2 100 Best reward at 50th iter.
FLDB-OGD 2 100 Best reward at 50th iter.
FLDB-GD 2 100 Best reward at 50th iter.
APOHF 2 100 Best reward at 50th iter.
Double-TS 2 100 Best reward at 50th iter.

Score Feedback. For FedPOB, we run 50 iterations, thus querying the validation set 50 times. We
report the best reward at the 50th iteration. For INSTINCT, we follow the default settings from
their paper, which are consistent with our protocol (one query per iteration), and also report the
best reward at the 50th iteration. For PromptBreeder, which is an evolutionary algorithm, half of the
population queries the validation set in each round. With a population size of 10 (2 mutation prompts
× 5 thinking styles), this results in 5 queries per round and 50 queries in total over 10 rounds; we
report the best reward at the 10th round. For FedOne, we follow the original paper and construct its
vocabulary using the PMI algorithm, sampling frequent and high-quality words or word pairs from
the large prompt domain generated by APE. The setup involves 10 agents, each sampling 5 prompts
per round for 50 iterations. To ensure a fair comparison with 50 validation queries, we pair agents
and take the maximum score among the prompts they generate as the final performance of FedOne.

Preference Feedback. For methods based on preference feedback, including FedPOB-Pref,
FLDB-OGD, FLDB-GD, APOHF, and Double-TS, each iteration samples two prompts and queries
the validation set twice to obtain a pairwise preference. Running for 50 iterations therefore requires
100 validation queries in total. We report the best reward at the 50th iteration (based on 100 queries
in total). Other hyperparameters follow their original settings to ensure a fair comparison.

D MORE EXPERIMENTAL RESULTS

D.1 ADDITIONAL EXPERIMENTS ON PROMPT DOMAIN GENERATION METHODS

Performance and Stability Across Different Prompt Domains. In the experiment section, we
use GPT-3.5-Turbo to generate the prompt domain via APE. To further validate that our algorithm
achieves superior performance across different prompt domains generated by different methods, we
replace GPT-3.5-Turbo with GPT-4o-mini while keeping all other settings fixed, such as running
both our algorithm and the baselines under the same LLM model, GPT-3.5-Turbo. As shown in
Fig. 9, Our method consistently achieves strong performance across different prompt domains, un-
derscoring its robustness to domain variability. Beyond maintaining high accuracy, it is capable of
identifying near-optimal prompts in a sample-efficient manner, thereby reducing the overall cost of
API queries to LLMs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Iterations
0 10 20 30 40 50

Av
er
ag
e	
R
ew
ar
d

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Agent=1
Agent=3
Agent=10

(a) FedPOB

Iterations
0 10 20 30 40 50

Av
er
ag
e	
R
ew
ar
d

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Agent=1
Agent=3
Agent=10

(b) FedPOB-Pref

Figure 9: Performance across different prompt domains

D.2 COMPLETE RESULTS IN FEDPOB-PREF

FedPOB-Pref (ours) FLDB-GD FLDB-OGD APOHF Double TS

Agent Number

Agent=1 Agent=3 Agent=10

Dataset

Instruction
Induction

BBH

Figure 10: More detailed comparison for FedPOB-Pref using GPT-3.5-Turbo.

D.3 COMPLETE RESULTS FOR FEDPOB

Table 5: Performance comparison on the complete set of Instruction Induction tasks.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Dataset INSTINCT PromptBreeder FedOne (10 agents) FedPOB

1 Agent 3 Agents 10 Agents

Active to Passive 0.940±0.053 1.000±0.000 1.000±0.000 0.804±0.160 0.960±0.014 0.972±0.023
Auto Categorization 0.313±0.012 0.220±0.020 0.264±0.004 0.272±0.030 0.308±0.018 0.288±0.023
Antonyms 0.767±0.023 0.840±0.020 0.870±0.005 0.792±0.046 0.812±0.027 0.828±0.023
Common Concept 0.217±0.040 0.118±0.010 0.136±0.003 0.188±0.015 0.210±0.007 0.208±0.018
Diff 1.000±0.000 1.000±0.000 1.000±0.000 0.992±0.018 1.000±0.000 1.000±0.000
First Word Letter 1.000±0.000 1.000±1.000 0.713±0.089 1.000±1.000 1.000±1.000 1.000±1.000
Informal to Formal 0.570±0.020 0.521±0.067 0.605±0.005 0.528±0.028 0.528±0.039 0.570±0.030
Larger Animal 0.993±0.012 0.987±0.012 0.829±0.037 0.984±0.017 0.992±0.011 0.989±0.011
Letters List 1.000±0.000 1.000±0.000 0.831±0.095 0.952±0.107 1.000±0.000 1.000±0.000
Negation 0.860±0.020 0.927±0.012 0.897±0.010 0.856±0.061 0.940±0.014 0.920±0.032
Num to Verbal 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
Orthography Starts With 0.767±0.214 0.813±0.061 0.436±0.024 0.804±0.100 0.828±0.056 0.832±0.087
Rhymes 0.493±0.142 0.393±0.031 0.916±0.027 0.664±0.120 0.776±0.187 0.844±0.106
Second Word Letter 0.847±0.110 0.947±0.042 0.625±0.034 0.792±0.199 0.880±0.157 0.972±0.023
Sentence Similarity 0.467±0.031 0.380±0.020 0.360±0.035 0.540±0.094 0.508±0.082 0.448±0.018
Sentiment 0.973±0.012 0.993±0.012 0.996±0.002 0.988±0.018 0.972±0.023 0.972±0.027
Singular to Plural 0.993±0.012 1.000±0.000 1.000±0.000 1.000±0.000 0.996±0.009 1.000±0.000
Sum 1.000±0.000 1.000±0.000 1.000±0.000 0.984±0.036 1.000±0.000 1.000±0.000
Synonyms 0.327±0.150 0.333±0.115 0.320±0.023 0.324±0.103 0.296±0.041 0.384±0.124
Taxonomy Animal 0.947±0.023 0.967±0.042 0.805±0.026 0.924±0.073 0.980±0.024 0.972±0.034
Translation En-De 0.820±0.020 0.820±0.060 0.927±0.004 0.820±0.047 0.840±0.032 0.868±0.036
Translation En-Es 0.747±0.042 0.746±0.023 0.950±0.012 0.756±0.026 0.740±0.072 0.728±0.030
Translation En-Fr 0.947±0.023 0.920±0.040 0.919±0.005 0.944±0.033 0.940±0.283 0.948±0.018
Word in Context 0.553±0.058 0.620±0.040 0.409±0.091 0.460±0.084 0.640±0.020 0.608±0.036
Object Counting 0.520±0.106 0.473±0.110 0.497±0.019 0.520±0.074 0.616±0.039 0.588±0.050
Odd One Out 0.867±0.058 0.833±0.116 0.859±0.024 0.800±0.122 0.900±0.000 0.900±0.000
Periodic Elements 1.000±0.000 1.000±0.000 0.946±0.017 0.976±0.054 1.000±0.000 1.000±0.000
Word Sorting 0.753±0.058 0.753±0.099 0.497±0.026 0.756±0.093 0.744±0.065 0.828±0.063
Word Unscrambling 0.687±0.012 0.687±0.023 0.728±0.005 0.724±0.046 0.716±0.026 0.720±0.028

Average 29 Task 0.7715 0.7687 0.7356 0.7637 0.7977 0.8068

D.4 FURTHER EVALUATION ACROSS LLM MODELS

FedPOB-Pref (ours) FLDB-GD FLDB-OGD APOHF Double TS

Agent Number

Agent=1 Agent=3 Agent=10

Dataset

Instruction
Induction

BBH

Figure 11: More detailed comparison for FedPOB-Pref using GPT-4o-mini.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

FedPOB-Pref (ours) FLDB-GD FLDB-OGD APOHF Double TS

Agent Number

Agent=1 Agent=3 Agent=10

Dataset

Instruction
Induction

BBH

Figure 12: More detailed comparison for FedPOB-Pref using Qwen3-235B-A22B-2507.

Iterations
0 10 20 30 40 50

Av
er
ag
e	
R
ew
ar
d

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Agent=1
Agent=3
Agent=10

(a) Instrcution Induction

Iterations
0 10 20 30 40 50

Av
er
ag
e	
R
ew
ar
d

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Agent=1
Agent=3
Agent=10

(b) BBH

Figure 13: The performance of FedPOB-Pref across different iterations GPT-4o-mini.

Iterations
0 10 20 30 40 50

Av
er
ag
e	
R
ew
ar
d

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Agent=1
Agent=3
Agent=10

(a) Instrcution Induction

Iterations
0 10 20 30 40 50

Av
er
ag
e	
R
ew
ar
d

0.6

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Agent=1
Agent=3
Agent=10

(b) BBH

Figure 14: The performance of FedPOB-Pref across different iterations Qwen3-235B-A22B-
2507.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E MATHEMATICAL PRINCIPLES OF THE LOCAL OBJECTIVE FUNCTION
ADOPTED BY FEDPOB-PREF

This section provides a rigorous mathematical analysis of the local objective function adopted by
FedPOB-Pref for federated optimization. We derive the first-order optimality conditions and
demonstrate the necessity of the linear dual term for ensuring convergence to a globally opti-
mal and consistent solution. The results here provide theoretical support for the design of our
FedPOB-Pref algorithm.

E.1 PROBLEM FORMULATION

The standard federated learning objective is to minimize a global function F (θ), defined as the
average of m local client objectives fi : Rd → R:

F (θ) =
1

m

m∑
i=1

fi(θ).

For distributed optimization, this is equivalently formulated as a constrained problem with local
variables θi and a global consensus variable θ:

min
θ,{θi}m

i=1

1

m

m∑
i=1

fi(θi) s.t. θi − θ = 0, ∀i ∈ {1, . . . ,m}. (6)

E.2 THE AUGMENTED LAGRANGIAN METHOD

The constrained problem in Eq. equation 6 can be solved using the Method of Multipliers. We
introduce a dual variable (Lagrange multiplier) ai ∈ Rd for each consensus constraint and add a
quadratic penalty term for the constraint violation. This forms the augmented Lagrangian function
L:

L({θi}, θ, {ai}) =
1

m

m∑
i=1

fi(θi) +

m∑
i=1

⟨ai, θi − θ⟩+ γ

2

m∑
i=1

∥θi − θ∥2,

where γ > 0 is a penalty parameter. An iterative algorithm then seeks a saddle point of this function.

E.3 FIRST-ORDER STATIONARITY CONDITIONS

A stationary point of the augmented Lagrangian must satisfy ∇θiL = 0 and ∇θL = 0. These
first-order conditions are derived as follows.

The partial derivative with respect to a local variable θi is:

∂L
∂θi

=
1

m
∇fi(θi) + ai + γ(θi − θ) = 0. (7)

The partial derivative with respect to the global variable θ is:

∂L
∂θ

= −
m∑
i=1

ai − γ

m∑
i=1

(θi − θ) = 0 =⇒
m∑
i=1

ai = −γ
m∑
i=1

(θi − θ). (8)

To see the implication of these conditions, we sum Eq. equation 7 over all clients i:

1

m

m∑
i=1

∇fi(θi) +
m∑
i=1

ai + γ

m∑
i=1

(θi − θ) = 0.

Substituting the expression for
∑

i ai from Eq. equation 8 into the above yields:

1

m

m∑
i=1

∇fi(θi)− γ

m∑
i=1

(θi − θ) + γ

m∑
i=1

(θi − θ) = 0,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

which simplifies to:
1

m

m∑
i=1

∇fi(θi) = 0.

This proves that any stationary point of L satisfies that the average of the local gradients is zero. If
the solution is also primally feasible (i.e., θi = θ), this condition becomes precisely the first-order
optimality condition for the original global problem:

1

m

m∑
i=1

∇fi(θ) = 0 ⇐⇒ ∇F (θ) = 0.

E.4 ANALYSIS OF THE FORMULATION

E.4.1 PROOF OF NECESSITY FOR THE LINEAR DUAL TERM

To prove that the linear term ⟨ai, θi−θ⟩ is necessary, we analyze the case where it is omitted, relying
solely on a quadratic penalty. The objective would be:

L̃ =
1

m

∑
i

fi(θi) +
γ

2

∑
i

∥θi − θ∥2.

The first-order condition with respect to θi for this objective is:

1

m
∇fi(θi) + γ(θi − θ) = 0.

At a point of consensus where θi = θ for all i, the penalty term vanishes, and the condition strin-
gently requires that:

1

m
∇fi(θ) = 0 =⇒ ∇fi(θ) = 0, ∀i.

This is a significantly stronger condition than global optimality, as it requires the solution θ to be a
stationary point for every client’s objective function simultaneously. Such a point is generally non-
existent for heterogeneous data distributions where local minima differ. Therefore, the inclusion
of the linear dual term is mathematically essential to relax this condition to the correct global one,∑

i∇fi(θ) = 0.

E.4.2 INTERPRETATION OF THE DUAL VARIABLES AT CONVERGENCE

In iterative methods that solve for a saddle point of L, the dual variables are typically updated via
dual ascent:

at+1
i = ati + γ(θt+1

i − θt+1). (9)

If the algorithm converges to a primally feasible solution θ⋆, then limt→∞(θt+1
i − θt+1) = 0. At

this limit, the stationarity condition from Eq. equation 7 must hold. As θi → θ⋆ and θ → θ⋆, the
equation implies that the dual variables converge to a fixed point a⋆i :

1

m
∇fi(θ⋆) + a⋆i + γ(θ⋆ − θ⋆) = 0 =⇒ a⋆i = − 1

m
∇fi(θ⋆).

This result provides a clear interpretation of the dual variable at the optimal solution: a⋆i is precisely
the negative of the i-th client’s scaled local gradient at the global optimum. The condition

∑
i a

⋆
i = 0

(from Eq. equation 8 at convergence) then mathematically guarantees that
∑

i∇fi(θ⋆) = 0. The
dual variables are thus the mechanism that allows local gradients to be non-zero while ensuring their
sum is zero.

F OPTIMIZED PROMPTS FROM FEDPOB AND FEDPOB-PREF

In this section, we present the optimized prompts together with their validation-set scores obtained
by our FedPOB and FedPOB-Pref across all 53 tasks in both the Instruction Induction and
BBH datasets after 50 optimization rounds. For each task in the tables, the upper row reports the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

prompt and score optimized by FedPOB, while the lower row corresponds to those optimized by
FedPOB-Pref.

Table 6: Optimized prompts and their scores for the Instruction Induction tasks

Task Prompt Score

active to Passive
Rewrite the sentence passively. 0.972
The sentence should be changed to passive voice: “The sentence is to be changed
from active to passive voice.” 0.993

antonyms change the prefix of the word to make it have the opposite meaning. 0.288
find the opposite of each given word. 0.293

auto categorization provide an appropriate category for each group of items. 0.828
identify the category or group that each set of inputs belong to. 0.840

common concept provide a connection between two seemingly unrelated words or phrases. 0.208
provide a connection between two seemingly unrelated items. 0.250

diff
change the prefix of the word to make it have the opposite meaning. 1.000
Find the disparity between the initial number and the subsequent number in every
input. 1.000

first word letter
Return the initial letter of every word provided as input. 1.000
State the initial letter of the specified word. 1.000

informal to formal

rephrase the given sentences, not just provide synonyms. Here are the revised sen-
tences: Input: Can you complete all of these tasks? Output: Are you capable of
completing all of these tasks? Input: It is not advisable to take any action at this
time. Output: It is not recommended to do anything right now. Input: I’ll see you
this evening. Output: I anticipate seeing you tonight. Input: Would you like me to
accompany you? Output: Do you want me to go along with you? Input: The entire
narrative was fabricated. Output: The entire story was created.

0.570

rephrase the sentences using different words or phrases with the same meaning. 0.607

larger animal choose the animal with the larger size or more strength. 0.989
choose the larger animal in each pair. 1.000

letters list
Add a space between each letter within a word. 1.000
Show each individual letter of the given word with a space between each letter. 1.000

negation change the sentences to negative form, indicating that the statements are false. 0.920
change the statements to the opposite meaning. 0.947

num to verbal
Create a program that translates a provided number into its equivalent word form. 1.000
Write out the number in words from one to nine thousand, nine hundred and ninety-
nine. 1.000

object counting count the total number of animals/items mentioned in the input sentence. 0.588
count the number of items listed in the input. 0.660

odd one out
Find the word that is not the same as the others in the group. 0.900
Select the word that is not related to the rest. 1.000

orthography start with identify and output the word that starts with the specified letter. 0.832
identify the word in the sentence that starts with the given letter. 0.907

periodic element Give the names of the elements that match the provided atomic numbers. 1.000
List the names of the elements corresponding to the provided atomic numbers. 1.000

rhymes
find a word that rhymes with the given word, so in the case of ”buy”, the output would
be ”buy” as it already rhymes with itself. 0.844

change the first letter of the word to make a new word. 0.993

second word letter
Retrieve the second letter from the given word. 0.972
Print the second-to-last letter of the input word. 0.980

sentence similarity

determine the likelihood that the two sentences are talking about the same topic. The
outputs provided are the level of certainty in the similarity of the topics discussed in
the sentences.

0.448

compare the similarity between two sentences using a scale from 0 to 5, with 0 being
”definitely not ” similar and 5 being ”perfectly ” similar. The output provided for
each pair of sentences indicates the level of similarity between them based on the
comparison.

0.613

sentiment
classify the input as either positive or negative based on the given statement. 0.972
provide an output (positive or negative) based on the given input. 1.000

singular to plural pluralize the given input words. 1.000
add the letter ”s” to the end of the word. 1.000

sum Calculate the total by adding the two numbers given as input. 1.000
sum the two inputted numbers. 1.000

synonyms provide alternative words for the given inputs. 0.384

Continued on next page

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 6: Optimized prompts and their scores for the Instruction Induction tasks

Task Prompt Score

provide an antonym, synonym, or rhyme for the given word. 0.500

taxonomy animal list the animals from the input words. 0.972
List the animals from the given words. 1.000

translation en-de
Translate the specified words from English into German. 0.868
Übersetze die gegebenen englischen Wörter ins Deutsche. 0.887

translation en-es
traduce cada palabra al español. 0.728
Convert the following words from English to Spanish: 1. wardrobe - armario 2. care
- preocuparse 3. dissatisfaction - insatisfacción 4. pond - estanque 5. trial - prueba 0.807

translation en-fr
translate the words provided from the English language to French. 0.948
turn the words into French. 0.960

word in context

determine if the word is used in the same context in both sentences. In this case, the
word ”academy” is used in different contexts in the two sentences, so the output is
”not the same.”

0.608

determine if the two sentences provided have the same meaning based on the given
word. 0.700

word sorting
sort the words in the provided list in alphabetical order. Each output should be a single
line of the sorted words, separated by spaces. 0.828

rearrange the words in the list in alphabetical order. 0.867

word unscrambling Solve the jumbled words provided. 0.720
Arrange the scrambled words in the correct order. 0.793

Table 7: Optimized prompts and their scores for the BBH tasks

Task Prompt Score

boolean expressions Assess the provided logical expressions and produce the result. 0.844
Assess the provided logical expressions and give the resulting output. 0.860

date understanding determine the date a specific number of days or years ago from a given date. 0.572
determine the date one week ago or one week from today based on the given informa-
tion. 0.613

disambiguation qa

identify the antecedent of the pronoun in each sentence or state if it is ambiguous.
The correct antecedent for each sentence is as follows: ’1. (C) Ambiguous 2. (B) The
office was Sam’s office 3. (A) The technician completed the repair 4. (A) Alex could
not meet 5. (B) Asked the cleaner

0.840

explain the antecedent of the pronoun in the given sentences or state if it is ambiguous.
The correct antecedent for each sentence is provided in the output. 0.793

dyck languages
Finish the remaining part of the series and ensure that all parentheses are closed cor-
rectly. 0.680

Continue the sequence, ensuring that all parentheses are closed correctly. 0.740

formal fallacies
determine if the argument, given the explicitly stated premises, is deductively valid or
invalid. The output for all the provided inputs is ”invalid.” 0.812

determine whether the arguments, given the explicitly stated premises, are deductively
valid or invalid. 1.000

geometric shapes
Identify the geometric shape represented by the given SVG path element, with the
provided outputs indicating the corresponding shape based on the paths. 0.448

Determine the shape illustrated by the given SVG path element. 0.487

hyperbaton
choose the sentence with the correct adjective order, which is the order of opinion,
size, age, shape, color, origin, material, and purpose. 0.948

choose the sentence with the correct adjective order. 0.973

logical deduction five
objects

determine which object is in a specific position in the given set of objects based on the
information provided in each paragraph. 0.476

determine which object finished first in each scenario. The correct outputs are: 1. (C)
Ada finished first 2. (E) The falcon is the third from the left 3. (E) Amy finished first
4. (D) The plums are the second-cheapest 5. (D) The orange book is the third from
the left.

0.473

logical deduction seven
objects

determine which object is in a specific position in the set of seven objects based on
the given statements. 0.488

determine which object is in a specific position in the given arrangement of objects. 0.540

logical deduction three
objects

determine which object is in a specific position based on the given information. In
each case, the correct output is provided based on the logical consistency of the state-
ments within the paragraph.

0.644

determine which object is in the leftmost position based on the given information. 0.653

Continued on next page

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 7: Optimized prompts and their scores for the BBH tasks

Task Prompt Score

movie recommendation
find a movie similar to the given list of movies. The correct options are selected based
on the similarity to the movies listed in the input. 0.732

find a movie similar to a given list of movies. The correct option for each set of movies
is as follows: 1. (C) The Usual Suspects 2. (D) Fargo 3. (A) Pulp Fiction 4. (B) The
Matrix 5. (A) Schindler’s List

0.780

multistep arithmetic two
Find the difference between the first set of parentheses and the second set, and then
simplify the expression. 0.692

determine the outcome of the provided mathematical equation. 0.700

navigate ”Turn right. Take 10 steps. Turn around. Take 10 steps.” 0.716
take 9 steps left, then 10 steps forward, then 9 steps right, and finally 10 steps back-
ward. By following these instructions, you would return to the starting point, so the
output is Yes.

0.773

penguins in a table
determine specific information based on the given table of penguins and provide the
correct answer from the options provided. 0.605

determine specific information about the penguins based on the given data and answer
the questions accordingly. 0.586

reasoning about colored
objects

determine the color or quantity of items based on their arrangement in a row. 0.568
determine the color of the item directly to the right of a specified color in a given
arrangement of items. 0.580

ruin names
identify the humorous edit of the artist or movie name, and the correct answer for each
input is provided in the output. 0.724

find the humorous edit of the artist or movie name. 0.813

salient translation error
detection

Find the mistake in the given translations. 0.600
Find the mistake in the German to English translations given. 0.613

snarks

identify the sarcastic statement from the given options. The selected statement typ-
ically conveys an opposite meaning or is exaggerated in a way that highlights the
absurdity of the situation.

0.782

identify the sarcastic statement from the given options. In each case, the sarcastic
statement is one that implies the opposite of what it literally says, often highlighting
absurdity or exaggeration.

0.793

sports understanding determine if the sentences were plausible based on common sports terminology. 0.564
determine if the sentences provided are plausible in a sports context. 0.580

temporal sequence

determine between what times the person could have gone to the specified location
based on the given information about their activities throughout the day. The correct
time range is then provided as the output.

0.652

determine between what times the person could have gone to a specific location based
on the given information. The correct options for each scenario are as follows: 1.
David could have gone to the construction site between 8am to 12pm (Option A). 2.
Leslie could have gone to the market between 11am to 5pm (Option B).

0.700

tracking shuffled objects
five objects

determine who Claire is dancing with at the end of the dance. In the given scenario,
at the end of the dance, Claire is dancing with option (B) Sam. 0.328

determine who ends up with a specific item or partner after a series of swaps or trades. 0.353

tracking shuffled objects
seven objects

determine the final position/book/ball of a specific person/player after a series of
swaps. 0.256

determine the final partner, gift, ball, or book that a specific person has at the end of
the given scenario. 0.293

tracking shuffled objects
three objects

determine the final position or item that Bob ends up with after a series of swaps. 0.400
determine who ends up with a specific item after a series of swaps in a white elephant
gift exchange. 0.433

web of lies

determine if Inga tells the truth based on the statements given by the other individuals.
In this case, the answer is ”No” because Inga says Fidel tells the truth, but Fidel says
Vernell lies. Since there is a contradiction in the statements, Inga does not tell the
truth.

0.636

determine if Christie tells the truth based on the statements of the other individuals.
Christie says that Teressa tells the truth. Since Teressa says that Leda lies, and Leda
says that Shaunda lies, and Shaunda says that Ryan tells the truth, we can conclude
that Christie is telling the truth.

0.667

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

G ADDITIONAL ABLATION STUDY

G.1 EVALUATION UNDER HETEROGENEOUS AGENT CAPABILITIES

Since real-world deployments often involve agents equipped with LLMs of widely varying capac-
ities, it is important to assess whether weaker models can destabilize the optimization process. To
evaluate FedPOB’s robustness under such heterogeneous-agent settings, we constructed a mixed-
model setup using three LLMs with different capability levels. These models were combined into
two representative mixed-model groups:

• Group 1: GPT-3.5-turbo + Qwen3-235B + GPT-5-nano

• Group 2: Llama-3.2-1B + Qwen3-235B + GPT-5-nano

For the 3-agent setting, we directly mix the three models. For the 10-agent setting, we include four
weaker agents (GPT-3.5-turbo or Llama-3.2-1B) and three stronger agents.

Since different LLMs exhibit different score distributions, instead of averaging rewards across all
agents, we report the best reward of the mid-strength agent (Qwen3-235B, Fig. 15a) and the strongest
agent (GPT-5-nano, Fig. 15b) separately at iteration 50.

• Group 1: Performance steadily improves as the number of agents increases.
GPT-3.5-turbo—although weaker—still contributes meaningful exploration signals,
demonstrating that FedPOB can effectively handle heterogeneous agents.(See Fig. 15c)

• Group 2: Performance does not increase monitonously when more agents are added.
We find that llama-3.2-1B performs extremely poorly on the prompt-optimization task.
When multiple such weak agents participate, their noisy local updates can negatively affect
the stronger models.(See Fig. 15d)

1 3 10
Agent

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

Be
st

 R
ew

ar
d

0.703

0.703

0.724

0.693

0.741

0.706

Group 1
Group 2

(a) Qwen3-235B in mixed-model setting

1 3 10
Agent

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

Be
st

 R
ew

ar
d

0.629

0.629

0.653

0.609

0.672

0.641

Group 1
Group 2

(b) GPT-5-Nano in mixed-model setting

1 3 10
Agent

0.68

0.69

0.70

0.71

0.72

0.73

Be
st

 R
ew

ar
d

0.693

0.712

0.723Group 1 GPT-3.5

(c) GPT-3.5 in mixed-model setting

1 3 10
Agent

0.27

0.28

0.29

0.30

0.31

0.32

0.33

Be
st

 R
ew

ar
d

0.303

0.292

0.304

Group 2 llama-3.2-1b

(d) Llama-3.2-1B in mixed-model setting

Figure 15: Performance of heterogeneous mixed-model configurations across four representative
LLMs.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Overall, these results show that FedPOB does not require agents to have similar capabilities, even
moderately weaker models can contribute useful exploration and improve performance. But ex-
tremely weak models may hinder performance when they participate in the optimization process.

G.2 TESTING THE REASONABLENESS OF LINEAR MODELS

G.2.1 REASONABLENESS OF LINEAR MODELS

To empirically justify the use of a linear model, we conducted a study to assess whether the mapping
from prompt embeddings to performance scores can be well-approximated by a linear function, or
whether a non-linear model provides substantial additional benefit.

The Experimental Setup is shown below:

• Objective: To compare the predictive performance of a linear regressor versus a non-linear
neural network regressor.

• Data: For each of the 53 tasks in our study, we used the full set of 500 prompt embeddings
as the input features (X) and their corresponding validation scores as the target variable
(y).

• Linear Model: We used L2-regularized linear regression (Ridge Regression). This model
directly corresponds to the linear model used by our algorithms.

• Non-linear Model: We used a Multi-Layer Perceptron (MLP) regressor with L2 regular-
ization. To ensure fair comparison, we adopted the same MLP architecture as APOHF (Lin
et al., 2024a) which used the same embedding model as our work.

Evaluation Protocol. To ensure a fair and robust comparison in the high-dimensional setting, we
evaluated both the L2-regularized linear model and the L2-regularized neural network using K-fold
cross-validation (CV) with K = 5. The L2 regularization hyperparameter for each model was tuned
via a nested CV loop exclusively on the training data within each outer fold. We report two metrics
here:

1. Cross-Validated R2 (R2
CV): The primary metric for generalization and predictive power

on unseen data, calculated from the out-of-sample predictions on the held-out validation
folds.

2. In-Sample (Training) R2: The R2 score averaged across the training folds, used to assess
the degree of overfitting.

We averaged the R2 scores across all 53 tasks, and the results are shown in the table below.

Table 8: Comparison of Linear and Non-Linear Models in Predicting Prompt Performance

Model R2
CV (Predictive Power) R2 (In-sample Fit)

Linear Model 0.502 0.740
Neural Network (MLP) 0.452 0.799

The results show that while the neural network achieves a higher in-sample R2 (0.799 vs. 0.740),
its cross-validated R2 is notably lower than the linear model’s (0.452 vs. 0.502). This indicates
that the non-linear neural network model is overfitting the training data and generalizes more poorly
than the simple linear model. These results strongly suggest that a linear model is not significantly
mis-specified and is a suitable choice for this problem. In addition, the reasonableness of linear
models is further justified by the outstanding performance of our methods in more than 50 tasks.

G.2.2 OUR METHODS ARE ROBUST AGAINST EMBEDDING MIS-SPECIFICATION

To evaluate the robustness of our method under embedding mis-specification, we conducted an abla-
tion study where we deliberately distorted the prompt embeddings. Specifically, we truncated each

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Iterations

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Av
er

ag
e

Re
wa

rd
Agent=1
Agent=3
Agent=10

Figure 16: FedPOB performance with embedding misspecification.

768-dimensional embedding vector by removing its last 768/2 = 384 dimensions and then renor-
malized the resulting vectors. This produces a mis-specified scenario as the reviewer has suggested.

The results (Fig. 16) show that:

1. For 1-agent and 3-agent settings, the performance remains nearly unchanged compared
to the original results in Fig. 2.

2. For the 10-agent setting, the distorted embedding leads to a small performance drop,
indicating that FedPOB becomes slightly more sensitive to model mis-specification when
more agents are involved.

3. Across all settings, the overall trend is preserved: increasing the number of agents gener-
ally improves performance.

These findings suggest that FedPOB maintains relatively stable behavior even under substantial
embedding mis-specification, and the benefits of more participating agents continue to hold.

G.2.3 COMPARISON WITH NEURAL BANDIT BASELINES

To compare our linear bandit–based approach with non-linear alternatives for federated black-box
prompt optimization, we evaluated two families of neural bandit baselines across 29 Instruction-
Induction tasks: federated neural bandits (score feedback) and federated neural dueling bandits
(preference feedback).

1. Score Feedback Baseline: We compare against Federated Neural Bandit (Dai et al., 2023),
a Neural-UCB–based federated bandit method. Since the original work does not include
prompt optimization and its network architecture is incompatible with high-dimensional
features (768-d embeddings), we adapt the neural architecture from APOHF (Lin et al.,
2024a), which uses the same embedding model as ours and ensures a fair, architecture-
aligned comparison.

2. Preference Feedback Baseline: For preference feedback, we extend APOHF, a neural
dueling bandit method for prompt optimization, to the federated setting. To ensure consis-
tency and fairness, we adopt the FedAvg aggregation protocol, following Federated Neural
Bandit.

3. Results: We report the best rewards across all 29 Instruction-Induction tasks under both
score-feedback and preference-feedback settings, comparing FedPOB and FedPOB-Pref
with their corresponding neural baselines in Fig. 17.

Across both feedback types, compared with our FedPOB and FedPOB-Pref, the federated neural
bandit and neural dueling bandit baselines fail to scale effectively. Their performance does not

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

1 3 10
Number of Agents

0.75

0.76

0.77

0.78

0.79

0.80

0.81

Be
st

 R
ew

ar
d

0.751

0.778
0.776

0.764

0.798

0.807

Comparison
Fed_neural_bandit
FedPOB

(a) Score-based setting

1 3 10
Number of Agents

0.79

0.80

0.81

0.82

0.83

0.84

0.85

Be
st

 R
ew

ar
d

0.811

0.799

0.792

0.800

0.814

0.848

Comparison
Fed_neural_dueling_bandit
FedPOB-pref

(b) Preference-based setting

Figure 17: Comparison with neural bandit baselines under score-based and preference-based feed-
back.

consistently improve as the number of agents increases. This may be due to the non-convexity
of neural networks combined with data heterogeneity: local neural updates diverge across agents,
making it difficult for standard federated averaging to converge to a stable global model in a small
number of iterations. This in fact also aligns with theoretical results, since federated neural bandit
(Dai et al., 2023) is not guaranteed to achieve better performance with more agents. In contrast,
the performance of federated linear bandits is theoretically guaranteed to improve as the number of
agents increases, which is one of our major motivations for adopting linear models.

Conclusion: These new findings together justify that the linear model is a reasonable and robust
choice in our problem, and performs better than non-linear bandits.

G.3 PARAMETERS EXCHANGED BETWEEN AGENTS AND THE SERVER

To better demonstrate our communication efficiency, we present additional results below to show
that the total number of triggers (i.e., communication rounds) and the total throughput are small for
both FedPOB and FedPOB-Pref. For throughput, we simply measure the total number of parameters
exchanged between agents and the server over 50 iterations.

G.3.1 SCORE FEEDBACK SETTING (FEDPOB)

In FedPOB, we set communication threshood D to limit unnecessary communication rounds un-
less local agents have collected enough information. The table below reports the total number of
communication rounds for different values of D over 50 iterations of FedPOB (average across all
Instruction-Induction tasks). To further quantify throughput, we compute the total number of pa-
rameters exchanged between the agents and the server over 50 iterations.

Table 9: Communication rounds for different values of D

D 0 10 100 300 1000

Comm. Rounds (Agent=3) 50 12 4 2 1
Comm. Rounds (Agent=10) 50 11.13 3.99 2 1
Throughput (Agent=3) 169.0M 40.56M 13.52M 6.75M 3.37M
Throughput (Agent=10) 563.2M 125.4M 44.94M 22.53M 11.26M

As expected in Table 9, the frequency of communication declines sharply as the communication
threshold D increases. Fig. 4 demonstrates that even when D is raised to 300 or 1000—limiting
communication to merely two rounds or a single round, respectively—our method remains highly
robust. It exhibits only a negligible reduction in reward, despite the substantial decrease in commu-
nication overhead.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

G.3.2 PREFERENCE FEEDBACK SETTING FEDPOB-PREF

In the preference-feedback setting, we similarly evaluate communication efficiency by examining
both the number of rounds and total throughput. We compare FedPOB-Pref to FLDB-GD and
FLDB-OGD (Table 10 and Table 11) and observe:

• FedPOB-Pref outperforms FLDB-OGD by 5.9%, while using the same number of commu-
nication rounds.

• FedPOB-Pref matches FLDB-GD’s performance while requiring only 1/30 of its commu-
nication rounds.

• FedPOB-Pref remains robust even under much stricter communication constraints. When
we allow only one communication trigger every three iterations, the total number of com-
munication rounds and the overall throughput are reduced by 68%. Despite this substantial
reduction, the performance decreases by only 4.06% and 7.07% for 3 and 10 agents, re-
spectively. This demonstrates that FedPOB-Pref provides a reliable option in scenarios
where communication resources are highly limited or expensive.

Table 10: Performance comparison of different methods (Agent = 3).

Method Best Rewards Comm. Times Throughput
FedPOB-Pref 0.8145 50 169.1M
FedPOB-Pref (Less Comm.) 0.7814 16 54.11M
FLDB-GD 0.7959 1500 175.3M
FLDB-OGD 0.7687 50 169.0M

Table 11: Performance comparison of different methods (Agent = 10).

Method Best Rewards Comm. Times Throughput
FedPOB-Pref 0.8482 50 563.9M
FedPOB-Pref (Less Comm.) 0.7882 16 180.4M
FLDB-GD 0.8244 1500 584.4M
FLDB-OGD 0.8123 50 563.5M

G.4 SCALING LAW WITH AGENTS

To demonstrate the scalability of our methods to larger numbers of agents and reveal potential scal-
ing laws, we adopted the Instruction-Induction tasks (29 tasks), and increased the number of agents
to 25 and 100 under the same experimental setting (using gpt-3.5-turbo). The results in Fig. 18 sum-
marize the final aggregated scores over all 29 tasks after 50 iterations, as well as the average reward
trajectories across iterations.

These results suggest a clear scaling pattern:

• Our method is indeed able to scale to a substantially larger number of agents (100).

• The performance of FedPOB improves consistently and monotonically as the number of
agents increases.

• As the number of agents increases, the marginal gain gradually diminishes. This suggests
a logarithmic-like scaling curve where performance gains eventually saturate, which is a
desirable and expected property in large-scale collaborative learning systems.

G.5 RESULTS WITH HETEROGENEITY IN TASKS

To simulate a realistic scenario in which agents share a common prompt pool but operate on het-
erogeneous tasks, we conduct an additional experiment where all agents use the same prompt set

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Number of Agents

0.77

0.78

0.79

0.80

0.81

Be
st

 R
ew

ar
ds

(a) FedPOB performance scaling with agent number.

0 10 20 30 40 50
Iterations

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Av
er

ag
e

Re
wa

rd

Agent=1
Agent=3
Agent=10
Agent=25
Agent=100

(b) FedPOB performance across agents.

Figure 18: Scalability of FedPOB: performance improves consistently with more agents.

0 10 20 30 40 50
Iterations

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Av
er

ag
e

Re
wa

rd

Agent=1
Agent=3
Agent=10

Figure 19: FedPOB performance under heterogeneous task settings

(containing 500 prompts), while their respective tasks (i.e., reward functions) remain distinct. Con-
cretely, we induce task heterogeneity by perturbing the underlying reward function for each agent:
independent Gaussian noise is added to the original reward values, yielding a set of agent-specific
reward functions.

We evaluated this setting across all 29 Instruction-Induction tasks using GPT-3.5-turbo (Ope-
nAI, 2023a) . The Fig. 19 demonstrate that FedPOB continues to perform robustly under this
heterogeneous-task scenario. Even when the agents are optimizing against heterogeneous reward
functions, our algorithm successfully leverages collaboration to improve overall performance. This
confirms that FedPOB is adaptable to different types of federated heterogeneity, whether in the
prompt space or the task definition.

31

	Introduction
	Problem Setting
	Federated Prompt Optimization via Bandits
	The FedPOB Algorithm: Score Feedback
	The FedPOB-Pref Algorithm: Preference Feedback

	Experiments
	Score Feedback: FedPOB
	Preference Feedback: FedPOB-Pref

	Ablation Study
	Related Work
	Conclusion and Future Work
	LLM Usage Disclosure
	Additional Related Work
	More Details on the Experimental Setting
	Datasets and Models
	Prompt Space Generation
	Improved Evaluation Method
	Hyperparameters of Our Algorithms
	Hyperparameters of Baseline and Fair Comparisons

	More Experimental Results
	Additional Experiments on Prompt Domain Generation Methods
	Complete results in FedPOB-Pref
	Complete Results for FedPOB
	Further Evaluation Across LLM Models

	Mathematical Principles of the Local Objective Function Adopted by FedPOB-Pref
	Problem Formulation
	The Augmented Lagrangian Method
	First-Order Stationarity Conditions
	Analysis of the Formulation
	Proof of Necessity for the Linear Dual Term
	Interpretation of the Dual Variables at Convergence

	Optimized Prompts From FedPOB and FedPOB-Pref
	Additional Ablation Study
	Evaluation under Heterogeneous Agent Capabilities
	Testing the Reasonableness of Linear Models
	Reasonableness of Linear Models
	Our Methods Are Robust Against Embedding Mis-specification
	Comparison with Neural Bandit Baselines

	Parameters exchanged between agents and the server
	Score Feedback Setting (FedPOB)
	Preference Feedback Setting FedPOB-Pref

	scaling law with agents
	Results with Heterogeneity in Tasks

