

000 FEDPOB: SAMPLE-EFFICIENT FEDERATED PROMPT 001 002 OPTIMIZATION VIA BANDITS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 The performance of large language models (LLMs) is highly sensitive to the input
011 prompt, making prompt optimization a critical task. However, real-world appli-
012 cation is hindered by three major challenges: (1) the black-box nature of pow-
013 erful proprietary LLMs, (2) the need for high sample efficiency due to query
014 costs, and (3) the desire for privacy-preserving collaboration among multiple
015 users. To address these challenges simultaneously, we introduce a novel frame-
016 work for sample-efficient federated prompt optimization based on multi-armed
017 bandits (MABs). The MAB framework is uniquely suited for this problem as it is
018 (1) inherently a black-box optimization method, (2) practically sample-efficient,
019 and (3) enables collaborative learning with theoretically guaranteed benefit from
020 more participating agents. We first propose the *Federated Prompt Optimization*
021 via *Bandits* (FedPOB) algorithm, a federated variant of the Linear UCB algo-
022 rithm, where agents collaborate by sharing model parameters instead of raw data.
023 We then extend our approach to the practical setting of comparative user feedback
024 by introducing *FedPOB with Preference Feedback* (FedPOB-Pref), an efficient
025 algorithm based on federated dueling bandits. Extensive experiments demonstrate
026 that both FedPOB and FedPOB-Pref significantly outperform existing base-
027 lines and that their performance consistently improves as more agents participate
028 in the collaboration, validating the effectiveness of our federated approach.

029 030 1 INTRODUCTION

031 Large language models (LLMs) have achieved impressive performance in a variety of real-world
032 applications (Guo et al., 2025). However, the performance of LLMs has been shown to be highly
033 sensitive to the input *prompt* (Zhou et al., 2023; Lin et al., 2024b). Consequently, *prompt optimiza-*
034 *tion*, in which we aim to find the best prompt for a task, has emerged as a critical research area.
035 Despite its growing popularity, the widespread real-world adoption of prompt optimization is still
036 hindered by three important challenges.

037 The first challenge is **black-box access**. Some of the most powerful LLMs, such as ChatGPT and
038 Gemini (OpenAI, 2023b; Team et al., 2023), are proprietary, black-box models that are only acces-
039 sible via API queries. This limited access creates an immense challenge to prompt optimization.
040 The second challenge is **sample efficiency**. Since querying powerful LLMs is often costly in both
041 time and financial resources, it is of paramount importance to develop methods that can identify the
042 optimal prompt for a given task using a small number of interactions. The third challenge is en-
043 abling **collaboration** among multiple users. As LLMs become more widely adopted, a natural and
044 important question arises: how can multiple users, each with their own prompt optimization tasks,
045 collaborate to accelerate their progress? A key constraint in such a collaborative setting is user
046 privacy, as participants are typically unwilling to share their proprietary data, such as the history of
047 tested prompts and their corresponding performance scores. This scenario naturally aligns with the
048 principles of *federated learning* (FL) (Kairouz et al., 2019; McMahan et al., 2017), where distributed
049 agents collaborate on their machine learning tasks without exposing their raw data. **As an example**,
050 *federated prompt optimization* enables multiple hospitals to collaboratively learn improved prompts
051 for LLM-assisted tasks (e.g., generating diagnosis suggestions) without sharing sensitive patient
052 data due to privacy regulations. Similarly, it allows mobile users to collaboratively learn improved
053 prompts for on-device assistant tasks (e.g., drafting personal emails or managing schedules) without
exposing their private interaction history.

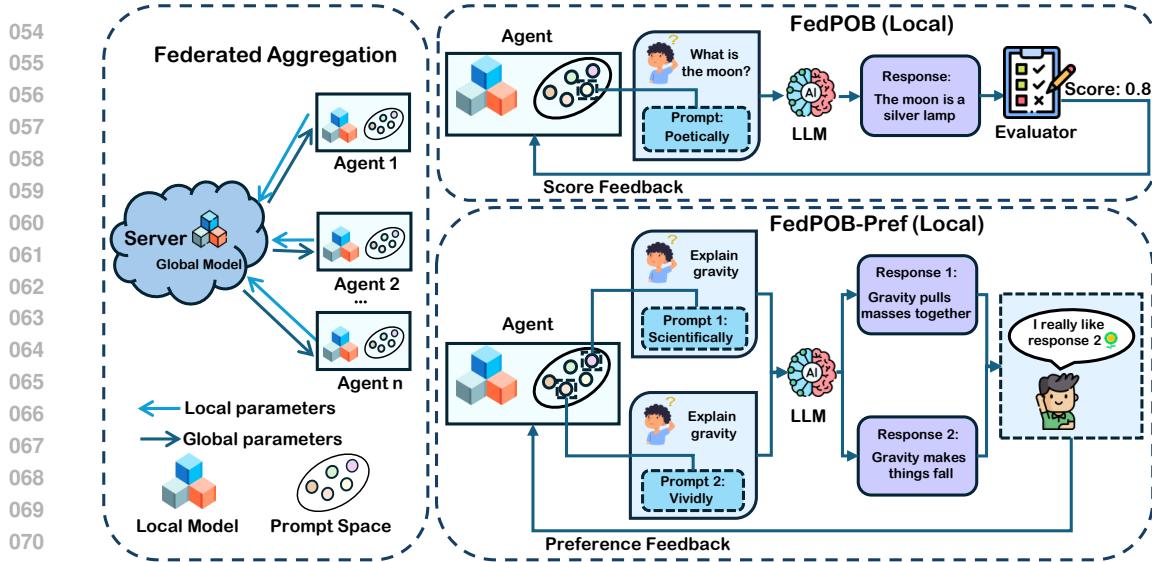


Figure 1: An overview of our proposed federated prompt optimization frameworks. FedPOB handles direct score feedback, while FedPOB-Pref is designed for pairwise preference feedback.

To tackle the combined challenges of black-box access, sample efficiency and privacy-preserving collaboration, we propose a new class of federated prompt optimization algorithms built upon the *multi-armed bandit* (MAB) framework (Lattimore & Szepesvári, 2020). MABs are exceptionally well-suited for this problem for three main reasons. First, MAB algorithms do not require gradient information and are inherently **black-box optimization methods**. Second, they are designed to efficiently balance the exploration-exploitation trade-off, enabling them to solve complex black-box optimization problems in a **sample-efficient** manner, a property that has been successfully leveraged in recent work on prompt optimization (Lin et al., 2024b; Wu et al., 2024). Thirdly, federated MAB algorithms (Shi & Shen, 2021; Dubey & Pentland, 2020; Dai et al., 2023) provide strong theoretical guarantees, ensuring that **performance improves as more agents participate in the collaboration** (Wang et al., 2020).

Our first contribution is the *Federated Prompt Optimization via Bandits* (FedPOB) algorithm. This method is based on a federated variant of the classic Linear Upper Confidence Bound (LinUCB) algorithm (Abbasi-Yadkori et al., 2011; Wang et al., 2020). In our FedPOB algorithm, each agent utilizes a pre-trained embedding model to represent the prompts and a linear model to predict their performance. Collaboration is achieved by having agents periodically exchange and aggregate their LinUCB parameters, thereby learning from the collective experience of all agents without requiring them to share any sensitive raw data. Importantly, thanks to the solid theoretical guarantees of the federated LinUCB algorithm (Wang et al., 2020), the performance of our FedPOB algorithm is theoretically guaranteed to improve with a larger number of collaborating agents.

In addition, we consider the highly practical setting of prompt optimization with *preference feedback*, where explicit performance scores are unavailable and we are only able to observe relative preference feedback (e.g., the user prefers the response from prompt A than that from prompt B). This problem was recently introduced by Lin et al. (2024a) to address scenarios where user feedback is inherently comparative. To enable sample-efficient federated prompt optimization in this novel setting, we introduce our second algorithm, *FedPOB with Preference Feedback* (FedPOB-Pref). This algorithm is a practical adaptation and modification of the federated linear dueling bandit framework proposed by Huang et al. (2025). Specifically, our FedPOB-Pref algorithm significantly reduces the communication complexity of the methods from Huang et al. (2025) while maintaining the strong empirical performance. An overview of both FedPOB and FedPOB-Pref is illustrated in Fig. 1.

We conduct extensive experiments to validate our proposed methods. The results demonstrate that both FedPOB and FedPOB-Pref achieve considerably better performance than the previous baseline methods in various tasks. Furthermore, we empirically verify that the performance of our al-

108 gorithms consistently improves as the number of participating agents increases, highlighting the
 109 benefits of our collaborative approach. In summary, our key contributions are as follows:
 110

- 111 • We propose FedPOB, a novel algorithm for sample-efficient federated prompt optimization that
 112 enables multiple agents to collaborate on finding the best prompts without sharing their raw data.
- 113 • We extend our algorithm to the practical setting of preference-based feedback by introducing the
 114 FedPOB-Pref algorithm, which is based on federated linear dueling bandits.
- 115 • We conduct extensive experiments to validate our approach, demonstrating that our algorithms
 116 significantly outperform existing baselines and scale effectively with more agents.

117 2 PROBLEM SETTING

119 **Prompt Optimization.** We address the problem of black-box prompt optimization, where the ob-
 120 jective is to find an optimal prompt p that maximizes the performance of a black-box LLM on a
 121 given task $\mathbb{D} = (\mathbb{X}, \mathbb{Y})$. The task consists of a set of queries $\mathbb{X} = \{x_k\}$ and their corresponding
 122 ground-truth answers $\mathbb{Y} = \{y_k\}$. Since the internal parameters of the black-box LLMs (e.g., GPT-
 123 4o-mini) are inaccessible and only API queries are allowed, we model the performance of the LLM
 124 via an external score function. Specifically, we define

$$125 \quad 126 s(p \mid \mathbb{D}) = \mathbb{E}_{(x,y) \in \mathbb{D}} [m(\text{LLM}(p, x), y)], \quad (1)$$

127 in which m is a metric function that compares the model response $\text{LLM}(p, x)$ induced by the prompt
 128 p with the ground-truth answer y and provides a score $s(p \mid \mathbb{D})$. The optimization target is then
 129 formulated as

$$130 \quad 131 p^* = \arg \max_{p \in \mathbb{P}} s(p \mid \mathbb{D}), \quad (2)$$

132 where \mathbb{P} denotes the space of all possible prompts.

133 **Federated Prompt Optimization.** We extend the black-box prompt optimization problem to the
 134 federated setting, which involves multiple agents. We consider a scenario with a set of $N > 1$
 135 agents, denoted by \mathbb{A} , who all aim to solve the same task \mathbb{D} . To account for agent heterogeneity, we
 136 allow each agent $a \in \mathbb{A}$ to have its own prompt space denoted as \mathbb{P}_a . This increases the generality of
 137 our setting by allowing each user to define a prompt space uniquely suited to their own preferences.
 138 Furthermore, each agent can generate its local prompt space \mathbb{P}_a using existing techniques (Zhou
 139 et al., 2023) and does not need to share its local prompt space with other agents. This allows every
 140 agent to keep its own local set of prompts private and hence aligns well with the federated setting.
 141 As a result, the federated prompt optimization problem can be expressed as follows:

$$142 \quad 143 p_a^* = \arg \max_{p_a \in \mathbb{P}_a} \mathbb{E}_{(x,y) \in \mathbb{D}} [m(\text{LLM}(p_a, x), y)], \quad \forall a \in \mathbb{A} \quad (3)$$

144 Here, each agent $a \in \mathbb{A}$ aims to find the optimal prompt p_a^* from its own prompt space \mathbb{P}_a that maxi-
 145 mizes its performance on the task \mathbb{D} . To achieve greater sample efficiency, all agents in \mathbb{A} collaborate
 146 without sharing their raw data (i.e., the history of tested prompts and their scores). This problem
 147 formulation naturally aligns with common paradigms in the federated bandit literature (Wang et al.,
 148 2020; Dai et al., 2023). Therefore, we adopt the federated bandit framework to tackle this problem.

149 **Feedback Model.** To solve the federated black-box prompt optimization problem, we cast the optimi-
 150 zation process into an iterative protocol, where we sequentially select candidate prompts for eval-
 151 uation. At each round t , each agent a selects one or two candidate prompts and receives feedback.
 152 The selection of the prompts is guided by theoretically principled bandit policies, which leverage the
 153 collective observation history from all agents to achieve sample-efficient optimization (more details
 154 in Sec. 3). Depending on the type of feedback available, we consider two settings:

- 155 • **Score feedback:** In this setting, each agent selects a single prompt $p_{t,a}$ at each round t , and
 156 receives a numeric score $\hat{s}_{t,a}$ as feedback, which directly reflects the performance of the prompt
 157 $p_{t,a}$ on task \mathbb{D} . Specifically, given a validation set \mathbb{D}_v representing the task \mathbb{D} , the score can be
 158 obtained as follows: $\hat{s}_{t,a} = \mathbb{E}_{(x,y) \in \mathbb{D}_v} [m(\text{LLM}(p_{t,a}, x), y)]$.
- 159 • **Preference feedback:** In this setting, every agent a selects a pair of prompts $(p_{t,a}^1, p_{t,a}^2)$ at round
 160 t , and observes a binary signal indicating which of the two performs better, i.e., which prompt
 161 yielded the better response. For example, such feedback may be directly provided by human

162	Algorithm 1 FedPOB (Agent $a \in \mathbb{A}$)
163	1: Initialize: $W_{\text{sync}} = W_{\text{new},a} = \mathbf{0}_{d \times d}$, $V_{t,a} = \lambda I_{d \times d}$, $b_{\text{sync}} = b_{\text{new},a} = \mathbf{0}_d$, $t_{\text{last}} = 0$
164	2: for $t = 1, 2, \dots, T$ do
165	3: Compute $V_{t,a} \leftarrow \lambda I + W_{\text{sync}} + W_{\text{new},a}$
166	4: Update local model $\hat{\theta}_{t,a} \leftarrow V_{t,a}^{-1}(b_{\text{sync}} + b_{\text{new},a})$
167	5: Select prompt $p_{t,a} \leftarrow \arg \max_{p \in \mathbb{P}_a} \langle \hat{\theta}_{t,a}, u(p) \rangle + \nu \ u(p)\ _{V_{t,a}^{-1}}$
168	6: Query $p_{t,a}$ to observe score feedback $\hat{s}_{t,a}$
169	7: Update $W_{\text{new},a} \leftarrow W_{\text{new},a} + u_{t,a} u_{t,a}^\top$, $b_{\text{new},a} \leftarrow b_{\text{new},a} + u_{t,a} \hat{s}_{t,a}$
170	8: if $(t - t_{\text{last}}) \cdot \log(\det V_{t,a} / \det V_{\text{last},a}) > D$ then
171	9: Send a communication request to the central server
172	10: if a communication round is started then
173	11: Upload $\{W_{\text{new},a}, b_{\text{new},a}\}$ to the central server. Reset $W_{\text{new},a} = \mathbf{0}_{d \times d}$, $b_{\text{new},a} = \mathbf{0}_d$
174	12: Receive $\{W_{\text{sync}}, b_{\text{sync}}\}$ from server
175	
176	
177	Algorithm 2 FedPOB (Central Server)
178	1: if Central server receives a communication request from <i>any agent</i> then
179	2: Initiate a communication round
180	3: receive $\{W_{\text{new},a}$ and $b_{\text{new},a}\}_{a \in \mathbb{A}}$ from each agent
181	4: Update $W_{\text{sync}} \leftarrow W_{\text{sync}} + \sum_{a \in \mathbb{A}} W_{\text{new},a}$, $b_{\text{sync}} \leftarrow b_{\text{sync}} + \sum_{a \in \mathbb{A}} b_{\text{new},a}$
182	5: Broadcast W_{sync} and b_{sync} to all agents
183	
184	

evaluators (Lin et al., 2024a). Following the common practice from dueling bandits (Bengs et al., 2022), we assume that the preference feedback is generated by the Bradley–Terry–Luce (BTL) model (Hunter, 2004).

3 FEDERATED PROMPT OPTIMIZATION VIA BANDITS

We adopt *linear models*, rather than more complex ones such as neural networks, to learn the unknown reward function for federated prompt optimization. Accordingly, our FedPOB and FedPOB-Pref algorithms (illustrated in Fig. 1) are based on linear bandits (Abbasi-Yadkori et al., 2011) and linear dueling bandits (Bengs et al., 2022), respectively. This choice is motivated by the balance linear models offer between expressiveness, simplicity, and theoretical guarantees: (1) Modern text embedding techniques powered by transformers are sufficiently mature and effective (Shi et al., 2024; Hu et al., 2024), enabling a simple linear function to model the relationship between prompts and scores. (2) Linear models enable lightweight algorithmic designs. (3) Unlike federated neural bandits using neural networks for reward estimation (Dai et al., 2023), federated linear bandit methods provide theoretical guarantees on collaboration which ensure that *the performance improves as more agents join the federation* (Wang et al., 2020).

3.1 THE FEDPOB ALGORITHM: SCORE FEEDBACK

Following recent works on black-box prompt optimization (Shi et al., 2024; Hu et al., 2024), we first map each discrete prompt p into a continuous embedding vector $u(p) \in \mathbb{U}$ using a pre-trained model. This allows us to leverage rich semantic representations and simplifies the optimization problem. We then model the score of a prompt for each agent a using a linear model: $s_a = \langle \theta_a, u(p_a) \rangle$, which is standard in the multi-armed bandit literature (Abbasi-Yadkori et al., 2011).

Local Prompt Selection. At the beginning of each round t , in lines 3-4 of Algo. 1, each agent a first updates its information matrix $V_{t,a}$ and estimated linear parameters $\hat{\theta}_{t,a}$ using (1) *the aggregated information from all agents* received from the central server (i.e., W_{sync} and b_{sync} , more details below) and (2) its newly collected local information (i.e., $W_{\text{new},a}$ and $b_{\text{new},a}$). Next, using the parameters $V_{t,a}$ and $\hat{\theta}_{t,a}$, agent a selects the next prompt to query following the Upper Confidence Bound (UCB) strategy (line 5 of Algo. 1):

$$p_{t,a} = \arg \max_{p \in \mathbb{P}_a} \langle \hat{\theta}_{t,a}, u(p) \rangle + \nu \|u(p)\|_{V_{t,a}^{-1}} \quad (4)$$

216

Algorithm 3 FedPOB-Pref (Agent $a \in \mathbb{A}$)

217

218

219

220

221

222

223

224

225

226

227

228

229

```

1: Initialize:  $W_{\text{sync}} = W_{\text{new},a} = \mathbf{0}_{d \times d}$ ,  $\hat{\theta}_0 \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_d)$  with small  $\sigma^2$ ,
2: for  $t = 1, 2, \dots, T$  do
3:   Select first prompt  $p_{t,a}^1 \leftarrow \arg \max_{p \in \mathbb{P}_a} \langle \hat{\theta}_{t-1}, u(p) \rangle$ 
4:   Select second prompt  $p_{t,a}^2 \leftarrow \arg \max_{p \in \mathbb{P}_a} \langle \hat{\theta}_{t-1}, u(p) - u(p_{t,a}^1) \rangle + \beta_t \|u(p) - u(p_{t,a}^1)\|_{W_{\text{sync}}^{-1}}$ 
5:   Query  $p_{t,a}^1, p_{t,a}^2$  to observe preference feedback  $\hat{\omega}_{t,a} = \mathbb{1}(p_{t,a}^1 \succ p_{t,a}^2)$ 
6:   Update local model  $\hat{\theta}_{t,a} \leftarrow \arg \min_{p \in \mathbb{P}_a} L_{t,a}(\theta) - \langle \nabla L_a(\hat{\theta}_{t-1,a}), \theta \rangle + \frac{\lambda}{2} \|\theta - \hat{\theta}_{t-1}\|^2$ 
7:   Update  $\nabla L_a(\theta_{t,a}) \leftarrow \nabla L_a(\theta_{t-1,a}) - \lambda(\hat{\theta}_{t,a} - \theta_{t-1})$ 
8:   Compute  $W_{\text{new},a} = [u(p_{t,a}^1) - u(p_{t,a}^2)][u(p_{t,a}^1) - u(p_{t,a}^2)]^\top$ 
9:   Upload  $\{\hat{\theta}_{t,a}, \nabla L_a(\hat{\theta}_{t,a}), W_{\text{new},a}\}$  to server

```

230

231

232

233

Here the parameter ν balances *exploitation* (choosing prompts with large predicted rewards) and *exploration* (choosing prompts with large uncertainty). Next, we test the selected prompt $p_{t,a}$ using the validation set \mathbb{D}_V , to obtain score feedback $\hat{s}_{t,a}$ (line 6 of Algo. 1). Then, we update the newly collected local information $W_{\text{new},a}$ and $b_{\text{new},a}$ (line 7 of Algo. 1).

234

235

236

237

238

239

240

241

Agent-Server Communication. To reduce the communication cost, we only start a communication round when the new information collected by any agent exceeds a threshold D , i.e., when the criterion in line 8 of Algo. 1 is satisfied. If a communication request is sent by any agent, the trusted central server initiates a communication round (line 1-2 of Algo. 2) and all agents upload their local parameters $W_{\text{new},a}$ and $b_{\text{new},a}$ to the central server (lines 10-11). The central server then aggregates these local parameters to produce synchronized parameters W_{sync} and b_{sync} (line 3-4 of Algo. 2), which are then broadcast to all agents. After the agents receive the aggregated parameters W_{sync} and b_{sync} , they can use them to select the prompt in the next iteration, and the algorithm repeats.

242

243

3.2 THE FEDPOB-PREF ALGORITHM: PREFERENCE FEEDBACK

244

245

246

247

248

249

250

251

252

253

In many practical applications, obtaining explicit numerical scores is challenging, whereas collecting pairwise preference feedback is often more natural and cost-effective. Specifically, in human-in-the-loop scenarios, users can more reliably state a preference between two generated outputs than assign them absolute scores (Yue et al., 2012; Lin et al., 2024a). For example, in LLM-based creative writing, it is often more intuitive for users to express a preference between two generated articles than to quantify subjective alignment with a numeric score. Similarly, in text-to-image generation, it is often more practical to rely on pairwise comparisons than to capture complex aesthetic preferences with a single numeric score. This setting, however, introduces a significant technical hurdle: *the parameter estimation for linear dueling bandits does not have a closed-form solution* (Bengs et al., 2022). This limitation prevents the use of the simple parameter aggregation strategy employed by our FedPOB algorithm.

254

255

256

257

258

259

260

261

262

263

264

265

The absence of a closed-form solution naturally leads to gradient-based optimization approaches. Recent work by Huang et al. (2025) introduced federated linear dueling bandit algorithms (FLDB-GD and FLDB-OGD) that achieve collaboration by aggregating local gradients. While theoretically sound, these methods face a practical dilemma: FLDB-GD incurs high communication costs, whereas the more communication-efficient FLDB-OGD suffers significant performance degradation. We attribute this to the fact that *preference feedback is inherently noisier and less informative than numerical scores*, making it particularly challenging to achieve both competitive performance and communication efficiency. To overcome this, we draw inspiration from *classical federated learning* for solving supervised learning problems (McMahan et al., 2017). Specifically, instead of aggregating gradients, we aggregate model parameters, which allows us to adopt a dynamic regularization technique that has proven effective in federated learning (Acar et al., 2021) for further performance improvement. This leads to our proposed FedPOB-Pref algorithm (Algos. 3 and 4).

266

267

268

269

Our FedPOB-Pref algorithm offers several key advantages: (1) it is highly **sample-efficient**, capable of learning the underlying reward model from a small number of preference queries; (2) it is robust to **agent heterogeneity**, and its performance scales effectively with the number of collaborating agents; and (3) when compared to the baselines from Huang et al. (2025), FedPOB-Pref simultaneously **reduces communication costs and improves performance** (Sec. 4.2).

270 **Algorithm 4** FedPOB-Pref (Central Server)

271 1: **receive** $\{\hat{\theta}_{t,a}, \nabla L_a(\hat{\theta}_{t,a}), W_{\text{new},a}\}_{a \in \mathbb{A}}$ from each agent
 272 2: Update server model $\hat{\theta}_t \leftarrow \frac{1}{n} \sum_{a \in \mathbb{A}} \hat{\theta}_{t,a} - \frac{1}{n} \sum_{a \in \mathbb{A}} \frac{1}{\lambda} \nabla L_a(\hat{\theta}_{t,a})$
 273 3: Update $W_{\text{sync}} \leftarrow W_{\text{sync}} + \sum_{a \in \mathbb{A}} W_{\text{new},a}$
 274 4: Broadcast $\hat{\theta}_t$ and W_{sync} to all agents

275
 276
 277 The overall workflow of FedPOB-Pref is outlined in Algorithms 3 and 4. At each round t , every
 278 agent a selects a pair of prompts based on the global model $\hat{\theta}_{t-1}$. The first prompt, $p_{t,a}^1$, represents
 279 pure **exploitation** (line 3), while the second, $p_{t,a}^2$, incorporates an **exploration** bonus to discover
 280 more informative options (line 4). This dueling selection strategy is grounded in the theory of
 281 dueling bandits (Bengs et al., 2022; Verma et al., 2024). We then obtain binary preference feedback
 282 $\omega_{t,a} = \mathbb{1}_{p_{t,a}^1 \succ p_{t,a}^2}$ for this pair of selected prompts (line 5). The core of our method lies in the local
 283 model update (line 6), which optimizes an objective that combines the standard logistic loss with a
 284 dynamic regularizer (Acar et al., 2021). The first component is the pairwise logistic loss over the
 285 agent’s local history:

286
 287
$$L_{t,a}(\theta) = - \sum_{\tau=1}^{t-1} \left(\omega_{\tau,a} \log \sigma(\theta^\top [u(p_{\tau,a}^1) - u(p_{\tau,a}^2)]) + (1 - \omega_{\tau,a}) \log \sigma(\theta^\top [u(p_{\tau,a}^2) - u(p_{\tau,a}^1)]) \right). \quad (5)$$

 288
 289

290 This term is the negative log-likelihood of the observed preferences under the BTL model (Bengs
 291 et al., 2022). The second component is a dynamic regularization term consisting of (i) a linear
 292 penalty, $-\langle \nabla L_a(\hat{\theta}_{t-1,a}), \theta \rangle$, which corrects for local gradient drift, and (ii) a quadratic penalty,
 293 which prevents the local model from deviating excessively from the previous global model (Acar
 294 et al., 2021). After this local update (lines 6-8), agents upload their new parameters to the
 295 central server for aggregation, which then broadcasts the aggregated global parameters for the
 296 next round. Of note, we conduct theoretical analysis to motivate the local objective function of
 297 FedPOB-Pref (App. E), providing theoretical justification for its strong performance (Sec. 4.2).
 298

299 **4 EXPERIMENTS**
 300

301 We adopt MPNet (Song et al., 2020) as the text embedding model, and use GPT-3.5-turbo (OpenAI,
 302 2023a) in the experiments unless specified otherwise. Of note, we also test two other models, GPT-
 303 4o-mini (OpenAI, 2023b) and Qwen3-235B-A22B-2507 (Bai et al., 2023), in Sec. 5. Evaluation is
 304 performed on the Instruction Induction (Chen et al., 2023; Lin et al., 2024b) and BIG-Bench Hard
 305 datasets (Suzgun et al., 2023), which collectively cover over 50 tasks that span diverse areas such
 306 as reasoning, language comprehension, and code generation. To account for agent heterogeneity,
 307 we ensure that the prompt domains of all agents contain both shared prompts and unique prompts.
 308 For fair comparisons, we ensure an equal validation query budget across all algorithms and ana-
 309 lyze the corresponding communication costs in the federated setting. We defer more details on the
 310 experimental setting to App. C.

311 **4.1 SCORE FEEDBACK: FEDPOB**
 312

313 In the setting with score-based feedback, every tested prompt receives a numerical score indicating
 314 the quality of its induced response. Here we assess performance of a prompt using a validation set
 315 and adopt the validation accuracy as the corresponding score. The objective is to identify the optimal
 316 prompt (i.e., the one that achieves the highest validation score). We compare our FedPOB with a
 317 representative baseline method on federated prompt optimization: FedOne (Wang et al., 2025), as
 318 well as two other baselines on standard prompt optimization: INSTINCT (Lin et al., 2024b) and
 319 PromptBreeder (Fernando et al., 2024).

320 Table 1 and 2 report the final scores achieved by the best prompt discovered by each algorithm
 321 in various tasks. The results demonstrate the superior capability of our FedPOB, which achieves
 322 the highest score on the majority of the tasks under the setting of ten agents. **The results also**
 323 **show the sample efficiency of our FedPOB since it achieves the best performance given a fixed**
 324 **number of samples per agent.** Fig. 2 depicts the performance of FedPOB across different iterations,

324
 325 Table 1: Average validation accuracy (with standard error) of the best prompt found by each al-
 326 gorithm in the **Instruction Induction dataset**, averaged over 5 independent trials with different
 327 random seeds. For clarity, only a representative subset of challenging tasks. The complete results
 328 for all tasks are provided in Table 5 (App. D.3) and the results are consistent.

Dataset	INSTINCT	PromptBreeder	FedOne (10 agents)	FedPOB (ours)		
				1 Agent	3 Agents	10 Agents
Active to Passive	0.940±0.053	1.000±0.000	1.000±0.000	0.804±0.160	0.960±0.014	0.972±0.023
Auto Categorization	0.313±0.012	0.220±0.020	0.264±0.004	0.272±0.030	0.308±0.018	0.288±0.023
Antonyms	0.767±0.023	0.840±0.020	0.870±0.005	0.792±0.046	0.812±0.027	0.828±0.023
Common Concept	0.217±0.040	0.118±0.010	0.136±0.003	0.188±0.015	0.210±0.007	0.208±0.018
Informal to Formal	0.570±0.020	0.521±0.067	0.605±0.005	0.528±0.028	0.528±0.039	0.570±0.030
Larger Animal	0.993±0.012	0.987±0.012	0.829±0.037	0.984±0.017	0.992±0.011	0.989±0.011
Negation	0.860±0.020	0.927±0.012	0.897±0.010	0.856±0.061	0.940±0.014	0.920±0.032
Orthography Starts With	0.767±0.214	0.813±0.061	0.436±0.024	0.804±0.100	0.828±0.056	0.832±0.087
Rhymes	0.493±0.142	0.393±0.031	0.916±0.027	0.664±0.120	0.776±0.187	0.844±0.106
Second Word Letter	0.847±0.110	0.947±0.042	0.625±0.034	0.792±0.199	0.880±0.157	0.972±0.023
Sentence Similarity	0.467±0.031	0.380±0.020	0.360±0.035	0.540±0.094	0.508±0.082	0.448±0.018
Sentiment	0.973±0.012	0.993±0.012	0.996±0.002	0.988±0.018	0.972±0.023	0.972±0.027
Synonyms	0.327±0.150	0.333±0.115	0.320±0.023	0.324±0.103	0.296±0.041	0.384±0.124
Taxonomy Animal	0.947±0.023	0.967±0.042	0.805±0.026	0.924±0.073	0.980±0.024	0.972±0.034
Translation En-De	0.820±0.020	0.820±0.060	0.927±0.004	0.820±0.047	0.840±0.032	0.868±0.036
Translation En-Es	0.747±0.042	0.746±0.023	0.950±0.012	0.756±0.026	0.740±0.072	0.728±0.030
Translation En-Fr	0.947±0.023	0.920±0.040	0.919±0.005	0.944±0.033	0.940±0.283	0.948±0.018
Word in Context	0.553±0.058	0.620±0.040	0.409±0.091	0.460±0.084	0.640±0.020	0.608±0.036
Object Counting	0.520±0.106	0.473±0.110	0.497±0.019	0.520±0.074	0.616±0.039	0.588±0.050
Odd One Out	0.867±0.058	0.833±0.116	0.859±0.024	0.800±0.122	0.900±0.000	0.900±0.000
Word Sorting	0.753±0.058	0.753±0.099	0.497±0.026	0.756±0.093	0.744±0.065	0.828±0.063
Word Unscrambling	0.687±0.012	0.687±0.023	0.728±0.005	0.724±0.046	0.716±0.026	0.720±0.028
Average (22 Tasks)	0.669	0.665	0.645	0.663	0.701	0.712

347 Table 2: Performance on the **Big-Bench Hard (BBH) dataset** under the same experimental settings.
 348

Dataset	INSTINCT	PromptBreeder	FedOne (10 agents)	FedPOB (ours)		
				1 Agent	3 Agents	10 Agents
Boolean Expressions	0.793±0.046	0.853±0.012	0.883±0.003	0.800±0.025	0.836±0.021	0.844±0.026
Date Understanding	0.587±0.012	0.593±0.030	0.633±0.007	0.580±0.028	0.576±0.033	0.572±0.030
Disambiguation QA	0.713±0.031	0.753±0.023	0.858±0.011	0.816±0.026	0.844±0.017	0.840±0.032
Dyck Languages	0.713±0.031	0.693±0.012	0.722±0.005	0.672±0.018	0.668±0.023	0.680±0.032
Formal Fallacies	0.687±0.031	0.967±0.058	0.991±0.002	0.700±0.121	0.872±0.175	0.812±0.172
Geometric Shapes	0.453±0.058	0.360±0.060	0.272±0.007	0.436±0.022	0.412±0.039	0.448±0.036
Hyperbaton	0.913±0.046	0.907±0.023	0.946±0.003	0.868±0.522	0.928±0.027	0.948±0.018
Logical Deduction Five Objects	0.473±0.046	0.460±0.053	0.466±0.009	0.464±0.041	0.452±0.030	0.476±0.017
Logical Deduction Seven Objects	0.513±0.046	0.473±0.031	0.485±0.002	0.476±0.043	0.492±0.046	0.488±0.415
Logical Deduction Three Objects	0.600±0.053	0.573±0.046	0.635±0.009	0.604±0.033	0.636±0.017	0.644±0.009
Movie Recommendation	0.820±0.069	0.767±0.023	0.688±0.004	0.720±0.037	0.720±0.032	0.732±0.027
Multistep Arithmetic Two	0.647±0.129	0.601±0.030	0.685±0.017	0.580±0.105	0.648±0.018	0.692±0.046
Navigate	0.707±0.031	0.760±0.020	0.755±0.028	0.688±0.052	0.720±0.042	0.716±0.026
Penguins in a Table	0.577±0.031	0.694±0.016	0.581±0.031	0.562±0.035	0.584±0.031	0.605±0.015
Reasoning about Colored Objects	0.547±0.023	0.593±0.023	0.440±0.008	0.548±0.036	0.528±0.034	0.568±0.027
Ruin Names	0.707±0.023	0.767±0.042	0.625±0.003	0.688±0.039	0.660±0.042	0.724±0.067
Salient Translation Error Detection	0.573±0.012	0.633±0.070	0.500±0.055	0.584±0.033	0.588±0.018	0.600±0.028
Snarks	0.778±0.022	0.770±0.051	0.675±0.003	0.779±0.022	0.791±0.012	0.782±0.019
Sports Understanding	0.440±0.106	0.540±0.072	0.669±0.004	0.524±0.114	0.552±0.073	0.564±0.078
Temporal Sequences	0.647±0.050	0.473±0.046	0.403±0.019	0.612±0.058	0.648±0.050	0.652±0.052
Tracking Shuffled Objects Five Objects	0.300±0.053	0.287±0.012	0.279±0.030	0.296±0.017	0.304±0.017	0.328±0.023
Tracking Shuffled Objects Seven Objects	0.280±0.020	0.253±0.042	0.281±0.006	0.268±0.023	0.268±0.023	0.256±0.029
Tracking Shuffled Objects Three Objects	0.473±0.046	0.440±0.020	0.413±0.018	0.432±0.039	0.420±0.049	0.400±0.014
Web of Lies	0.633±0.023	0.607±0.012	0.627±0.012	0.640±0.039	0.644±0.043	0.636±0.026
Average (24 Tasks)	0.607	0.618	0.605	0.596	0.616	0.625

369 where we observe a positive correlation between the number of agents and the achieved prompt
 370 score, highlighting the benefits of multi-agent collaboration **and improved sample efficiency with**
 371 **more agents**. In addition, FedPOB achieves a near-optimal score with a small batch of samples,
 372 demonstrating its sample efficiency.

374 4.2 PREFERENCE FEEDBACK: FEDPOB-PREF

375 To simulate user preference feedback in our experiments, we adopt the protocol from Lin et al.
 376 (2024a). For any pair of prompts $(p_{t,1}, p_{t,2})$, we first compute their ground-truth scores, $s(p_{t,1})$
 377 and $s(p_{t,2})$, on a validation set. The preference probability is then determined by the Bradley-

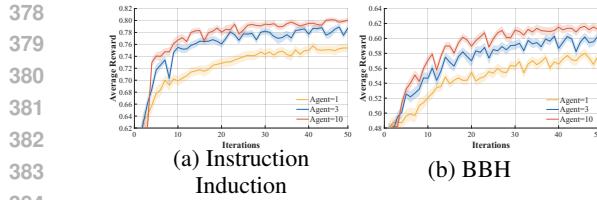


Figure 2: Performance of FedPOB with varying numbers of agents.

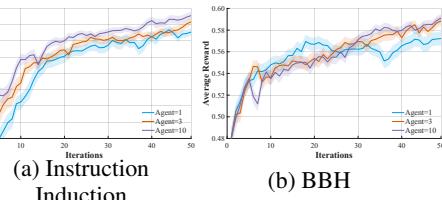


Figure 3: Performance of FedPOB-Pref with varying numbers of agents.

Terry-Luce (BTL) model (Hunter, 2004): $P(p_{t,1} \succ p_{t,2}) = \sigma(s(p_{t,1}) - s(p_{t,2}))$, where $\sigma(\cdot)$ is the sigmoid function. A binary preference outcome $y_t = \mathbb{1}(p_{t,1} \succ p_{t,2})$ is then sampled from a Bernoulli distribution with this probability. We compare FedPOB-Pref against federated baselines FLDB-GD and FLDB-OGD (Huang et al., 2025), as well as standard prompt optimization methods APOHF (Lin et al., 2024a) and DoubleTS (Dwaracherla et al., 2024).

The results, summarized in Table 3, demonstrate that given the same number of samples per agent, FedPOB-Pref consistently achieves the best performance across different numbers of agents. This showcases the superior sample efficiency of our FedPOB-Pref. Our method establishes a superior trade-off between performance and communication cost. Specifically, FedPOB-Pref matches the communication efficiency of FLDB-OGD while delivering substantially better results. Conversely, while FLDB-GD obtains the second-best performance, it does so at a considerably higher communication cost. Fig. 3 further highlights that the sample efficiency of FedPOB-Pref improves as more agents collaborate. Additional results are available in Fig. 10 (App. D.2).

Table 3: Score and number of communication rounds under preference feedback.

Method	Agent	Instruction Induction		BBH	
		Perf.	Comm.	Perf.	Comm.
APOHF	-	0.7681	-	0.5838	-
Double TS	-	0.7859	-	0.5983	-
FLDB-GD	1	0.7624	1500	0.5868	1500
	3	0.7959	1500	0.6204	1500
	10	0.8244	1500	0.6457	1500
FLDB-OGD	1	0.6872	50	0.5286	50
	3	0.7687	50	0.5880	50
	10	0.8123	50	0.6271	50
FedPOB-Pref	1	0.8000	50	0.6213	50
	3	0.8145	50	0.6357	50
	10	0.8482	50	0.6583	50

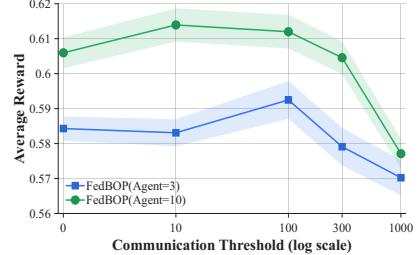


Figure 4: Scores of FedPOB with varying communication thresholds D .

5 ABLATION STUDY

Performance vs. Communication in FedPOB. In federated learning, communication is inherently costly, making frequent interactions with the central server impractical. Thus, an effective algorithm should maintain strong performance even with infrequent communications. Here we reduce the interaction frequency by varying the communication threshold D in FedPOB in the range: $\{0, 10, 100, 300, 1000\}$. Note that a larger D results in less communication rounds, and we report the number of communication rounds in App. G.3. The results in Fig. 4 reveal a clear trade-off between performance and communication, i.e., fewer communication rounds (i.e., larger D) result in worse performance. More importantly, our FedPOB still achieves strong performance even with infrequent communications, demonstrating its robustness and practical effectiveness in realistic federated environments.

Generalization to Other LLMs. While the response quality of an LLM depends not only on the prompt design but also on the inherent capability of the backbone model, we examine whether the observed performance gains of our algorithms can generalize to other LLMs. To this end,

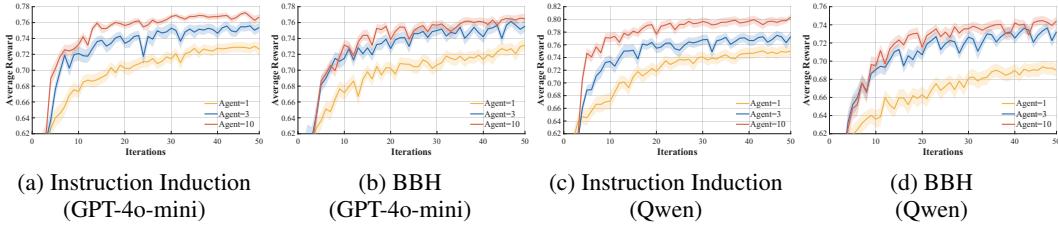


Figure 5: The performance of FedPOB using GPT-4o-mini and Qwen.

we replace the GPT-3.5-Turbo model used in our main experiments by GPT-4o-mini and Qwen (OpenAI, 2023a;b; Bai et al., 2023), while keeping all other settings fixed. As shown in Fig. 5, our FedPOB consistently discovers high-score prompts and achieves better performance with a larger number of agents, regardless of the underlying LLM. Additional results on the performance of FedPOB-Pref can be found in App. D.4, which lead to consistent observations.

Effectiveness of Dynamic Regularization in FedPOB-Pref. We further assess the necessity of the dynamic regularization term in FedPOB-Pref, which mitigates the dynamic drift among heterogeneous clients and accelerates collaboration. We compare the performance of FedPOB-Pref with and without this term, the latter of which is equivalent to the classical FedAvg algorithm (McMahan et al., 2017)). Fig. 6 shows that incorporating dynamic regularization stabilizes performance, speeds up convergence, and reduces fluctuations caused by inter-agent heterogeneity. These results highlight its critical role in enabling efficient and robust federated prompt optimization in heterogeneous federated environments.

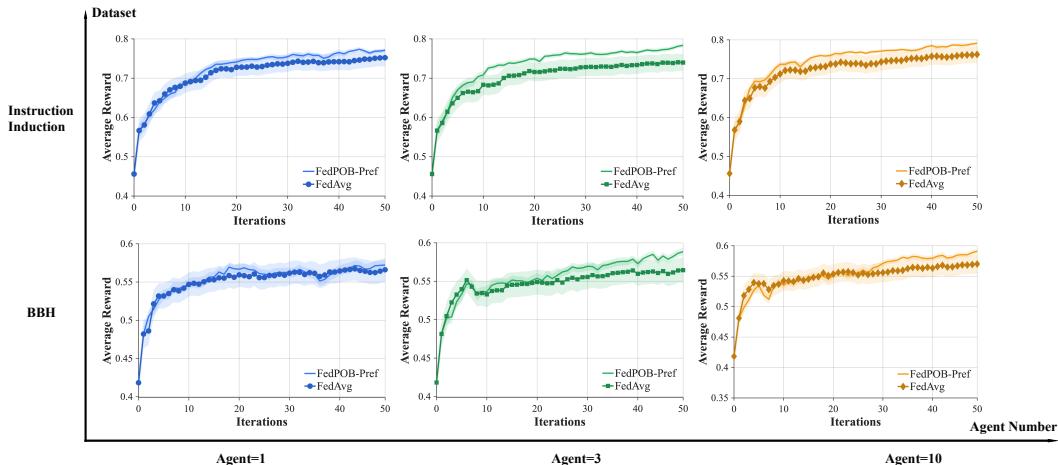


Figure 6: Impact of the dynamic regularization term in FedPOB-Pref. FedAvg corresponds to removing this term.

6 RELATED WORK

Federated Prompt Optimization. Federated Learning enables collaborative model training without sharing private data (Kairouz et al., 2019; McMahan et al., 2017). However, applying FL to LLMs faces a critical barrier: the prohibitive cost of communicating updates for models of such massive scale. A natural workaround is to combine FL with parameter-efficient prompt tuning (Zhao et al., 2023; Che et al., 2023; Deng et al., 2024; Wei et al., 2023), where only lightweight soft prompts are trained and communicated. While resource-efficient, this paradigm operates in a white-box setting and thus fails in API-based black-box scenarios. This limitation has motivated research on black-box federated prompt optimization (Lin et al., 2023a). Early efforts such as FedBPT (Zhang et al., 2023) adopt soft prompts with gradient-free optimization, but remain incompatible with API-only LLMs. More recent work addresses discrete prompt optimization, e.g., FedOne (Wang et al.,

2025), which learns categorical distributions to sample prompts. Despite solving discreteness, these
 487 methods suffer from inefficiency and poor semantic quality, leaving open the challenge of developing
 488 a query-efficient federated method that produces semantically meaningful discrete prompts for
 489 black-box LLMs. We defer a detailed discussion of the related works on standard non-federated
 490 prompt optimization to App. B due to space constraint.

491 7 CONCLUSION AND FUTURE WORK

492 In this paper, we introduced FedPOB and FedPOB-Pref, novel algorithms for sample-efficient
 493 federated prompt optimization. Built upon the theory of federated multi-armed bandits, our
 494 methods enable multiple agents to effectively collaborate to find optimal prompts for black-box LLMs
 495 without sharing raw data. Extensive experiments demonstrate that our algorithms significantly out-
 496 perform existing baselines under both score and preference feedback, with performance consistently
 497 improving with an increasing number of participating agents. Notably, FedPOB-Pref establishes
 498 a superior performance-to-communication trade-off in the practical preference-based setting. A
 499 [promising future direction is extending our algorithms to the asynchronous communication setting](#).
 500 In addition, our current study focuses on generative LLMs, and extending our framework to pure
 501 encoder tasks (e.g., RoBERTa on GLUE) remains another interesting direction for future work.
 502 Regarding FedPOB-Pref, promising future directions include establishing stronger theoretical
 503 guarantees and exploring alternative pairwise comparison models beyond the BTL framework.

504 505 REPRODUCIBILITY STATEMENT

506 To ensure reproducibility, we have uploaded the code in the supplementary material. We have also
 507 clearly described all detailed experimental settings (Sec. 4 and App. C) to ensure transparency and
 508 reproducibility.

512 513 REFERENCES

514 Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
 515 bandits. In *Proc. NIPS*, 2011.

516 Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Paul N. Whatmough Matthew Mattina,
 517 and Venkatesh Saligrama. Federated learning based on dynamic regularization. In *Proc. ICLR*,
 518 2021.

519 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
 520 Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Dayiheng Liu, Gao Liu,
 521 Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
 522 Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
 523 Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
 524 Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
 525 Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. *arXiv preprint*
 526 *arXiv:2309.16609*, 2023.

527 Viktor Bengs, Aadirupa Saha, and Eyke Hüllermeier. Stochastic contextual dueling bandits under
 528 linear stochastic transitivity models. In *Proc. ICML*, 2022.

529 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 530 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
 531 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
 532 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
 533 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
 534 Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *Proc. NeurIPS*,
 535 2020.

536 Tianshi Che, Ji Liu, Yang Zhou, Jiaxiang Ren, Jiwen Zhou, Victor Sheng, Huaiyu Dai, and Dejing
 537 Dou. Federated learning of large language models with parameter-efficient prompt tuning and
 538 adaptive optimization. In *Proc. EMNLP*, 2023.

540 Lichang Chen, Jiahui Li, Tiejun Zhang, and Bo Zhou. InstructZero: A preference-based iterative
 541 prompt optimization framework. In *Proc. EMNLP*, 2023.

542

543 Zhongxiang Dai, Arun Verma Yao Shu, Flint Xiaofeng Fan, and Bryan Kian Hsiang Low. Federated
 544 neural bandits. In *Proc. ICLR*, 2023.

545

546 Mingkai Deng, Jianyu Wang, Cheng-Ping Zhang, Han Li, Yaliang Chen, Lidong Zhao, Jing Liu,
 547 Yang Chen, and Xiang Liu. RL Prompt: Optimizing discrete text prompts with reinforcement
 548 learning. In *Proc. EMNLP Findings*, 2022.

549

550 Wenlong Deng, Christos Thrampoulidis, and Xiaoxiao Li. Unlocking the potential of prompt-tuning
 551 in bridging generalized and personalized federated learning. In *Proc. CVPR*, 2024.

551

552 Shizhe Diao, Zhichao Huang, Ruijie Xu, Xuechun Li, Lin Yong, Xiao Zhou, and Tong Zhang.
 553 Black-box prompt learning for pre-trained language models. *Transactions on Machine Learning
 554 Research*, 2023.

555

556 Abhimanyu Dubey and Alex Pentland. Differentially-private federated linear bandits. In *Proc.
 557 NeurIPS*, pp. 6003–6014, 2020.

557

558 Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient
 559 exploration for LLMs. In *Proc. ICML*, 2024.

560

561 Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
 562 Promptbreeder: Self-referential self-improvement via prompt evolution. In *Proc. ICLR*, 2024.

562

563 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 564 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 565 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

566

567 Qingyan Guo, Rui Wang, Junzhe Guo, Boyu Li, Kai Song, Xu Tan, Guoqing Liu, Jiang Bian, and
 568 Yanyang Yang. Connecting large language models with evolutionary algorithms yields powerful
 569 prompt optimizers. In *Proc. ICLR*, 2024.

570

571 Charlie Hou, Mei-Yu Wang, Yige Zhu, Daniel Lazar, and Giulia Fanti. Private federated learning
 572 using preference-optimized synthetic data. *arXiv preprint arXiv:2504.16438*, 2025.

572

573 Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan Wu, Xiangqiang Lin, Zhongxiang Dai, See-Kiong
 574 Ng, and Bryan Kian Hsiang Low. Localized zeroth-order prompt optimization. In *Proc. NeurIPS*,
 575 2024.

576

577 Xuhan Huang, Yan Hu, Zhiyan Li, Zhiyong Wang, Benyou Wang, and Zhongxiang Dai. Federated
 578 linear dueling bandits. *arXiv preprint arXiv:2502.01085*, 2025.

578

579 David R Hunter. Mm algorithms for generalized bradley-terry models. *Annals of Statistics*, 2004.

580

581 Gurusha Juneja, Gautam Jajoo, Nagarajan Natarajan, Hua Li, Jian Jiao, and Amit Sharma. Task
 582 facet learning: A structured approach to prompt optimization. In *Proc. ACL*, 2025.

582

583 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 584 Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
 585 and open problems in federated learning. *arXiv:1912.04977*, 2019.

586

587 Weize Kong, Spurthi Hombaiah, Mingyang Zhang, Qiaozhu Mei, and Michael Bendersky.
 588 PRewrite: Prompt rewriting with reinforcement learning. In *Proc. ACL Short Papers*, 2024.

588

589 Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.

590

591 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 592 tuning. In *Proc. EMNLP*, 2021.

593

Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing continuous prompts for generation. In
 594 *Proc. ACL*, 2021.

594 Xiaoqiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick Jaillet, and Bryan Kian Hsiang
595 Low. Prompt optimization with human feedback. *arXiv preprint arXiv:2405.17346*, 2024a.

596

597 Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick
598 Jaillet, and Bryan Kian Hsiang Low. Use your INSTINCT: Instruction optimization using neural
599 bandits coupled with transformers. In *Proc. ICML*, 2024b.

600 Zihao Lin, Yitao Zeng, Sicheng Yu, Lue Tao, Yuxin Chen, Wenhao Yu, and Lifu Huang.
601 Efficient federated prompt tuning for black-box large pre-trained models. *arXiv preprint
602 arXiv:2310.03123*, 2023a.

603

604 Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, and Sergey Yekhanin. Differentially
605 private synthetic data via foundation model apis 1: Images. *arXiv preprint arXiv:2305.15560*,
606 2023b.

607 Zinan Lin, Tadas Baltrusaitis, Wenyu Wang, and Sergey Yekhanin. Differentially private synthetic
608 data via apis 3: Using simulators instead of foundation model. *arXiv preprint arXiv:2502.05505*,
609 2025.

610 Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. GPT
611 Understands, Too. In *Proc. ACL*, 2021.

612

613 Zichen Liu, Changyu Chen, Chao Du, Wee Sun Lee, and Min Lin. Sample-efficient alignment for
614 llms. *arXiv preprint arXiv:2411.01493*, 2024.

615 Yichong Luo, Huaxiu Yao, Feng-Shih Chang, Zhi-Kai Zhang, and Jian-Yun Nie. Black-box
616 prompt optimization: Aligning large language models without model training. *arXiv preprint
617 arXiv:2311.02646*, 2023.

618

619 O. Mañas, P. Astolfi, M. Hall, C. Ross, J. Urbanek, A. Williams, A. Agrawal, A. Romero-Soriano,
620 and M. Drozdzal. Improving text-to-image consistency via automatic prompt optimization. *arXiv
621 preprint arXiv:2403.17804*, 2024.

622 H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-efficient
623 learning of deep networks from decentralized data. In *Proc. AISTATS*, 2017.

624

625 OpenAI. GPT-3.5: Openai language model. <https://platform.openai.com/>, 2023a. Ac-
626 cessed: 2025-09-24.

627

628 OpenAI. GPT-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023b.

629

630 Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. GrIPS: Gradient-free, edit-based in-
631 struction search for prompting large language models. In *Proc. ACL*, 2023.

631

632 Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
633 optimization with "gradient descent" and beam search. In *Proc. EMNLP*, 2023.

633

634 L. Schneider, M. Wistuba, A. Klein, J. Golebiowski, G. Zappella, and F. A. Merri. Hyperband-based
635 bayesian optimization for black-box prompt selection. *arXiv preprint arXiv:2412.07820*, 2024.

636

637 Chengshuai Shi and Cong Shen. Federated multi-armed bandits. In *Proc. AAAI*, 2021.

638

639 Chengshuai Shi, Kun Yang, Jing Yang, and Cong Shen. Best arm identification for prompt learning
640 under a limited budget. *arXiv preprint arXiv:2402.09723*, 2024.

641

642 Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Auto-
643 Prompt: Eliciting knowledge from language models with automatically generated prompts. In
644 *Proc. EMNLP*, 2020.

645

646 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
647 training for language understanding. In *Proc. NeurIPS*, 2020.

648

649 Mirac Suzgun, Nathan Scales, Nathanael Schärl, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
650 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, and Jason Wei. Challenging big-
651 bench tasks and whether chain-of-thought can solve them. In *Proc. ACL Findings*, 2023.

648 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 649 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 650 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

651 Arun Verma, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, and Bryan Kian Hsiang Low.
 652 Neural dueling bandits: Preference-based optimization with human feedback. *arXiv preprint*
 653 *arXiv:2407.17112*, 2024.

654 Ganyu Wang, Yuekang Li, Yi Zeng, Tianyu Wang, Kang Yang, and Kai Chen. FedOne:
 655 Query-efficient federated learning for black-box discrete prompt learning. *arXiv preprint*
 656 *arXiv:2502.04943*, 2025.

657 Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P.
 658 Xing, and Zhiting Hu. PromptAgent: Strategic planning with language models enables expert-
 659 level prompt optimization. In *Proc. ICLR*, 2024.

660 Yuanhao Wang, Jiachen Hu, Xiaoyu Chen, and Liwei Wang. Distributed bandit learning: Near-
 661 optimal regret with efficient communication. In *Proc. ICLR*, 2020.

662 Guoyizhe Wei, Feng Wang, Anshul Shah, and Rama Chellappa. Dual prompt tuning for domain-
 663 aware federated learning. In *Proc. ECCV Workshop*, 2023.

664 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V. Le, and
 665 Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In *Proc.*
 666 *NeurIPS*, 2022.

667 Zhaoxuan Wu, Xiaoqiang Lin, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick
 668 Jaillet, and Bryan Kian Hsiang Low. Prompt optimization with EASE? efficient ordering-aware
 669 automated selection of exemplars. In *Proc. NeurIPS*, 2024.

670 Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A Inan, Harsha Nori, Hao-
 671 tian Jiang, Huishuai Zhang, Yin Tat Lee, et al. Differentially private synthetic data via foundation
 672 model apis 2: Text. *arXiv preprint arXiv:2403.01749*, 2024.

673 Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
 674 Chen. Large language models as optimizers. In *Proc. ICLR*, 2024.

675 Chun-Pai Yang, Kan Zheng, and Shou-De Lin. Plhf: Prompt optimization with few-shot human
 676 feedback. *arXiv preprint arXiv:2505.07886*, 2025.

677 Ziyu Ye, Hao-Yang Chen, Yong-Qiang Hu, Zhen-Yu Su, Qing-An Yao, Yu-Hong Liu, Xiao-Rong
 678 Lai, and Yi-Feng Wu. Align-Pro: A principled approach to prompt optimization for llm align-
 679 ment. *arXiv preprint arXiv:2308.11585*, 2023.

680 Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
 681 problem. *Journal of Computer and System Sciences*, 2012.

682 Ruichen Zhang, Zechu Li, Zhaoxuan Wu, Zhongxiang Dai, Yao Shu, and Bryan Kian Hsiang
 683 Low. FedBPT: Efficient federated black-box prompt tuning for large language models. In *Proc.*
 684 *NeurIPS*, 2023.

685 Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li, and Gongshen Liu. Fedprompt: Communication-
 686 efficient and privacy-preserving prompt tuning in federated learning. In *Proc. ICASSP*, 2023.

687 Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
 688 Jimmy Ba. Large language models are human-level prompt engineers. In *Proc. ICLR*, 2023.

689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702
703
704
705
A LLM USAGE DISCLOSURE706
707
708
709
We acknowledge the ICLR 2026 policies on LLM usage. All scientific ideas, proofs, experimental
design, and conclusions are the original work of the human authors. LLMs were used solely as
writing assistants to polish the text for minor grammar correction and clarification. All LLM-assisted
text has been carefully reviewed by the authors.710
711
712
713
B ADDITIONAL RELATED WORK714
715
716
717
The performance of Large Language Models (LLMs) is highly sensitive to the quality of input
718 prompts (Zhou et al., 2023; Lin et al., 2024b). While carefully handcrafted prompts (Brown et al.,
719 2020; Wei et al., 2022) can substantially enhance model capabilities, the manual design process
720 is time-consuming and heavily reliant on expert intuition. To address this challenge, early studies
721 focused on white-box prompt optimization, including AutoPrompt (Shin et al., 2020), Prefix-Tuning
722 (Li & Liang, 2021), P-Tuning (Liu et al., 2021), and Prompt Tuning (Lester et al., 2021). More
723 recently, increasing attention has been devoted to black-box prompt optimization (Yang et al., 2024;
724 Mañas et al., 2024; Juneja et al., 2025; Schneider et al., 2024), with representative methods such as
725 GRIPS (Prasad et al., 2023), BDPL (Diao et al., 2023), PRewrite (Kong et al., 2024), PromptAgent
726 (Wang et al., 2024), and APO (Pryzant et al., 2023). RLPrompt (Deng et al., 2022) addresses
727 the discrete black-box setting by optimizing a probability distribution over prompts, from which
728 candidates are sampled to identify the optimal one. Evolutionary approaches, such as EvoPrompt
729 (Guo et al., 2024) and Promptbreeder (Fernando et al., 2024), employ mutation and crossover to
730 iteratively improve prompts. Zhou et al. (Zhou et al., 2023) introduced APE, which leverages an
731 LLM to generate candidate instructions and refines those with high evaluation scores. However,
732 these approaches often require extensive sampling and validation, making them sample-inefficient.
733 A key direction has been reframing black-box prompt optimization as a continuous problem, as in
734 InstructZero (Chen et al., 2023) and ZOPO (Hu et al., 2024). Building on this idea, INSTINCT (Lin
735 et al., 2024b) employs neural bandits to sequentially select instructions to query, leveraging neural
736 networks to better capture the relationship between prompts and their performance, thereby enabling
737 more efficient optimization.738
739
740
741
742
743
744
745
746
747
748
749
Recent work has investigated prompt optimization in scenarios where direct human feedback is
difficult to obtain and only preference feedback is available. BPO (Luo et al., 2023) trains an in-
dependent optimizer that automatically rewrites initial prompts using paired preference data, en-
couraging black-box LLMs to produce better responses. Align-Pro (Ye et al., 2023) develops a
theoretical framework based on the Bradley–Terry model to analyze and guide optimization through
pairwise comparisons. APOHF (Lin et al., 2024a) formulates prompt optimization as a dueling
bandits problem, directly leveraging pairwise preferences (e.g., A is better than B) to efficiently
identify the best prompt among candidates. Building on this idea, PLHF (Yang et al., 2025) extends
preference-based optimization to a few-shot setting, demonstrating that high-quality prompts can
be identified with only a small number of comparisons, thereby greatly reducing annotation costs.
In addition, the prompt selection strategy of our FedPOB-Pref algorithm is also related to the
best-arm-identification (BAI) version of the method from the work of Liu et al. (2024), which also
aims to achieve exploration by encouraging the selection of a response with large uncertainty.750
751
752
753
754
755
Private Evolution. A related line of work explores Private Evolution, which similarly utilizes scores
to guide iterative queries to black-box LLMs (Lin et al., 2023b; Xie et al., 2024; Lin et al., 2025).
However, these methods differ fundamentally from our approach in their privacy mechanisms and
optimization frameworks. While the Private Evolution literature primarily leverages *Differential
Privacy (DP)* to generate synthetic data—with recent extensions to federated settings relying on
preference-optimized synthetic data (Hou et al., 2025)—our framework adopts a *Federated Learning*
paradigm based on direct parameter aggregation without exposing raw data.

756 C MORE DETAILS ON THE EXPERIMENTAL SETTING
757758 C.1 DATASETS AND MODELS
759760 **Datasets.** We use 29 tasks from the Instruction-Induction dataset (Lin et al., 2024b), excluding the
761 auto-debugging task which contains only 8 instances, and the Cause-and-Effect task. The Cause-
762 and-Effect task is an open-ended reasoning problem where multiple answers may be reasonable, but
763 only one ground-truth is provided. Existing metrics cannot accurately evaluate responses, and most
764 automatic scores are generally zero. For example, a few instances are:765

- 766 • Cause: “The child hurt their knee.” Effect: “The child started crying.”
- 767 • Cause: “My car got dirty.” Effect: “I washed the car.”
- 768 • Cause: “Someone fainted.” Effect: “Someone called 911.”

769 For the BBH dataset (Suzgun et al., 2023), we adopt 24 tasks, excluding 3 tasks that overlap with
770 Instruction-Induction to avoid double evaluation.
771772 **Models.** Our experiments are conducted on three LLMs, *OpenAI/GPT-3.5-turbo-0613*,
773 *OpenAI/GPT-4o-mini*, and *Qwen/Qwen3-235B-A22B-2507* via the OpenRouter API. We use MP-
774 Net (Song et al., 2020) as the embedding model.775 C.2 PROMPT SPACE GENERATION
776777 To simulate a realistic federated setting, we adopt the APE algorithm (Zhou et al., 2023) to construct
778 a prompt pool from a small initial task description (i.e., a set of input–output exemplars). From this
779 pool, each agent samples both shared and personalized prompts, thereby capturing the inherent data
780 heterogeneity—where shared prompts model the common knowledge across agents, while personal-
781 alized prompts reflect the distinct distributions, preferences, and contextual variations specific to each
782 client.783 **Prompt Template.** We follow INSTINCT (Lin et al., 2024b) for prompt template to automatically
784 generate prompt space. We use 5 exemplars in datasets to query LLM to induct prompt.
785786 **Prompt Generation Template**
787788 Input: [INPUT]
789 Output: [OUTPUT]
790 <More exemplars...>
791 Input: [INPUT]
792 Output: [OUTPUT]
793 The instruction was to794
795 Figure 7: Prompt Generation template for prompt space generation.
796
797798 **Prompt Generation Example**
799800 Input: [Today is Christmas Eve of 1937. What is the date 10 days later?]
801 Output: [01/03/1938]
802 <More exemplars...>
803 Input: [Jane thought today is 3/11/2002, but today is in fact Mar 12, which is 1 day later.
804 What is the date 24 hours later?]
805 Output: [03/13/2002]
806 The instruction was to807
808 Figure 8: Illustrative example of prompt generation with the template.
809

810
811 C.3 IMPROVED EVALUATION METHOD

812 **Evaluation Challenges.** Due to the complex nature of the BBH tasks, we observed that large lan-
 813 guage models (LLMs) often generate detailed explanations along with their final answers, unlike the
 814 more direct outputs seen in the Instruction-Induction tasks. This behavior was particularly prevalent
 815 when using models such as GPT-4o-mini and Qwen3. A small number of tasks in the Instruction-
 816 Induction dataset also exhibited this tendency toward verbose responses. Standard evaluation metrics
 817 such as exact match, contain, or F1-score proved unreliable in this context. Since the ground-truth
 818 answers are typically concise, the verbosity of model outputs frequently led to misclassification. In
 819 some cases, a model’s response was fully correct from a human perspective, yet automated metrics
 820 incorrectly assigned a score of zero.

821 **Multi-choice Metric.** To mitigate this issue, we designed a new evaluation metric, termed Multi-
 822 choice, specifically tailored to handle the verbose outputs of LLMs on BBH tasks. Our approach
 823 normalizes the model’s output and checks whether the ground-truth answer is present. In practice,
 824 we extract the final sentence of the model’s prediction and verify if it contains the ground-truth
 825 answer.

826 **Metrics.** For BBH, we evaluate on 24 tasks using the Multi-choice metric. For Instruction-Induction
 827 (29 tasks), we follow Lin et al. (2024b) and adopt the same evaluation setup. Concretely, we use the
 828 F1 metric for “Common concept” and “Informal to formal”; exact set matching for “Orthography
 829 starts with” and “Taxonomy animal”; and label containment for “Synonyms”. For the remaining
 830 tasks, we apply exact match. Additionally, for “Diff” and “Odd one out”, when evaluated with GPT-
 831 4o-mini or Qwen3 (where verbose explanations are frequent), we employ the Multi-choice metric
 832 instead of exact match.

833 **Cached Prompt Scoring.** We leverage the alignment between prompts and their validation scores.
 834 Since our validation set is relatively large (50 samples), we observed that the scores obtained for a
 835 given prompt remain stable across repeated evaluations. Consequently, for all algorithms that require
 836 optimization over a prompt space (excluding FedOne and PromptBreeder, which do not depend on a
 837 prompt space), we evaluate each prompt once on the validation set and cache the resulting score for
 838 subsequent use. This strategy substantially reduces computation time while maintaining evaluation
 839 reliability.

840
841 C.4 HYPERPARAMETERS OF OUR ALGORITHMS

842 In FedPOB, we set $\lambda = 1$, $\nu = 0.3$, $D = 10.0$, and $d = 768$, where d matches the output feature
 843 dimension of MPNet (Song et al., 2020). For FedPOB-Pref, we set $\lambda = 1$ and use a learning rate
 844 of 0.001 to update $\theta_{t,a}$ (line 7 of Algo. 3). Training is conducted for 30 iterations.

845 The parameter β_t is time-dependent. Following (Huang et al., 2025), we set

$$\beta_t = \sqrt{2 \log(1/\delta) + d \log\left(1 + \frac{t\kappa_\mu}{d\lambda}\right)},$$

850 where κ_μ denotes the number of agents and d is the feature dimension (here $d = 768$ for compati-
 851 bility with MPNet).

852
853 C.5 HYPERPARAMETERS OF BASELINE AND FAIR COMPARISONS

855 To ensure fairness, we set the total number of validation queries to be the same across all methods
 856 and report them consistently in our experimental results (see Tables 1, 2, and 3 in Sec. 4, as well as
 857 Table 5 in App. D).

858 For score feedback baselines, only INSTINCT and our method share the same evaluation protocol,
 859 where each iteration queries the validation set once. Therefore, we ensure fairness by comparing
 860 the best reward obtained within the first 50 validation queries, rather than rewards at every single
 861 iteration. For preference-feedback baselines, all methods query the validation set twice per iteration,
 862 as two prompts are sampled for pairwise comparison. Running 50 iterations thus corresponds to 100
 863 validation queries in total. For consistency, we report the score of the **first** (exploitation) prompt
 selected by each method. This is consistent with the work of Lin et al. (2024a). The reward curves

864 are plotted across iterations, where the x -axis represents the number of iterations (equivalently,
 865 preference-feedback steps).

867
868
869 Table 4: Query settings and reported metrics for different methods.
870

Score Feedback			
Method	Queries/Iter	Total Queries	Reported Metric
FedPOB	1	50	Best reward at 50th iter.
INSTINCT	1	50	Best reward at 50th iter.
PromptBreeder	5	50	Best reward at 10th round.
FedOne	5	50	Best reward at 50th iter.
Preference Feedback			
Method	Queries/Iter	Total Queries	Reported Metric
FedPOB-Pref	2	100	Best reward at 50th iter.
FLDB-OGD	2	100	Best reward at 50th iter.
FLDB-GD	2	100	Best reward at 50th iter.
APOHF	2	100	Best reward at 50th iter.
Double-TS	2	100	Best reward at 50th iter.

884
885
886 **Score Feedback.** For FedPOB, we run 50 iterations, thus querying the validation set 50 times. We
 887 report the best reward at the 50th iteration. For INSTINCT, we follow the default settings from
 888 their paper, which are consistent with our protocol (one query per iteration), and also report the
 889 best reward at the 50th iteration. For PromptBreeder, which is an evolutionary algorithm, half of the
 890 population queries the validation set in each round. With a population size of 10 (2 mutation prompts
 891 \times 5 thinking styles), this results in 5 queries per round and 50 queries in total over 10 rounds; we
 892 report the best reward at the 10th round. For FedOne, we follow the original paper and construct its
 893 vocabulary using the PMI algorithm, sampling frequent and high-quality words or word pairs from
 894 the large prompt domain generated by APE. The setup involves 10 agents, each sampling 5 prompts
 895 per round for 50 iterations. To ensure a fair comparison with 50 validation queries, we pair agents
 896 and take the maximum score among the prompts they generate as the final performance of FedOne.
 897

898 **Preference Feedback.** For methods based on preference feedback, including FedPOB-Pref,
 899 FLDB-OGD, FLDB-GD, APOHF, and Double-TS, each iteration samples two prompts and queries
 900 the validation set twice to obtain a pairwise preference. Running for 50 iterations therefore requires
 901 100 validation queries in total. We report the best reward at the 50th iteration (based on 100 queries
 902 in total). Other hyperparameters follow their original settings to ensure a fair comparison.

903
904 D MORE EXPERIMENTAL RESULTS
905906
907 D.1 ADDITIONAL EXPERIMENTS ON PROMPT DOMAIN GENERATION METHODS
908

909
910 **Performance and Stability Across Different Prompt Domains.** In the experiment section, we
 911 use GPT-3.5-Turbo to generate the prompt domain via APE. To further validate that our algorithm
 912 achieves superior performance across different prompt domains generated by different methods, we
 913 replace GPT-3.5-Turbo with GPT-4o-mini while keeping all other settings fixed, such as running
 914 both our algorithm and the baselines under the same LLM model, GPT-3.5-Turbo. As shown in
 915 Fig. 9, Our method consistently achieves strong performance across different prompt domains, un-
 916 derscoring its robustness to domain variability. Beyond maintaining high accuracy, it is capable of
 917 identifying near-optimal prompts in a sample-efficient manner, thereby reducing the overall cost of
 918 API queries to LLMs.

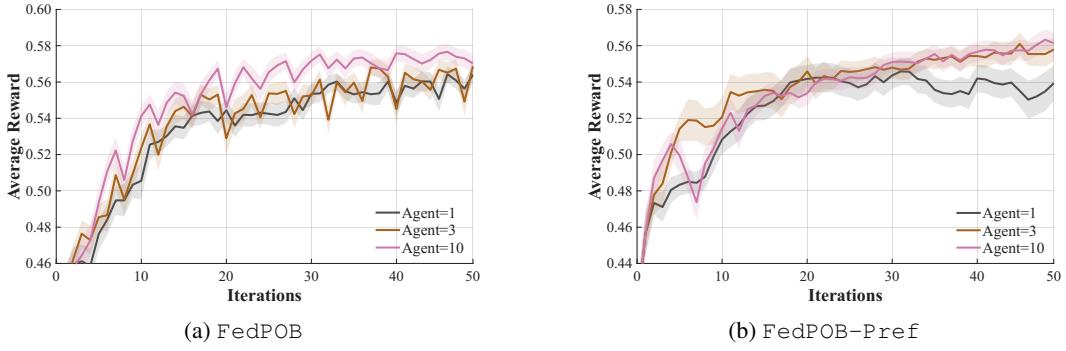


Figure 9: Performance across different prompt domains

D.2 COMPLETE RESULTS IN FEDPOB-PREF

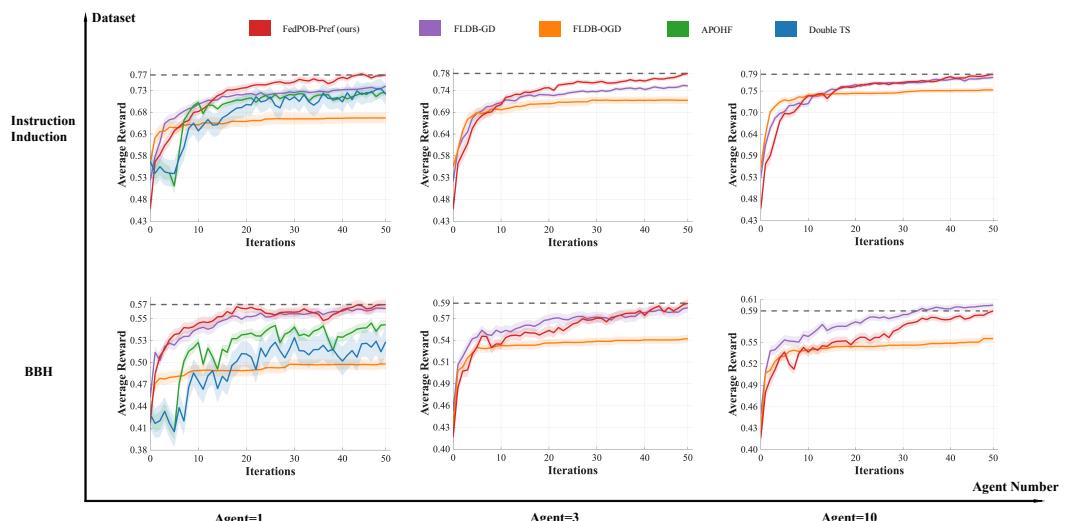


Figure 10: More detailed comparison for FedPOB-Pref using GPT-3.5-Turbo.

D.3 COMPLETE RESULTS FOR FEDPOB

Table 5: Performance comparison on the complete set of Instruction Induction tasks.

972

973

Dataset	INSTINCT	PromptBreeder	FedOne (10 agents)	FedPOB		
				1 Agent	3 Agents	10 Agents
Active to Passive	0.940±0.053	1.000±0.000	1.000±0.000	0.804±0.160	0.960±0.014	0.972±0.023
Auto Categorization	0.313±0.012	0.220±0.020	0.264±0.004	0.272±0.030	0.308±0.018	0.288±0.023
Antonyms	0.767±0.023	0.840±0.020	0.870±0.005	0.792±0.046	0.812±0.027	0.828±0.023
Common Concept	0.217±0.040	0.118±0.010	0.136±0.003	0.188±0.015	0.210±0.007	0.208±0.018
Diff	1.000±0.000	1.000±0.000	1.000±0.000	0.992±0.018	1.000±0.000	1.000±0.000
First Word Letter	1.000±0.000	1.000±1.000	0.713±0.089	1.000±1.000	1.000±1.000	1.000±1.000
Informal to Formal	0.570±0.020	0.521±0.067	0.605±0.005	0.528±0.028	0.528±0.039	0.570±0.030
Larger Animal	0.993±0.012	0.987±0.012	0.829±0.037	0.984±0.017	0.992±0.011	0.989±0.011
Letters List	1.000±0.000	1.000±0.000	0.831±0.095	0.952±0.107	1.000±0.000	1.000±0.000
Negation	0.860±0.020	0.927±0.012	0.897±0.010	0.856±0.061	0.940±0.014	0.920±0.032
Num to Verbal	1.000±0.000	1.000±0.000	1.000±0.000	1.000±0.000	1.000±0.000	1.000±0.000
Orthography Starts With	0.767±0.214	0.813±0.061	0.436±0.024	0.804±0.100	0.828±0.056	0.832±0.087
Rhymes	0.493±0.142	0.393±0.031	0.916±0.027	0.664±0.120	0.776±0.187	0.844±0.106
Second Word Letter	0.847±0.110	0.947±0.042	0.625±0.034	0.792±0.199	0.880±0.157	0.972±0.023
Sentence Similarity	0.467±0.031	0.380±0.020	0.360±0.035	0.540±0.094	0.508±0.082	0.448±0.018
Sentiment	0.973±0.012	0.993±0.012	0.996±0.002	0.988±0.018	0.972±0.023	0.972±0.027
Singular to Plural	0.993±0.012	1.000±0.000	1.000±0.000	1.000±0.000	0.996±0.009	1.000±0.000
Sum	1.000±0.000	1.000±0.000	1.000±0.000	0.984±0.036	1.000±0.000	1.000±0.000
Synonyms	0.327±0.150	0.333±0.115	0.320±0.023	0.324±0.103	0.296±0.041	0.384±0.124
Taxonomy Animal	0.947±0.023	0.967±0.042	0.805±0.026	0.924±0.073	0.980±0.024	0.972±0.034
Translation En-De	0.820±0.020	0.820±0.060	0.927±0.004	0.820±0.047	0.840±0.032	0.868±0.036
Translation En-Es	0.747±0.042	0.746±0.023	0.950±0.012	0.756±0.026	0.740±0.072	0.728±0.030
Translation En-Fr	0.947±0.023	0.920±0.040	0.919±0.005	0.944±0.033	0.940±0.283	0.948±0.018
Word in Context	0.553±0.058	0.620±0.040	0.409±0.091	0.460±0.084	0.640±0.020	0.608±0.036
Object Counting	0.520±0.106	0.473±0.110	0.497±0.019	0.520±0.074	0.616±0.039	0.588±0.050
Odd One Out	0.867±0.058	0.833±0.116	0.859±0.024	0.800±0.122	0.900±0.000	0.900±0.000
Periodic Elements	1.000±0.000	1.000±0.000	0.946±0.017	0.976±0.054	1.000±0.000	1.000±0.000
Word Sorting	0.753±0.058	0.753±0.099	0.497±0.026	0.756±0.093	0.744±0.065	0.828±0.063
Word Unscrambling	0.687±0.012	0.687±0.023	0.728±0.005	0.724±0.046	0.716±0.026	0.720±0.028
Average 29 Task	0.7715	0.7687	0.7356	0.7637	0.7977	0.8068

995

996

997

998

999

1000

1001 D.4 FURTHER EVALUATION ACROSS LLM MODELS

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

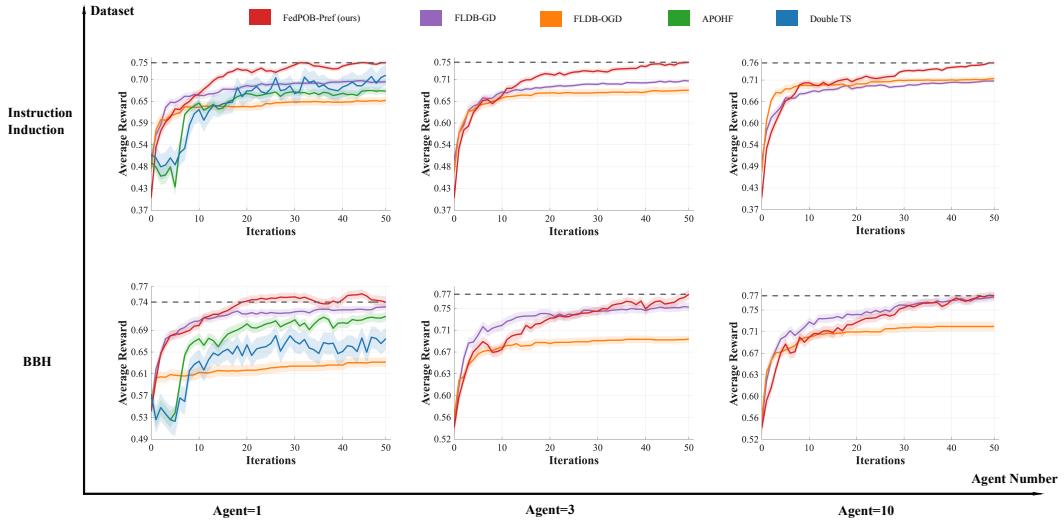


Figure 11: More detailed comparison for FedPOB-Pref using GPT-4o-mini.

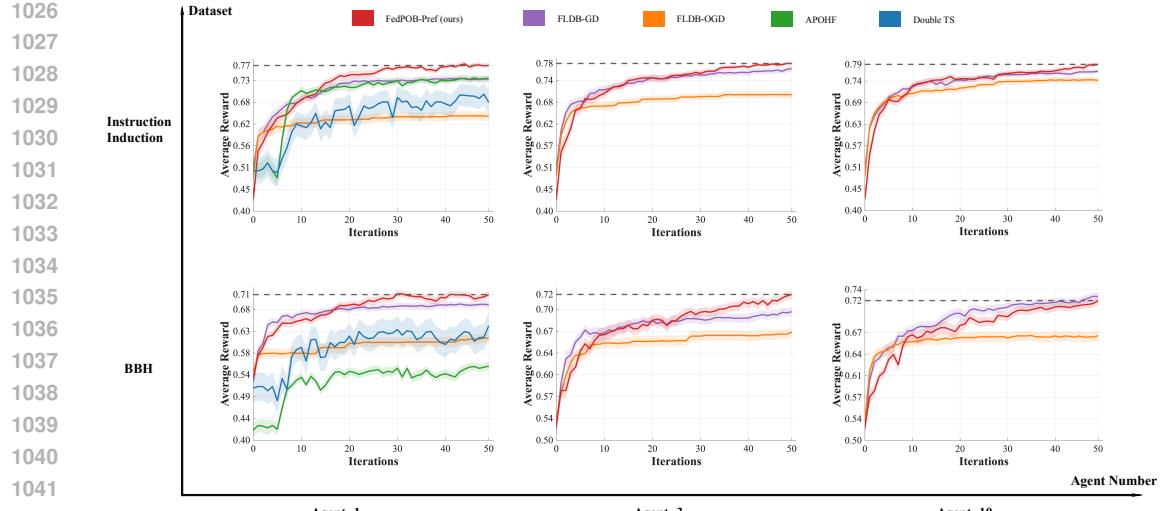


Figure 12: More detailed comparison for FedPOB-Pref using Qwen3-235B-A22B-2507.

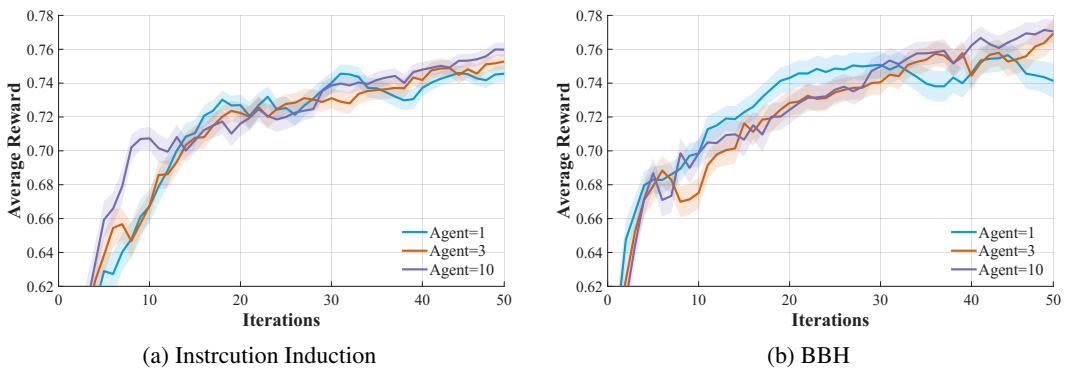


Figure 13: The performance of FedPOB-Pref across different iterations GPT-4o-mini.

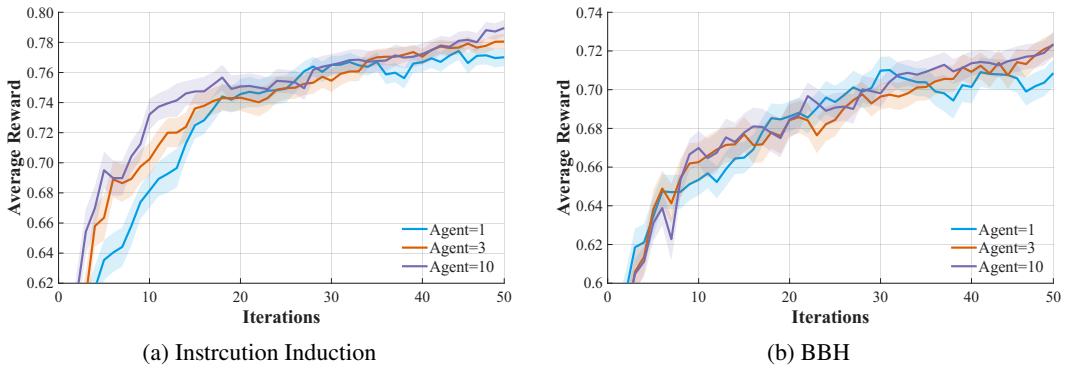


Figure 14: The performance of FedPOB-Pref across different iterations Qwen3-235B-A22B-2507.

1080 **E MATHEMATICAL PRINCIPLES OF THE LOCAL OBJECTIVE FUNCTION**
 1081 **ADOPTED BY FEDPOB-PREF**

1083 This section provides a rigorous mathematical analysis of the local objective function adopted by
 1084 FedPOB-Pref for federated optimization. We derive the first-order optimality conditions and
 1085 demonstrate the necessity of the linear dual term for ensuring convergence to a globally opti-
 1086 mal and consistent solution. The results here provide theoretical support for the design of our
 1087 FedPOB-Pref algorithm.

1089 **E.1 PROBLEM FORMULATION**

1091 The standard federated learning objective is to minimize a global function $F(\theta)$, defined as the
 1092 average of m local client objectives $f_i : \mathbb{R}^d \rightarrow \mathbb{R}$:

$$1094 \quad F(\theta) = \frac{1}{m} \sum_{i=1}^m f_i(\theta).$$

1096 For distributed optimization, this is equivalently formulated as a constrained problem with local
 1097 variables θ_i and a global consensus variable θ :

$$1099 \quad \min_{\theta, \{\theta_i\}_{i=1}^m} \frac{1}{m} \sum_{i=1}^m f_i(\theta_i) \quad \text{s.t.} \quad \theta_i - \theta = 0, \quad \forall i \in \{1, \dots, m\}. \quad (6)$$

1102 **E.2 THE AUGMENTED LAGRANGIAN METHOD**

1104 The constrained problem in Eq. equation 6 can be solved using the Method of Multipliers. We
 1105 introduce a dual variable (Lagrange multiplier) $a_i \in \mathbb{R}^d$ for each consensus constraint and add a
 1106 quadratic penalty term for the constraint violation. This forms the augmented Lagrangian function
 1107 \mathcal{L} :

$$1108 \quad \mathcal{L}(\{\theta_i\}, \theta, \{a_i\}) = \frac{1}{m} \sum_{i=1}^m f_i(\theta_i) + \sum_{i=1}^m \langle a_i, \theta_i - \theta \rangle + \frac{\gamma}{2} \sum_{i=1}^m \|\theta_i - \theta\|^2,$$

1111 where $\gamma > 0$ is a penalty parameter. An iterative algorithm then seeks a saddle point of this function.

1113 **E.3 FIRST-ORDER STATIONARITY CONDITIONS**

1115 A stationary point of the augmented Lagrangian must satisfy $\nabla_{\theta_i} \mathcal{L} = 0$ and $\nabla_{\theta} \mathcal{L} = 0$. These
 1116 first-order conditions are derived as follows.

1117 The partial derivative with respect to a local variable θ_i is:

$$1119 \quad \frac{\partial \mathcal{L}}{\partial \theta_i} = \frac{1}{m} \nabla f_i(\theta_i) + a_i + \gamma(\theta_i - \theta) = 0. \quad (7)$$

1121 The partial derivative with respect to the global variable θ is:

$$1123 \quad \frac{\partial \mathcal{L}}{\partial \theta} = -\sum_{i=1}^m a_i - \gamma \sum_{i=1}^m (\theta_i - \theta) = 0 \quad \Rightarrow \quad \sum_{i=1}^m a_i = -\gamma \sum_{i=1}^m (\theta_i - \theta). \quad (8)$$

1126 To see the implication of these conditions, we sum Eq. equation 7 over all clients i :

$$1128 \quad \frac{1}{m} \sum_{i=1}^m \nabla f_i(\theta_i) + \sum_{i=1}^m a_i + \gamma \sum_{i=1}^m (\theta_i - \theta) = 0.$$

1131 Substituting the expression for $\sum_i a_i$ from Eq. equation 8 into the above yields:

$$1132 \quad \frac{1}{m} \sum_{i=1}^m \nabla f_i(\theta_i) - \gamma \sum_{i=1}^m (\theta_i - \theta) + \gamma \sum_{i=1}^m (\theta_i - \theta) = 0,$$

1134 which simplifies to:

$$1135 \quad \frac{1}{m} \sum_{i=1}^m \nabla f_i(\theta_i) = 0.$$

1138 This proves that any stationary point of \mathcal{L} satisfies that the average of the local gradients is zero. If
 1139 the solution is also primally feasible (i.e., $\theta_i = \theta$), this condition becomes precisely the first-order
 1140 optimality condition for the original global problem:

$$1142 \quad \frac{1}{m} \sum_{i=1}^m \nabla f_i(\theta) = 0 \iff \nabla F(\theta) = 0.$$

1145 E.4 ANALYSIS OF THE FORMULATION

1147 E.4.1 PROOF OF NECESSITY FOR THE LINEAR DUAL TERM

1149 To prove that the linear term $\langle a_i, \theta_i - \theta \rangle$ is necessary, we analyze the case where it is omitted, relying
 1150 solely on a quadratic penalty. The objective would be:

$$1151 \quad \tilde{\mathcal{L}} = \frac{1}{m} \sum_i f_i(\theta_i) + \frac{\gamma}{2} \sum_i \|\theta_i - \theta\|^2.$$

1154 The first-order condition with respect to θ_i for this objective is:

$$1156 \quad \frac{1}{m} \nabla f_i(\theta_i) + \gamma(\theta_i - \theta) = 0.$$

1158 At a point of consensus where $\theta_i = \theta$ for all i , the penalty term vanishes, and the condition strin-
 1159 gently requires that:

$$1160 \quad \frac{1}{m} \nabla f_i(\theta) = 0 \implies \nabla f_i(\theta) = 0, \quad \forall i.$$

1162 This is a significantly stronger condition than global optimality, as it requires the solution θ to be a
 1163 stationary point for every client's objective function simultaneously. Such a point is generally non-
 1164 existent for heterogeneous data distributions where local minima differ. Therefore, the inclusion
 1165 of the linear dual term is mathematically essential to relax this condition to the correct global one,
 $\sum_i \nabla f_i(\theta) = 0$.

1167 E.4.2 INTERPRETATION OF THE DUAL VARIABLES AT CONVERGENCE

1169 In iterative methods that solve for a saddle point of \mathcal{L} , the dual variables are typically updated via
 1170 dual ascent:

$$1171 \quad a_i^{t+1} = a_i^t + \gamma(\theta_i^{t+1} - \theta^{t+1}). \quad (9)$$

1172 If the algorithm converges to a primally feasible solution θ^* , then $\lim_{t \rightarrow \infty} (\theta_i^{t+1} - \theta^{t+1}) = 0$. At
 1173 this limit, the stationarity condition from Eq. equation 7 must hold. As $\theta_i \rightarrow \theta^*$ and $\theta \rightarrow \theta^*$, the
 1174 equation implies that the dual variables converge to a fixed point a_i^* :

$$1176 \quad \frac{1}{m} \nabla f_i(\theta^*) + a_i^* + \gamma(\theta^* - \theta^*) = 0 \implies a_i^* = -\frac{1}{m} \nabla f_i(\theta^*).$$

1178 This result provides a clear interpretation of the dual variable at the optimal solution: a_i^* is precisely
 1179 the negative of the i -th client's scaled local gradient at the global optimum. The condition $\sum_i a_i^* = 0$
 1180 (from Eq. equation 8 at convergence) then mathematically guarantees that $\sum_i \nabla f_i(\theta^*) = 0$. The
 1181 dual variables are thus the mechanism that allows local gradients to be non-zero while ensuring their
 1182 sum is zero.

1184 F OPTIMIZED PROMPTS FROM FEDPOB AND FEDPOB-PREF

1186 In this section, we present the optimized prompts together with their validation-set scores obtained
 1187 by our FedPOB and FedPOB-Pref across all 53 tasks in both the Instruction Induction and
 BBH datasets after 50 optimization rounds. For each task in the tables, the *upper row* reports the

1188 prompt and score optimized by FedPOB, while the *lower row* corresponds to those optimized by
 1189 FedPOB-Pref.
 1190

1191 Table 6: Optimized prompts and their scores for the Instruction Induction tasks
 1192

1193 Task	1194 Prompt	1195 Score
1196 active to Passive	Rewrite the sentence passively. The sentence should be changed to passive voice: “The sentence is to be changed from active to passive voice.”	0.972 0.993
1197 antonyms	change the prefix of the word to make it have the opposite meaning. find the opposite of each given word.	0.288 0.293
1198 auto categorization	provide an appropriate category for each group of items. identify the category or group that each set of inputs belong to.	0.828 0.840
1199 common concept	provide a connection between two seemingly unrelated words or phrases. provide a connection between two seemingly unrelated items.	0.208 0.250
1200 diff	change the prefix of the word to make it have the opposite meaning. Find the disparity between the initial number and the subsequent number in every input.	1.000 1.000
1201 first word letter	Return the initial letter of every word provided as input. State the initial letter of the specified word.	1.000 1.000
1202 informal to formal	rephrase the given sentences, not just provide synonyms. Here are the revised sentences: Input: Can you complete all of these tasks? Output: Are you capable of completing all of these tasks? Input: It is not advisable to take any action at this time. Output: It is not recommended to do anything right now. Input: I'll see you this evening. Output: I anticipate seeing you tonight. Input: Would you like me to accompany you? Output: Do you want me to go along with you? Input: The entire narrative was fabricated. Output: The entire story was created. rephrase the sentences using different words or phrases with the same meaning.	0.570 0.607
1203 larger animal	choose the animal with the larger size or more strength. choose the larger animal in each pair.	0.989 1.000
1204 letters list	Add a space between each letter within a word. Show each individual letter of the given word with a space between each letter.	1.000 1.000
1205 negation	change the sentences to negative form, indicating that the statements are false. change the statements to the opposite meaning.	0.920 0.947
1206 num to verbal	Create a program that translates a provided number into its equivalent word form. Write out the number in words from one to nine thousand, nine hundred and ninety-nine.	1.000 1.000
1207 object counting	count the total number of animals/items mentioned in the input sentence. count the number of items listed in the input.	0.588 0.660
1208 odd one out	Find the word that is not the same as the others in the group. Select the word that is not related to the rest.	0.900 1.000
1209 orthography start with	identify and output the word that starts with the specified letter. identify the word in the sentence that starts with the given letter.	0.832 0.907
1210 periodic element	Give the names of the elements that match the provided atomic numbers. List the names of the elements corresponding to the provided atomic numbers.	1.000 1.000
1211 rhymes	find a word that rhymes with the given word, so in the case of “buy”, the output would be “buy” as it already rhymes with itself. change the first letter of the word to make a new word.	0.844 0.993
1212 second word letter	Retrieve the second letter from the given word. Print the second-to-last letter of the input word.	0.972 0.980
1213 sentence similarity	determine the likelihood that the two sentences are talking about the same topic. The outputs provided are the level of certainty in the similarity of the topics discussed in the sentences. compare the similarity between two sentences using a scale from 0 to 5, with 0 being “definitely not” similar and 5 being “perfectly” similar. The output provided for each pair of sentences indicates the level of similarity between them based on the comparison.	0.448 0.613
1214 sentiment	classify the input as either positive or negative based on the given statement. provide an output (positive or negative) based on the given input.	0.972 1.000
1215 singular to plural	pluralize the given input words. add the letter “s” to the end of the word.	1.000 1.000
1216 sum	Calculate the total by adding the two numbers given as input. sum the two inputted numbers.	1.000 1.000
1217 synonyms	provide alternative words for the given inputs.	0.384

1241 *Continued on next page*

Table 6: Optimized prompts and their scores for the Instruction Induction tasks

Task	Prompt	Score
	provide an antonym, synonym, or rhyme for the given word.	0.500
taxonomy animal	list the animals from the input words. List the animals from the given words.	0.972 1.000
translation en-de	Translate the specified words from English into German. Übersetze die gegebenen englischen Wörter ins Deutsche.	0.868 0.887
translation en-es	traduce cada palabra al español. Convert the following words from English to Spanish: 1. wardrobe - armario 2. care - preocuparse 3. dissatisfaction - insatisfacción 4. pond - estanque 5. trial - prueba	0.728 0.807
translation en-fr	translate the words provided from the English language to French. turn the words into French.	0.948 0.960
word in context	determine if the word is used in the same context in both sentences. In this case, the word "academy" is used in different contexts in the two sentences, so the output is "not the same." determine if the two sentences provided have the same meaning based on the given word.	0.608 0.700
word sorting	sort the words in the provided list in alphabetical order. Each output should be a single line of the sorted words, separated by spaces. rearrange the words in the list in alphabetical order.	0.828 0.867
word unscrambling	Solve the jumbled words provided. Arrange the scrambled words in the correct order.	0.720 0.793

Table 7: Optimized prompts and their scores for the BBH tasks

Task	Prompt	Score
boolean expressions	Assess the provided logical expressions and produce the result. Assess the provided logical expressions and give the resulting output.	0.844 0.860
date understanding	determine the date a specific number of days or years ago from a given date. determine the date one week ago or one week from today based on the given information.	0.572 0.613
disambiguation qa	identify the antecedent of the pronoun in each sentence or state if it is ambiguous. The correct antecedent for each sentence is as follows: '1. (C) Ambiguous 2. (B) The office was Sam's office 3. (A) The technician completed the repair 4. (A) Alex could not meet 5. (B) Asked the cleaner explain the antecedent of the pronoun in the given sentences or state if it is ambiguous. The correct antecedent for each sentence is provided in the output.	0.840 0.793
dyck languages	Finish the remaining part of the series and ensure that all parentheses are closed correctly. Continue the sequence, ensuring that all parentheses are closed correctly.	0.680 0.740
formal fallacies	determine if the argument, given the explicitly stated premises, is deductively valid or invalid. The output for all the provided inputs is "invalid." determine whether the arguments, given the explicitly stated premises, are deductively valid or invalid.	0.812 1.000
geometric shapes	Identify the geometric shape represented by the given SVG path element, with the provided outputs indicating the corresponding shape based on the paths. Determine the shape illustrated by the given SVG path element.	0.448 0.487
hyperbaton	choose the sentence with the correct adjective order, which is the order of opinion, size, age, shape, color, origin, material, and purpose. choose the sentence with the correct adjective order.	0.948 0.973
logical deduction five objects	determine which object is in a specific position in the given set of objects based on the information provided in each paragraph. determine which object finished first in each scenario. The correct outputs are: 1. (C) Ada finished first 2. (E) The falcon is the third from the left 3. (E) Amy finished first 4. (D) The plums are the second-cheapest 5. (D) The orange book is the third from the left.	0.476 0.473
logical deduction seven objects	determine which object is in a specific position in the set of seven objects based on the given statements. determine which object is in a specific position in the given arrangement of objects.	0.488 0.540
logical deduction three objects	determine which object is in a specific position based on the given information. In each case, the correct output is provided based on the logical consistency of the statements within the paragraph. determine which object is in the leftmost position based on the given information.	0.644 0.653

Continued on next page

Table 7: Optimized prompts and their scores for the BBH tasks

Task	Prompt	Score
movie recommendation	find a movie similar to the given list of movies. The correct options are selected based on the similarity to the movies listed in the input.	0.732
	find a movie similar to a given list of movies. The correct option for each set of movies is as follows: 1. (C) The Usual Suspects 2. (D) Fargo 3. (A) Pulp Fiction 4. (B) The Matrix 5. (A) Schindler's List	0.780
multistep arithmetic two	Find the difference between the first set of parentheses and the second set, and then simplify the expression. determine the outcome of the provided mathematical equation.	0.692 0.700
navigate	”Turn right. Take 10 steps. Turn around. Take 10 steps.” take 9 steps left, then 10 steps forward, then 9 steps right, and finally 10 steps backward. By following these instructions, you would return to the starting point, so the output is Yes.	0.716 0.773
penguins in a table	determine specific information based on the given table of penguins and provide the correct answer from the options provided. determine specific information about the penguins based on the given data and answer the questions accordingly.	0.605 0.586
reasoning about colored objects	determine the color or quantity of items based on their arrangement in a row. determine the color of the item directly to the right of a specified color in a given arrangement of items.	0.568 0.580
ruin names	identify the humorous edit of the artist or movie name, and the correct answer for each input is provided in the output. find the humorous edit of the artist or movie name.	0.724 0.813
salient translation error detection	Find the mistake in the given translations. Find the mistake in the German to English translations given.	0.600 0.613
snarks	identify the sarcastic statement from the given options. The selected statement typically conveys an opposite meaning or is exaggerated in a way that highlights the absurdity of the situation. identify the sarcastic statement from the given options. In each case, the sarcastic statement is one that implies the opposite of what it literally says, often highlighting absurdity or exaggeration.	0.782 0.793
sports understanding	determine if the sentences were plausible based on common sports terminology. determine if the sentences provided are plausible in a sports context.	0.564 0.580
temporal sequence	determine between what times the person could have gone to the specified location based on the given information about their activities throughout the day. The correct time range is then provided as the output. determine between what times the person could have gone to a specific location based on the given information. The correct options for each scenario are as follows: 1. David could have gone to the construction site between 8am to 12pm (Option A). 2. Leslie could have gone to the market between 11am to 5pm (Option B).	0.652 0.700
tracking shuffled objects five objects	determine who Claire is dancing with at the end of the dance. In the given scenario, at the end of the dance, Claire is dancing with option (B) Sam. determine who ends up with a specific item or partner after a series of swaps or trades.	0.328 0.353
tracking shuffled objects seven objects	determine the final position/book/ball of a specific person/player after a series of swaps. determine the final partner, gift, ball, or book that a specific person has at the end of the given scenario.	0.256 0.293
tracking shuffled objects three objects	determine the final position or item that Bob ends up with after a series of swaps. determine who ends up with a specific item after a series of swaps in a white elephant gift exchange.	0.400 0.433
web of lies	determine if Inga tells the truth based on the statements given by the other individuals. In this case, the answer is ”No” because Inga says Fidel tells the truth, but Fidel says Vernell lies. Since there is a contradiction in the statements, Inga does not tell the truth. determine if Christie tells the truth based on the statements of the other individuals. Christie says that Teressa tells the truth. Since Teressa says that Leda lies, and Leda says that Shaunda lies, and Shaunda says that Ryan tells the truth, we can conclude that Christie is telling the truth.	0.636 0.667

1350 G ADDITIONAL ABLATION STUDY

1352 G.1 EVALUATION UNDER HETEROGENEOUS AGENT CAPABILITIES

1354 Since real-world deployments often involve agents equipped with LLMs of widely varying capacities, it is important to assess whether weaker models can destabilize the optimization process. To
 1355 evaluate FedPOB’s robustness under such heterogeneous-agent settings, we constructed a mixed-
 1356 model setup using three LLMs with different capability levels. These models were combined into
 1357 two representative mixed-model groups:

- 1359 • **Group 1:** GPT-3.5-turbo + Qwen3-235B + GPT-5-nano
- 1360 • **Group 2:** Llama-3.2-1B + Qwen3-235B + GPT-5-nano

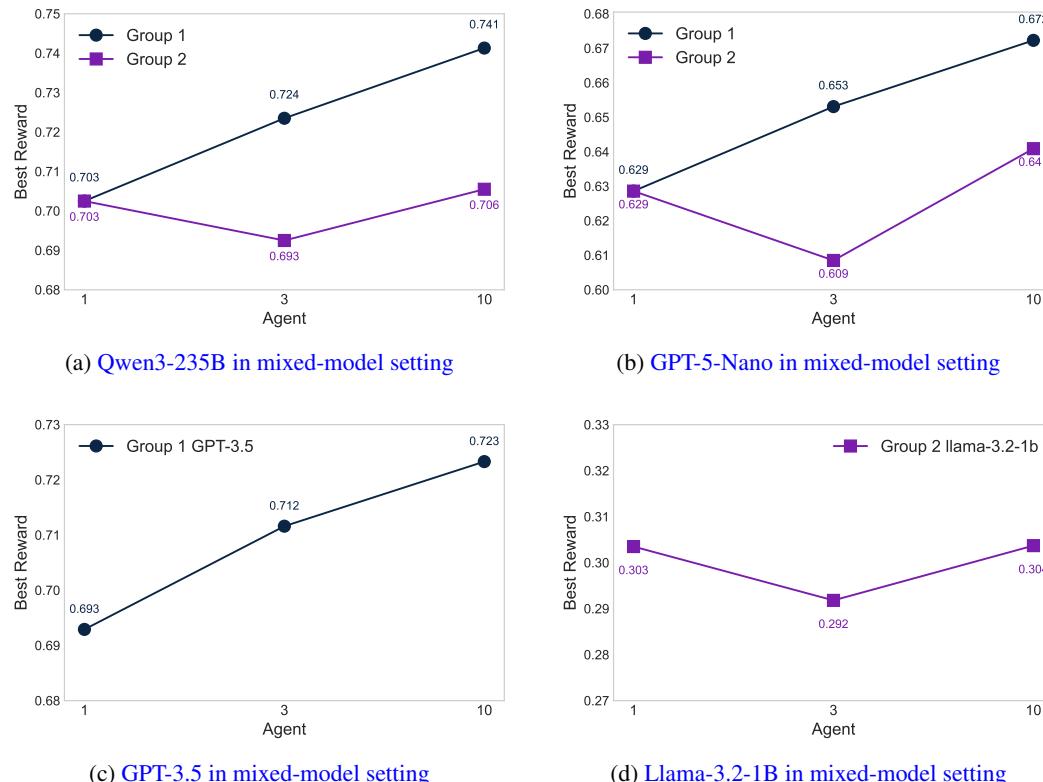
1362 For the 3-agent setting, we directly mix the three models. For the 10-agent setting, we include four
 1363 weaker agents (GPT-3.5-turbo or Llama-3.2-1B) and three stronger agents.

1365 Since different LLMs exhibit different score distributions, instead of averaging rewards across all
 1366 agents, we report the best reward of the mid-strength agent (Qwen3-235B, Fig. 15a) and the strongest
 1367 agent (GPT-5-nano, Fig. 15b) separately at iteration 50.

- 1369 • **Group 1: Performance steadily improves as the number of agents increases.**

1370 GPT-3.5-turbo—although weaker—still contributes meaningful exploration signals,
 1371 demonstrating that FedPOB can effectively handle heterogeneous agents.(See Fig. 15c)

- 1372 • **Group 2: Performance does not increase monotonously when more agents are added.**
 1373 We find that Llama-3.2-1B performs extremely poorly on the prompt-optimization task.
 1374 When multiple such weak agents participate, their noisy local updates can negatively affect
 1375 the stronger models.(See Fig. 15d)



1402 Figure 15: Performance of heterogeneous mixed-model configurations across four representative
 1403 LLMs.

1404 Overall, these results show that FedPOB does not require agents to have similar capabilities, even
 1405 moderately weaker models can contribute useful exploration and improve performance. But ex-
 1406 tremely weak models may hinder performance when they participate in the optimization process.
 1407

1408 **G.2 TESTING THE REASONABILITY OF LINEAR MODELS**

1409 **G.2.1 REASONABILITY OF LINEAR MODELS**

1410 To empirically justify the use of a linear model, we conducted a study to assess whether the mapping
 1411 from prompt embeddings to performance scores can be well-approximated by a linear function, or
 1412 whether a non-linear model provides substantial additional benefit.
 1413

1414 **The Experimental Setup is shown below:**

- 1415 • **Objective:** To compare the predictive performance of a linear regressor versus a non-linear
 1416 neural network regressor.
- 1417 • **Data:** For each of the 53 tasks in our study, we used the full set of 500 prompt embeddings
 1418 as the input features (X) and their corresponding validation scores as the target variable
 1419 (y).
- 1420 • **Linear Model:** We used L2-regularized linear regression (Ridge Regression). This model
 1421 directly corresponds to the linear model used by our algorithms.
- 1422 • **Non-linear Model:** We used a Multi-Layer Perceptron (MLP) regressor with L2 regular-
 1423 ization. To ensure fair comparison, we adopted the same MLP architecture as APOHF (Lin
 1424 et al., 2024a) which used the same embedding model as our work.

1425 **Evaluation Protocol.** To ensure a fair and robust comparison in the high-dimensional setting, we
 1426 evaluated both the L2-regularized linear model and the L2-regularized neural network using K-fold
 1427 cross-validation (CV) with $K = 5$. The L2 regularization hyperparameter for each model was tuned
 1428 via a nested CV loop exclusively on the training data within each outer fold. We report two metrics
 1429 here:

- 1430 1. **Cross-Validated R^2 (R_{CV}^2):** The primary metric for generalization and predictive power
 1431 on unseen data, calculated from the out-of-sample predictions on the held-out validation
 1432 folds.
- 1433 2. **In-Sample (Training) R^2 :** The R^2 score averaged across the training folds, used to assess
 1434 the degree of overfitting.

1435 We averaged the R^2 scores across all 53 tasks, and the results are shown in the table below.

1436 **Table 8: Comparison of Linear and Non-Linear Models in Predicting Prompt Performance**

1437 Model	R_{CV}^2 (Predictive Power)	R^2 (In-sample Fit)
1438 Linear Model	0.502	0.740
1439 Neural Network (MLP)	0.452	0.799

1440 The results show that while the neural network achieves a higher *in-sample* R^2 (0.799 vs. 0.740),
 1441 its *cross-validated* R^2 is notably lower than the linear model's (0.452 vs. 0.502). This indicates
 1442 that the non-linear neural network model is overfitting the training data and generalizes more poorly
 1443 than the simple linear model. These results strongly suggest that a linear model is not significantly
 1444 mis-specified and is a suitable choice for this problem. In addition, the reasonability of linear
 1445 models is further justified by the outstanding performance of our methods in more than 50 tasks.
 1446

1447 **G.2.2 OUR METHODS ARE ROBUST AGAINST EMBEDDING MIS-SPECIFICATION**

1448 To evaluate the robustness of our method under embedding mis-specification, we conducted an abla-
 1449 tion study where we deliberately distorted the prompt embeddings. Specifically, we truncated each

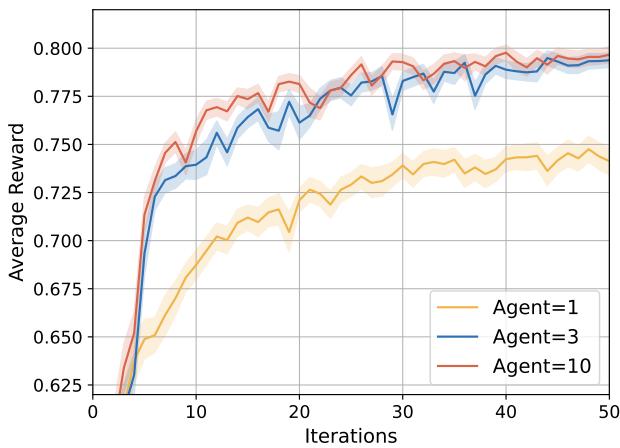


Figure 16: FedPOB performance with embedding misspecification.

768-dimensional embedding vector by removing its last $768/2 = 384$ dimensions and then renormalized the resulting vectors. This produces a mis-specified scenario as the reviewer has suggested.

The results (Fig. 16) show that:

1. **For 1-agent and 3-agent settings**, the performance remains nearly unchanged compared to the original results in Fig. 2.
2. **For the 10-agent setting**, the distorted embedding leads to a small performance drop, indicating that FedPOB becomes slightly more sensitive to model mis-specification when more agents are involved.
3. **Across all settings**, the overall trend is preserved: increasing the number of agents generally improves performance.

These findings suggest that FedPOB maintains relatively stable behavior even under substantial embedding mis-specification, and the benefits of more participating agents continue to hold.

G.2.3 COMPARISON WITH NEURAL BANDIT BASELINES

To compare our linear bandit-based approach with non-linear alternatives for federated black-box prompt optimization, we evaluated two families of neural bandit baselines across 29 Instruction-Induction tasks: federated neural bandits (score feedback) and federated neural dueling bandits (preference feedback).

1. **Score Feedback Baseline:** We compare against Federated Neural Bandit (Dai et al., 2023), a Neural-UCB-based federated bandit method. Since the original work does not include prompt optimization and its network architecture is incompatible with high-dimensional features (768-d embeddings), we adapt the neural architecture from APOHF (Lin et al., 2024a), which uses the same embedding model as ours and ensures a fair, architecture-aligned comparison.
2. **Preference Feedback Baseline:** For preference feedback, we extend APOHF, a neural dueling bandit method for prompt optimization, to the federated setting. To ensure consistency and fairness, we adopt the FedAvg aggregation protocol, following Federated Neural Bandit.
3. **Results:** We report the best rewards across all 29 Instruction-Induction tasks under both score-feedback and preference-feedback settings, comparing FedPOB and FedPOB-Pref with their corresponding neural baselines in Fig. 17.

Across both feedback types, compared with our FedPOB and FedPOB-Pref, the federated neural bandit and neural dueling bandit baselines fail to scale effectively. Their performance does not

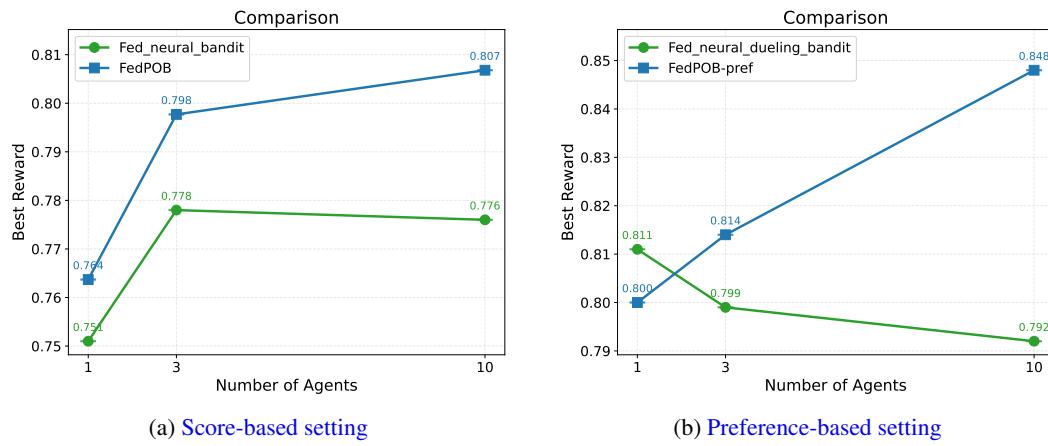


Figure 17: Comparison with neural bandit baselines under score-based and preference-based feedback.

consistently improve as the number of agents increases. This may be due to the non-convexity of neural networks combined with data heterogeneity: local neural updates diverge across agents, making it difficult for standard federated averaging to converge to a stable global model in a small number of iterations. This in fact also aligns with theoretical results, since federated neural bandit (Dai et al., 2023) is not guaranteed to achieve better performance with more agents. In contrast, the performance of federated linear bandits is theoretically guaranteed to improve as the number of agents increases, which is one of our major motivations for adopting linear models.

Conclusion: These new findings together justify that the linear model is a reasonable and robust choice in our problem, and performs better than non-linear bandits.

G.3 PARAMETERS EXCHANGED BETWEEN AGENTS AND THE SERVER

To better demonstrate our communication efficiency, we present additional results below to show that the total number of triggers (i.e., communication rounds) and the total throughput are small for both FedPOB and FedPOB-Pref. For throughput, we simply measure the total number of parameters exchanged between agents and the server over 50 iterations.

G.3.1 SCORE FEEDBACK SETTING (FEDPOB)

In FedPOB, we set communication threshold D to limit unnecessary communication rounds unless local agents have collected enough information. The table below reports the total number of communication rounds for different values of D over 50 iterations of FedPOB (average across all Instruction-Induction tasks). To further quantify throughput, we compute the total number of parameters exchanged between the agents and the server over 50 iterations.

Table 9: Communication rounds for different values of D

D	0	10	100	300	1000
# Comm. Rounds (Agent=3)	50	12	4	2	1
# Comm. Rounds (Agent=10)	50	11.13	3.99	2	1
Throughput (Agent=3)	169.0M	40.56M	13.52M	6.75M	3.37M
Throughput (Agent=10)	563.2M	125.4M	44.94M	22.53M	11.26M

As expected in Table 9, the frequency of communication declines sharply as the communication threshold D increases. Fig. 4 demonstrates that even when D is raised to 300 or 1000—limiting communication to merely two rounds or a single round, respectively—our method remains highly robust. It exhibits only a negligible reduction in reward, despite the substantial decrease in communication overhead.

1566
1567

G.3.2 PREFERENCE FEEDBACK SETTING FEDPOB-PREF

1568
1569
1570

In the preference-feedback setting, we similarly evaluate communication efficiency by examining both the number of rounds and total throughput. We compare FedPOB-Pref to FLDB-GD and FLDB-OGD (Table 10 and Table 11) and observe:

1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581

- FedPOB-Pref outperforms FLDB-OGD by 5.9%, while using the same number of communication rounds.
- FedPOB-Pref matches FLDB-GD’s performance while requiring only 1/30 of its communication rounds.
- FedPOB-Pref remains robust even under much stricter communication constraints. When we allow only one communication trigger every three iterations, the total number of communication rounds and the overall throughput are reduced by 68%. Despite this substantial reduction, the performance decreases by only 4.06% and 7.07% for 3 and 10 agents, respectively. This demonstrates that FedPOB-Pref provides a reliable option in scenarios where communication resources are highly limited or expensive.

1582
1583

Table 10: Performance comparison of different methods (Agent = 3).

1584
1585
1586
1587
1588
1589
1590

Method	Best Rewards	Comm. Times	Throughput
FedPOB-Pref	0.8145	50	169.1M
FedPOB-Pref (Less Comm.)	0.7814	16	54.11M
FLDB-GD	0.7959	1500	175.3M
FLDB-OGD	0.7687	50	169.0M

1591
1592

Table 11: Performance comparison of different methods (Agent = 10).

1593
1594
1595
1596
1597
1598
1599
1600

Method	Best Rewards	Comm. Times	Throughput
FedPOB-Pref	0.8482	50	563.9M
FedPOB-Pref (Less Comm.)	0.7882	16	180.4M
FLDB-GD	0.8244	1500	584.4M
FLDB-OGD	0.8123	50	563.5M

1601
1602

G.4 SCALING LAW WITH AGENTS

1603
1604
1605
1606
1607

To demonstrate the scalability of our methods to larger numbers of agents and reveal potential scaling laws, we adopted the Instruction-Induction tasks (29 tasks), and increased the number of agents to 25 and 100 under the same experimental setting (using gpt-3.5-turbo). The results in Fig. 18 summarize the final aggregated scores over all 29 tasks after 50 iterations, as well as the average reward trajectories across iterations.

1608
1609

These results suggest a clear scaling pattern:

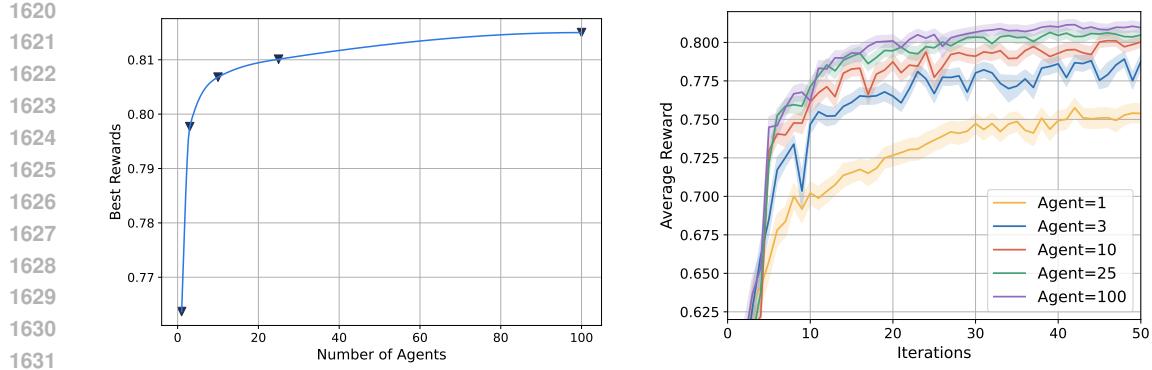
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

- Our method is indeed able to scale to a substantially larger number of agents (100).
- The performance of FedPOB improves consistently and monotonically as the number of agents increases.
- As the number of agents increases, the marginal gain gradually diminishes. This suggests a logarithmic-like scaling curve where performance gains eventually saturate, which is a desirable and expected property in large-scale collaborative learning systems.

1616
1617
1618
1619

G.5 RESULTS WITH HETEROGENEITY IN TASKS

To simulate a realistic scenario in which agents share a common prompt pool but operate on heterogeneous tasks, we conduct an additional experiment where all agents use the same prompt set



(a) FedPOB performance scaling with agent number.

(b) FedPOB performance across agents.

Figure 18: Scalability of FedPOB: performance improves consistently with more agents.

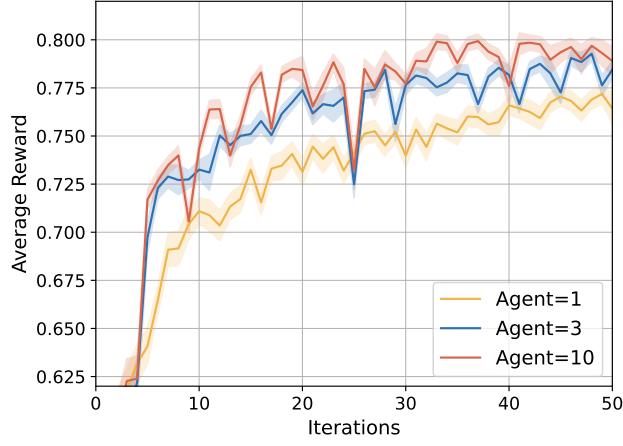


Figure 19: FedPOB performance under heterogeneous task settings

(containing 500 prompts), while their respective tasks (i.e., reward functions) remain distinct. Concretely, we induce task heterogeneity by perturbing the underlying reward function for each agent: independent Gaussian noise is added to the original reward values, yielding a set of agent-specific reward functions.

We evaluated this setting across all 29 Instruction-Induction tasks using GPT-3.5-turbo (OpenAI, 2023a). The Fig. 19 demonstrate that FedPOB continues to perform robustly under this heterogeneous-task scenario. Even when the agents are optimizing against heterogeneous reward functions, our algorithm successfully leverages collaboration to improve overall performance. This confirms that FedPOB is adaptable to different types of federated heterogeneity, whether in the prompt space or the task definition.