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ABSTRACT

Text-guided diffusion models make a paradigm shift in audio generation, facilitating
the adaptability of source audio to conform to specific textual prompts. Recent
works introduce inversion techniques, like DDIM inversion, to zero-shot editing,
exploiting pretrained diffusion models for audio modification. Nonetheless, our
investigation exposes that DDIM inversion suffers from an accumulation of errors
across each diffusion step, undermining its efficacy. Moreover, existing editing
methods fail to achieve effective complex non-rigid music editing while maintaining
essential content preservation and high editing fidelity. To counteract these issues,
we introduce the Disentangled Inversion technique to disentangle the diffusion
process into triple branches, rectifying the deviated path of the source branch
caused by DDIM inversion. In addition, we propose the Harmonized Attention
Control framework, which unifies the mutual self-attention control and cross-
attention control with an intermediate Harmonic Branch to progressively achieve
the desired harmonic and melodic information in the target music. Collectively,
these innovations comprise the Disentangled Inversion Control (DIC) framework,
enabling accurate music editing while safeguarding content integrity. To benchmark
audio editing efficacy, we introduce ZoME-Bench, a comprehensive music editing
benchmark hosting 1,100 samples spread across ten distinct editing categories.
This facilitates both zero-shot and instruction-based music editing tasks. Our
method achieves unparalleled performance in edit fidelity and essential content
preservation, outperforming contemporary state-of-the-art inversion techniques
Both code and benchmark will be released.

1 INTRODUCTION

Text-guided diffusion models (Song et al., [2020; Song & Ermonl 2020; Peebles & Xiel [2023) have
made great progress in audio generation (Evans et al.| [2024ajb)), leveraging their impressive capability
for realistic and varied outputs. In particular, these models (Liu et al., 2023b; [Huang et al.| [2023} Liu
et al.,|2024)) provide the foundation for prompt-based audio editing, offering new opportunities to
modify audio landscapes for specific fextual prompts. Early audio editing strategies rely on training
models from scratch (Copet et al., 2023} |Agostinelli et al., 2023) or test-time optimization (Paissan
et al., 2023} Plitsis et al., 2024)), hampered by intensive computational demands. Recent works (Manor
& Michaelil [2024; Zhang et al.,[2024) in zero-shot audio editing have been made through Denoising
Diffusion Implicit Models (DDIM) (Song et al.l 2020) and Denoising Diffusion Probabilistic Models
(DDPM) (Ho et al.,[2020) inversion techniques, but challenges remain.

Key among these challenges are maintaining fidelity of editing - ensuring the editing aligns with
the provided instructions - and essential content preservation, ensuring that the unaltered musical
attributes in the target prompts remain unchanged. However, balancing these objectives involves a
careful exchange of information between the source and target branch in diffusion processes, with
existing inversion methods like DDIM proving sub-optimal for conditional diffusion models (Mokady
et al.| |2023). Enhanced versions of edit-friendly DDPM inversion (Huberman-Spiegelglas et al.|
2024) make strides in preservation by imprinting the source onto the noise space. However, this
comes at the expense of reduced modification capabilities due to noise reduction.

! Audio samples are available at https://MEDIC-Zero.github.io/.


https://MEDIC-Zero.github.io/.
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In this work, we rigorously examine the shortcomings of the DDIM inversion approach. Our
comprehensive analysis indicates that while techniques like DDIM inversion provide an editable
foundation for audio synthesis, they lack precision and may compromise the integrity of the original
audio. The primary issue stems from the assumption of perfect reversibility in the ordinary differential
equation (ODE) process, which is frequently not met during text-conditional editing. Consequently,
this leads to distortions during the inversion. And the implementation of Classifier-free Guidance
(CFG) (Ho & Salimans| 202 1) aims to improve text adherence. However, it inadvertently amplifies the
accumulated errors from the inversion process. Moreover, attention control (Cao et al., 2023} |Hertz
et al., 2022) has shown promise in achieving high fidelity and essential content preservation. For
instance, MusicMagus (Zhang et al.,[2024) introduces Cross-Attention Control for fine-grained music
manipulation of rigid tasks. Nevertheless, these methods fail to resolve the issues of accumulated
errors and struggle to achieve accurate editing for both rigid and non-rigid tasks, as illustrated in
Figure[I] We introduce an innovative Disentangled Inversion Control technique to bridge this gap.
This technique has two main components: Harmonic Attention Control and Disentangled Inversion.
Cross-attention control (Hertz et al., 2022) and mutual self-attention control (Cao et al.,[2023)) have
demonstrated robust editing capabilities for rigid and non-rigid image editing tasks, respectively.
However, blindly combining these two approaches sequentially for music editing can result in sub-
optimal outcomes, particularly in the original dual-branch setup, where it struggles with global
attention refinement. To address this challenge, we introduce an intermediate branch called the
Harmonic Branch, designed to modify both rigid and non-rigid attributes in music progressively.
Furthermore, we disentangle the diffusion process into triple branches, correcting the deviation path
caused by CFG in the source branch, which affects the essential content preservation. The other
branches remain unchanged to ensure the highest possible edit fidelity.

Due to a lack of standardized benchmarks in audio editing, we introduce ZoME-Bench. The
first music editing benchmark consists of 1,100 audio clips, distributing them into 10 rigorously
curated editing categories across rigid and non-rigid tasks. Each entry is carefully assembled,
comprising a source prompt, a target prompt, human instruction, and blended words intended
for editing. Experimental results on ZoME-Bench indicate that MEDIC outperforms baselines,
achieving significant improvements in essential content preservation and editing fidelity. Additionally,
MEDIC demonstrates state-of-the-art performance in the variable-length music editing settings of the
MusicDelta dataset.

Our contributions can be summarized as follows. 1) We introduce a novel, training-free methodology
called Disentangled Inversion Control (DIC), designed to facilitate consistent manipulations of musi-
cal elements and intricate non-rigid editing tasks. 2) An Harmonized Attention Control framework is
introduced to unify cross-attention and mutual self-attention control, which enables both rigid and
non-rigid editing. 3) We present Disentangled Inversion Technique to achieve superior results with
negligible inversion error by branch disentanglement and correction, aiding in accurately editing the
music while preserving the content information. 4) We build a new benchmark for music editing,
named ZoME-Bench, which supports both zero-shot and instruction-based music editing.

2 RELATED WORKS

Text-based Audio editing. The objective of text-based audio editing (Paissan et al.| 2023} Plitsis
et al. 2024; Han et al., |2023a)) is to utilize diffusion models to manipulate audio content based
on the provided target prompt. Existing methodologies for addressing these intricate challenges
typically follow one of three paths. The first involves attempts to develop end-to-end editing
models (Copet et al., 2023; |Agostinelli et al., 2023} |Chen et al., 2024)that employ diffusion processes.
However, these efforts are often hampered by indirect training strategies or a lack of comprehensive
datasets. The second path involves test-time optimization strategies that utilize large pre-trained
models for editing (Paissan et al.| 2023} Plitsis et al.}2024)). Despite their versatility, these methods
are often burdened by the significant computational demands of fine-tuning diffusion models or
optimizing text-embeddings for signal reconstruction. Some methods may choose to employ both
strategies (Kawar et al.,|2023)), further increasing the computational load. The final path involves
inversion techniques, which typically use DDPM (Huberman-Spiegelglas et al.,[2024; (Wu & De la
Torre, |2023))/DDIM (Song et al., [2020; Zhang et al., [2024) inversion strategies to extract diffusion
noise vectors that match the source signal. Given its rapid and intuitive zero-shot editing capabilities,
we have chosen inversion techniques as our primary research framework. In this work, we propose
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Figure 1: Comparisons of our method with two-branch inversion techniques, including DDIM
Inversion and MusicMagus. (a) Framework of DDIM Inversion, showing configurations with and
without classifier-free guidance. (b) Framework of MusicMagus, which incorporates cross-attention
control. (c) Framework of our method, featuring disentangled inversion control. (d) An illustration
comparing the output of the two-branch techniques with the progressive output of our triple-branch
approach.

Attention Control

a new inversion technique named Disentangled Inversion Control. This technique aims to achieve
accurate editing while preserving structural information.

Inversion Techniques. The field of image inversion techniques has experienced significant progress
in recent years (Brooks et al., 2023} |[Kim et al., 2022} |Parmar et al., 2023 |Dhariwal & Nichol,
2021). While the DDIM inversion proves effective for unconditional diffusion models (Song et al.,
2020; Wallace et al.,[2023), its limitations become apparent when applied to text-guided diffusion
models, particularly when classifier-free guidance is necessary for meaningful editing. A range of
solutions (Mokady et al., 2023} Tumanyan et al., 2022) have been proposed to address these challenges.
For example, Negative-Prompt Inversion strategically assigns conditioned text embeddings to Null-
Text embeddings, effectively reducing potential deviation during editing. Conversely, Edit Friendly
DDPM provides an alternative latent noise space via modified DDPM sample distributions, promoting
the successful reconstruction of the desired image (Huberman-Spiegelglas et al.| [2024)). Optimization-
based inversion methods using specific latent variables have recently gained popularity (Ju et al.|
2023; |[Kawar et al.l [2023). These are designed to minimize accumulated errors stemming from
the DDIM inversion. Techniques such as Null-Text Inversion (Mokady et al.,|2023) are promising,
but they introduce complexity and instability into the optimization process, making it relatively
time-consuming. Differently, we introduce a plug-in-plus method called Disentangled Inversion
Control to separate branches, achieving superior performance with considerably fewer computational
resources.

3 DISENTANGLED INVERSION CONTROL

3.1 PROBLEM DEFINITION AND BENCHMARK CONSTRUCTION

Despite significant work in text-to-audio generation models, particularly with the emergence of latent
diffusion models (LDM), research on zero-shot music editing remains limited. Zero-shot music
editing seeks to leverage the capabilities of text-to-music generation models to synthesize the desired
music, denoted as :cggt. This synthesized music should align with the target edited text prompt P*,
which is directly modified from the source music " and its corresponding text prompt P. We
compress source audio signals into latent 25" for inversion.

To systematically validate our proposed method as a plug-and-play strategy for editing models,
compare our method with existing zero-shot music editing methods, and compensate for the absence
of standardized performance criteria for inversion and editing techniques, we construct a benchmark
dataset named ZoME-Bench (Zero-shot Music Editing Benchmark). ZoME-Bench comprises 1,100
audio samples which are selected from MusicCaps (Doh et al.,|2023), spanning ten different editing
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types that include both rigid and non-rigid modifications. Each sample is accompanied by its
corresponding source prompt, target prompt, human instruction, and source audio.

Additionally, we include annotations relevant to attention control, such as blended words, to facilitate
detailed evaluations. Further details about our benchmark can be found in Appendix

3.2 MOTIVATION

Figure [I]and Preliminaries in Appendix [A]reveal that while techniques like DDIM inversion offer an
editable base, they fall short of precision. This potentially compromising the essential content preser-
vation. The implementation of Classifier-free Guidance (CFG) further amplifies the accumulated
errors.

In the landscape of prompt-based editing (Dong et al., |2023; Kim et al.| 2022; [Feng et al.,|2023)), the
ability to grasp the subtleties of linguistics and enable more granular cross-modal interactions stands
as a formidable challenge. Hertz et al.|(2022)) acknowledges that in image editing, the fusion between
text and visual modalities happens within the parameterized noise prediction network €g. This leads
to the development of various attention control techniques that guide the target denoiser network
€p in the image domain to better align with target prompts. Yet, analogous control mechanisms for
non-rigid music editing are noticeably limited.

Taking these insights forward, we introduce Disentangled Inversion Control (DIC), a novel approach
to achieve both rigid and non-rigid music editing. DIC strategically disentangles the diffusion process
as triple branches, allowing each branch to optimize its functionality. At the same time, the strategy
leverages harmonized attention control to facilitate targeted editing, thus aligning with the dual
objectives of preserving the original audio essence and ensuring edit relevance. We will first introduce
Harmonized Attention Control in Section (3.3|and discuss Disentangled Inversion in Section 3.4

3.3 HARMONIZED ATTENTION CONTROL FRAMEWORK

The denoising architecture denoted as €y, is structured as a sequence of fundamental blocks, each
comprising a residual block (He et al., 2015) followed by self-attention and cross-attention mod-
ules (Vaswani et al., [2023; [Dosovitskiy et al., [2020; [Liu et al.,2023c)). At the denoising step ¢, the
output of the (I — 1)-th block is passed through self-attention and then aligned with textual cues from
prompt P within the cross-attention layer. The attention mechanism is formalized as:

. QKT
Attention(Q, K, V) = MV = Softmax 7 |4 €))

where () denotes the query features derived from the audio features, K and V' represent the key and
value features, and M is the attention map. We explore varying semantic transformations of audio
content through harmonized attention control strategies — cross-attention control for rigid changes
and mutual self-attention control for non-rigid adjustments. Finally, we introduce an intermediate
branch to host the desired harmonic and melodic information in the target music. The framework of
harmonized attention control is depicted in Figure

3.3.1 CROSS-ATTENTION CONTROL

Cross-attention Control (CAC) aims to inject the attention maps that are obtained from the generation
with the original prompt P, into a second generation with the target prompt P*. We follow the
practice of Prompt-to-Prompt (Hertz et al.,[2022)) and define CAC as Global Attention Refinement
and Local Attention Blend.

Global Attention Refinement At a given time step ¢, the attention map M; for both the origin and
target branches is computed, averaging over all layers with respect to the noised latent z,. We employ
an alignment function A that maps each token index from the target prompt P* to its equivalent in P
or to None for non-aligning tokens. The refinement action is thus:

(M%), ; if A(j) = None,

2
(M) otherwise. )

Refine( M, M9 t) = {
ij
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Figure 2: The framework of Harmonized Attention Control (HAC). HAC unifies cross-attention
control and mutual self-attention control with an additional branch named Harmonic Branch to host
the desired composition and structural information in the target music.

Local Attention Blends Beyond global attention, we incorporate a blending mechanism as sug-
gested by |Hertz et al.| (2022) and Mokady et al.| (2023). This method selectively integrates and
maintains certain semantics by using target blend words w?9* for semantic additions and source blend
words w*"¢ for semantic preservation. At each denoising step ¢, the mechanism operates on the target
latent z}9" as follows:

Mg = Threshold [M{?", wig, k] » 3)
Mgre = Threshold [M;"¢, were, kse| 4)
zzgt _ (1 — it + mST‘C) ® zfrc + (mtgt _ msrc) o Z:gt (5)

where myg; and My are binary masks and threshold function is as delineated below:

1 itM;; >k
Threshold(M, k) = b= 6
reshold(M, k) {0 if M; ; < k. ©
For simplicity, we define the process of local editing in Equation[3]as:
zfgt = LocalEdit(2;"°, zfgt7 M Mttgt, Were, Wigt) @)

Scheduling Cross-Attention Control Applying cross-attention control only at early stages ensures
creative flexibility while maintaining structure. Acting on insights from [Hertz et al.|(2022), we limit
cross-attention to the initial phases up to a cutoff point 7.. This moderation allows us to capture the
nuances and intended changes in musical compositions effectively. The approach is defined as:

Refine(Mpre, M"Y ift > 7.,

8
M9 ift < 7. ®)

CrossEdit(M ™, M9 ) = {
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Algorithm 1 Harmonized Attention Control in one DDIM Forward Process

1: Input: A source prompt P, a target prompt P*, a source audio latent z, denoising network

. . tgt
€g(+, -, ), current time step 7, source and target blend words Wy, wig, input latents 23, 22, sz‘ar.

2: €gres {QSIC7 Ksrc’ Vsrc}’ Msrc = ¢ (Z:_rc7 T, Csrc)

3t €, {QE K, VY Mg = €9 (zf,g[, T, Cigt)

4: {Cghar7 I(har7 Vhari — Seledit({Qm, Ksrc7 V'src}7 {tht, tht’ Vtgl}, 7_)
5 €nars Mhar = 69(Zq—ar, T, Csrc; {Qhar7 Khar7 Vhar})

6: Mg = CrossEdit(Mpar, Mg, 7)

7: € = €9 (z%’[, T, Cat; Mtgt)

8 2, z;gt_l, Zhar = Sample([257, 28 2040 e, €cigs Char) s T)

9: 29" = LocalEdit(227¢, 29", M54, M{%" \wgpe, wigt)

10: Output: 25 |, 2% | zher,

3.3.2 MUTUAL SELF-ATTENTION CONTROL

We diverge from the conventional use of cross-attention mechanisms and instead draw inspiration
from the MasaCtrl (Cao et al.| 2023) technique to refine music structure through self-attention
queries. These queries adeptly navigate through non-rigid musical transformations, aligning with
the designated musical theme or instrument (target prompt). The process begins by sketching the
foundational musical theme using the target’s self-attention components—Q?9¢, K¢ and V9t
This is followed by enriching this theme with elements resembling the thematic content from the
source (K7€, VV*7¢), steered by Q9¢. However, applying this attentive modulation uniformly over
all processing layers and through every denoising step might result in a composition excessively
mirroring the source. Consequently, echoing the ethos of MasaCtrl, our proposed solution selectively
employs mutual self-attention in the decoder portion of our music editing U-Net, initiated after a set
number of denoising iterations.

Scheduling Mutual Self-Attention Control The application of mutual self-attention is meticu-
lously planned, beginning at a specific denoising step .S and extending beyond a designated layer L.
The strength and influence of this control mechanism are designed as follows:

Q¥re, K<, Ve ift > Sandl > L,
Q9t, K5m¢, V¢ otherwise

Seledit(Cgsf‘c7 Ksrc’ VSTC, tht7 tht7 Vtgt’ t) — { (9)

In this framework, S signifies the denoising step from which the mutual self-attention control
commences, serving as a temporal threshold. Similarly, L distinguishes the layer index below which
this nuanced control strategy becomes operational, tailoring the musical output towards the intended
artistic direction.

3.3.3 HARMONIC BRANCH INTEGRETION

The naive combination of cross-attention control and mutual self-attention control sequentially would
lead to sub-optimal results in the original dual-branch setup, especially failing the global attention
refinement. To address this issue, we introduce an additional latent harmonic branch, which serves as
an intermediate to host the desired composition and structural information in the target music.

Our unified framework is detailed in Algorithm [2] During each forward step of the diffusion process,
we start with mutual self-attention control on z°7¢ and 2'9* and assign the output to the harmonic
branch latent 2", This lays the formal structure of the target music. Following this, cross-attention
control is applied on M"*" and M*9* to refine the semantic information for M*9%. As illustrated in
Figure the harmonic branch output 29" reflects the requested non-rigid changes (e.g., “violin™),
while preserving the rigid content semantics (e.g., “with noise”). The target branch output zég * builds
upon the structural layout of the 2" while reflecting the requested rigid changes (e.g., “with noise”).
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Algorithm 2 Disentangled Inversion Technique

—_

Input: A source prompt P, a target prompt P*, a source audio latent z(, and guidance scale w.
tgt

2: Output: A edited audio latent z;”".

3: Compute the intermediate results z7, ..., z] using DDIM inversion over zg.
4: Initialize 277¢ < 27, zéﬁ’t — zh, zhar o 2x.

5: fort =Tto1ldo

6. [die,d ", dr] « =, - DDIM Forward(z;"°, t, [P, P*, P],w)

7. 2779 < DDIM_ Forward(z{"°,t, [P, P*, P],w) + [d;", 0, 0]

8 2! < DDIM Forward(z*", t, [P, P*, P],w) + [di"%, 0, 0]

9:  z!9" < DDIM Forward(z{%",t, [P, P*, P],w) + [d"9, 0, 0]

10: end for

11: return z7*

3.4 DISENTANGLED INVERSION TECHNIQUE

Recognizing the limitations of using DDIM inversion without classifier-free guidance, we observe
that it yields an easily modifiable but imprecise approximation of the original audio signal. Increasing
the guidance scale enhances editability, but sacrifices reconstruction accuracy due to latent code
deviation during editing.

In order to address this issue, our methodology, which we have termed the Disentangled Inversion
Technique disentangles into three branches: the source, the harmonic, and the target branch. This
decoupling is designed to unleash the capabilities of each branch separately. For the source branch,
we implement a targeted correction mechanism. By reintegrating the distance z; — ;"¢ into 2;"¢, we
directly mitigate the deviation of the pathway. This straightforward adjustment effectively rectifies
the path and minimizes the accumulated errors introduced by both DDIM inversion and classifier-free
guidance, thereby enhancing consistency in the reconstructed audio. On the other hand, the target
branch and harmonic branch are left unmodified to fully leverage the innate capabilities of diffusion
models in generating the desired target audio. The branches’ untouched state ensures that the model’s
potential is utilized to its fullest extent, thereby ensuring the fidelity and integrity of the generated
audio. We will further discuss this in the Section[4.2.2] The algorithm of Disentangled Inversion
Technique has been outlined in Algorithm 2]

Typical diffusion-based editing (Han et al. 2023b; Miyake et al., |2023)) involves two parts: an
inversion process to get the diffusion space of the audio, and a forward process to perform editing
on the diffusion space. Disentangled Inversion can be plug-and-played into the forward process
and rectifies the deviation path step by step. Specifically, Disentangled Inversion first computes the
difference between z;_; and z;"9, then adds the difference back to z;”9 in DDIM forward. We only
add the difference of the source prompt in latent space and update z;"9, which is the key to retaining

the editability of the target prompt’s latent space.

4 EXPERIMENTS

Implementation Details. We infer different editing methods using the pre-trained AudioLDM 2 (Liu
et al., 2023b) models with 200 inference steps. The setting of baselines is followed by [Manor &
Michaeli| (2024) and is all evaluated in NVIDIA A800 GPU for a fair comparison. We evaluate all
methods in ZoMo-Bench across all editing types with fixed length. And we use the MusicDelta
subset of the MelodyDB (Bittner et al., 2014) dataset for variable length comparisons, comprised of
34 musical excerpts in varying styles and in lengths ranging from 20 seconds to 5 minutes. Details
can be found in Appendix

Evaluation Metrics. Our models employ a comprehensive evaluation using both objective and
subjective metrics to assess essential content preservation, text-audio alignment fidelity, and audio
quality. Objective metrics include Structure Distance (SD) (Ju et al.| [2023), CLAP (Contrastive
Language-Audio Pretraining) Score (Elizalde et al.,[2023)), LPAPS (Learned Perceptual Audio Patch
Similarity) (Iashin & Rahtu}, 2021} Paissan et al.,2023), and FAD (Fréchet Audio Distance) (Kilgour|
et al., [2018)). The CLAP Score evaluates how well the edited audio aligns with the target prompt,
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Method Objective Metrics Subjective Metrics
SD,q0s | LPAPS| FAD| CLAP Scorel | MOS-Qt MOS-Pt

AudioLDM 2 23.86 0.21 10.36 0.58 73.48 70.12
MusicGen 23.39 0.21 6.63 0.59 75.46 71.28
SDEdit 25.87 0.22 12.18 0.40 69.38 66.23
DDIM Inversion 22.52 0.21 9.51 0.49 73.10 3.38
MusicMagus 16.23 0.19 5.15 0.55 75.12 74.34
DDPM-Friendly 18.30 0.19 5.16 0.54 75.27 73.86
MEDIC | 1197 0.15 2.49 0.61 | 79.81 77.29

Table 1: Comparison with baselines on ZoME-Bench with fixed length about structure, content
preservation, and CLAP similarity.

Method Objective Metrics Subjective Metrics
SD,9s | LPAPS| FAD| CLAP Scoret | MOS-Qt MOS-Pt

AudioLDM 2 24.40 0.22 7.07 0.44 66.37 64.28
MusicGen 27.71 0.23 7.70 0.46 67.41 63.76
SDEdit 28.12 0.24 13.21 0.24 62.80 62.18
DDIM Inversion 23.5 0.21 10.12 0.27 65.94 65.73
MusicMagus 25.6 0.22 7.13 0.43 67.45 67.12
DDPM-Friendly 21.53 0.23 6.68 0.30 66.34 67.28
MEDIC | 195 0.20 6.58 0.51 | 71.62 70.18

Table 2: Comparison with baselines in variable length setting.

while Structure Distance, LPAPS, and FAD, which have been adapted from image domain metrics,
measure the similarity between the edited and source audio. Specifically, LPAPS quantifies the
consistency of the edited audio in relation to the source audio, and the FAD metric assesses the
distance between two distributions of audio signals. The Structure Distance measures the structural
similarity between the edited and source audio. For the subjective evaluation, we conduct crowd-
sourced human assessments using the Mean Opinion Score (MOS) to evaluate both editing fidelity
(MOS-Q) and content preservation (MOS-P). We attach the details of all metrics in Appendix

4.1 7ZERO-SHOT MUSIC EDITING RESULTS

We present a comparative study of our Disentangled Inversion Control (DIC) against several estab-
lished music generation and editing baselines, including AudioLDM 2 (Liu et al., [2023b)), Music-
Gen (Copet et al.,[2023), SDEdit (Liu et al., [2023a), DDIM Inversion |Ho et al.| (2020), MusicMa-
gus (Zhang et al.| 2024)), and DDPM-Friendly (Manor & Michaeli, 2024). Utilizing the ZoMo-Bench
test set we developed, we assess the quality of the generated audio samples, focusing on two key
aspects: Content Preservation and Editing Fidelity. The results, summarized in Table|l| lead to the
following conclusions: (1) Our method, MEDIC, significantly outperforms both generation-based
and inversion-based models in terms of editing fidelity and audio similarity, demonstrating its effec-
tiveness in addressing complex editing tasks. (2) Although DDPM-Friendly and MusicMagus show
improvements in essential content preservation, they struggle to maintain high text-audio alignment
compared to generation models. MEDIC effectively addresses accumulated errors, achieving high
audio similarity and an impressive CLAP score, reflecting its superior editing fidelity. (3) MEDIC also
excels in subjective metrics, achieving the best performance in audio quality and content preservation.

Variable Length Comparisons We further evaluate MEDIC against baseline methods in a variable
length setting, with the results presented in Table |2} Our analysis leads to the following conclusions:
(1) MEDIC outperforms all baselines across all metrics, demonstrating the effectiveness of our ap-
proach in variable-length scenarios. (2) Inversion-based baselines experience a significant degradation
in CLAP score, while MEDIC maintains the highest CLAP score of 0.51 on the MusicDelta dataset.

Fine-grained Comparisons on ZoME-Bench To substantiate the robustness of our method, we
delve into fine-grained comparisons across different types of editing. The FAD and CLAP scores are
depicted in Figure 3] The insights gleaned from this analysis are as follows: (1) Across all editing
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Figure 3: A comprehensive performance evaluation on the ZoME-bench. We present spider charts
of CLAP scores and FAD scores across 10 editing tasks for DDPM-Friendly, DDIM Inversion,
MusicMagus, and Disentangled Inversion Control methods.

Method | Structure Distance, ;os | LPAPS| FAD| CLAP Scoref
HAC \ 11.97 0.15 2.49 0.61
w/o MSA Control 14.13 0.19 2.75 0.56
w/o CA Control 13.78 0.18 2.50 0.58
w/o Harmonic Branch 12.75 0.16 2.59 0.59

Table 3: Ablation results about different control methods. MSA: Mutual Self-Attention, CA: Cross
Attention.

types, our Disentangled Inversion Control surpasses other methods, demonstrating its prowess in
handling both rigid and non-rigid editing tasks. (2) While baselines exhibit capabilities in handling
certain rigid editing scenarios, they fall short in executing non-rigid manipulations, as reflected in
their inferior performance, especially in the “Change Genre” and “Change Melody” non-rigid editing

types.

4.2 ABLATION STUDY

The ablation studies presented in this section aim to validate the contributions of the Harmonized
Attention Control and Disentangled Inversion to our framework’s overall performance. Additionally,
we examine the impact of the classifier-free guidance scale on editing outcomes, with a comprehensive
analysis included in Appendix

4.2.1 ABLATION ON ATTENTION CONTROL METHODS

To validate the impact of our attention control mechanisms, we perform ablations on the following
configurations: Remove Mutual Self Attention Control (w/o MSA Control), Remove Cross Attention
Control (w/o CA Control), and without Harmonic Branch (w/o Harmonic Branch). The findings,
detailed in Table reveal that: (1) Both cross-attention and mutual self-attention controls individually
enhance editing performance. (2) Although the naive combination of mutual self-attention control
and cross-attention control improves the preservation and fidelity, it still yields sub-optimal outcomes
due to the lack of a progressive harmonic branch. This demonstrates the effectiveness of harmonized
attention control.

4.2.2 ABLATION ON DISENTANGLED INVERSION TECHNIQUE

To demonstrate the soundness of Algorithm [2]and the effective disentanglement of triple branches,
we can draw conclusions from Table[d} 1) Incorporating source distance into the target latent and
harmonic branch, this leads to a decline in both preservation metrics and CLAP similarity score.
2) Incorporating target distance into the target branch and harmonic branch improves structural
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Distance | Structure Distance,os | | LPAPS| FAD| MSE, s | | CLAP Score’

[dsre, dsre, O] 14.28 0.17 2.64 4.67 0.57
[dsre, 0, dsre) 13.17 0.17 2.55 4.59 0.58
[dsre; Aige, 0] 11.24 0.15 2.44 4.32 0.56
[dsre, 0, dy gt 11.12 0.14 241 4.29 0.56
[dsre, dnar, 0] 37.51 0.27 27.2 14.23 0.28
[dsre,0,0] 11.97 0.15 2.49 4.54 0.61
Table 4: Ablation results from the disentangled inversion technique. [-,-,] denotes adding the

distance (line 6 in Algorithm[2). MSE means the mean square error loss between the edited audio
features and source audio features.

a dubstep piece with digital drum and sub bass -> a [electronic] piece with digital drum and sub bass

8 10
Source Audio SDEdit DDIM Inversion DDPM Friendly

music with an elderly man singing -> music [without an elderly man singing]
6.0 X 6.0

o 2 4 6 8 10 ) ‘ . . 4 6 8 10
Source Audio SDEdit DDIM Inversion DDPM Friendly Ours

o 2 4 6 8 10

Figure 4: Visualizations of the source audio’s mel and edited mel-spectrograms by different editing
methods.

integrity and content preservation. However, this modification leads to a significant decrease in the
CLAP score, indicating that while structural quality may improve, the alignment with the target
prompt suffers. 3) Adding harmonic distance to the harmonic branch leads to a noticeable decline in
performance. This finding showcases that introducing excessive deviations in the harmonic branch
may adversely affect the overall audio quality and coherence.

4.3 QUALITATIVE RESULTS

To complement our quantitative findings, we present a qualitative comparison in Figure ] Methods
such as SDEdit and inversion-based techniques often struggle to balance high editability with
preserving melodic content and harmonic structure. In contrast, our Disentangled Inversion Control
performs better in precise music editing while preserving structural integrity. We provide additional
qualitative results in the Appendix [G] for further examination.

5 CONCLUSION

In this paper, we explored the burgeoning realm of text-guided diffusion models for audio generation,
recognizing their potential to reshape source audio in alignment with specific textual prompts. We
proposed the Disentangled Inversion Control to support both rigid and non-rigid editing tasks. Instead
of a two-branch setting, we add an intermediate branch named the harmonic branch to progressively
integrate harmonic and melodic information in music by cross-attention control and mutual self-
attention control. To counteract the accumulated errors caused by DDIM inversion and CFG, we
introduced a simple but effective method named disentangled inversion to separate the diffusion
process into triple branches and eliminate the latent discrepancy distance in the source branch. Our
comprehensive evaluations, conducted on the ZoME-Bench—a robust benchmark for music editing
comprising 1,100 samples across 10 varied editing categories—attested to the superiority of our
methods. And the experiment results on variable length test sets and ablation studies further validated
the effectiveness and robustness of our method. We envisage that our work could serve as a basis for
future zero-shot music editing studies.

10
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A PRELIMINARIES AND ANALYSES

This section introduces the foundational concepts of DDIM sampling and classifier-free guidance
as applied to diffusion models for text-guided audio synthesis. It further explores the challenges
associated with these methods.

A.1 DIFFUSION MODELS

Text-guided diffusion models aim to map a random noise vector z; and textual condition ¢ to an
output audio zg, corresponding to the given conditioning prompt. We train a denoiser network
eg(zt, t, ¢) to predict the Gaussian noise € € N (0, I) following the objective:

meinEzo,66/\/(0,1),tEUniform(l,T) |le — €a(zt,t, )] |2 (10)

Where noise is added to the sampled data zy according to timestamp ¢. At inference, given a noise
vector zr, the noise ¢ is gradually removed by sequentially predicting it using a pre-trained network
for T' steps. To generate audios from given z7, we employ the deterministic DDIM sampling:

A/ Ot—1 1 1
1= _ —1—4/— -1 t 11
Zi—1 N ze + /o1 ( o \/at )eo(zi,t, €) (11)

A.2 DDIM INVERSION

While diffusion models have superior characteristics in the feature space that can support various
down-stream tasks, it is hard to apply them to audios in the absence of natural diffusion feature space
for non-generated audios. Thus, a simple inversion technique known as DDIM inversion is commonly
used for unconditional diffusion models, predicated on the presumption that the ODE process can be
reversed in the limit of infinitesimally small steps:

N Vo oo, 1 1 N
= \/ - —1- -1 t— 1 ]2
T e ey, aiy  Detet 12

However, in most text-based diffusion models, this presumption cannot be guaranteed, resulting in a
perturbation from z; to z;. Consequently, an additional perturbation from z; to z;" arises when
sampling an audio from z7. where « is hyper-parameter:

Zt = \/Oéit20+\/1—()ét€ (13)

A.3 CLASSIFIER-FREE GUIDANCE

Classifier-free Guidance (CFG) (Ho & Salimans, |2021) is proposed to overcome the limitation of
text-conditioned models, where text adherence could be weak. However, a higher guidance scale, w,
which is intended to strengthen the model’s fidelity to the text prompt, inadvertently magnifies the
accumulated inversion error. This becomes problematic in editing scenarios where precise control
over the audio synthesis is desired. The modified noise estimation in CFG can be expressed as:
ég(Zt, ta c, Q) =w:- 69(Zt7 ta C) + (1 - LU) : €0(Zt, t7 Q) (14)
where @ = (‘) is the embedding of a null text. This further leads to another perturbation from z; to

2" due to the destruction of the DDIM process and causes error augmentation as demonstrated in
Figure[]

B BENCHMARK CONSTRUCTION

B.1 GENERAL INFORMATION

Here are the details of our ZoME-Bench dataset (Zero-shot Music Editing Benchmark). This dataset
contains 1,000 audio samples, selected from MusicCaps, with each sample being 10 seconds long
and having a sample rate of 16k.

We refactor the original captions to express specific edits and divide them into 10 parts, each
representing a different type of editing. A sample and details are shown in the following table[5]
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]tidls?g’ Editing type size | origin prompt editing prompt editing instruc-
yp tion

0 change instrument | 131 | ambient acoustic | ambient acoustic | change the instru-
[guitar] music [violin] music ment from guitar

to violin

1 add instrument 139 | metal audio with | metal audio with | add drums to the
a distortion gui- | a distortion gui- | piece
tar [and drums] tar

2 delete instrument 133 | an eerie tense | an eerie tense | remove the synth
instrumental fea- | instrumental fea- | keyboard
turing electronic | turing electronic
drums [and synth | drums
keyboard]

3 change genre 134 | a recording of | a recording of | change the genre
a solo electric | a solo electric | from blues to
guitar  playing | guitar playing | rock
[blues] licks [rocks] licks

4 change mood 100 | a recording | a recording | turn upbeat mood
featuring electric | featuring electric | into melancholic
bass with an | bass with an | mood
[upbeat] vibe [melancholic]

vibe

5 change rhythm 69 | alive ukulele per- | alive ukulele per- | change fast
formance featur- | formance featur- | rhythm into slow
ing [fast] strum- | ing [slow] strum- | one
ming and emo- | ming and emo-
tional melodies tional melodies

6 change background | 95 | female voices | female voices in | switch acoustic
in unison with | unison with [elec- | guitar to electric
[acoustic] guitar | tric] guitar guitar

7 change melody 121 | this instrumental | this instrumental | change relaxing
song  features | song  features | melody into
a [relaxing] | a [cheerful] | cheerful melody
melody melody

8 extract instrument | 111 | a reggae rhythm | a reggae rhythm | extract bongos
recording with | recording with | from the record-
bongos [djembe | bongos ing
congas acoustic
drums and elec-
tric guitar]

9 random 67 |/ / /

Table 5: Information of ZoME-Bench dataset

B.2 ANNOTATION PROCESS

We rebuild our caption from captions for Musiccaps offered by (Agostinelli et al.,[2023). With the
help of ChatGPT-4 (OpenAl, |2023)), we rebuild the caption with prompt as follows(take type “change
melody” as examples):

Description: “There is a description of a Piece of music, Please judge whether the description has
information of melody. If not, just answer “Flase”, else change its melody properly into the opposite
one, just change the adjective and don’t replace any instrument! ”,“blended_word” is [origin melody,
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changed melody], “emphasize” is [changed melody], “blended_word” and “emphasize” are tuples.
Question: (A mellow, passionate melody from a noisy electric guitar)

Answer:(“source_prompt”: “A mellow, [passionate] melody from a noisy electric guitar”, “edit-
ing_prompt”: “A mellow, [soft] melody from a noisy electric guitar”, “blended_word”: [“passionate

LLIY3

melody”, “soft melody”], “emphasize”: [“soft melody’’])

Question: (A recording of solo harp music with a dreamy, relaxing melody.)

Answer: (“source_prompt”: “A recording of solo harp music with a dreamy, [relaxing] melody.”, “edit-
ing_prompt”: “A recording of solo harp music with a dreamy, [nervous] melody.”, “blended_word”:
[“relaxing melody”,“nervous melody”], “emphasize” :[“nervous melody”])

Question: (“A vintage, emotional song with mellow harmonized flute melody and soft wooden
percussions”)

Answer: (“source_prompt”: “A vintage, emotional song with [passionate] flute melody and soft

9 <

wooden percussions.”, “editing_prompt”: “A vintage, emotional song with [harmonized] flute melody
and soft wooden percussions.”, “blended_word”: [“harmonized flute melody”,“passionate flute
melody”]), “emphasize” :[“passionate flute melody’’])

Now we have Question:({origin caption}), Answer(?)”

In the same way, instructions are appended by prompt as follows (take type “change melody” as
examples):

Description: “There are two descriptions of different pieces of music divided by &, Please describe
the difference you need to give me the results in the following format: Question: this instrumental
song features a [relaxing] melody with a country feel accompanied by a guitar piano simple percussion
and bass in a slow tempo & this instrumental song features a [cheerful] melody with a country feel
accompanied by a guitar piano simple percussion and bass in a slow tempo

Answer: change relaxing melody into cheerful melody

Question: this song features acapella harmonies with a [high pitched] melody complemented by both
high pitched female whistle tones and male low pitch tones & this song features acapella harmonies
with a [smooth] melody complemented by both high pitched female whistle tones and male low pitch
tones

Answer: turn a high pitched melody into smooth melody

Question: a traditional and hopeful song with a harmonizing throaty male vocal and [dissonant]
background melody from strings albeit presented in low quality & a traditional and hopeful song with
a harmonizing throaty male vocal and [harmonic] background melody from strings albeit presented
in low quality

Answer: change dissonant melody into harmonic melody

Now we have Question: [‘source prompt’] & [‘editing prompt’], Answer(?)”

Through this method, supplemented by rounds of manual review, we ensure the quality of this
benchmark.

B.3 DATA FORMAT

Taking the first piece as an example, we express our data in JSON format with six keys

{
”000000000000”: {

“editing_prompt”: “a live recording of ambient acoustic
[violin] music”,
”source_prompt”: “a live recording of ambient acoustic

[guitar] music”,

”blended_word”: ”(\” guitar\”, \”violin\”)”,

”emphasize”: ”(\”violin\”)”,

7audio_path”: “wavs/MusicCaps_—-4SYC2YgzL8.wav”,
“editing_type_-id”: 707,

“editing_instruction”: “change the instrument from guitar
to violin”
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“Editing_prompt” refers to the edited caption, while “source_prompt” denotes the original caption.
”Blended_word” indicates the subject to be edited, and “Emphasize” represents the word that should
be highlighted. “Editing_instruction” provides a description of the editing process. Additionally, in
the editing type “delete instrument,” we introduce another key, “neg_prompt”, which helps reduce the
likelihood of deleted instruments reappearing.

C IMPLEMENTATION DETAILS

For our evaluation, we utilize the pre-trained AudioLDM 2-Music model (Liu et al., 2023b). Our
assessment employs a comprehensive set of metrics, namely CLAP, LPAPS, Structure Distance, and
FAD. These metrics are calculated using the CLAP models available in the AudioLDM _eval package,
which is accessible at https://github.com/haoheliu/audioldm_eval. In line with the
methodology described by Manor & Michaeli|(2024)), we apply a forward guidance of 3 and a reverse
guidance scale of 12 for DDPM inversion. For the DDIM inversion, the guidance scale is set to 5,
while for SDEdit, we employ a guidance scale of 12. The forward guidance of MEDIC is 1 while
the reverse scale is 5. We chose these values by exploring different guidance scales, as discussed in
Appendix [D] We conduct all experiments in NVIDIA 4090. For our evaluation, we have selected
the public pre-trained AudioLDM 2-Music model (Liu et al., 2023b)). To ensure a thorough and
multidimensional assessment, we measure performance using a suite of metrics that includes CLAP,
LPAPS, Structure Distance, and FAD and conduct on an NVIDIA 4090. The computation of these
metrics is facilitated by the CLAP models provided within the AudioLDM _eval package, which is
publicly available at https://github.com/haocheliu/audioldm_eval,

Our methodology is aligned with the protocol established by |Manor & Michaeli| (2024)), where we
have adopted a forward guidance scale of 3 and a reverse guidance scale of 12 for DDPM inversion.
In contrast, the DDIM inversion employs a guidance scale of 5, and SDEdit utilizes a guidance scale
of 12. For Disentangled Inversion Control, we have determined the forward guidance to be 1 and the
reverse scale to be 5. These specific guidance scale values are selected after extensive experimental
exploration, the details of which are discussed in Appendix

C.1 METRICS

Objective Metrics There are details about four metrics to evaluate the performance of our novel
Disentangled Inversion Control framework: (1) CLAP Score (Elizalde et al.,[2023)): This criterion
evaluates the degree to which the output conforms to the specified target prompt. (2) Struture
Distance (Ju et al), 2023): Leveraging self-similarity of audio features to measure the structure
distance between the source and edited audio. (3) LPAPS (Iashin & Rahtu, 2021} [Paissan et al.|
2023): An audio adaptation of the Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al.,
2018)), this measure evaluates the consistency of the edited audio with the source audio. (4) FAD
(Fréchet Audio Distance) (Kilgour et al.,2018): Analogous to the FID used in image analysis, this
metric calculates the distance between two distributions of audio signals.

Subjective Metrics To directly reflect the quality of the audio generated, we carry out MOS (Mean
Opinion Score) tests. These tests involve scoring two aspects: MOS-Q, which assesses the edited
quality of the audio, and MOS-P, which measures the content preservation of edited audio.

For assessing editing fidelity, the evaluators were specifically directed to “Does the natural language
description align with the audio?” They were provided with both the audio and its corresponding
caption. They were then asked to give their subjective rating (MOS-Q) on a 20-100 Likert scale.

To assess essential content preservation, human evaluators were presented with source audio, target
audio, source prompt, and target prompt. They were then asked to answer the question, “To what
extent does the target audio retain the essential features of the source audio, such as melody, instru-
mentation, and overall style?” The raters had to select one of the options: “completely,” “mostly,” or
“somewhat,” using a 20-100 Likert scale for their response.

Our crowd-sourced subjective evaluation tests were conducted via Amazon Mechanical Turk where
participants were paid $8 hourly.
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Guidance Scale |  Structure |  Background Preservation | CLIP Similariy

Inverse | Forward | Distance, ;s | | LPAPS| FAD| MSE, ;s | | CLAP Score 1
1 1 8.56 0.12 1.17 3.25 0.51
1 2.5 11.97 0.15 2.49 4.54 0.56
1 5 15.99 0.17 4.22 6.07 0.61
1 7.5 15.99 0.17 4.22 6.07 0.59
2.5 1 22.80 0.20 6.39 8.65 0.30
2.5 2.5 14.24 0.16 2.50 5.40 0.46
2.5 5 14.46 0.16 3.31 5.49 0.53
2.5 7.5 15.51 0.17 3.94 5.89 0.53
5 1 29.94 0.24 9.81 11.36 0.20
5 2.5 29.16 0.24 9.11 11.07 0.22
5 5 22.15 0.20 5.59 8.40 0.36
5 7.5 17.57 0.18 5.57 6.67 0.48
7.5 1 3141 0.25 10.62 11.92 0.20
7.5 2.5 31.05 0.25 10.14 11.78 0.20
7.5 5 29.20 0.24 9.32 11.08 0.24
7.5 7.5 24.16 0.22 7.33 9.17 0.34

Table 6: Ablation Studies on Different Guidance Scale

Method Inference Time
AudioLDM 2 42.5s
MusicGen 83.3s
SDEdit 44 3s
DDIM Inversion 81.6s
MusicMagus 89.0s
DDPM-Friendly 33.3s
MEDIC 92.0s

Table 7: Inference Time across different methods.

D QUANTITATIVE RESULTS

Analyses on Different CFG Scale The lack of systematic experiments that determine the optimal
combination of guidance scales for achieving the best editing performance, and analysis of how
these guidance scales affect the final consequence in both reconstruction and editing, we conduct this
experiment to find the best scales.

Inference Time We compare the inference time of our method with baselines, and the results are
compiled in Table [/} MEDIC achieves the comparative inference time with generation models and
inversion techniques. We will make an attempt to reduce the inference time of zero-shot music editing
in our future work.

E POTENTIAL NEGATIVE SOCIETAL IMPACTS

MEDIC may also lead to potential negative societal impacts that are worthy of consideration. If
the data sample of the training model is not diverse enough or biased, the Al-generated music
may be overly biased toward one style or element, limiting the diversity of the music and causing
discrimination.MEDIC could be used to create fake audio content, such as faking someone’s voice or
creating fake musical compositions, posing the risk of fraud and impersonation. Hopefully, all these
issues could be taken into consideration when taking the model for real use to avoid ethical issues.

F LIMITATIONS

In spite of the remarkable outcome of our method, due to the limitation of the generation model we
used, we are incapable of instigating a profound change.
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Due to the numerous steps it requires (T=200), the duration of computing distance is quite long. Thus,
we will implement a more powerful text-to-music generation model to support better editing, while
trying to use a consistency model or flow-matching model to achieve high-quality and fast music
generation in future work. We will make an attempt to edit more interesting and complex music tasks
in the future.

G QUALITATIVE RESULTS

For each type in ZoME-Bench, We provide samples to observe the capability of MEDIC intuitively.

G.1 CHANGE INSTRUMENT

In Figure[5] we show the capability of MEDIC to change the instrument. Here we edit the ground
truth music piece with the source prompt “a live recording of ambient acoustic [guitar] music” and
editing prompt “a live recording of ambient acoustic [violin] music”. The difference in instruments
can be observed in the Mel-spectrum.

edit: a live recording of ambient acoustic [violin] music

Figure 5: Editing Type 0 :Change Instrument

G.2 ADD INSTRUMENT

In Figure[6] we show the capability of MEDIC to add more instruments. Here we edit the ground
truth music piece with the source prompt “a heavy metal instructional audio with a distortion guitar”
and editing prompt “a heavy metal instructional audio with a distortion guitar [and drums]”. The
appearance of the new instrument can be observed in the Mel-spectrum which presents a drum sound
of high frequency.

G.3 DELETE INSTRUMENT

In Figure[7] we show the capability of MEDIC to delete instruments. Here we edit the ground truth
music piece with the source prompt “a lively ska instrumental featuring keyboard trumpets bass
[and percussion] with a groovy mood” and the editing prompt “a lively ska instrumental featuring
keyboard trumpets and bass with a groovy mood”. The vanishing of the instrument can be observed
in the Mel-spectrum.

G.4 CHANGE GENRE

In Figure[8] we show the capability of MEDIC to change the genre of a music piece. Here we edit the
ground truth music piece with the source prompt “a recording of a solo electric guitar playing [blues]
licks” and the editing prompt “a recording of a solo electric guitar playing [rock] licks”. The obvious
difference in genre can be observed in the Mel-spectrum.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

source: a heavy metal instructional audio with a distortion guitar

edit: a heavy metal instructional audio with a distortion guitar [and drums]

Figure 6: Editing Type 1 Add Instrument

mood

edit: a lively ska instrumental featuring keyboard trumpets and bass with a groovy mood

Figure 7: Editing Type 2 Delete Instrument

source: a recording of a solo electric guitar playing [blues] licks

Sm— — = = —— -

edit: a recording of a solo electric guitar playing [rock] licks

Figure 8: Editing Type 3 Change Genre
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G.5 CHANGE MoOOD

Mood is an important attribute of music. In Figure[9} we show the capability of MEDIC to change the
mood of a music piece. Here we edit the ground truth music piece with the source prompt “a recording
of [aggressive] electronic and video game music with synthesizer arrangements” and editing prompt
“a recording of [peaceful] electronic and video game music with synthesizer arrangements”. The
change of mood can be observed in the Mel-spectrum.

source: a recording of [aggressive] electronic and video game music with synthesizer arrangements

- - " . - - - -

edit: a recording of [peaceful] electronic and video game music with synthesizer arrangements

Figure 9: Editing Type 4 Change Mood

G.6 CHANGE RHYTHM

Rhythm represents the speed of the music. In Figure[T0] we show the capability of MEDIC to change
the Rhythm of a music piece. Here we edit the ground truth music piece with the source prompt “a
[slow] tempo ukelele tuning recording with static” and the editing prompt “a [fast] tempo ukelele
tuning recording with static”. The change of Rhythm can be observed in the Mel-spectrum. The
edited Mel-spectrum is much more intensive.

edit: a [fast] tempo ukelele tuning recording with static

Figure 10: Editing Type 5 Change Rhythm

G.7 CHANGE BACKGROUND

In Figure [IT] we show the capability of MEDIC to change the background of the instrument of a
music piece. Here we edit the ground truth music piece with the source prompt “an amateur ukulele
recording with a [medium to uptempo] pace” and editing prompt “an amateur ukulele recording
with a [steady and rhythmic] pace”. The change of instrument background can be observed in the
Mel-spectrum.
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source: an amateur ukulele recording with a [medium to uptempo] pace” and editing prompt
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edit: an amateur ukulele recording with a [steady and rhythmic] pace

Figure 11: Editing Type 6 Change Background

G.8 CHANGE MELODY

In Figure[I2] we show the capability of MEDIC to change the melody of a music piece. Here we edit
the ground truth music piece with the source prompt “this instrumental song features a [relaxing]
melody with a country feel accompanied by a guitar piano simple percussion and bass in a slow
tempo” and editing prompt “this instrumental song features a [cheerful] melody with a country feel
accompanied by a guitar piano simple percussion and bass in a slow tempo”. The change of Melody
can be observed in the Mel-spectrum.

2

source: this instrumental song features a [relaxing] melody with a country feel accompanied by a
guitar piano simple percussion and bass in a slow tempo
[E— i

P

edit: this instrumental song features a [cheerful] melody with a country feel accompanied by a guitar
piano simple percussion and bass in a slow tempo

Figure 12: Editing Type 7 Change Melody

G.9 EXTRACT INSTRUMENT

In Figure[T3] we show the capability of MEDIC to extract one certain instrument of a music piece.
Here we edit the ground truth music piece with the source prompt “a reggae rhythm recording with
bongos [djembe congas acoustic drums and electric guitar]” and editing prompt “a reggae rhythm
recording with bongos”. The change of instruments can be observed in the Mel-spectrum.

H SAFEGUARDS

In the processing of the data and models involved in this study, we fully considered the potential
risks. We ensure that all data sources are rigorously screened and vetted, and the model we used is
absolutely trained from the safe dataset to minimize the security risks of being misused.
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source: this instrumental song features a [relaxing] melody with a country feel accompanied by a
guitar piano simple percussion and bass in a slow tempo
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edit: this instrumental song features a [cheerful] melody with a country feel accompanied by a guitar
piano simple percussion and bass in a slow tempo

Figure 13: Editing Type 8 Extract Instrument
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