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Abstract

The human brain encodes stimuli from the environment into representations that
form a sensory perception of the world. Despite recent advances in understanding
visual and auditory perception, olfactory perception remains an under-explored
topic in the machine learning community due to the lack of large-scale datasets
annotated with labels of human olfactory perception. In this work, we ask the
question of whether pre-trained transformer models of chemical structures en-
code representations that are aligned with human olfactory perception, i.e., can
transformers smell like humans? We demonstrate that representations encoded
from transformers pre-trained on general chemical structures are highly aligned
with human olfactory perception. We use multiple datasets and different types of
perceptual representations to show that the representations encoded by transformer
models are able to predict: (i) labels associated with odorants provided by experts;
(ii) continuous ratings provided by human participants with respect to pre-defined
descriptors; and (iii) similarity ratings between odorants provided by human partic-
ipants. Finally, we evaluate the extent to which this alignment is associated with
physicochemical features of odorants known to be relevant for olfactory decoding.

1 Introduction

The human brain receives sensory input from the environment and encodes it into a high-dimensional
representation space, forming a perception of the world [1]. Recent studies have significantly
improved our understanding of the underlying mechanisms of visual, linguistic, and auditory percep-
tion [2–4]. Indeed, there is a significant level of alignment between human response (from neuron to
behavior) and activations of deep neural networks when provided with the same stimuli [5–14].

Despite these recent advances, human olfactory perception remains an under-explored topic. There is
no single organizing principle that determines the dimensions of odor space, making the characteriza-
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Figure 1: Evaluating representational alignment between human and pre-trained transformers.
Human participants are stimulated with two odorant substances and asked to rate the perceptual
similarity between them (Left). We encode representations of the same pair of odorants using
MoLFormer and compute the similarity between pairs of representations (Right). Finally, we measure
the alignment between the two systems.

tion of odor perception and its relation to chemical compounds an open and complex problem [15]. A
lack of universally accepted methods to describe odorants either quantitatively or qualitatively makes
this problem even more challenging. There are very few studies that have explored the mapping
of chemical structures to olfactory perception [16–19]. In addition, processing chemical olfactory
stimuli using deep neural networks has not been extensively investigated. Nevertheless, training the
existing supervised models usually requires an extensive effort by experts to label data.

Transformer-based models [20, 21] are a breakthrough in machine learning, surpassing the need for
extensive labeling by utilizing implicit supervision without the necessity for direct labels. These
models have demonstrated impressive performance in various tasks such as image [22], video [23],
and natural language processing [24]. More recently, they have also shown promising results in
encoding chemical structures [25].

In this work, we ask the question of whether representations of odorant chemical structures extracted
from transformers pre-trained on chemical structures align with human olfactory perception or, in
other words, can transformers smell like humans? We employ MoLformer [25], a state-of-the-art
transformer, which is pre-trained on chemical structures and we show that representations of odorants
extracted from this model:

• can predict labels assigned to odorants by experts (Section 4.1);

• can predict continuous perceptual ratings provided by human participants (Section 4.2);

• present a high correlation index with human perceptual similarity ratings (Section 4.3);

• present a high correlation index with physicochemical descriptors known to be relevant for
olfactory perception (Section 4.4).

Surprisingly these results hold for models that were not explicitly trained for the purpose of predicting
the human olfactory experience. To the best of our knowledge, we provide the first empirical study
on evaluating the alignment between odorant representations encoded by transformers and human
olfactory perception.

2 Related Work

The availability of larger datasets, together with advances in predictive methods, has led to an
increasing interest in the prediction of olfactory perception from molecular structures.

Olfactory perception prediction. Learning predictive models of olfactory from molecular structures
has been addressed mostly by the neuroscience community. Several works used standard chemoinfor-
matic representations of molecules to model olfactory perception [17, 19, 18]. Specifically, Snitz et
al. [18] proposed a computational framework and algorithm based on structural features of molecules
to predict perceptual similarities between odorant pairs. This algorithm leverages feature engineering
to identify the most relevant subset of features among 1433 physicochemical descriptors to predict
pair-wise odorant perceptual similarities.
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Later, Ravia et al. [17] extended this model to also include the perceived intensity of molecular
components. They employed 21 physicochemical descriptors discovered in previous works and
proposed a weighting approach for multicomponent odorants (MC-odorants) based on their perceived
intensity. They reported a higher correlation when employing the weighting approach compared to
using the same model without it. However, the representation and generalization capabilities of these
models are quite limited and unexplored.

Deep neural networks for odorants. Recently, Lee et al. [16] proposed a novel representation
learning model of odorants, based on a message-passing graph neural network [26], which they
refer to as Principal Odor Map (POM). To train this model, they curated and merged data from
Leffingwell [27] and GoodScent [28] databases to compile a dataset of about 5000 molecules with
138 expert-labeled odor descriptors. This model outperforms the baselines in multiple odor prediction
tasks and shows a relatively high alignment with human ratings in describing odorants. Nevertheless,
training this model requires labeled data, relying on subjective evaluations of numerous odorants by
experts. Besides being time-consuming and laborious, this process can introduce subjective biases
into the model, a concern magnified by our incomplete understanding of the foundational factors of
olfactory perception.

Large-scale molecular models. Large-scale pre-trained models, often known as foundation mod-
els [21], have been recently explored to perform diverse tasks by leveraging large amounts of unlabeled
data. MoLFormer [25] model has been proposed in the context of chemical prediction tasks, able to
extract rich representations from chemical structures. MoLFormer consists of a transformer-based
architecture, with linear attention and relative positional encodings. This model is trained using a
self-supervised approach, on multiple datasets (e.g., the PubChem [29] and ZINC [30] datasets) on a
masked token prediction loss.

3 Method

In this section, we provide a detailed description of the datasets utilized in this study and outline the
methodology for extracting both odorant (machine) and perceptual (human) representations. Addition-
ally, we present the main model and baseline methods employed, along with the evaluation metrics
used to assess their performance. Our experiments do not require significant computational resources:
we mostly train linear models that do not involve GPU usage or models that can be trained on a single
commercially available GPU under one hour. All computational code to reproduce our results is
available at https://github.com/Farzaneh-Taleb/transformer-olfactory-alignment

3.1 Datasets

We use the publicly available version of the following datasets provided by Pyrfume repository [31].

Leffingwell-Goodscent (GS-LF) [27, 28]. We employ a curated and merged version of the
Goodscents [28] and Leffingwell [27] datasets, provided by [32], following the procedure intro-
duced by Lee et al. [16]. This dataset contains 4983 molecules with 138 expert-labeled descriptors
(e.g. creamy, grassy), where each odorant may be linked to multiple descriptors.

Sagar [33]. This dataset contains the rating of 160 odorants by 3 human participants, with respect to
15+3 perceptual descriptors. In addition to 15 common descriptors among participants, there are 3
more descriptors that vary among them. We excluded these variable descriptors and focused solely
on the common descriptors among the participants. The provided ratings were already normalized
within the range of [-1, 1] and the mean ratings across all the subjects are computed for subsequent
analysis.

Keller [34]. This dataset contains ratings of 480 structurally and perceptually diverse molecules by
55 human participants, evaluating 23 descriptors. Participants were instructed to adjust a slider to
rate odorants according to individual descriptors, with the slider position subsequently translated into
a scale ranging from 0 to 100. Ratings were then averaged across all participants for further analysis.

Ravia [17]. This dataset contains similarity ratings of 195 unique pairs of MC-odorants and mono-
molecules by 94 participants. The similarity values were averaged across all the participants. In this
work, we disregarded the factor of odorant intensity and averaged similarity ratings based on the
unique pairs of odorants.
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Snitz [18]. This dataset includes similarity ratings from 139 participants and 359 unique pairs of
odorants. In each trial, participants were presented with two distinct odorants and asked to rate the
degree of similarity in their smells. These ratings were then averaged across all participants.

3.2 Odorant representations

Odorants can be described as a single molecule or a mixture of molecules, which we denote as
multicomponent odorants (MC-odorants). In this section we describe the method to extract odorant
representations from the main pre-trained model (MoLFormer) and our baseline models (DAM and
Open-POM).

MoLFormer. We employ MoLFormer [25] to encode SMILES strings associated with a single
molecule and extract a 768-dimensional vector from the last layer of the model. SMILES (simplified
molecular-input line-entry system) is a string-based representation that encodes relevant chemical
information such as the type of atoms, their bonds, and the substructures present in the molecule.
For MC-odorants, we average the extracted representations across all available mono-molecule
components within that MC-odorant. The odorant representation for each dataset is a matrix of
Xi ∈ Rn×768 where n is the number of unique odorants.

Open-POM. The principal odor map (POM) is a supervised-learning model, based on a message-
passing graph neural network [26], which is trained on the GS-LF datasets to predict odorant percep-
tual labels. We employ a publicly available version of this model, which we denote by Open-POM [32].
We train Open-POM for 150 epochs, using 30 different train-test splits, and we extract representations
from the penultimate layer of this model. The odorant representation for each dataset is a matrix
of Xi ∈ Rn×256 where n is the number of unique odorants. For MC-odorants, we average the
representations extracted for each individual molecule within the mixture.

Distance Angle Model (DAM). Snitz et al. [18] proposed a distance angle model (DAM) that uses 21
physicochemical descriptors to predict the similarities between pairs of odorants. We extract these 21
descriptors for each odorant using AlvaDesc [35] and discard 6 of them due to NaN values produced
by this software. We use the remaining subset of 15 physicochemical descriptors out of 21 to measure
similarity between odorants or train a linear mapping from them to the perceptual representation
space. The odorant representation for each dataset is a matrix of Xi ∈ Rn×15 where n is the number
of unique odorants. As suggested by Ravia et al. [17], we average the representations extracted for
each individual molecule within the mixture to compute representations for MC-odorants.

3.3 Perceptual representations

Perceptual representations of odorants are provided by human participants when exposed to odorant
stimuli. Perceptual olfactory data were collected in one of the following ways:

1. Experts label the odorants, where each odorant may be linked to multiple labels (e.g., [27, 28]).
The perceptual representation is a matrix of yi ∈ {0, 1}n×d where n is the number of unique
odorants and d is the number of classes.

2. Non-expert participants provided ratings with regards to a set of predefined descriptors (e.g.,
[33, 34].) In this case, the averaged perceptual representations over participants and replicas
form a matrix of yi ∈ [a, b]n×d, where n is the number of unique odorants, d is the number
of descriptors, and a and b denote the minimum and maximum values participants can use to
describe the odorants with respect to these descriptors.

3. Participants evaluated the perceived similarity between pairs of odorants (e.g., [18, 17]). In
this case, the averaged perceptual representations over participants and replicas are a vector of
yi ∈ [a, b]n×1 where n is the number of unique "pair of odorants" and a and b indicate the range
of values participants can use to rate the odorants’ similarity with respect to the descriptors.

3.4 Alignment between perceptual and odorants representations

We measure the similarity between two representation spaces directly when it is possible (Section
4.3), otherwise we train a linear model to predict perceptual representations for each odorant (Section
4.1, 4.2). We use nested 5-fold cross-validation to tune the hyper-parameters of the linear models
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Figure 2: ROC curve for linear classifiers trained on GS-LF representations extracted from three
different models. Each curve corresponds to a separate test split, with the thicker curve representing
the average performance across all splits. We highlight that MoLFormer outperforms DAM, despite
not being trained to predict perceptual labels but does not achieve the performance level of Open-
POM, which demonstrates the highest performance. The chance level is shown with red dashed line.

and assess evaluation metrics on the test set that was held out during the training phase using an
80%-20% train-test split. This process is repeated 30 times using 30 different train-test splits.

3.5 Evaluation metrics

In this section, we introduce the main evaluation metrics to measure the alignment in this paper.

Micro-averaged ROC-AUC score. The micro-averaged ROC-AUC score was computed to assess
the performance of each model for the multi-label classification task. The micro-averaged ROC-AUC
score is computed by aggregating true positive, false positive, true negative, and false negative values
across all classes.

Normalized Root Mean Squared Error (NRMSE). The root mean squared error (RMSE) is the
difference between the observed values and predicted ones for the regression task. Here, we normalize
it by the range of true observations – i.e., NRMSE = RMSE/(max(y)− min(y)).

Pearson Correlation Coefficient (CC). We report the Pearson correlation coefficient between
predicted results and real values. It measures the linear correlation between two sets of data and is
the ratio between the covariance of two variables and the product of their standard deviations.

4 Results

In this section, we evaluate whether the representations encoded by pre-trained models of chemical
data can predict the human olfactory experience despite not being explicitly trained for this purpose.
First, we focus on a subset of experiments aimed at predicting expert-assigned labels from odorants
through linear mapping from representations to perceptual descriptors (Section 4.1). Subsequently,
we aim to predict continuous scores provided by human participants (Section 4.2). Finally, we seek
to predict the direct similarity scores from the representations extracted from odorants (Section 4.3).
Additionally, we provide insights into the potential reasons underlying the observed alignments
(Section 4.4).

4.1 Expert-assigned labels classification

To assess the performance of MoLFormer in predicting expert-assigned labels for odorants, we
implemented a linear mapping from the representations extracted by MoLFormer to the odorant rep-
resentations extracted from GS-LF dataset. First, the dimensionality of the extracted representations
is reduced to 20 using PCA, followed by z-scoring of each feature. Then, we train individual logistic
regression models for each descriptor. This process was repeated 30 times, each with a different
train-test split, to quantify the uncertainty of the results.
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Figure 3: Visualization of odorant representations encoded by different models on the GS-LF
dataset using the figure layout suggested by [16]. We plot the first and second principal components
(PCs) of the representation spaces. Areas dense with molecules that have broad category labels
(floral, meaty, or ethereal) are shaded, while areas dense with narrow category labels are outlined.
MoLFormer captures the perceptual relationship between different odorants in its representation
space, despite not being explicitly trained for this purpose.

We apply the same procedure without dimensionality reduction to DAM model representations. For
the Open-POM model, which is already trained end-to-end and supervised on the same dataset, we
directly extracted the predictions for the test set without retraining the model. As shown in Figure 2
the MoLFormer model achieves high ROC-AUC scores in odorant classification, outperforming the
DAM model, which is trained using 15 physicochemical descriptors. However, the performance of
MoLFormer is lower than that of Open-POM, which is trained end-to-end with supervision on the
same dataset.

An additional experiment is conducted to understand the degree of perceptual details captured in the
odorant representation space of MoLFormer by comparing odorant representations encoded by this
model with the representations encoded by Open-POM. In Figure 3 we depict the first two principal
components of the representations. We highlight the similarity between the representations encoded
by both Open-POM and MoLFormer and observe that the latter is able to capture the perceptual
relationship between different odorants despite not using any perceptual labels during training (unlike
the supervised Open-POM Model).

4.2 Continues perceptual rating prediction

To evaluate the capabilities of the MoLFormer model to predict continuous rating scores with respect
to pre-defined descriptors, provided by human participants, we train separate linear regression
models with regularization applied using the Lasso penalty for each descriptor. Once again, the
dimensionality of the extracted representations is reduced to 20 using PCA (for MoLFormer and
Open-POM), followed by z-scoring of each feature. This procedure is repeated using 30 different
train-test splits.

The results of these experiments are shown in Table 1 and Figure 4. Table 1 shows the average
Pearson correlation coefficient and NRMSE across all descriptors, while Figure 4 presents the results
for each individual descriptor. As shown in Table 1, overall, none of the models exhibit a high
correlation. Nevertheless, MoLFormer slightly underperforms compared to Open-POM in both
datasets. However, it performs better than DAM for the Keller dataset but worse than DAM for the
Sagar dataset, where DAM even outperforms Open-POM.
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Table 1: Performance of the models to predict continuous ratings averaged across all perceptual
descriptors. We compute the average Pearson correlation coefficient (CC) and normalized root mean
squared error (NRMSE) across all descriptors. MoLFormer shows slightly worse performance than
Open-POM but better than DAM for the Keller dataset and worse than DAM for the Sagar dataset,
where DAM outperforms Open-POM.

Keller Sagar

MoLFormer Open-POM DAM MoLFormer Open-POM DAM

CC (↑) 0.20± 0.00 0.22± 0.01 0.17± 0.00 0.25± 0.01 0.29± 0.01 0.35± 0.01
NRMSE (↓) 0.15± 0.00 0.15± 0.00 0.15± 0.00 0.19± 0.00 0.18± 0.00 0.17± 0.00
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Figure 4: Performance of the models to predict continuous ratings per descriptor. We computed
Correlation and NRMSE between predicted and actual ratings per perceptual descriptor. Despite
not being trained to predict human olfactory labels, the MoLFormer model performs on par with the
Open-POM and DAM models.

According to Figure 4 MoLFormer model performs on par with the Open-POM and DAM models,
which are trained with supervision in predicting the rating for each descriptor. In summary, although,
on average, MoLFormer performs slightly worse than Open-POM, it still demonstrates a similar
degree of alignment, especially despite the absence of supervision in its training process.

4.3 Representational similarity analysis

In order to evaluate the direct alignment between the odorant similarities encoded by MoLFormer
and those obtained from human participants, we separately encode each odorant by MoLFormer
(and the baseline models) and compute the cosine similarity between the extracted representations.
Subsequently, we compute the Pearson correlation between the similarity scores computed by the
models and those provided by human participants in the Ravia and Snitz datasets. The results are
presented in Figure 5a.

These results show that the MoLFormer is able to extract representations that encode information
related to the human olfactory perception, despite not having access to that information during model
training. We highlight a significant high correlation between perceptual and odorant representation
for the Snitz (r = 0.64, p < 0.0001) and Ravia datasets (r = 0.66, p < 0.0001).
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Figure 5: Representational similarity analysis for Snitz and Ravia datasets: a) Correlation coeffi-
cients between similarity scores provided by human participants and computed using representations
encoded by the different models ; b) Correlation coefficients considering odorant representations
extracted from different layers of the MoLFormer model.

The comparison with the baseline models indicates that it performs on par with the Open-POM
model and significantly outperforms the DAM model. These results suggest that, despite being
trained with some form of supervision, these models may struggle to effectively extract similarities
between odorants. Additionally, the findings demonstrate that MoLFormer is more proficient at
identifying similarities between pairs of odorants than mapping them to a set of predefined descriptors.
This superior performance may be due to the model’s ability to capture a measure of similarity, as
perceived by humans, rather than introducing subjective language bias associated with pre-defined
descriptors.

Finally, we aim to evaluate whether the depth of the layer in the MoLFormer model, from which
we extract the odorant representations, affects the representational alignment. To assess this, we
repeat the described procedure in this section for each layer separately. As shown in Figure 5b,
representational alignment improves with increasing layer depth, indicating that deeper layers of the
transformer are more aligned with high-level perceptual representations.

4.4 Decoding relevant physicochemical features from pre-trained representations

To evaluate whether MoLformer effectively extracts features from chemical structures relevant to
olfactory perception, we evaluate the alignment of MoLFormer with physicochemical descriptors
that are used in the DAM model. To do so, we train 15 linear regression models, each one to predict
a single physicochemical descriptor from the extracted representations of the MoLFormer. We
subsequently evaluate the correlation between the predicted and true values. As shown in Figure 6,
MoLformer demonstrates a high degree of alignment in predicting these values. Out of the 15
physiochemical descriptors, MoLformer successfully predicts the values for 13 descriptors as well as
or better than the Open-POM model.

Next, we evaluate whether this alignment changes across the layers of MoLformer. Therefore, we
repeat the same procedure for each layer separately. As illustrated in Figure 7, the alignment with
the identified chemical features decreases with increasing layer depth. However, as demonstrated in
Figure 5b, the alignment with perception improves. These results collectively are consistent with
well-known principles in vision models, where the lower layers typically capture low-level, localized
features like edges and textures, while deeper layers gradually shift toward higher-level, abstract
representations, such as shapes and objects[36]. Nonetheless, additional investigation is required to
fully reveal and comprehend this potential hierarchical structure.
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Figure 6: Performance of the models to predict relevant physicochemical descriptors. We com-
puted Correlation and NRMSE between the predicted and actual values of descriptors. MoLFormer
is able to predict 13 out of 15 physicochemical descriptors related to smell as well as or better than
the Open-POM model, demonstrating high alignment with physicochemical descriptors.
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5 Discussion

In this study, we investigated the alignment between odorant representations encoded by the MoL-
Former, a self-supervised transformer model pre-trained on chemical structures, and human olfactory
perception. We evaluated the alignment between these representations by analyzing the similarity
between them or finding a linear mapping between the representations. Additionally, we offered
insights into the potential reasons behind the observed alignments by exploring relevant chemical
features extracted by the model.
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Perceptual prediction from pretrained models. We demonstrate for the first time that representa-
tions extracted from pre-trained large models, solely trained on chemical structures, align closely
with the perceptual representations of odorants. This finding suggests that odorant perception can be
accurately predicted from chemical structures. Furthermore, we show that this model can predict a
subset of physicochemical descriptors known to be relevant to olfactory perception. Together, these
results offer valuable predictions for chemists and neuroscientists to explore in future research.

Evaluating alignment across multiple datasets. To evaluate alignment from various perspectives,
we designed three different experiments. First, we leveraged a dataset with expert-provided labels for
odorants, assessing the model’s ability to independently predict multi-target binary labels for each
odorant. This task did not involve variability from human participants or continuous odorant ratings.
MoLFormer exhibited relatively high performance in predicting these binarized labels. Second,
we used datasets containing average continuous ratings from human participants, which inherently
present more challenges due to variability among non-expert participants’ ratings. Our evaluation
revealed that while all models performed poorly on this task, MoLFormer performed comparably to
supervised models. Lastly, we evaluated direct similarity scores between odorants from two datasets,
examining the alignment between human-provided similarity scores and those computed from the
representations encoded by models. MoLFormer showed a high alignment, highlighting its ability to
predict similarity between odorants rather than relying on human-made descriptors. This suggests that
pre-defined descriptors for describing odorants may need to be more carefully chosen, and models
trained with these descriptors might not accurately reflect the true similarity between odorants.

Reduction in alignment with physicochemical descriptors across layers of the models. We
conducted a complementary analysis to identify potential reasons underlying the observed perceptual
alignment. Our focus was on the subset of features previously identified as significant for decoding
olfactory perception from chemical structures. Our findings indicate that MoLFormer representations
exhibit a high degree of alignment with these features. While most features show strong alignment,
a few demonstrate less alignment (such as nRCOSR). These results collectively suggest that while
these features are important, their significance varies. Additionally, our analysis of the predictability
of these features across the different layers of the model shows that as we go through the layers, we
observe a decrease in alignment with physicochemical descriptors despite an increase in alignment
with perception. This observation aligns well with established principles in vision models, where
lower layers have been shown to capture low-level, local features such as edges and textures, while
progressively transitioning to align with higher-level, abstract representations, such as shapes and
objects, in deeper layers [36]. However, further exploration is needed to fully uncover and understand
this potential hierarchy.

Limitations. Our work is perhaps best understood in the context of its limitations. We do not directly
take into consideration the intensity or concentration of each individual molecule within a mixture
during the encoding of odorants. Incorporating these intensity factors in future work could potentially
improve the alignment. Additionally, our research was constrained by the available datasets, which
typically lack sufficient variations in different odorants, particularly for continuous rating regression
tasks. Furthermore, we only considered the average rating scores and did not evaluate the alignment
on a per-subject basis.

Future Work. We aim to leverage these findings to develop improved models of olfactory perception.
Specifically, we plan to utilize unsupervised models trained exclusively on chemical structures
to identify which chemical features are crucial for predicting perception, thereby avoiding the
introduction of biases from human subjective perception. Additionally, we intend to investigate
the mechanisms underlying olfactory perceptions decoded from chemical features. The observed
alignment trends across different layers of the model may provide key insights into this process.
Finally, evaluating representational alignment between the extracted representations from transformers
trained on chemical structures and fMRI data from the brain can provide deeper insights into the
underlying mechanisms of olfactory perception.
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A Noise Ceiling

In order to evaluate the quality of data and the upper limit of the models, we computed the noise
ceiling (Equateion 1, 2) for the Sagar and Keller datasets as these are the only ones that have
multiple evaluators for each odorant, and those are publicly available. The results show that we have
the average noise ceilings of 0.28± 0.1 for the Keller dataset and 0.7± 0.05 for the Sagar dataset
(Table S.1, S.2). The results show that the data of the Sagar dataset is less noisy, and there is still
room for the models to increase the alignment. However, the Keller dataset alignment results are
relatively close to the noise ceiling value.

rj = corr(Responses from Participant j,Mean Response across participants) (1)

Noise Ceiling =
1

N

N∑
j=1

rj (2)

Table S.1: Noice ceiling per descriptor for Sagar dataset

Descriptor Bakery Burnt Cool Decayed Fishy Floral Fruity Intensity

Noise Ceiling 0.68 0.70 0.68 0.72 0.75 0.73 0.79 0.75

Descriptor Musky Pleasantness Sour Spicy Sweaty Sweet Warm

Noise Ceiling 0.71 0.74 0.66 0.66 0.62 0.72 0.61

Table S.2: Noice ceiling per descriptor for Keller dataset

Descriptor Acid Ammonia Bakery Burnt Chemical Cold Decayed

Noise Ceiling 0.21 0.21 0.32 0.27 0.27 0.17 0.29

Descriptor Familiarity Fish Flower Fruit Garlic Grass Intensity

Noise Ceiling 0.33 0.21 0.26 0.37 0.31 0.25 0.53

Descriptor Musky Pleasantness Sour Spices Sweaty Sweet Warm

Noise Ceiling 0.22 0.52 0.23 0.24 0.24 0.41 0.17

B Representational Similarity Matrix (RSM)

In order to better visualize how the models and humans represent different odors, we visualized
representational similarity matrices for humans participants, Open-Pom, and MoLFormer across pairs
of odorants for Ravia dataset in Figure S.1. The white cells show the pair of odorants for which no
similarity score is available. MC-odorants corresponding to each mixture are provided in Table S.3

C t-SNE Visualizations

We also reduce representations of GS-LF dataset extracted from MoLFormer and Open-POM datasets
using t-SNE (Figure S.2).

D Fine-tuned MolFormer

We fine-tuned MoLFormer using GS-LF dataset which is a large and inclusive dataset of odorants.
Then we extracted representations for all the datasets and tasks. Figure S.3 shows ROC-AUC curve
for GS-LF dataset. Figure S.4 demonstrates the results for the continuous rating prediction tasks for
Keller and Sagar datasets, and FigureS.5 shows the results for RSA for Ravia and Snitz datasets.
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Figure S.1: RSM for different pairs of odorants for Ravia dataset.

(a) MoLFormer (b) Open-POM

Figure S.2: t-SNE Visualization of odorant representations encoded by different models on the
GS-LF dataset using the figure layout suggested by [16]. We reduced dimensionality using t-SNE.
Areas dense with molecules that have broad category labels (floral, meaty, or ethereal) are shaded,
while areas dense with narrow category labels are outlined. MoLFormer captures the perceptual
relationship between different odorants in its representation space, despite not being explicitly trained
for this purpose.

E Decoding chemical features

In this section, we present the results for predicting physicochemical descriptors from odorants
for each dataset separately (Figure S.6-S.10). We observe that MoLFormer can better predict
physicochemical descriptors in most cases.

F Decoding chemical features across layers of MoLFormer

We also show how the alignment between physicochemical descriptors changes across layers of the
model for each dataset separately. As it is shown, alignments decrease across layers. This might
be because the first layers extract more low-level information while deeper layers, extract more
high-level features.
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Table S.3: MC-odorants corresponding of indices in RSM presented in Figure S.1
Index MC-Odorant

0 126;520296;7122;6050;5273467;5364231

1 1550470;778574;11980;61771;6998;444972;14104;325;23642

2 2214;556940;8180;8077;325;11086

3 240;2758;8130;8129;7710;7059;4133;8918;957;6654

4 240;637511;7731;2758;12178;62336;8635

5 31276;62433;8129;12178;7519;18827;10722

6 31276;8148;7762;18827;7714

7 326;26331;1140;11002

8 5281168;637511;7685;12178;4133;7991;6054;7770;7714

9 5363233;10925;5365049;6050;5273467;31219;7765;23642

10 5363233;89440;126;11980;61293

11 556940;7601;11086;61670

12 565690;8180;5365049;6560;8077;31219;6998;7765;6997;18554

13 62351;1550470;7657;6997;6560;5273467;18554;2214

14 62351;565690;10925;7593

15 62433;8797;2758;3314;8635;61138;11002;6054;10722

16 6544;62433;7519;7685;3314

17 6544;93009;8130;8103;7710;7059;8918;7714

18 7194;520296;61670;637776;23642

19 7194;89440;6560;17121;126;637776;9012

20 7410;240;93009;8635

21 7410;326;2758;62444;7770;1140

22 7410;5281168;8797;7519;8129;7710;6654;8030

23 7519;8148;31252;8103;7710;11002

24 7601;778574;61331;8180;17121;24834;7593

25 7657;61331;61771;61293;24834;31219;444972;5367698;14104;5364231

26 8797;7731;7966;3314;62336;7059;7991;61138;6054;11002

27 89440;7657;7122;61293;7593;5367698;5364231;14104;9012
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Figure S.3: ROC curve for the linear classifier trained on GS-LF representations extracted from
the fine-tuned MoLFormer. Each curve corresponds to a separate test split, with the thicker curve
representing the average performance across all splits.
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Figure S.4: Performance of the models to predict continuous ratings per descriptor. We computed
Correlation and NRMSE between predicted and actual ratings per perceptual descriptor. Fine-tuned
MoLFormer shows slightly worse performance in predicting continues ratings.
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Figure S.6: Performance of the models to predict relevant physicochemical descriptors for
Keller dataset. MolFormer performs slightly better than Open-POM in predicting descriptors.
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Figure S.7: Performance of the models to predict relevant physicochemical descriptors for Sagar
dataset. MolFormer performs slightly better than Open-POM in predicting descriptors.
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Figure S.8: Performance of the models to predict relevant physicochemical descriptors for Ravia
dataset. MolFormer performs slightly better than Open-POM in predicting descriptors.
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Figure S.9: Performance of the models to predict relevant physicochemical descriptors for Snitz
dataset. MolFormer performs slightly better than Open-POM in predicting descriptors.
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Figure S.10: Performance of the models to predict relevant physicochemical descriptors for
GS-LF dataset. MolFormer performs slightly better than Open-POM in predicting descriptors.
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Figure S.11: Correlation between the actual and predicted value of physicochemical descriptors
in Keller dataset diminishes as the layer depth increases .
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Figure S.12: Correlation between the actual and predicted value of physicochemical descriptors
in Sagar dataset diminishes as the layer depth increases .
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Figure S.13: Correlation between the actual and predicted value of physicochemical descriptors
in Ravia dataset diminishes as the layer depth increases .

21



0.2

0.6

1 nCIR ZM1 GNar S1K piPC08

0.2

0.6

1 MATS1v MATS7v GATS1v Eig05_AEA(bo) SM02_AEA(bo)

2 4 6 8 1012
0.2

0.6

1 SM03_AEA(dm)

2 4 6 8 1012

SM10_AEA(dm)

2 4 6 8 1012

SM13_AEA(dm)

2 4 6 8 1012

SpMin3_Bh(v)

2 4 6 8 1012

nRCOSR

Layer

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

Figure S.14: Correlation between the actual and predicted value of physicochemical descriptors
in Snitz dataset diminishes as the layer depth increases .
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Figure S.15: Correlation between the actual and predicted value of physicochemical descriptors
in GS-LF dataset diminishes as the layer depth increases .
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the current work in the penultimate paragraph of
the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23



Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose all the information needed to reproduce the main experimen-
tal results of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The parts of main experiment is uploaded and the whole code is available
through the anonymized link provided in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars suitably and correctly defined.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe sufficient information on the computer resources needed to
produce the experiments in the supplementary material section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original owners of assets (e.g., code, data, models), used in the paper, are
properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing. Although we have used datasets
that involve human subjects, we did not collect those data and used the datasets that are
already approved and their details are publicly available in the original work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Although we have used datasets that involve human subjects, we did not collect
those data and used the datasets that are already approved and publicly available.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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