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Abstract

The task of multiple choice question answer-001
ing (MCQA) is to identify the correct answer002
from multiple candidates given a passage and003
a question. It is typically approached by esti-004
mating the matching score among the triple of005
the passage, question and candidate answers.006
Existing methods decouple this estimation into007
several pairwise or dual matching steps, that008
limited the ability of assessing cases with009
the subtle difference from candidate answers.010
This paper introduces a Context-guided Triple011
Matching algorithm, which models the match-012
ing among the triple simultaneously. Precisely,013
the proposed matching takes one component014
from the triple as the context, and estimates015
its semantic matching between the other two.016
Additionally, a contrastive term is adopted to017
model the dissimilarity between the correct an-018
swer and distractive ones. The proposed al-019
gorithm is validated on several benchmarking020
MCQA datasets and outperforms the state-of-021
the-art models by a large margin.022

1 Introduction023

Question answering is one of the most popular024

and challenging research topics in machine reading025

comprehension (MRC). Existing studies of ques-026

tion answering focus on either extracting spans (a027

short but continuous sequence of words) from the028

given passage (Seonwoo et al., 2020; Joshi et al.,029

2020) or selecting the correct answer from a set030

of candidate answers, known as multiple choice031

question answering (MCQA) (Duan et al., 2021; Li032

et al., 2021; Zhang et al., 2020a).033

Approaches to MCQA usually consist of a two-034

step process. In the first step, words in the triple035

(i.e. passage (p), question (q) and answer(a)) are036

encoded (usually by pre-trained language models)037

into fixed length of vectors. Typical models in-038

clude Bert(Devlin et al., 2019), Roberta(Liu et al.,039

2019), and XLNet(Yang et al., 2019), etc. The sec-040

ond step is to utilize those vector representation041

and further match semantically among the triple 042

(Chaturvedi et al., 2018; Wang et al., 2018; Zhang 043

et al., 2020b; Zhu et al., 2022). In the recent work 044

of DCMN+(Zhang et al., 2020a), the conventional 045

unidirectional matching (Chaturvedi et al., 2018; 046

Wang et al., 2018) is extended to a bidirectional one 047

among the pairs of (p, q), (p, a), and (q, a), respec- 048

tively. The bidirectional matching improves the 049

capability of capturing the semantic relationship 050

among the triple, so as the performance, compared 051

with the previous unidirectional matching. Yet, 052

such bidirectional methods only consider the in- 053

teraction between two components from the triple, 054

which has limited its ability to handle cases with 055

the presence of subtle differences from candidate 056

answers. 057

Table 1: An example from the RACE dataset. The
evidence sentences (from the passage) and keywords
(from the question and candidate answers) are high-
lighted. DCMN+ picks answer A where the correct
answer is B.

Question: According to the passage, when we become
adults, _____?
Passage: Most people believe they don’t have imagination.
· · · but most of us, once we became adults, forget how
to access it. Creativity isn’t always connected with great
works of art or ideas. People at work and in their free
time routinely think of creative ways to solve problems.
· · · Here are three techniques to help you. · · ·
Answers:
A. most of us are no longer creative;
B. we can still learn to be more creative;
C. we are not as imaginative as children;
D. we are unwilling to be creative;

Table 1 shows an illustrative example from the 058

popular MCQA dataset (RACE (Lai et al., 2017)). 059

As observed, candidate answers contain lexically 060

same keyword (i.e. “creative”). Yet, with the ex- 061

isting pairwise/dual strategy, only two components 062

are matched at one time. As such, a matching 063

of (p, a) or (q, a) is hardly distinguishable given 064

similar candidates a (lacking of the third compo- 065

nent q or p); additionally, the matching of (p, q) 066
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is the same across all candidate answers (without067

the third component a). Therefore, answering this068

cloze question requires providing a context (i.e. the069

third component) in performing the conventional070

pairwise matching.071

This paper accordingly proposes a novel072

Context-guided Triple Matching (CTM). First, we073

extend the conventional pairwise to a triple match-074

ing by employing one component from the triple075

as the prior context. In other words, the proposed076

matching is performed to match between two com-077

ponents semantically with respect to this prior con-078

text, so the entire triple is matched at one time.079

Second, we further adopt a contrastive regulariza-080

tion in capturing the subtle semantic differences081

among answer candidates. The purpose is to maxi-082

mize the similarity of features from correct triple(s)083

while pushing away that of distractive ones, that084

has been neglected by existing methods.085

We summarize the contributions of this paper as086

follows1:087

• context is introduced into the matching pro-088

cess, and a context-guided triplet matching is089

proposed accordingly to improve the ability090

in effectively capturing semantic relationship091

from a passage, questions and answers; and092

• contrastive regularization is utilized to en-093

hance subtle semantic differences among sim-094

ilar candidate answers; and095

• extensive experiments are conducted on two096

widely used MCQA datasets to evaluate the097

proposed CTM, and state-of-the-art results are098

achieved (an improvement of approximately099

2.5 percentage points) in comparison with ex-100

isting methods.101

2 Related work102

Multiple choice question answering (MCQA) is a103

long-standing research problem from machine read-104

ing comprehension, where the key is to determine105

one correct answer (from all candidates) given the106

background passage and question. Several models107

have been proposed to utilize deep neural networks108

with different matching strategies.109

Chaturvedi et al. first concatenate the ques-110

tion and candidate answer, and calculate the111

matching degree against the passage via atten-112

tion (Chaturvedi et al., 2018). The work (Wang113

1 The source codes will be made publicly available from Github.

et al., 2018) treats the question and a candidate 114

answer as two sequences before matching them 115

individually with the given passage. Then a hi- 116

erarchical aggregation structure is constructed to 117

fuse the previous co-matching representation to 118

predict answers. Similarly, a hierarchical atten- 119

tion flow is proposed in (Zhu et al., 2018) to es- 120

timate the matching relationship based on the at- 121

tention mechanism at different hierarchical levels. 122

Zhang et al. propose a dual co-matching network in 123

(Zhang et al., 2020a), which formulates the match- 124

ing model among background passages, questions, 125

and answers bi-bidirectionally. 126

Apart from the aforementioned matching-based 127

work, another line of studies proposes to integrate 128

with the auxiliary knowledge. For instance, a 129

syntax-enhanced network is presented in (Zhang 130

et al., 2020b) to combine syntactic tree information 131

with the pre-trained encoder for better linguistic 132

matching. Duan et al. utilize the semantic role 133

labeling to enhance the contextual representation 134

before modeling the correlation (Duan et al., 2021). 135

More recently, the off-the-shelf knowledge graph 136

is leveraged to fine-tune the downstream MCQA 137

task in (Li et al., 2021). 138

Compared to existing matching work in (Wang 139

et al., 2018; Zhang et al., 2020a), the proposed 140

algorithm performs matching by introducing a con- 141

text (an entity from the triple of passage, question 142

and answer). This context serves as a background 143

knowledge to exploit the semantic relationship with 144

the remaining two entities. 145

3 Proposed method 146

The proposed method gradually identifies the best- 147

matching answer by coordinating the loss from 148

Triple Matching (TM) and Contrastive Regulariza- 149

tion (CR) simultaneously, as illustrated in Fig. 1. 150

Given an input triple of passage, question and an- 151

swer, a pre-trained language model is first utilized 152

for encoding textual contents. Then the TM module 153

enumerates this input triple and selects one entity 154

as the background context. The semantic relation- 155

ship is accordingly estimated using the remaining 156

two entities with regard to this selected context. At 157

last, the produced features from TM are utilized 158

for answer selection, while CR ensures feature en- 159

hancement so that the feature similarity between 160

correct triples is maximized, by contrasting to that 161

from distractive ones. 162
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Figure 1: Overview of the proposed Context-guided Triple Matching algorithm for MCQA, which is characterized
by a Triple Matching (TM) and Contrastive Regularization (CR) module. Taking answer-guided passage-question
matching (Ma) as an example, TM aims to estimate the semantic correlation between the selected a with anther
two entities (p and q). CR further captures the subtle difference (or highlights the feature dissimilarity) between
correct and distractive answers.

3.1 Encoding163

Let p, q and a be a passage, a question and a can-164

didate answer, respectively. A pre-trained model165

(e.g. BERT ) is adopted to encode each word from166

them into a fixed-length vector, yielding167

Hp = Enc(p),Hq = Enc(q),Ha = Enc(a),
(1)168

where Hp ∈ R|p|×l,Hq ∈ R|q|×l,and Ha ∈169

R|a|×l are relevant representation of p, q, and a,170

respectively, and l is the dimension of the hidden171

state.172

3.2 Triple matching173

To model the relationship among the triple of {p, q,174

a}, in TM we introduce an context-oriented mech-175

anism. That is, we select one component from the176

triple once (as the background context), and esti-177

mate its semantic correlation with the remaining178

two to further produce a context-guided represen-179

tation. Note that this proposed module involve all180

three entities from the triple simultaneously, while181

existing methods adopt the pairwise strategy that182

involves only two entities once.183

Taking the answer a as an example, below we184

show how to model the representation for the185

answer(context)-guided passage-question match-186

ing. At first, given the encoder output of Hp, Ha187

and Hq, we apply the bidirectional attention to188

calculate the answer-aware passage representation189

(Ep ∈ R|a|×l) and answer-aware question repre-190

sentation (Eq ∈ R|a|×l) as follows: 191

Gaq = SoftMax(HaWHqT ),Ep = GapHp

Gap = SoftMax(HaWHpT ),Eq = GaqHq,

(2)
192

where W ∈ Rl×l are learnable parameters, and 193

Gaq ∈ R|a|×|q| and Gap ∈ R|a|×|p| are the atten- 194

tion matrix between the answer-question, and the 195

answer-passage, respectively. 196

Next, we further allow the third entity to be in- 197

cluded by adopting the bidirectional attention again 198

(to embed the question for Ep and the passage for 199

Eq). As a result, the core of triple matching be- 200

comes: 201

Gpq = SoftMax(EpW1E
qT )

Gqp = SoftMax(EqW1E
pT )

Epqa = GpqHa,Eqpa = GqpHa

Spqa = ReLU(EpqaW2),S
qpa = ReLU(EqpaW2),

(3)

202

where W1, W2 ∈ Rl×l are learnable parameters, 203

and Epqa ∈ R|a|×l, Eqpa ∈ R|a|×l represent 204

passage-question-aware answer representation and 205

question-passage-aware answer representation, re- 206

spectively. The final representation of answer- 207

guided passage-question matching (i.e. Ma ∈ 208
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R2×l) is to aggregate the above as follows:209

Mpqa =MaxPooling(Spqa)

M qpa =MaxPooling(Sqpa)

Ma = [Mpqa;M qpa].

(4)210

In sum, the proposed TM module for answer-211

guided passage-question matching Ma is illus-212

trated on the left of Figure 1. Similarly, we enumer-213

ate the other two entities (that is, the question q and214

passage p) to compute the related representation215

for the question-guided answer-passage matching216

(ie., M q ∈ R2×l) and the passage-guided answer-217

question matching (ie., Mp ∈ R2×l), following218

the same procedure from Eq.(2) to Eq.(4).219

3.3 Answer selection220

With the triple-matching representations Ma, M q,221

Mp, we further concatenate them as the final rep-222

resentation C (ie., C = [Ma;M q;Mp]). Let223

Cc be the representation for the correct triple of224

{p, q, ac}. Accordingly, the selection loss can be225

computed as follows:226

LTM (p, q, ac) = −log
exp(CT

c V )∑
Ci∈CS exp(C

T
i V )

,

(5)227

where V ∈ Rl is a learnable parameter, S is the set228

of all candidate answers, and CS is the feature set229

for S.230

3.4 Contrastive regularization as231

enhancement232

The aforementioned TM module is performed to233

extract semantic representation from one candidate234

triple. Yet, there could be trivial (word) difference235

between the correct and distractive answers (as236

shown from Table 1). To highlight this dissimilarity,237

we accordingly utilize a contrastive regularization238

as a feature enhancement strategy.239

More precisely, for the given passage p, the ques-240

tion q, the set of candidate answers S , and the cor-241

rect answer ac, we aim to construct a group of242

positive (correct) triples (such as {p, q, ac}) and an-243

other group of negative (wrong) triples ({p, q, aw}),244

where aw ∈ S and aw 6= ac. Notably, MCQA is245

enjoyed owing to those distractive answers, which246

in nature form negative triples against the correct247

ones. Then the proposed contrastive regulariza-248

tion is to encourage the latent representation from249

correct triples staying closer to each other while250

pushing away those distractive ones.251

Furthermore, let Cc and Cw be the encoded 252

representation of {p, q, ac} and {p, q, aw} using 253

the TM module. To form the feature of another 254

positive triple, we adopt the dropout-based opera- 255

tion (say Drop(·)) from (Gao et al., 2021; Liang 256

et al., 2021), which has been proven to be an ef- 257

fective way of creating similar feature. That is, 258

we simply apply the TM module twice with differ- 259

ent dropout masks to produce the representation 260

of another positive triple, say C+
c = Drop(Cc). 261

Similarly, one could produce the negative feature 262

via C−c = Drop(Cw). Accordingly, the CR is de- 263

fined using the negative log likelihood (NLL) loss 264

as follows: 265

LCR(p, q, ac) = −log
exp(CT

c C
+
c /τ)∑

Ci∈CS/c∪C+
c ∪C−c exp(CT

c Ci/τ)
,

(6) 266

where τ is a pre-defined temperature. Notably, 267

with the presence of C−c , CS from Eq. (5) will be 268

reformulated as CS = CS ∪C−c , which is equiva- 269

lent to increasing the number of wrong answers. 270

3.5 Loss function 271

With two losses from the answer selection and 272

contrastive regularization, we propose to train the 273

model using the joint loss as follows: 274

L = LTM + λCRLCR, (7) 275

where λCR is a penalty term2. 276

3.6 Discussion 277

Next, we analyze the relationship between the pro- 278

posed method and existing pairwise algorithms. 279

Previous studies measure the matching represen- 280

tation (i.e. C from Eq. (5)) using the following 281

estimation: 282

• CNN-Matching (Chaturvedi et al., 2018): 283

Hqa =Enc([q; a]);Hp = Enc(p);

M =Att(Hqa,Hp);

C =Sim(Hqa,M).

(8) 284

2 There are another two training strategies, including pre-train
and alternate. The former is to update the model first using
LCR before finetuning with LTM , while the latter is to train
the model with LTM for (Nt − 1) iterations and switch to
LCR once, for every Nt iterations. However, the experimen-
tal results show the joint training outperforms pre-train and
alternate based model.
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• Co-Matching (Wang et al., 2018):285

Hq =Enc(q);Ha = Enc(a);Hp = Enc(p);

M qp =Att(Hq,Hp);Map = Att(Ha,Hp);

C =[Sim(M qp,Hp);Sim(Map,Hp)].
(9)286

• DCMN+ (Zhang et al., 2020a):287

Hq =Enc(q);Ha = Enc(a);Hp = Enc(p);

M qa =Att(Hq,Ha);M qp = Att(Hq,Hp);

Map =Att(Ha,Hp);

C =[Gat(M qa,Map);Gat(M qp,Map);

Gat(M qa,M qp)].
(10)288

Within aforementioned methods, Enc represents289

the encoder, Att stands for the attention operation,290

Sim is for the similarity calculation, Gat is a rest291

gate function, and [; ] is the vector concatenation.292

Note that existing methods adopted different imple-293

mentation ofEnc, Att, and Sim, etc. For instance,294

Enc in (Chaturvedi et al., 2018) and (Wang et al.,295

2018) has been implemented as CNN and BERT,296

respectively.297

Compared to the aforementioned methods, the298

proposed algorithm can be cast as their extension,299

with an additional consideration of triple match-300

ing and contrastively representing the correct an-301

swer(s). That is, the triple matching is to apply two302

attention layers to estimate the semantic relation-303

ship with regard to the selected context. As such,304

Eq.(2) to Eq.(4) can be equivalently represented as305

the following process:306

M qa =Att(Hq,Ha);Mpa = Att(Hp,Ha);

Mpqa =Att(Att(Mpa,M qa),Ha);

M qpa =Att(Att(M qa,Mpa),Ha).
(11)307

In addition, our method is also distinct from ex-308

isting ones by further integrating the contrastive309

loss. That is, we aim to distinguish the correct an-310

swers via pulling its relevant representation away311

from distractive ones, which has been neglected by312

existing pairwise-matching approaches.313

4 Experiments314

4.1 Datasets315

Two datasets adopted in the experiments are RACE316

(Lai et al., 2017) and DREAM (Sun et al., 2019).317

RACE is one of the widely used banchemark318

datasets for MCQA, which consists of subsets 319

RACE-M and RACE-H that correspond to the 320

reading-difficulty level of middle and high school, 321

respectively. DREAM is a dialogue-based exami- 322

nation dataset. It includes dialog passages as the 323

background and three options associated with each 324

individual question. Their statistics are shown in 325

Table 2. 326

Table 2: Summary of RACE and DREAM, where #a is
the averaged number of candidate answers per question,
and #w/a is the averaged length per answer.

Dataset passages Questions #a #w/a
RACE-M 7,139 28,293 4 4.9
RACE-H 20,794 69,394 4 6.8
DREAM 6,444 10,197 3 5.3

4.2 Implementation and settings 327

Two pre-trained language models, including the 328

BERTbase and BERTlarge, are adopted as the en- 329

coder for word-embedding. BERTbase consists 330

of 12-layer transformer blocks, 12 self-attention 331

heads, and 768 hidden-size, whereas BERTlarge 332

consists of 24-layer transformer blocks, 16 self- 333

attention heads, and 1024 hidden-size. They have 334

110M and 340M parameters, respectively. The 335

dropout rate for each BERT layer is set as 0.1. The 336

Adam optimizer with a learning rate setting of 2e−5 337

is adopted to train the proposed CTM. 338

During training, batch size is 4, number of train- 339

ing epoch is 3, and the max length of input se- 340

quences is set to 360 for RACE. For DREAM, 341

batch size is 4 and number of training epochs is 6, 342

and the max length of input sequences is set to 300. 343

For passages with more words, the sliding-window 344

strategy in (Jin et al., 2020) is adopted to split them 345

into appropriate-length chunks. For the contrastive 346

regularization, the dropout rate is 0.1 to produce 347

one positive and one additional negative, and the 348

temperature τ = 0.07. The CTM model is trained 349

on a machine with four Tesla K80 GPUs. Accuracy 350

acc = n+q /nq is used to measure the performance, 351

that is the ratio between correct-answered questions 352

(n+q ) and total questions (nq). 353

4.3 Results 354

We compared the performance of the proposed 355

CTM with the methods, including the public mod- 356

els from the leaderboard (i.e. BERT) and state-of- 357

the-arts (i.e. DCMN+(Zhang et al., 2020a)). To 358
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make a fair comparison, we are particularly inter-359

ested in those implemented with the same BERT360

encoder3.361

Results of the proposed CTM and comparing362

methods are shown in Table 3. The proposed363

method achieves state-of-the-art performance on364

both RACE and DREAM datasets. Not surpris-365

ingly, the BERTbase methods achieve generally366

worse performance compared to the counterparts367

using BERTlarge, which shows the benefit from a368

better pre-trained model. Although baseline per-369

formance (from BERTs) is further improved by370

bidirectional matching (Zhang et al., 2020a) or371

external knowledge (Zhang et al., 2020b), these372

strategies applied pairwise matching among the373

passage, question and answer independently, with-374

out considering the third entity from the triple. By375

contrast, the proposed CTM method utilize one en-376

tity as the background context to match with the377

other two, so that learned features are geared to-378

wards this selected context. The use of contrastive379

regularization further strengthens the learning to380

differentiate the correct answer from semantically381

closed but wrong ones. As a result, the proposed382

CTM substantially outperforms existing methods.383

Table 3: Results in accuracy (%),obtained by CTM and
the comparing methods on the on the test set. In the ta-
ble, “-B” and “-L” represents the base and large model
of the BERT encoder. “×” indicates there is no results
from the original reference, and “F” shows the original
reference doesn’t differentiate RACE-M and RACE-H
but only report the averaged result.

Algorithm RACE-M RACE-H DREAM

BERT(-B) 71.1 62.3 63.2
BERT(-L) 76.6 70.1 66.8

DCMN+(-B) 73.2 64.2 ×
DCMN+(-L) 79.3 74.4 ×
SG-Net(-L) 78.8 72.2 ×
CSFN(-B)F 68.3 68.3 64.0
DUMA(-B) × × 64.0
ConceptPlug(-B)F 65.3 65.3 65.3
ConceptPlug(-L)F 72.6 72.6 69.3

CTM(-B) 75.2 68.3 69.2
CTM(-L) 81.5 75.3 72.0

3 Given the availability of numerous pre-training models, we
could simply replace the adopted BERTs with other more
powerful encoders, such as (Liu et al., 2019), to improve
the performance of CTM. Alternatively, to use the additional
ground knowledge, such as the work (Zhang et al., 2020b),
could also lead to a potential improvement for CTM. We leave
these as the future work.

4.4 Ablation study 384

Experiments are conducted on the RACE dataset 385

(with the BERT-base encoder) to validate the con- 386

tribution from the proposed TM and CR loss. 387

On triple-matching This experiment compares 388

the performance of two different matching strate- 389

gies, i.e. the proposed TM against existing dual one. 390

The contrastive regularization in this experiment is 391

disabled by setting λCR = 0. 392

The DCMN+ model (Zhang et al., 2020a) is 393

adopted as the opponent, which achieves the 394

state-of-the-art performance. It consists of three 395

dual-matching components: question-answer pair 396

(M qa), question-passage pair (M qp), and answer- 397

passage pair (Map). By contrast, the proposed 398

CTM includes three components, including Ma 399

, Mp, M q, respectively (see Eq. ( 4)). Next, we 400

carefully ablate those components by enumerating 401

different combinations, and compare them with 402

DCMN+ using the RACE-H dataset. 403

Table 4: The performance comparison of the proposed
CTM against DCMN+ on the RACE-H testing set, by
employing combination of different pairwise matching.

Branch Acc Branch Acc

[Map;Mqp] 63.8 [Map;Mqa] 63.3
[Mqa;Mqp] 62.1 [Map;Mqa;Mqp] 64.2

Ma 48.6 Mq 64.1
Mp 63.8 [Ma,Mq] 64.6
[Mp,Mq] 64.8 [Ma,Mp] 52.3
[Ma,Mp,Mq] 65.7

Table 4 shows the results on the proposed TM 404

and DCMN+ (Zhang et al., 2020a). As observed, 405

the component of M q contributes mostly in the 406

answer selection, as it achieves the highest accu- 407

racy among all proposed components. This result 408

suggests the importance of utilizing question(s) as 409

the background context, rather than passage and/or 410

answers, to address MCQA tasks. 411

On the other hand, the component of Ma ob- 412

tains the worst performance, which reveals the lim- 413

itation of short answers. Note that the Ma is to 414

take the answer as the background context, and 415

estimate its correlation (using attention) between 416

passage/question. Yet, the attention-based correla- 417

tion is insignificant compared to others, mainly due 418

to the short sequence length from answers. 419

Additionally, we also notice that the combination 420

of all three component work best with the encoder, 421

which demonstrates a better matching outcome 422
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(65.7%) compared to that of DCMN+ (64.2%). The423

result not only indicates the necessity of utilizing424

all three proposed matching components, but also425

shows the superiority of the triple matching com-426

pared to existing dual matching.427

On contrastive regularization The impact of428

the contrastive regularization is mainly controlled429

by the penalty term λCR from Eq. (7). We evaluate430

the accuracy by setting different values to λCR as431

[0, 0.5, 1, 1.5]. Notably, with λCR = 0, the model432

degrades to the simple TM module.433

With the comparison result presented in Fig 2,434

we found out that the proposed CR helps in en-435

hancing the matching capability (i.e., via maximiz-436

ing the feature difference between the correct and437

wrong triple). For instance, the CTM achieves the438

best result when λCR = 0.5, compared to that of439

λCR = 0. Yet, the increase of the λCR value re-440

sults in the inferior accuracy (in particular with441

λCR = 1.5). The reason could be the compatibility442

between the learned features and the final classifi-443

cation. With a larger λCR, the model tends to learn444

distinct features to separate answers, which might445

not be useful for selecting the correct answer.

0 0.5 1 1.5
Penalty regularizer CR

60
65
70
75
80
85
90

AC
C

base +p +n +b65
66
67
68

Figure 2: Performance comparison at different values
of λCR.

446
Additionally, fixing λCR = 0.5, we further447

perform the ablation study on the created posi-448

tive/negative to manifest its efficacy and the results449

are illustrated in the zoom-in area from Fig 2. In450

particular, “base” represents the simple TM mod-451

ule, “+p” considers to only add one positive C+
c452

without additional negatives (i.e., C−c = ∅ in Eq.453

(6)), while “+n” represents the case of creating only454

one extra negative (C−c , and C+
c = ∅) so CS from455

Eq. (5) is reformulated as CS = CS ∪C−c . The456

model of “+b” applies both the positive and one457

extra negative sample.458

The results clearly show contributions from indi-459

vidual aspect to the final performance. For instance,460

adding extra negative sample (associated with the 461

case of “+n”) enforces the model to learn a better 462

representation for the correct triple, as the increas- 463

ing number of wrong answers. On the other hand, 464

adding C+
c is in favor of the model via award- 465

ing the answer difference (or pushing away wrong 466

triples from the correct ones). The combination 467

of adding C+
c and C−c outperforms other model 468

variants, including the simple TM module, that evi- 469

dently states the effectiveness of the proposed CR 470

loss. 471

Analysis In this section, the model capability is 472

further analyzed based on the question complexity. 473

Followed by (Zhang et al., 2020a), we randomly 474

select 10% samples (350 questions) from the test- 475

ing set of RACE-H, and manually annotate them 476

using question types of what, which, cloze and 477

other4. Additionally, we further tag them based 478

on the number of sentence required to answer the 479

question. The performance from two models is 480

accordingly shown in Table 5. 481

Table 5: Comparison of both the model performance
on the RACE-H testing set, where cases are catego-
rized by question types and the number of required sen-
tences (#s). The underlined results (%) are from CTM,
while the one within the bracket (%) represents that of
DCMN+.

Type #s=1 #s=2 #s> 3

what 69.2(68.3) 65.7(63.2) 62.5(58.3)
which 67.0(65.8) 67.9(64.6) 66.5(62.2)
cloze 70.2(63.3) 70.5(58.1) 66.0(55.8)
other 71.3(71.5) 68.7(64.6) 60.5(60.3)

The result clearly indicates the superiority of 482

the proposed algorithm when answering complex 483

questions, such as cloze test and more sentences 484

involved. For instance, the cloze test requires more 485

reasoning capability as the model needs to scan the 486

entire passage according to the given question and 487

all candidate answers. As such, the proposed triple 488

matching is more suitable than the conventional 489

dual-wise strategy. Additionally, as the cloze test 490

needs to fill in missing item(s), the textual differ- 491

ence from candidate answers also plays an impor- 492

tant role. As expected, the proposed contrastive 493

regularization helps in capturing those difference, 494

thereby achieving the improvement for the question 495

answering. 496

4 The “other” type including the rest question types, such as
why, who, when, where, and how.

7



Similarly, with complex questions that need to in-497

fer from (more than) 3 sentences, the result clearly498

reflects an improvement from CTM compared with499

DCMN+. With the increasing number of required500

sentences, the prediction accuracy from both mod-501

els has been reduced. Yet, CTM performs much sta-502

ble than its counterpart, which shows its robustness503

of handling cases with multiple evidence sentences.504

In conclusion, it can be empirically confirmed that505

the proposed CTM algorithm achieves comparative506

performance than dual-wise methods, in particular507

with complex question answering.508

5 Conclusion509

The task of multiple choice question answering510

(MCQA) aims to identify a suitable answer from511

the background passage and question. Using the512

dual-based matching strategy, existing methods de-513

couple the process into several pairwise steps, that514

fail to capture the global correlation from the triple515

of passage, question and answer.516

In this paper, the proposed algorithm introduces517

a context-guided triple matching. Concretely, a518

triple-matching module is used to enumerate the519

triple and estimate a semantic matching between520

one component (context) with the other two. Ad-521

ditionally, to produce more informative features,522

the contrasitve regularization is further introduced523

to encourage the latent representation of correct524

triples staying away from distractive ones. In-525

tensive experiments based on two benchmarking526

datasets are considered. In comparison to multiple527

existing approaches, the proposed algorithm pro-528

duces a state-of-the-art performance by achieving529

higher accuracy. To our knowledge, this is the first530

work that explores a context-guided matching in531

multiple choice question answering. We will con-532

tinue exploring inter/cross sentence matching as533

our future work.534
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