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Abstract

The task of multiple choice question answer-
ing (MCQA) is to identify the correct answer
from multiple candidates given a passage and
a question. It is typically approached by esti-
mating the matching score among the triple of
the passage, question and candidate answers.
Existing methods decouple this estimation into
several pairwise or dual matching steps, that
limited the ability of assessing cases with
the subtle difference from candidate answers.
This paper introduces a Context-guided Triple
Matching algorithm, which models the match-
ing among the triple simultaneously. Precisely,
the proposed matching takes one component
from the triple as the context, and estimates
its semantic matching between the other two.
Additionally, a contrastive term is adopted to
model the dissimilarity between the correct an-
swer and distractive ones. The proposed al-
gorithm is validated on several benchmarking
MCQA datasets and outperforms the state-of-
the-art models by a large margin.

1 Introduction

Question answering is one of the most popular
and challenging research topics in machine reading
comprehension (MRC). Existing studies of ques-
tion answering focus on either extracting spans (a
short but continuous sequence of words) from the
given passage (Seonwoo et al., 2020; Joshi et al.,
2020) or selecting the correct answer from a set
of candidate answers, known as multiple choice
question answering (MCQA) (Duan et al., 2021; Li
et al., 2021; Zhang et al., 2020a).

Approaches to MCQA usually consist of a two-
step process. In the first step, words in the triple
(i.e. passage (p), question (q) and answer(a)) are
encoded (usually by pre-trained language models)
into fixed length of vectors. Typical models in-
clude Bert(Devlin et al., 2019), Roberta(Liu et al.,
2019), and XLNet(Yang et al., 2019), efc. The sec-
ond step is to utilize those vector representation

and further match semantically among the triple
(Chaturvedi et al., 2018; Wang et al., 2018; Zhang
et al., 2020b; Zhu et al., 2022). In the recent work
of DCMN+(Zhang et al., 2020a), the conventional
unidirectional matching (Chaturvedi et al., 2018;
Wang et al., 2018) is extended to a bidirectional one
among the pairs of (p, ¢), (p, a), and (g, a), respec-
tively. The bidirectional matching improves the
capability of capturing the semantic relationship
among the triple, so as the performance, compared
with the previous unidirectional matching. Yet,
such bidirectional methods only consider the in-
teraction between two components from the triple,
which has limited its ability to handle cases with
the presence of subtle differences from candidate
answers.

Table 1: An example from the RACE dataset. The
evidence sentences (from the passage) and keywords
(from the question and candidate answers) are high-
lighted. DCMN+ picks answer A where the correct
answer is B.

Question: According to the passage, when we become
adults, ?

Passage: Most people believe they don’t have imagination.
-+ but most of us, once we became adults, forget how
to access it. Creativity isn’t always connected with great
works of art or ideas. People at work and in their free
time routinely think of creative ways to solve problems.
--- Here are three techniques to help you. - - -

Answers:

A. most of us are no longer creative;

B. we can still learn to be more creative;
C. we are not as imaginative as children;
D. we are unwilling to be creative;

Table 1 shows an illustrative example from the
popular MCQA dataset (RACE (Lai et al., 2017)).
As observed, candidate answers contain lexically
same keyword (i.e. “creative”). Yet, with the ex-
isting pairwise/dual strategy, only two components
are matched at one time. As such, a matching
of (p,a) or (q,a) is hardly distinguishable given
similar candidates a (lacking of the third compo-
nent ¢ or p); additionally, the matching of (p, q)



is the same across all candidate answers (without
the third component a). Therefore, answering this
cloze question requires providing a context (i.e. the
third component) in performing the conventional
pairwise matching.

This paper accordingly proposes a novel
Context-guided Triple Matching (CTM). First, we
extend the conventional pairwise to a triple match-
ing by employing one component from the triple
as the prior context. In other words, the proposed
matching is performed to match between two com-
ponents semantically with respect to this prior con-
text, so the entire triple is matched at one time.
Second, we further adopt a contrastive regulariza-
tion in capturing the subtle semantic differences
among answer candidates. The purpose is to maxi-
mize the similarity of features from correct triple(s)
while pushing away that of distractive ones, that
has been neglected by existing methods.

We summarize the contributions of this paper as
follows':

e context is introduced into the matching pro-
cess, and a context-guided triplet matching is
proposed accordingly to improve the ability
in effectively capturing semantic relationship
from a passage, questions and answers; and

e contrastive regularization is utilized to en-
hance subtle semantic differences among sim-
ilar candidate answers; and

e extensive experiments are conducted on two
widely used MCQA datasets to evaluate the
proposed CTM, and state-of-the-art results are
achieved (an improvement of approximately
2.5 percentage points) in comparison with ex-
isting methods.

2 Related work

Multiple choice question answering (MCQA) is a
long-standing research problem from machine read-
ing comprehension, where the key is to determine
one correct answer (from all candidates) given the
background passage and question. Several models
have been proposed to utilize deep neural networks
with different matching strategies.

Chaturvedi et al. first concatenate the ques-
tion and candidate answer, and calculate the
matching degree against the passage via atten-
tion (Chaturvedi et al., 2018). The work (Wang

! The source codes will be made publicly available from Github.

et al., 2018) treats the question and a candidate
answer as two sequences before matching them
individually with the given passage. Then a hi-
erarchical aggregation structure is constructed to
fuse the previous co-matching representation to
predict answers. Similarly, a hierarchical atten-
tion flow is proposed in (Zhu et al., 2018) to es-
timate the matching relationship based on the at-
tention mechanism at different hierarchical levels.
Zhang et al. propose a dual co-matching network in
(Zhang et al., 2020a), which formulates the match-
ing model among background passages, questions,
and answers bi-bidirectionally.

Apart from the aforementioned matching-based
work, another line of studies proposes to integrate
with the auxiliary knowledge. For instance, a
syntax-enhanced network is presented in (Zhang
et al., 2020b) to combine syntactic tree information
with the pre-trained encoder for better linguistic
matching. Duan ef al. utilize the semantic role
labeling to enhance the contextual representation
before modeling the correlation (Duan et al., 2021).
More recently, the off-the-shelf knowledge graph
is leveraged to fine-tune the downstream MCQA
task in (Li et al., 2021).

Compared to existing matching work in (Wang
et al., 2018; Zhang et al., 2020a), the proposed
algorithm performs matching by introducing a con-
text (an entity from the triple of passage, question
and answer). This context serves as a background
knowledge to exploit the semantic relationship with
the remaining two entities.

3 Proposed method

The proposed method gradually identifies the best-
matching answer by coordinating the loss from
Triple Matching (TM) and Contrastive Regulariza-
tion (CR) simultaneously, as illustrated in Fig. 1.

Given an input triple of passage, question and an-
swer, a pre-trained language model is first utilized
for encoding textual contents. Then the TM module
enumerates this input triple and selects one entity
as the background context. The semantic relation-
ship is accordingly estimated using the remaining
two entities with regard to this selected context. At
last, the produced features from TM are utilized
for answer selection, while CR ensures feature en-
hancement so that the feature similarity between
correct triples is maximized, by contrasting to that
from distractive ones.
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Figure 1: Overview of the proposed Context-guided Triple Matching algorithm for MCQA, which is characterized
by a Triple Matching (TM) and Contrastive Regularization (CR) module. Taking answer-guided passage-question
matching (M%) as an example, TM aims to estimate the semantic correlation between the selected g with anther
two entities (p and ¢). CR further captures the subtle difference (or highlights the feature dissimilarity) between

correct and distractive answers.

3.1 Encoding

Let p, g and a be a passage, a question and a can-
didate answer, respectively. A pre-trained model
(e.g. BERT) is adopted to encode each word from
them into a fixed-length vector, yielding

H? = Enc(p), HY = Enc(q), H* = Enc(a),
(D
where H? ¢ RPPIX! H9 ¢ RlI*land H® ¢
Rlalx! are relevant representation of p, ¢, and a,
respectively, and [ is the dimension of the hidden
state.

3.2 Triple matching

To model the relationship among the triple of {p, g,
a}, in TM we introduce an context-oriented mech-
anism. That is, we select one component from the
triple once (as the background context), and esti-
mate its semantic correlation with the remaining
two to further produce a context-guided represen-
tation. Note that this proposed module involve all
three entities from the triple simultaneously, while
existing methods adopt the pairwise strategy that
involves only two entities once.

Taking the answer a as an example, below we
show how to model the representation for the
answer(context)-guided passage-question match-
ing. At first, given the encoder output of H?, H®
and HY, we apply the bidirectional attention to
calculate the answer-aware passage representation
(EP € Rl*x!) and answer-aware question repre-

sentation (E? € RI1*!) g follows:

G = SoftMax(H*WH'), EP = G’ H?
G® = SoftMax(H*WHP!), E? = GYHY,
(2

where W € R!*! are learnable parameters, and
G ¢ Rlelxladl and G e RI**IP| are the atten-
tion matrix between the answer-question, and the
answer-passage, respectively.

Next, we further allow the third entity to be in-
cluded by adopting the bidirectional attention again
(to embed the question for EP and the passage for
E9). As a result, the core of triple matching be-
comes:

GP? = SoftMax(EPW,ET)
G = SoftMax(EW, EPT)
EP1* = GPMH® E? = GP H®

SPI% = ReLU (EP1W3), S = ReLU (E™*W5),

3

where Wy, Wy € RX! are learnable parameters,
and EPi¢ ¢ Rlelxl gare ¢ RlalX! represent
passage-question-aware answer representation and
question-passage-aware answer representation, re-
spectively. The final representation of answer-
guided passage-question matching (i.e. M2 €



R2%1) is to aggregate the above as follows:

MPIe — Maxpooling(qua)
M e — MaxPOOling(qua) 4
M2 = [MPI%; M),

In sum, the proposed TM module for answer-
guided passage-question matching M?% is illus-
trated on the left of Figure 1. Similarly, we enumer-
ate the other two entities (that is, the question ¢ and
passage p) to compute the related representation
for the question-guided answer-passage matching
(ie., M1 € R?*!) and the passage-guided answer-
question matching (ie., M2 € R?*}), following
the same procedure from Eq.(2) to Eq.(4).

3.3 Answer selection

With the triple-matching representations M%, M4,
M2, we further concatenate them as the final rep-
resentation C' (ie., C = [M% MY, MP]). Let
C. be the representation for the correct triple of
{p, q,a.}. Accordingly, the selection loss can be
computed as follows:

*CTM(p7 q, aC) = —lOg
%)

where V' € R/ is a learnable parameter, S is the set
of all candidate answers, and Cg is the feature set
for S.

3.4 Contrastive regularization as
enhancement

The aforementioned TM module is performed to
extract semantic representation from one candidate
triple. Yet, there could be trivial (word) difference
between the correct and distractive answers (as
shown from Table 1). To highlight this dissimilarity,
we accordingly utilize a contrastive regularization
as a feature enhancement strategy.

More precisely, for the given passage p, the ques-
tion g, the set of candidate answers S, and the cor-
rect answer a., we aim to construct a group of
positive (correct) triples (such as {p, ¢, a.}) and an-
other group of negative (wrong) triples ({p, ¢, a }),
where a,, € S and a,, # a.. Notably, MCQA is
enjoyed owing to those distractive answers, which
in nature form negative triples against the correct
ones. Then the proposed contrastive regulariza-
tion is to encourage the latent representation from
correct triples staying closer to each other while
pushing away those distractive ones.

Furthermore, let C. and C), be the encoded
representation of {p,q,a.} and {p,q, a,} using
the TM module. To form the feature of another
positive triple, we adopt the dropout-based opera-
tion (say Drop(-)) from (Gao et al., 2021; Liang
et al., 2021), which has been proven to be an ef-
fective way of creating similar feature. That is,
we simply apply the TM module twice with differ-
ent dropout masks to produce the representation
of another positive triple, say C.” = Drop(C.,).
Similarly, one could produce the negative feature
via C; = Drop(C,,). Accordingly, the CR is de-
fined using the negative log likelihood (NLL) loss
as follows:

exp(CLCF/7)

Lcor(p, ¢, ac) = —log
(6)

where 7 is a pre-defined temperature. Notably,
with the presence of C, Cs from Eq. (5) will be
reformulated as C's = Cs U C, which is equiva-
lent to increasing the number of wrong answers.

3.5 Loss function

With two losses from the answer selection and
contrastive regularization, we propose to train the
model using the joint loss as follows:

L = L1y + AcrLcR, (7
where A¢ is a penalty term?.

3.6 Discussion

Next, we analyze the relationship between the pro-
posed method and existing pairwise algorithms.
Previous studies measure the matching represen-
tation (i.e. C from Eq. (5)) using the following
estimation:

e CNN-Matching (Chaturvedi et al., 2018):

H =FEnc([q;al); HP = Enc(p);
M =Att(H™, HP): (8)
C =Sim(H™, M).

There are another two training strategies, including pre-train
and alternate. The former is to update the model first using
L r before finetuning with L7/, while the latter is to train
the model with L7 for (N; — 1) iterations and switch to
Lcr once, for every IV iterations. However, the experimen-
tal results show the joint training outperforms pre-train and
alternate based model.

Zciecs/cucjucg exp(CYCi/T)’



e Co-Matching (Wang et al., 2018):

H? =FEnc(q); H* = Enc(a); H? = Enc(p);

M = Att(H?, HP); M = Att(H®, HP);
C =[Sim(M®®, HP); Sim(MP, HP)].
)]

e DCMN+ (Zhang et al., 2020a):

HY9 =FEnc(q); H* = Enc(a); H? = Enc(p);

M9 =Att(H?, H*); M = Att(HY, H?);
M =Att(H", H?);
C =[Gat(M9, M"); Gat(M® M°P);

Gat(M9, MP)].
(10)

Within aforementioned methods, Enc represents
the encoder, Att stands for the attention operation,
Sim is for the similarity calculation, Gat is a rest
gate function, and [;] is the vector concatenation.
Note that existing methods adopted different imple-
mentation of Enc, Att, and Sim, etc. For instance,
FEncin (Chaturvedi et al., 2018) and (Wang et al.,
2018) has been implemented as CNN and BERT,
respectively.

Compared to the aforementioned methods, the
proposed algorithm can be cast as their extension,
with an additional consideration of triple match-
ing and contrastively representing the correct an-
swer(s). That is, the triple matching is to apply two
attention layers to estimate the semantic relation-
ship with regard to the selected context. As such,
Eq.(2) to Eq.(4) can be equivalently represented as
the following process:

M =Att(HY, H*); MP* = Att(HP, H");
MPI® = Att( Ate(MP*, M), H*);
M®P = Att( Ate(MI%, MP*), H?).
(11
In addition, our method is also distinct from ex-
isting ones by further integrating the contrastive
loss. That is, we aim to distinguish the correct an-
swers via pulling its relevant representation away
from distractive ones, which has been neglected by
existing pairwise-matching approaches.

4 Experiments

4.1 Datasets

Two datasets adopted in the experiments are RACE
(Lai et al., 2017) and DREAM (Sun et al., 2019).
RACE is one of the widely used banchemark

datasets for MCQA, which consists of subsets
RACE-M and RACE-H that correspond to the
reading-difficulty level of middle and high school,
respectively. DREAM is a dialogue-based exami-
nation dataset. It includes dialog passages as the
background and three options associated with each
individual question. Their statistics are shown in
Table 2.

Table 2: Summary of RACE and DREAM, where #a is
the averaged number of candidate answers per question,
and #w/a is the averaged length per answer.

Dataset | passages | Questions | #a | #w/a
RACE-M 7,139 28,293 4 49
RACE-H 20,794 69,394 4 6.8
DREAM 6,444 10,197 3 5.3

4.2 Implementation and settings

Two pre-trained language models, including the
BERTyuse and BERT;.4¢, are adopted as the en-
coder for word-embedding. BERT},s. consists
of 12-layer transformer blocks, 12 self-attention
heads, and 768 hidden-size, whereas BERT4;.¢¢
consists of 24-layer transformer blocks, 16 self-
attention heads, and 1024 hidden-size. They have
110M and 340M parameters, respectively. The
dropout rate for each BERT layer is set as 0.1. The
Adam optimizer with a learning rate setting of 2¢ =
is adopted to train the proposed CTM.

During training, batch size is 4, number of train-
ing epoch is 3, and the max length of input se-
quences is set to 360 for RACE. For DREAM,
batch size is 4 and number of training epochs is 6,
and the max length of input sequences is set to 300.
For passages with more words, the sliding-window
strategy in (Jin et al., 2020) is adopted to split them
into appropriate-length chunks. For the contrastive
regularization, the dropout rate is 0.1 to produce
one positive and one additional negative, and the
temperature 7 = 0.07. The CTM model is trained
on a machine with four Tesla K80 GPUs. Accuracy
acc = nj / ngq is used to measure the performance,
that is the ratio between correct-answered questions
(n,) and total questions (n).

4.3 Results

We compared the performance of the proposed
CTM with the methods, including the public mod-
els from the leaderboard (i.e. BERT) and state-of-
the-arts (i.e. DCMN+(Zhang et al., 2020a)). To



make a fair comparison, we are particularly inter-
ested in those implemented with the same BERT
encoder’.

Results of the proposed CTM and comparing
methods are shown in Table 3. The proposed
method achieves state-of-the-art performance on
both RACE and DREAM datasets. Not surpris-
ingly, the BERT},;. methods achieve generally
worse performance compared to the counterparts
using BERT;.4¢, which shows the benefit from a
better pre-trained model. Although baseline per-
formance (from BERTS) is further improved by
bidirectional matching (Zhang et al., 2020a) or
external knowledge (Zhang et al., 2020b), these
strategies applied pairwise matching among the
passage, question and answer independently, with-
out considering the third entity from the triple. By
contrast, the proposed CTM method utilize one en-
tity as the background context to match with the
other two, so that learned features are geared to-
wards this selected context. The use of contrastive
regularization further strengthens the learning to
differentiate the correct answer from semantically
closed but wrong ones. As a result, the proposed
CTM substantially outperforms existing methods.

Table 3: Results in accuracy (%),obtained by CTM and
the comparing methods on the on the test set. In the ta-
ble, “-B” and “-L” represents the base and large model
of the BERT encoder. “x” indicates there is no results
from the original reference, and “J”’ shows the original
reference doesn’t differentiate RACE-M and RACE-H
but only report the averaged result.

Algorithm | RACEEM  RACE-H DREAM
BERT(-B) 71.1 62.3 63.2
BERT(-L) 76.6 70.1 66.8
DCMN+(-B) 73.2 64.2 X
DCMN+(-L) 79.3 74.4 X
SG-Net(-L) 78.8 722 X
CSFN(-B)% 68.3 68.3 64.0
DUMAC(-B) X X 64.0
ConceptPlug(-B)% 65.3 65.3 65.3
ConceptPlug(-L) % 72.6 72.6 69.3
CTM(-B) 75.2 68.3 69.2
CTM(-L) 81.5 75.3 72.0

3 Given the availability of numerous pre-training models, we
could simply replace the adopted BERTs with other more
powerful encoders, such as (Liu et al., 2019), to improve
the performance of CTM. Alternatively, to use the additional
ground knowledge, such as the work (Zhang et al., 2020b),
could also lead to a potential improvement for CTM. We leave
these as the future work.

4.4 Ablation study

Experiments are conducted on the RACE dataset
(with the BERT-base encoder) to validate the con-
tribution from the proposed TM and CR loss.

On triple-matching This experiment compares
the performance of two different matching strate-
gies, i.e. the proposed TM against existing dual one.
The contrastive regularization in this experiment is
disabled by setting A\crp = 0.

The DCMN+ model (Zhang et al., 2020a) is
adopted as the opponent, which achieves the
state-of-the-art performance. It consists of three
dual-matching components: question-answer pair
(M 1%), question-passage pair (M ), and answer-
passage pair (M“P). By contrast, the proposed
CTM includes three components, including M%
, M2, M4, respectively (see Eq. ( 4)). Next, we
carefully ablate those components by enumerating
different combinations, and compare them with
DCMN-+ using the RACE-H dataset.

Table 4: The performance comparison of the proposed
CTM against DCMN+ on the RACE-H testing set, by
employing combination of different pairwise matching.

Branch | Acc | Branch | Acc
[Me?; M%) | 63.8 | [M?; M 63.3
[Mee M) | 62.1 | [MeP; M M%) | 64.2
M** 48.6 | M4 64.1
M? 63.8 | [M2, M4 64.6
(M2, MA] 64.8 | [M=, M?] 52.3

(M, MP, M4] | 65.7

Table 4 shows the results on the proposed TM
and DCMN+ (Zhang et al., 2020a). As observed,
the component of MY contributes mostly in the
answer selection, as it achieves the highest accu-
racy among all proposed components. This result
suggests the importance of utilizing question(s) as
the background context, rather than passage and/or
answers, to address MCQA tasks.

On the other hand, the component of M? ob-
tains the worst performance, which reveals the lim-
itation of short answers. Note that the M2 is to
take the answer as the background context, and
estimate its correlation (using attention) between
passage/question. Yet, the attention-based correla-
tion is insignificant compared to others, mainly due
to the short sequence length from answers.

Additionally, we also notice that the combination
of all three component work best with the encoder,
which demonstrates a better matching outcome



(65.7%) compared to that of DCMN+ (64.2%). The
result not only indicates the necessity of utilizing
all three proposed matching components, but also
shows the superiority of the triple matching com-
pared to existing dual matching.

On contrastive regularization The impact of
the contrastive regularization is mainly controlled
by the penalty term A\c g from Eq. (7). We evaluate
the accuracy by setting different values to Ac g as
[0, 0.5, 1, 1.5]. Notably, with A\cp = 0, the model
degrades to the simple TM module.

With the comparison result presented in Fig 2,
we found out that the proposed CR helps in en-
hancing the matching capability (i.e., via maximiz-
ing the feature difference between the correct and
wrong triple). For instance, the CTM achieves the
best result when Ao = 0.5, compared to that of
Acr = 0. Yet, the increase of the Aor value re-
sults in the inferior accuracy (in particular with
Acr = 1.5). The reason could be the compatibility
between the learned features and the final classifi-
cation. With a larger A¢ g, the model tends to learn
distinct features to separate answers, which might
not be useful for selecting the correct answer.
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Figure 2: Performance comparison at different values
of )\C R-

Additionally, fixing A\cr = 0.5, we further
perform the ablation study on the created posi-
tive/negative to manifest its efficacy and the results
are illustrated in the zoom-in area from Fig 2. In
particular, “base” represents the simple TM mod-
ule, “+p” considers to only add one positive C;
without additional negatives (i.e., C; = () in Eq.
(6)), while “4n” represents the case of creating only
one extra negative (C, and CI = () so Cs from
Eq. (5) is reformulated as Cs = Cs U C; . The
model of “+b” applies both the positive and one
extra negative sample.

The results clearly show contributions from indi- 4

vidual aspect to the final performance. For instance,

adding extra negative sample (associated with the
case of “+n”) enforces the model to learn a better
representation for the correct triple, as the increas-
ing number of wrong answers. On the other hand,
adding C is in favor of the model via award-
ing the answer difference (or pushing away wrong
triples from the correct ones). The combination
of adding C.f and C. outperforms other model
variants, including the simple TM module, that evi-
dently states the effectiveness of the proposed CR
loss.

Analysis In this section, the model capability is
further analyzed based on the question complexity.
Followed by (Zhang et al., 2020a), we randomly
select 10% samples (350 questions) from the test-
ing set of RACE-H, and manually annotate them
using question types of what, which, cloze and
other*. Additionally, we further tag them based
on the number of sentence required to answer the
question. The performance from two models is
accordingly shown in Table 5.

Table 5: Comparison of both the model performance
on the RACE-H testing set, where cases are catego-
rized by question types and the number of required sen-
tences (#s). The underlined results (%) are from CTM,
while the one within the bracket (%) represents that of
DCMN+.

Type | #s=1 #s=2 #s> 3

what | 69.2(68.3) 65.7(63.2) 62.5(58.3)
which | 67.0(65.8) 67.9(64.6) 66.5(62.2)
cloze | 70.2(63.3) 70.5(58.1) 66.0(55.8)
other | 71.3(71.5) 68.7(64.6) 60.5(60.3)

The result clearly indicates the superiority of
the proposed algorithm when answering complex
questions, such as cloze test and more sentences
involved. For instance, the cloze test requires more
reasoning capability as the model needs to scan the
entire passage according to the given question and
all candidate answers. As such, the proposed triple
matching is more suitable than the conventional
dual-wise strategy. Additionally, as the cloze test
needs to fill in missing item(s), the textual differ-
ence from candidate answers also plays an impor-
tant role. As expected, the proposed contrastive
regularization helps in capturing those difference,
thereby achieving the improvement for the question
answering.

The “other” type including the rest question types, such as
why, who, when, where, and how.



Similarly, with complex questions that need to in-
fer from (more than) 3 sentences, the result clearly
reflects an improvement from CTM compared with
DCMN+. With the increasing number of required
sentences, the prediction accuracy from both mod-
els has been reduced. Yet, CTM performs much sta-
ble than its counterpart, which shows its robustness
of handling cases with multiple evidence sentences.
In conclusion, it can be empirically confirmed that
the proposed CTM algorithm achieves comparative
performance than dual-wise methods, in particular
with complex question answering.

5 Conclusion

The task of multiple choice question answering
(MCQA) aims to identify a suitable answer from
the background passage and question. Using the
dual-based matching strategy, existing methods de-
couple the process into several pairwise steps, that
fail to capture the global correlation from the triple
of passage, question and answer.

In this paper, the proposed algorithm introduces
a context-guided triple matching. Concretely, a
triple-matching module is used to enumerate the
triple and estimate a semantic matching between
one component (context) with the other two. Ad-
ditionally, to produce more informative features,
the contrasitve regularization is further introduced
to encourage the latent representation of correct
triples staying away from distractive ones. In-
tensive experiments based on two benchmarking
datasets are considered. In comparison to multiple
existing approaches, the proposed algorithm pro-
duces a state-of-the-art performance by achieving
higher accuracy. To our knowledge, this is the first
work that explores a context-guided matching in
multiple choice question answering. We will con-
tinue exploring inter/cross sentence matching as
our future work.
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