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Abstract

Pre-training vision-language representations on human action videos has emerged
as a promising approach to reduce reliance on large-scale expert demonstrations for
training embodied agents. However, prior methods often employ time contrastive
learning based on goal-reaching heuristics, progressively aligning language instruc-
tions from the initial to the final frame. This overemphasis on future frames can
result in erroneous vision-language associations, as actions may terminate early or
include irrelevant moments in the end. To address this issue, we propose Action
Temporal Coherence Learning (AcTOL) to learn ordered and continuous vision-
language representations without rigid goal-based constraint. AcTOL treats a video
as a continuous trajectory where it (1) contrasts semantic differences between
frames to reflect their natural ordering, and (2) imposes a local Brownian bridge
constraint to ensure smooth transitions across intermediate frames. Extensive imita-
tion learning experiments on both simulated and real robots show that the pretrained
features significantly enhance downstream manipulation tasks with high robust-
ness to different linguistic styles of instructions, offering a viable pathway toward
generalized embodied agents. Our project page is at https://actol-pretrain.github.io/.

Figure 1: Pretraining on Internet human action videos for robot control, where the video-instruction
pairs are noisy and often include irrelevant frames. The red vision-language reward curve demon-
strates AcTOL learns to correctly align instruction with action, outperforming previous goal-reaching
methods in the presence of distracting content.

1 Introduction

The long-term vision for embodied intelligence [29, 25] is to create systems that seamlessly perceive
and interact with the world around them. Achieving this requires agents that integrate vision and
language to understand their surroundings, interpret human instructions, and autonomously plan
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Figure 2: Comparison of existing goal-reaching pre-training strategies and the proposed AcTOL
approach. Our learned multi-modal representations can be effectively transferred to downstream
language-conditioned robot manipulation tasks, exhibiting robustness to diverse instruction and
linguistic variations.

actions for complex tasks. Current end-to-end approaches achieve policy learning through direct
vision-language-action mapping [48, 13, 7, 21, 3]. However, the inherent unpredictability of physical
environments, including unseen scenarios and dynamic object interactions, constrains these solutions
by requiring massive, high-quality robotic trajectories with action annotations, which are costly to
collect. To mitigate this, recent research has leveraged large-scale, readily available egocentric human
action videos [14, 10, 15] for pre-training. Although these out-of-domain videos often lack low-
level action details and contain noise, their diverse human-object interactions and task instructions
provide valuable prior knowledge. This enables the pre-trained representations to be more effectively
transferred to novel tasks with fewer demonstrations, reducing reliance on large-scale robotic datasets
while preserving strong generalization capabilities.

A promising approach for vision-language pre-training from human action videos leverages the
concept of time contrastive learning [37] to capture temporally consistent visual representations,
where language serves as the guiding goal, with semantic alignment between the language and
chronologically later frames in the video [30, 26, 23]. However, this goal-reaching semantic alignment
approach relies on a rigid assumption that action videos adhere to a specific principle: actions
progressively approach the target instruction from the initial frame to the final one. Such assumption
can be easily violated in egocentric human action videos, which are typically annotated at a coarse-
grained level and riddled with noise. Figure 1 shows an example video-instruction pair, where
the end of the video clip does not correspond to the actual end of the action. As a result, existing
methods suffer from misleading semantic alignment, which hampers their ability to learn accurate
vision-language relationships.

Given the challenges outlined above, a more natural and flexible pre-training strategy without rigid
assumptions is needed to enhance vision-language representations for better policy learning. Building
solely on the intrinsic temporal consistency of human action videos, we argue that the ordering
and continuity of pre-trained vision-language representations play a crucial role in ensuring the
effectiveness of policy learning. Ordering refers to the need for visual features to align with the
underlying action logic required by the language instruction. For instance, as the task progresses,
visual representations closer to the completion of the action should exhibit stronger alignment with
the language instruction. This ensures that each step in the sequence is meaningfully associated with
the corresponding instruction, enabling the model to effectively capture the dynamic progression of
the task. Continuity, on the other hand, emphasizes that both visual features and their alignment with
the language should evolve smoothly over time, with gradual transitions rather than abrupt changes.
This is crucial because actions in the real world are not discrete but unfold continuously in time.
Moreover, the alignment between visual and instruction should also be fluid, ensuring that as the
action progresses, the visual representations consistently align with the target language instruction.

To address the aforementioned issues, as illustrated in Figure 2, we propose Action Temporal
Coherence Learning (AcTOL), a novel approach designed to implicitly capture the ordering and
continuity of video actions without relying on rigid assumptions, while providing strong theoretical
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guarantees. Unlike previous approaches that focus on goal-directed semantic alignment, AcTOL
introduces a Vision-Language Ordering (VLO) loss. This loss leverages the intrinsic temporal
coherence of videos, contrasting frames against each other based on their relative temporal distance,
theoretically ensuring that the semantic alignment between frames reflects their temporal ordering
and continuity throughout the entire sequence. However, the VLO loss does not explicitly enforce
the continuity of the visual features themselves, and under conditions with variations in frame
content and noise, it can lead to suboptimal local consistency of the visual features. To address this,
AcTOL introduces a Brownian bridge constraint over the video, treating video frames as a Brownian
bridge process. This approach imposes a structured, continuous flow on the visual representations,
ensuring that the model learns more consistent and stable intermediate states, further enhancing the
continuity of the visual representations and improving the stability of their alignment with language
instruction. Further theoretical analysis suggests that these properties also contribute to the model’s
resilience to language perturbations, a crucial trait for real-world applications. To evaluate the
generalization ability of AcTOL on embodied agents, we conducted extensive language-conditioned
imitation learning experiments using both the real-world Unitree D1 robotic arm and two simulation
environments. The results demonstrate that AcTOL significantly outperforms prior methods with a
limited number of expert demonstrations. Additionally, AcTOL can generate language-conditioned
visual rewards from real-world robot videos and remains robust to complex linguistic perturbations,
highlighting its potential as a generalizable solution for real-world embodied agents.

2 Preliminaries

We first set up notations and mathematically formulate tasks.

Language-Conditioned Imitation Learning (LC-IL). The task of LC-IL aims to train an agent to
mimic expert behaviors from a given robot demonstration set Drobot = {(τi, li)}Nr

i=1, where li ∈ L
represents a task-specific language instruction. Each trajectory τi ∈ T consists of a sequence of
state-action pairs τi = {(st,at)}Tt=1 of the horizon length T . In robot manipulation tasks, action
at ∈ A corresponds to the control commands executed by the agent and state st = [pt;ot] ∈ S
records proprioceptive data pt (e.g., joint positions, velocities) and visual inputs ot (e.g., camera
images) at the time step t. The objective of LC-IL is to find an optimal language-conditioned policy
π∗(a|s, l) : S × L 7→ A via solving the supervised optimization as follows,

π∗ ∈ argmin
π

E(τi,li)∼T

 1

T

∑
(st,at)∼τi

ℓ(π(ât, st|li),at)

 ,

where ℓ(·, ·) is a task-specific loss, such as mean squared error or cross-entropy. Training the policy
πθ in an end-to-end fashion may require hundreds of high-quality expert demonstrations to converge,
primarily due to the high variance of visual inputs o and language instructions l.

Vision-language Pre-training. Address such scalability issues can be achieved by leveraging
large-scale, easily accessible human action video datasets [10, 15] Dhuman = {(Oi, li)}Nh

i=1 , where
Oi = {ot}Tt=1 represents a video clip with T frames and li the corresponding description. Pretraining
on such datasets enables policies to rapidly learn visual-language correspondences with minimal
expert demonstrations. Mainstream pretraining methods employ time contrastive learning [37] to
fine-tune a visual encoder ϕ and a text encoder φ, which project frames and descriptions into a shared
d-dimensional embedding space, i.e., vt = ϕ(ot) ∈ Rd and li = φ(li) ∈ Rd. To provide a unified
perspective on various pretraining approaches, we formulate them within the objective LtNCE(ϕ, φ):

LtNCE = −Eo+∼P(Oi)
log

exp(R(v+, li))

Eo−∼N (Oi)
exp(R(v−, li))

,

where v+/− = ϕ(o+/−). Different pretraining strategies differ in their selection of (1) the positive
frame set P(Oi), (2) negative frame set N (Oi); and (3) the semantic alignment scoring function
R(v, li) measuring the gap of VL similarities.

As motivated by goal-conditioned RL [1], current approaches explicitly select future frames (e.g.,
R3M [30], DecisionNCE [23]) or the last frame (e.g., LIV [26]) as the goal within the positive frame
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set, enforcing their visual embedding to align with the semantics. Likewise, the scoring functions R
are often designed to maximize this transition direction. However, the pretraining action videos are
noisy as actions may terminate early or include irrelevant subsequent actions, which may mislead the
encoders and result in inaccurate vision-language association. As detecting precise action boundaries
is non-trivial, we argue for a more flexible approach that leverages intrinsic characteristics of actions
to guide pertaining.

3 Our Approach: AcTOL

We introduce an action temporal coherence learning (AcTOL) to capture two temporal properties
of video actions: ordering and continuity. Ordering was ensured in the vision-language ordering
loss (Section 3.1), where the semantic difference between frames reflects their temporal distance,
with closer frames exhibiting smaller differences than those further apart. Continuity requires smooth
visual transitions between adjacent frames, avoiding abrupt changes and high variance. To achieve
this, we model sampled frame intervals as a Brownian bridge process (Section 3.2), penalizing
deviations from the expected trajectories. Different from prior works that relies on setting explicit
goal frames, the proposed approach implicitly explore the global and local structure of actions without
imposing rigid constraints.

3.1 Visual-Language Ordering
To capture the temporal coherence of video actions, we first propose a vision-language ordering (VLO)
loss that ensures the semantic alignment between frames reflects their temporal order. Since the
VLO loss is applied within each video individually, we henceforth write Oi, li as O, l for simplicity.
Consider an anchor frame oi ∈ O with an index n(i) corresponding to its position in the original
video. For any given frame pair (oi, oj), we first define the semantic alignment score R to quantify
differences in their VL similarities w.r.t a language description l as:

R(vi,vj , l) = −∥ sim(vi, l)− sim(vj , l)∥2, (1)

where vi = ϕ(oi), l = φ(l). The function sim(·, ·) computes the VL similarity using cosine similarity.
To ensure the proposed R adhere to the temporal ordering of frames, we construct a negative set Ni,j

by selecting ok ∈ O correspond to frames that are temporally more distant from oi than oj :

Ni,j = {ok | k ̸= i, |n(i)− n(k)| ≥ |n(i)− n(j)|},

This formulation allows us to reformulate LtNCE by enforcing that the VL similarity difference
between frames i and j should be smaller than that between frame i and any negative frame k within
the video O:

LVLO = −E(oi,oj)∼O log
exp (R(vi,vj , l))∑

ok∈Ni,j
exp (R(vi,vk, l))

.

Notably, our VLO loss does not strictly require oj to be from a future timestep for goal-reaching.
Instead, we leverage the inherent temporal dynamics in videos, allowing the model to learn the natural
ordering in an unsupervised manner.

3.2 Vision-Language Continuity
While the VLO property provides a strong global constraint on the structural alignment of VL
pretraining, optimizing triplet relationships alone can be unstable. Variations in frame content and
noise often lead to suboptimal local consistency. To mitigate this, we introduce an additional local
continuity constraint inspired by the Brownian bridge [36]. This stochastic process models transitions
between two fixed endpoints over by any sampled local video interval [n(i), n(j)]. For any time step
t ∈ [n(i), n(j)] within this interval, the transition density of Brownian Bridge process B(t) follows a
time-dependent Gaussian distribution:

N
(
vi +

t− n(i)

n(j)− n(i)
(vj − vi),

t(n(j)− n(i))− t2)

n(j)− n(i)

)
,

where vi,vj ∈ Rd are the visual embeddings of the first and last frames in the sampled interval.
The mean trajectory E[B(t)] linearly interpolates between the two endpoints, while the variance
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Var[B(t)] provides uncertainty modeling that peaks in the middle of the interval. To enforce this
local continuity, the Brownian bridge loss LBB is formulated as,

LBB =
1

T

T∑
t=1

1

2Var[B(t)]
∥vt − E[B(t)]∥22 . (2)

This loss encourages local consistency by penalizing deviations from expected trajectories, ensuring
consistency across short temporal spans.

Overall Objective. The final training objective integrates both global and local constraints to achieve
temporal coherence simultaneously:

LAcTOL = LVLO + λLBB, (3)
where λ is empirically set to balance two components.

4 Theoretical Analysis
In this section, we theoretically prove the vision-language ordering and continuity, as well as extend
the robustness of linguistic perturbations of representations learned by AcTOL. All proofs are
provided in Appendix C for reference.

Vision-Language Ordering. Ordering and sorting properties are well-established in self-supervised
learning [39, 18, 45]. Building upon these insights, we formalize the concept of vision-language
ordering (VLO) below.

Definition 1 (VLO Representations). Let {oi}i∈[T ] be a sequence of video frames and l the corre-
sponding language description. The representations of the frames are said to satisfy the VLO property
for any 0 < δ < 1 if ∀i ∈ [T ], and distinct frames j, k ∈ [T ]\{i}, the following conditions hold:{

Ri,j,l > Ri,k,l + 1/δ, if di,j < di,k,
|Ri,j,l −Ri,k,l| < δ, if di,j = di,k,
Ri,j,l < Ri,k,l − 1/δ, if di,j > di,k,

where Ri,j,l denotes R (vi,vj , l) and di,j denotes |n(i)− n(j)|.

Implications of the VLO Property. The VLO property enforces a structured representation of video
frames, ensuring that temporally adjacent frames have consistent and predictable semantic differences.
When two frames have equal temporal distances from an anchor frame, their semantic gaps should be
similar, fostering smooth transitions. In contrast, frames that are farther apart should exhibit larger
semantic gaps, thus preserving the chronological order.

To formalize the temporal ordering constraints, we define the unique sorted set of frame distances
from frame i as {Di,1 < Di,2 < · · · < Di,Mi}, where each Di,m,m ∈ [Mi] is obtained by sorting
the set {di,j | j ∈ [T ] \ {i}}. Additionally, we define the count of frames at each distance level as:

ni,m := |{j | di,j = Di,m, j ∈ [T ] \ {i}}|, (4)
which denotes the number of frames whose temporal distance from frame i equals Di,m. The VLO
property is satisfied when the proposed LVLO approaches its theoretical lower bound, which is given
by:

L∗ :=
1

T (T − 1)

T∑
i=1

Mi∑
m=1

ni,m log ni,m. (5)

This bound characterizes the optimal alignment of VL similarities, ensuring that the learned repre-
sentations preserve the inherent temporal structure within the video sequence, as guaranteed by the
following theorem:

Theorem 1 (Vision-Language Ordering). L∗ is a tight lower bound of LVLO, i.e., LVLO ≥ L∗, and
for any ϵ > 0, there exists feature embeddings such that LVLO < L∗ + ϵ. Furthermore, for any
0 < δ < 1, there exist ϵ > 0 such that if LVLO < L∗ + ϵ, the learned representations satisfy the
VLO property.

Vision-Language Continuity. We establish the following theoretical result to rigorously describe
continuity preservation in vision-language representations:
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Figure 3: Policy learning environments, including 3 tasks with a real-world Unitree D1 robot arm
and 5 tasks each in two simulation environments, i.e., Franka Kitchen and Metaworld.

Theorem 2 (Vision-Language Continuity). Let vk,vl be visual representations at arbitrary time steps
within a Brownian Bridge-regularized interval [n(i), n(j)], and let l ∈ L be a language embedding.
If the VL similarity function sim(·) is Lipschitz continuous with constant C, then for any ϵ > 0, there
exists δ > 0 such that:

∥vk − vl∥2 < δ ⇒ |R(vk,vl, l)| < ϵ.

This result follows from two key observations: (i) Brownian Bridge regularization constrains each
embedding to remain close to a linear interpolation between anchor frames, with deviations governed
by a time-dependent variance; and (ii) under this constraint, the distance between temporally close
frames admits an explicit upper bound. Combining this with the Lipschitz continuity of the vision-
language similarity function ensures that small changes in frame embeddings lead to proportionally
bounded changes in alignment scores.

Building upon the continuity result, we further demonstrate that the semantic alignment score remains
stable under small perturbations in language input:

Theorem 3 (Robustness to Language Variations). Let l′ be a perturbed language embedding such
that ∥l− l′∥ ≤ δl. Then the semantic alignment score R satisfies:

|R(vi,vj , l
′)−R(vi,vj , l)| ≤ 2Cδl.

This second result guarantees that small shifts in the language representation (e.g., synonym substitu-
tion or phrasing variation) lead to bounded changes in the alignment score. Together, Theorems 2
and 3 formalize the local stability of semantic grounding across both time and modality, providing a
theoretical basis for continuity-aware vision-language learning.

5 Experiment
In our experiments, we aim to evaluate the effectiveness of ordered and continuous vision-language
representations for robotic control. First, we conduct extensive Language-Conditioned Behavior
Cloning (LCBC) experiments on both real and simulated robots to validate the importance of ordering
and continuity for imitation learning. Second, we assess the utility of the learned representations as
reward functions on multiple real-world action videos. The results demonstrate that the ordered and
continuous representations enable our method to accurately identify action boundaries and generate
dense rewards aligned with the given instructions. Finally, we evaluate the robustness of our method
under language perturbations, showcasing its strong generalization capability for application in
real-world daily scenarios.

Experimental Setups. Figure 3 shows the experimental environments. For real-world robot evalua-
tion, we deploy the Unitree D1 robot arm to perform three challenging manipulation tasks: pick
cup, open [X] drawer and close [X] drawer, where [X] is the drawer index specified by the instruction.
The pick cup task requires the model to accurately identify the cup handle, while the open/close
[X] drawer tasks demand grounding of language instructions to visual observations, enabling the
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Table 1: Comparison in simulation environments with varying amounts of demonstrations. Each
result reports the success rate over 50 roll-outs, averaged across 2 camera views and 3 random seeds.
We also report the relative performance gain in green compared to the strongest baseline.

Method FRANKA KITCHEN METAWORLD
5 demos 15 demos 25 demos 5 demos 15 demos 25 demos

CLIP 11.67 ± 0.95 27.47 ± 1.01 31.20 ± 2.62 42.29 ± 2.65 60.33 ± 1.32 62.54 ± 4.36
R3M 28.60 ± 1.39 42.20 ± 1.00 51.13 ± 2.83 46.83 ± 3.85 56.50 ± 5.20 60.08 ± 3.62
LIV 23.40 ± 0.78 42.73 ± 1.17 51.93 ± 0.95 46.95 ± 2.07 64.33 ± 3.63 66.67 ± 1.49
DecisionNCE 25.33 ± 1.30 43.20 ± 2.25 50.87 ± 2.95 44.58 ± 2.79 59.08 ± 1.77 69.75 ± 3.90
AcTOL w/o BB 32.80 ± 1.23 54.20 ± 0.85 60.80 ± 0.87 50.29 ± 4.05 70.83 ± 4.21 73.33 ± 2.83
AcTOL 42.60 ± 0.53 61.80 ± 2.54 64.60 ± 0.57 53.81 ± 3.89 74.13 ± 1.59 81.13 ± 1.59

(+48.95%) (+43.06%) (+24.40%) (+14.61%) (+15.23%) (+16.32%)

model to interact with the correct drawer. To isolate manipulation performance, the Unitree Go2
quadruped remains lying down and stationary throughout the evaluation. We use a web camera to
capture a third-person view as visual observation. The action space consists of a 6-DoF end-effector
displacement vector and gripper state, executed at a control frequency of 20 Hz. For each task,
we collect 60 demonstrations via remote control using the Unitree Go app, which is significantly
fewer than the 100 trajectories typically used in prior work [26, 23]. For simulation, we choose two
widely used simulation environments for evaluation: Franka Kitchen [16, 12] and Metaworld [43].
For Franka Kitchen, we evaluate five tasks: sliding a cabinet, opening the left door, opening the
microwave, turning on the stove, and switching on the light. For Metaworld, we focus on learning
five tasks: hammering a nail, pressing a button, picking and placing a block, assembling a ring onto a
peg, and opening a drawer. Detailed environment setup can be found at Appendix B.1.

Baselines. Since our model is initialized with CLIP [34], a state-of-the-art image-text representation
widely applied in various embodied tasks [9, 20, 38, 41], it is a natural choice to include CLIP as a
vanilla baseline for comparison. Our primary baselines are LIV [26] and DecisionNCE [23], as we
use the same model architecture and dataset for pre-training. We also compare against R3M [30] pre-
trained on Ego4D [15], a dataset containing roughly 36× longer videos than EPIC-KITCHEN-100.
We also include an ablation variant of AcTOL where the Brownian Bridge loss is removed, referred
to as AcTOL w/o BB.

Implementation Details. We initialize our model with the weights of CLIP [34] with ResNet-50
vision backbone and further pre-train it on human action video dataset EPIC-KITCHEN-100 [10, 11].
For hyperparameter selection, we uniformly sample 10 frames of each video per batch. The loss
weight λ is 0.1. Other hyperparameters, such as temperature,s follow the default value used in
CLIP [34]. More details of pre-training and hyperparameter sensitivity can be found in Appendix A.

5.1 Language-Conditioned Behavior Cloning

For LCBC policy learning, we keep the pre-trained vision-language encoders frozen and feed their
output representations into a lightweight MLP, which is trained as a policy network.

Simulation results. In simulation, each task is performed from two camera viewpoints (left and right),
with varying numbers of demonstrations [5, 15, 25] (i.e., dataset size) for training, and evaluated
under three different random seeds. We report the success rate across different environments and
dataset sizes, averaged over camera views and seeds. Detailed comparison results for each task can
be referred to Appendix B.5. Table 1 presents the comparison results, demonstrating that AcTOL
achieves significantly enhanced performance relative to baseline methods across all evaluated datasets
and environments. This superiority is particularly pronounced in the complex Franka Kitchen setting,
especially under data constraints, where AcTOL with fewer demonstrations (e.g., 5/15) often matches
or surpasses other methods using more data (e.g., 15/25), indicating its high data efficiency and
robust low-resource generalization capabilities. Furthermore, ablation studies confirm the integral
role of the Brownian Bridge (BB) constraint; its removal (AcTOL w/o BB) results in a significant
performance decrease, validating its contribution to improving representation quality for effective
policy optimization via behavior cloning.

S1 S2 S3 S4 S5

Figure 4: Visual shifts applied in Franka Kitchen.

Robustness under visual shifts. To further as-
sess the ability of the model to handle visual
distribution shifts, we conduct experiments in
the Franka Kitchen environment following the
protocol of [5]. Specifically, we compare Ac-
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Figure 5: Visualization of the normalized learned reward corresponding to different actions. Our
representations effectively help capture the correct temporal order of actions in the instruction. For
more results, please refer to Appendix B.6.

TOL with the strongest baseline, DecisionNCE, under visual changes absent from training. These
include: (1) object distractors of increasing difficulty: easy (S1), medium (S2), and hard (S3), corre-
sponding to scenes with 1, 3, and 9 additional YCB objects [6], respectively; and (2) background
texture variations with marble hinge (S4) and metal slide (S5). All shifts are shown in Figure 4.

Table 2: Success rate comparison across different
visual shifts in Franka Kitchen.

Method No shift S1 S2 S3 S4 S5

DecisionNCE 43.2 27.2 25.6 4.8 0.0 8.8
AcTOL 61.8 43.2 32.8 9.2 4.4 38.4

Policies are trained with 15 demonstrations per
task, and success rates averaged over five tasks
are reported in Table 2. While performance
drops under visual shifts, which is expected, Ac-
TOL continues to outperform DecisionNCE in
all available test conditions. This suggests that
the learned representation maintains useful generalization ability even without any specific adaptation
for visual domain shift.

Table 3: Performance comparison on Unitree D1
arm. Success rates are reported over 10 trials.

Method Pick Cup Open [X] Drawer Close [X] Drawer

CLIP 0 20 30
R3M 10 40 40
LIV 20 30 50
DecisionNCE 20 40 60
AcTOL 50 80 90

Real Robot results. Table 3 shows the real
robot comparison results. AcTOL consistently
outperforms all baseline models across the three
tasks. Among them, the pick cup task yields
relatively lower performance, as it requires the
model to precisely identify and grasp the cup
handle, demanding stronger spatial perception
capabilities. For the open/close [X] drawer tasks,
AcTOL is able to accurately interpret the drawer number specified in the language instruction, align
it with the corresponding location in the visual observation, and execute continuous actions on the
correct drawer to complete the task. These results highlight the effectiveness of AcTOL’s learned
visual-language representations in real-world manipulation tasks.

5.2 Language-Conditioned Visual Rewards

Figure 6: Visual trajectory visualization.

By learning semantically smooth visual repre-
sentations, our model further enables the use of
semantic trajectories as effective task rewards.
To illustrate this, we first demonstrate the con-
tinuity of purely visual representations. In Fig-
ure 6, we visualize the learned visual represen-
tation trajectories for three tasks, each with ten
video clips, using t-SNE. The results show that
AcTOL significantly improves the temporal con-
tinuity of video feature trajectories while retain-
ing CLIP’s discriminative ability to distinguish
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Figure 7: Success rate fluctuation across tasks in Franka Kitchen for different instruction variants.

between actions associated with different instructions. As discussed in Section 3.2, the visual
continuity can stabilize learning ordered vision-language alignment. Building on this foundation,
we define a dense reward signal based on the semantic alignment between the current visual state
and the language goal. Specifically, at each time step i, we define the reward cosine(vi, l) as the
similarity between the current visual state and the language goal. While prior work [26, 23] focused
primarily on single-action video clips, we evaluate reward quality on three clips, each containing two
consecutive actions, to assess whether the model can reliably capture fine-grained action semantics.
Figure 5 (a) presents an in-distribution evaluation using a video from EPIC-KITCHEN-100. Our
model produces a clear reward peak aligned with the completion of the “open cupboard” action,
followed by a decline, indicating successful temporal localization of the instructed behavior. In
contrast, R3M and DecisionNCE rewards continue increasing beyond the relevant action segment.
Figures 5 (b) and (c) show results on real-world videos from [2], where human and robot actors
perform opposite actions. Only our method consistently produces symmetric and instruction-aligned
reward curves, accurately identifying both action boundaries and semantics.

5.3 Robustness Study under Linguistic Perturbations

In the EPIC-KITCHEN-100 dataset, textual annotations are often concise, such as “open
cupboard”. In the default setting of LCBC, we employ similarly structured simple instructions. In
this experiment, to validate the robustness of the representations our method learns in real-world
scenarios, we introduce several modifications to the language instructions. Specifically, we transform
each original instruction into four conversational variants by varying lexical choices (e.g., verbs and
nouns) and incorporating ChatGPT-4o [32] generated complex instructions. Details can be found in
Appendix B.4. We then evaluate the imitation learning performance conditioned on these modified
instructions in the Franka Kitchen environment. For comparison, we select LIV and DecisionNCE,
which are also pre-trained on EPIC-KITCHEN-100. As shown in Figure 7, the success rates of LIV
and DecisionNCE dropped by 11.9% and 2.7% on average, respectively, while our method main-
tained a success rate comparable to that before language perturbation. This result demonstrates the
robustness of our learned representations, which generalize more effectively to real-world scenarios.

5.4 Mitigating the Human-to-Robot Gap via Fine-Tuning

Table 4: Fine-tuning AcTOL encoders
efficiently improves the success rate in
Franka Kitchen.

Franka Kitchen Frozen Finetune

AcTOL 61.8 86.4

Although pretraining on human videos provides general-
izable knowledge, bridging the human-to-robot domain
gap remains a persistent challenge [47, 22, 31]. Since
the AcTOL objectives capture the inherent temporal or-
dering of videos in an embodiment-agnostic manner, we
can fine-tune the vision-language encoders with the same
objectives used in pretraining during downstream behav-
ior cloning. Notably, we find that fine-tuning with only a
small number of robot demonstrations is sufficient to substantially mitigate the domain gap. We take
25 in-domain demonstrations (5 per task) in Franka Kitchen to fine-tune the pre-trained encoders
using the AcTOL objectives. Then, as in Sec 5.1, we freeze the fine-tuned encoders and train policy
networks on top using behavior cloning. We report the comparisons when using 15 demos for LCBC.
As shown in Table 4, the success rate improvement demonstrates that the learned temporal inductive
bias can be effectively adapted to the robot domain with limited supervision.
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6 Related Work

Given the success of large-scale pre-training in the vision and language research communities [4, 24],
many studies have attempted to extend this paradigm to the field of robotics. Some work leverage
massive robotic trajectory data [8] for pre-training, aiming to establish unified vision-langauge-action
models [48, 7, 21, 3, 13, 40, 33]. However, collecting large amounts of high-quality robot trajectory
data is extremely costly and time-consuming. Consequently, many studies have begun to explore the
use of large-scale, readily available, out-of-domain human action video data to learn generalizable
representations that can be transferred to robotic tasks [37, 27, 35, 30, 19, 26, 28, 42, 44, 23]. Among
these, TCN [37], VIP [27], MVP [35], and VC-1 [28] focus solely on studying unimodal visual
representations, limiting their performance when understanding language instructions is required.
R3M [30] employs language and reward models to shape progressive visual representations, while
Voltron [19] and MPI [44] model the transition from the current state to the goal state conditioned
on language. However, during training, these approaches freeze the language encoder, using it
only to aid in the training of visual representations. As a result, they do not effectively achieve
multi-modal representation learning. LIV [26] and DecisionNCE [23] have attempted to leverage
CLIP [34] to train embodied multi-modal representations. LIV treats language as the goal of video
actions, aligning it with the final frame, while DecisionNCE aligns language with the transition from
the initial to final frame. Both rely on a goal-reaching assumption, which can lead to suboptimal
results in noisy real-world videos. In contrast, our approach avoids rigid assumptions by enforcing
semantic alignment that follows the intrinsic temporal continuity of videos, leading to more robust and
generalizable vision-language representations. This property also benefits methods like UVD [46],
which rely on pretrained visual features to detect phase changes and decompose long-horizon tasks.
Our method more reliably identifies action phases, enabling stronger progress rewards and improving
suitability for such goal-conditioned downstream tasks.

7 Conclusion and Limitations

We present Action Temporal Coherence Learning (AcTOL) as a promising vision-language pre-
training solution for generalizable embodied agents. By learning action consistency from a large
corpus of human action videos, AcTOL theoretically ensures the ordering and continuity of vision-
language representations, as well as robustness to language perturbations. Extensive experiments
across various environments demonstrate that AcTOL effectively generalizes to complex robotic
manipulation tasks. While the temporal ordering of actions provides a strong inductive bias for many
goal-directed tasks, it may not align well with tasks that involve ambiguous, repetitive, or cyclic
behaviors. In such cases, the assumption of coherent progression might break down, potentially
affecting the reliability of the model. Future work could explore adapting AcTOL to handle such
repetitive action sequences.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction consistently articulate the problem, the proposed
AcTOL solution, its key contributions regarding ordered and continuous representation learn-
ing, and its demonstrated benefits and scope in vision-language pre-training for embodied
agents.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations have been discussed in Section 7 and Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Full set of assumptions and a complete (and correct) proof is provided in
Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details have been provided in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The dataset used for pre-training is EPIC-KITCHENS-100 which is publicly
available, and the code is included in supplemental materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setting/details are discussed in Section 5 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Errors are provided for all language-conditioned behavior cloning experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Experiments compute resources are discussed in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Authors have read NeurIPS Code of Ethics and confirm to preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts are discussed in Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The EPIC-KITCHENS-100 dataset used in this paper has been explicitly
mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix
A Pre-training Details

Following [26, 23], we use a modified ResNet-50 [17] from CLIP [34] for the vision encoder and a
CLIP transformer for the language encoder. We initialize our model with CLIP and train them on
EPIC-KITCHEN-100 [10, 11]. The training hyperparameters used during the pre-training are listed
in Table 5. The training was conducted on two NVIDIA A800 GPUs taking approximately 30 hours.
For hyperparameter sensitivity, we report the model performance under varying numbers of sampled
frames and different values of the loss weight λ. As shown in Figure 8, increasing the number of
sampled frames leads to higher success rates, likely because it better preserves the temporal ordering
and continuity in the video sequence. The model shows low sensitivity to λ, as we observe that LBB

converges much faster than LV LO due to its unimodal nature. As a result, LBB primarily serves as a
constraint during training rather than a dominant optimization objective.

Table 5: Hyper-parameters for pre-training.

Config Value

Training epochs 1000
Optimizer Adam
Learning rate 1× 10−5

Batch size 128
Frames per video 10
Loss weight λ 0.1
Weight decay 0.001
Momentum (β1, β2) 0.9, 0.999
Augmentation RandomCropResize

Figure 8: Hyper-parameters sensitivity.

B Evaluation Details

B.1 Simulation Environment

We follow [30] for the specific simulation environment setup and code details.

Franka Kitchen. The Franka Kitchen environment [16, 12] is based on the 9 degrees of freedom
Franka robot. The Franka robot is placed in a kitchen environment containing several common
household items: a microwave, a kettle, an overhead light, cabinets, and an oven. Following [30], the
Franka Kitchen environments used in this paper are modified from their original design. Specifically,
we introduce additional randomization to the scene by randomly altering the kitchen’s position
between episodes. This modification makes the tasks significantly more challenging in terms of both
perception and control.

Metaworld. The Metaworld environment [43] is an open-source simulated benchmark for robot
learning. In our settings, the target object position is randomized between episodes in all tasks.

We present the specific default language instructions for each tasks in Table 6.

B.2 Real Robot Environment

Our real robot environment is a real-world office scene where the Unitree D1 robot arm can interact
with a cup and a drawer. The pick cup task requires the robot to accurately identify the handle of the
cup, while the open/close [X] drawer task requires the robot to understand the drawer index specified
in the language instruction and align it with the visual observation. As shown in Figure 9, we use
the Unitree Go app interface to remotely control the robotic arm for action data collection. Visual
observations are collected using a third-person perspective web camera in a same frequency (20Hz)
with action. During control, the whole system, including AcTOL and the policy MLP, runs on a
GeForce GTX 880M GPU.
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Table 6: Language Instructions for tasks in Franka Kitchen and Metaworld.
Environment ID Language Instruction
kitchen_micro_open-v3 open microwave
kitchen_sdoor_open-v3 slide cabinet
kitchen_ldoor_open-v3 open left door
kitchen_knob1_on-v3 turn on stove
kitchen_light_on-v3 switch on light

hammer-v2-goal-observable hammer nail
button-press-topdown-v2-goal-observable press button
bin-picking-v2-goal-observable pick and place the block between bins
assembly-v2-goal-observable assemble the ring onto peg
drawer-open-v2-goal-observable open drawer

Figure 9: Action space of Unitree D1 arm and the remote control interface on Unitree Go app.

B.3 Language-Conditioned Behavior Cloning Hyperparameters

We present the LCBC imitation learning hyperparameters in Table 7. For each distinct task in
simulation, we run an evaluation episode every 1,000 gradient steps by running 50 roll-outs and
computing their average success rate. Over a total of 10,000 gradient steps, we conduct this evaluation
10 times. The highest success rate among these 10 evaluations is reported as the final result. To ensure
robustness, we average the results across two different camera viewpoints and three independent
random seeds. In total, we run: 9 (tasks) ∗2 (views)∗3 (demosizes) ∗3 (seeds) ∗6 (models)=972
(episodes), each episode takes approximately 2 hours on our workstation with a 24-core CPU,
resulting in a total of roughly 1, 944 hours for the simulated LCBC experiments. For each task on the
real robot, we use the final checkpoint and perform 10 evaluation runs with a fixed random seed, due
to the cost of real-world policy evaluation.

Table 7: Hyper-parameters for LCBC.

Franka Kitchen Metaworld Real robot

MLP achitecture [256,256] [256,256] [256,256]
Non-linear activation ReLU ReLU ReLU
Optimizer Adam Adam Adam
Gradient Steps 10K 10K 50K
Learning rate 1× 10−3 1× 10−3 1× 10−3

Batch size 32 32 32
Horizon 50 100 100
Proprioception 9 4 No

B.4 Linguistic Perturbation Results

To assess the robustness of AcTOL under language perturbations, we perform extensive experiments
across four instruction variants. Instructions 1 and 2 transform the original action into more con-
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Table 8: Success rate fluctuation across tasks in Franka Kitchen for different instruction variants.
Task Instruction LIV DecisionNCE AcTOL

Slide Cabinet

1. Please slide cabinet for me. −32 −8 −1
2. Help me slide cabinet. −26 −1 3
3. Push open the right cupboard door. −32 −8 −1
4. Mind pushing open the right cup-
board cabinet door? I need to grab the
cups inside.

−32 −6 −3

Average −30.5± 2.6 −5.8± 2.9 −0.5± 2.2

Open Left Door

1. Please open left door for me. −3 −3 0
2. Help me open left door. −4 0 4
3. Pull open the left cabinet door. −3 −1 0
4. Can you pull open the left cabinet
door? I need to grab something inside.

−3 −1 −1

Average −3.3± 0.4 −1.3± 1.1 0.8± 1.9

Open Microwave

1. Please open microwave for me. −5 5 −4
2. Help me open microwave. −4 1 −1
3. Pop open the microwave oven door. −5 −3 −3
4. Would you mind helping me pop
open the microwave oven door so I
can heat up my lunch?

−5 1 −2

Average −4.8± 0.4 1.0± 2.8 −2.5± 1.1

Turn on Stove

1. Please turn on stove for me. −9 −8 −2
2. Help me turn on stove. −8 −5 1
3. Rotate the control knob to activate
the stove.

−9 −7 1

4. Let us rotate the control knob to
activate the stove for cooking dinner.

−9 0 −2

Average −8.8± 0.4 −5.0± 3.1 −0.5± 1.5

Switch on Light

1. Please switch on light for me. −12 2 0
2. Help me switch on light. −13 −4 2
3. Flip the light switch. −12 −5 −3
4. Could you reach over and flip the
light switch to brighten the kitchen
area?

−12 −3 −6

Average −12.3± 0.4 −2.5± 2.7 −1.8± 3.0

Average −11.9± 0.5 −2.7± 1.2 −0.9± 1.7

versational forms. Instruction 3 introduces vocabulary diversity by varying the verbs and nouns
used. Instruction 4 further extends Instruction 3 by incorporating linguistically complex expressions
generated using ChatGPT-4o. We present the comparison results obtained from experiments in the
Franka Kitchen environment, with a data size of 5. As shown in Table 8, AcTOL outperforms the
baselines in most instruction perturbation scenarios, thereby validating its robustness.

B.5 Language-Conditioned Behavior Cloning Results

In Table 9- 14, we report detailed Language-Conditioned Behavior Cloning results for different task
and dataset size. The results demonstrate that our method achieves significant improvements across
different simulation environments, varying dataset sizes, and diverse robotic manipulation tasks.

B.6 Language-Conditioned Visual Reward Results

As shown in Figure 10, we present more visualizations of Language-Conditioned Visual Reward on
real-world robot manipulation videos from [2]. In Figure 10(a), the robot performs two consecutive
and opposing actions. Our method effectively identifies the action boundaries and generates the
correct reward sequence, increasing first and then decreasing, in alignment with the given instructions.
In Figures 10(b)-(d), where the robot performs a single action, the robot initially moves slowly as it
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Table 9: LCBC results when dataset size= 5 on Franka Kitchen.
Method Slide Cabinet Open Left Door Open Microwave Turn On Stove Switch On Light Average

CLIP 38.7± 5.1 2.0± 1.0 3.0± 0.0 7.0± 2.6 7.7± 1.5 11.7± 0.9
R3M 68.7± 0.6 18.3± 4.0 7.7± 3.2 19.3± 7.6 29.0± 6.1 28.6± 1.4
LIV 55.0± 1.0 6.0± 2.9 7.0± 0.6 13.0± 0.6 22.0± 2.6 20.6± 0.7
DecisionNCE 59.3± 6.8 9.7± 1.5 7.0± 2.0 26.3± 4.5 24.3± 2.5 25.3± 1.3
AcTOL w/o BB 71.5± 3.5 11.5± 0.7 10.5± 0.7 23.5± 6.4 47.0± 4.2 32.8± 2.8
AcTOL 85.5± 0.7 20.0± 2.1 18.3± 4.9 24.7± 4.9 62.3± 2.8 42.6± 0.3

Table 10: LCBC results when dataset size= 15 on Franka Kitchen.
Method Slide Cabinet Open Left Door Open Microwave Turn On Stove Switch On Light Average
CLIP 71.0± 3.6 8.0± 2.0 15.7± 2.1 14.7± 0.6 28.0± 1.0 27.5± 1.0
R3M 81.0± 1.0 31.0± 1.7 22.0± 2.6 19.3± 4.7 57.7± 3.8 42.2± 1.0
LIV 85.0± 5.6 19.0± 3.0 28.3± 2.9 29.7± 3.5 51.7± 2.3 42.7± 1.2
DecisionNCE 92.0± 6.6 18.7± 4.5 27.0± 4.0 33.3± 3.5 45.0± 7.5 43.2± 2.3
AcTOL w/o BB 84.5± 3.5 29.5± 0.7 29.5± 2.1 54.0± 2.8 73.5± 2.1 54.2± 0.8
AcTOL 99.5± 0.7 37.5± 5.6 37.0± 4.2 53.5± 3.5 81.5± 2.1 61.8± 2.5

Table 11: LCBC results when dataset size= 25 on Franka Kitchen.
Method Slide Cabinet Open Left Door Open Microwave Turn On Stove Switch On Light Average
CLIP 66.3± 7.5 8.7± 1.2 18.7± 1.5 23.7± 3.1 38.7± 2.3 31.2± 2.6
R3M 84.7± 6.8 35.3± 4.0 40.0± 1.0 34.0± 5.3 61.7± 10.7 51.1± 2.8
LIV 91.7± 5.9 26.0± 2.6 35.0± 4.6 45.3± 0.6 61.7± 3.2 51.9± 0.9
DecisionNCE 91.7± 1.5 27.0± 10.4 37.0± 1.7 47.3± 1.2 51.3± 4.0 50.9± 2.9
AcTOL w/o BB 92.0± 2.4 37.0± 5.4 40.0± 2.4 57.0± 1.5 78.0± 6.2 60.8± 1.3
AcTOL 100.0± 0.0 37.0± 7.1 42.5± 2.1 62.5± 2.1 81.0± 4.2 64.6± 0.6

Table 12: LCBC results when dataset size= 5 on Metaworld.
Method Assembly Pick bin Press button Hammer Open drawer Average
CLIP 48.3± 5.7 35.3± 2.3 34.3± 4.9 51.2± 2.8 91.0± 1.0 52.0± 2.7
R3M 63.5± 5.6 33.3± 5.1 27.3± 5.1 63.2± 7.1 92.3± 0.6 55.9± 3.9
LIV 61.8± 6.5 32.3± 9.0 32.7± 3.5 61.0± 6.1 100.0± 0.0 57.7± 2.1
DecisionNCE 54.0± 3.6 31.0± 3.6 27.7± 5.5 65.7± 3.8 100.0± 0.0 55.7± 2.8
AcTOL w/o BB 66.8± 1.4 39.0± 16.8 20.7± 1.5 74.7± 1.5 100.0± 0.0 60.2± 5.1
AcTOL 62.8± 6.0 41.0± 6.3 42.0± 4.5 69.5± 0.7 100.0± 0.0 63.1± 3.9

Table 13: LCBC results when dataset size= 15 on Metaworld.
Method Assembly Pick bin Press button Hammer Open drawer Average
CLIP 73.0± 7.8 40.3± 5.5 52.0± 7.9 76.0± 5.0 96.7± 0.6 67.6± 1.5
R3M 80.7± 7.6 17.0± 12.3 45.0± 4.6 83.3± 4.5 94.0± 1.0 64.0± 5.2
LIV 84.3± 2.5 37.0± 8.7 54.7± 3.8 81.3± 5.9 100.0± 0.0 71.4± 3.6
DecisionNCE 73.3± 10.8 36.7± 5.0 43.3± 2.1 83.0± 6.0 100.0± 0.0 67.3± 1.8
AcTOL w/o BB 94.0± 3.0 50.3± 18.6 48.3± 1.5 90.7± 1.2 100.0± 0.0 76.7± 5.3
AcTOL 82.5± 0.7 64.5± 3.2 65.5± 3.9 84.0± 2.1 100.0± 0.0 79.3± 1.6

Table 14: LCBC results when dataset size= 25 on Metaworld.
Method Assembly Pick bin Press button Hammer Open drawer Average
CLIP 69.3± 5.7 36.0± 11.8 66.0± 2.5 78.8± 4.9 99.3± 0.6 69.9± 4.4
R3M 87.7± 2.4 14.7± 11.6 48.3± 2.1 89.7± 3.5 100.0± 0.0 68.1± 3.6
LIV 87.3± 5.5 23.7± 6.8 66.0± 6.8 89.7± 2.5 100.0± 0.0 73.3± 1.5
DecisionNCE 85.7± 4.9 47.0± 12.8 58.0± 7.8 88.3± 6.7 100.0± 0.0 75.8± 3.9
AcTOL w/o BB 93.7± 0.6 51.7± 11.9 55.0± 3.5 93.0± 1.0 100.0± 0.0 78.7± 3.5
AcTOL 93.5± 3.4 66.0± 2.8 76.5± 4.9 88.5± 3.9 100.0± 0.0 84.9± 1.6

searches for the target. Correspondingly, the reward grows gradually. Once the robot interacts with
the object and completes the task, our method captures the distinct semantic changes in the action,
leading to a rapid reward increase. In Figures 10(e)-(f), we test two complex actions and instructions
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Figure 10: Reward plots for exemplar robot action videos.

to explore the limits of our method. In Figure 10(e), the model is required to accurately distinguish
between the blue and red cups to complete the task. In Figure 10(f), the model needs to differentiate
the orientation and face values of two dice. These scenarios impose high demands on the model’s
visual and semantic understanding. Our method successfully produces the correct rewards in both
tasks, showcasing its potential for application in real-world, complex scenarios.
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C Proofs

C.1 Proofs of Theorem 1

For the proof of Theorem 1, we closely follow the approaches presented in [45] and adapted to our
triplet case. We prove the theorem in three steps:

(1) L∗ := 1
T (T−1)

T∑
i=1

Mi∑
m=1

ni,m log ni,m is a lower bound of LVLO, i.e., LVLO > L∗.

(2) L∗ is tight, i.e., for any ϵ > 0, there exists representations such that LVLO < L∗ + ϵ.

(3) For any 0 < δ < 1, there exist ϵ > 0, such that if LVLO < L∗+ϵ, then the learned representations
satisfy VLO property.

(1) Recall that LVLO = 1
T

T∑
i=1

1
T−1

T∑
j=1,j ̸=i

− log
exp(Ri,j,l)∑

vk∈Ni,j

exp(Ri,k,l)
, where Ni,j = {vk|k ̸= i, di,j <

di,k}, we rewrite it as

LVLO = − 1

T (T − 1)

T∑
i=1

∑
j∈[T ]\{i}

log
exp (Ri,j,l)∑
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exp (Ri,k,l)

= − 1

T (T − 1)

T∑
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Mi∑
m=1

∑
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log
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∑
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log
1∑

k∈[T ]\{i},di,k≥Di,m

exp (Ri,k,l −Ri,j,l)

= − 1

T (T − 1)

T∑
i=1

Mi∑
m=1

∑
j∈[T ]\{i},di,j=Di,m

log
1∑

k∈[T ]\{i},di,k=Di,m

exp (Ri,k,l −Ri,j,l)

− 1

T (T − 1)

T∑
i=1

Mi∑
m=1

∑
j∈[T ]\{i},di,j=Di,m

log

∑
k∈[T ]\{i},di,k=Di,m

exp (Ri,k,l −Ri,j,l)∑
k∈[T ]\{i},di,k≥Di,m

exp (Ri,k,l −Ri,j,l)

= − 1

T (T − 1)

T∑
i=1

Mi∑
m=1

∑
j∈[T ]\{i},di,j=Di,m

log
exp (Ri,j,l)∑

k∈[T ]\{i},di,k=Di,m

exp (Ri,k,l)

+
1

T (T − 1)

T∑
i=1

Mi∑
m=1

∑
j∈[T ]\{i},di,j=Di,m

log

1 +

∑
k∈[T ]\{i},di,k>Di,m

exp (Ri,k,l −Ri,j,l)∑
k∈[T ]\{i},di,k=Di,m

exp (Ri,k,l −Ri,j,l)


> − 1

T (T − 1)

T∑
i=1

Mi∑
m=1

∑
j∈[T ]\{i},di,j=Di,m

log
exp (Ri,j,l)∑

k∈[T ]\{i},di,k=Di,m

exp (Ri,k,l)
.

(6)

∀i ∈ [T ],m ∈ [Mi], from Jensen’s Inequality we have

−
∑

j∈[T ]\{i},di,j=Di,m

log
exp (Ri,j,l)∑

k∈[T ]\{i},di,k=Di,m

exp (Ri,k,l)

≥ −ni,m log

 1

ni,m

∑
j∈[T ]\{i},di,j=Di,m

exp (Ri,j,l)∑
k∈[T ]\{i},di,k=Di,m

exp (Ri,k,l)

 = ni,m log ni,m.

(7)
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Thus, by plugging Eq. (7) into Eq. (6), we have

LVLO >
1

T (T − 1)

T∑
i=1

Mi∑
m=1

ni,m log ni,m = L⋆ (8)

(2) We will show for ∀ϵ > 0, there is a set of representations where

{
Ri,j,l > Ri,k,l + γ if di,j < di,k
Ri,j,l = Ri,k,l if di,j = di,k

and γ := log T
min

i∈[T ],m∈[Mi]
ni,mϵ ,∀i ∈ [T ], j, k ∈ [T ]\{i}, such that LVLO < L⋆ + ϵ. For such a set

of representations, ∀i ∈ [T ],m ∈ [Mi] , j ∈ {[T ]\{i} | di,j = Di,m},

− log
exp (Ri,j,l)∑

k∈[T ]\{i},di,k=Di,m

exp (Ri,k,l)
= log ni,m (9)

since Ri,k,l = Ri,j,l for all k such that di,k = Di,m = di,j , and

log

(
1 +

∑
k∈[T ]\{i},di,k>Di,m

exp(Ri,k,l−Ri,j,l)∑
k∈[T ]\{i},di,k=Di,m

exp(Ri,k,l−Ri,j,l)

)
< log

(
1 + T exp(−γ)

ni,m

)
< T exp(−γ)

ni,m
≤ ϵ.

(10)

As Ri,k,l −Ri,j,l < −γ for all k such that di,k > Di,m = di,j and Ri,k,l −Ri,j,l = 0 for all k such
that di,k = Di,m = di,j . From Eq. (6) we have

LVLO =− 1

T (T − 1)

T∑
i=1

Mi∑
m=1

∑
j∈[T ]\{i}
di,j=Di,m

log
exp (Ri,j,l)∑

k∈[T ]\{i}
di,k=Di,m

exp (Ri,k,l)

+
1

T (T − 1)

T∑
i=1

Mi∑
m=1

∑
j∈[T ]\{i}
di,j=Di,m

log

1 +

∑
k∈[T ]\{i}
di,k>Di,m

exp (Ri,k,l −Ri,j,l)

∑
k∈[T ]\{i}
di,k=Di,m

exp (Ri,k,l −Ri,j,l)


(11)

By plugging Eq. (9) and Eq. (10) into Eq. (11) we have

LVLO <
1

T (T − 1)

T∑
i=1

Mi∑
m=1

ni,m log ni,m + ϵ = L⋆ + ϵ (12)

(3) We will show ∀0 < δ < 1, there is a

ϵ =
1

T (T − 1)
min

(
min

i∈[T ],m∈[Mi]
log

(
1 +

1

ni,m exp
(
δ + 1

δ

)) , 2 log
1 + exp(δ)

2
− δ

)
> 0,

such that when LVLO < L∗ + ϵ, the representations satisfy VLO property. We first show that
|Ri,j,l −Ri,k,l| < δ if di,j = di,k, i ∈ [T ], j, k ∈ [T ]\{i} when LVLO < L∗ + ϵ. From Eq. (6) we
have
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LVLO > − 1

T (T − 1)

T∑
i=1

Mi∑
m=1

∑
j∈[T ]\{i},di,j=Di,m

log
exp (Ri,j,l)∑

k∈[T ]\{i},di,k−Di,m

exp (Ri,k,l)
(13)

Let pi,m := argmin
j∈[T ]\{i},di,j=Di,m

Ri,j,l, qi,m := argmax
j∈[T ]\{i},di,j=Di,m

Ri,j,l, ζi,m := Ri,pi,m,l, ηi,m :=

si,qi,m,l − si,pi,m,l,∀i ∈ [T ],m ∈ [Mi], by splitting out the maximum term and the minimum term
we have

LVLO > − 1

T (T − 1)

T∑
i=1

Mi∑
m=1

log
exp (ζi,m)∑

k∈[T ]\{i},di,i=Di,m

exp (Ri,k,l)

+ log
exp (ζi,m + ηi,m)∑

k∈[T ]\{i},di,k=Di,m

exp (Ri,k,l)
+ log

exp

( ∑
j∈[T ]\{i,pi,m,qi,m},di,j=Di,m

Ri,j,l

)
( ∑

k∈[T ]\{i},di,k=Di,m

exp (Ri,k,l)

)ni,m−2


.

(14)

Let θi,m := 1
ni,m−2

∑
j∈[T ]\{i,pi,m,qi,m},di,j=Di,j

exp (Ri,j,l − ζi,m), we have

− log
exp (ζi,m)∑

k∈[T ]\{i},di,k=Di,m

exp (Ri,k,l)
= log (1 + exp (ηi,m) + (ni,m − 2) θi,m) (15)

and

− log
exp (ζi,m + ηi,m)∑

k∈[T ]\{i},di,k=Di,m

exp (Ri,k,l)
= log (1 + exp (ηi,m) + (ni,m − 2) θi,m)− ηi,m (16)

Then, from Jensen’s inequality, we know

exp

( ∑
j∈[T ]\{i,pi,m,qi,m}

di,j=Di,m

Ri,j,l

)
≤

 1

ni,m − 2

∑
j∈[T ]\{i,pi,m,qi,m}

di,j=Di,m

exp(Ri,j,l)


ni,m−2

(17)

thus

− log

exp

(∑
j∈[T ]\{i,pi,m,qi,m}

di,j=Di,m

Ri,j,l

)
(∑

k∈[T ]\{i}
di,k=Di,m

exp(Ri,k,l)

)ni,m−2

≥ (ni,m − 2) log (1 + exp(ηi,m) + (ni,m − 2)θi,m)− (ni,m − 2) log(θi,m)

(18)

By plugging Eq. (15), Eq. (16) and Eq. (18) into Eq. (14), we have

LVLO >
1

T (T − 1)

T∑
i=1

Mi∑
m=1

(
ni,m log (1 + exp(ηi,m) + (ni,m − 2)θi,m)

− ηi,m − (ni,m − 2) log(θi,m)

) (19)
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Let h(θ) := ni,m log (1 + exp (ηi,m) + (ni,m − 2) θ)− ηi,m − (ni,m − 2) log(θ). From derivative

analysis we know h(θ) decreases monotonically when θ ∈
[
1,

1+exp(ηi,m)
2

]
and increases monotoni-

cally when θ ∈
[
1+exp(ηi,m)

2 , exp (ηi,m)
]
, thus

h(θ) ≥ h

(
1 + exp (ηi,m)

2

)
= ni,m log ni,m + 2 log

1 + exp (ηi,m)

2
− ηi,m. (20)

By plugging Eq. (20) into Eq. (19), we have

LVLO >
1

T (T − 1)

T∑
i=1

Mi∑
m=1

(
ni,m log ni,m + 2 log

1 + exp (ηi,m)

2
− ηi,m

)

= L⋆ +
1

T (T − 1)

T∑
i=1

Mi∑
m=1

(
2 log

1 + exp (ηi,m)

2
− ηi,m

) (21)

Then, since ηi,m ≥ 0, we have 2 log
1+exp(ηi,m)

2 − ηi,m ≥ 0. Thus, ∀i ∈ [T ],m ∈ [Mi],

LVLO > L⋆ +
1

T (T − 1)

(
2 log

1 + exp (ηi,m)

2
− ηi,m

)
(22)

If LVLO < L⋆ + ϵ ≤ L⋆ + 1
T (T−1)

(
2 log 1+exp(δ)

2 − δ
)

, then

2 log
1 + exp (ηi,m)

2
− ηi,m < 2 log

1 + exp(δ)

2
− δ (23)

Since y(x) = 2 log 1+exp(x)
2 − x increases monotonically when x > 0, we have ηi,m < δ. Hence

∀i ∈ [T ], j, k ∈ [T ]\{i}, if di,j = di,k = Di,m, |Ri,j,l −Ri,k,l| ≤ ηi,m < δ. Next, we show
Ri,j,l > Ri,k,l + δ if di,j < di,k when LVLO < L⋆ + ϵ. From Eq. (6) we have

LVLO = − 1

T (T − 1)

T∑
i=1

Mi∑
m=1

∑
j∈[T ]\{i}
di,j=Di,m

log
exp(Ri,j,l)∑

k∈[T ]\{i}
di,k=Di,m

exp(Ri,k,l)

+
1

T (T − 1)

T∑
i=1

Mi∑
m=1

∑
j∈[T ]\{i}
di,j=Di,m

log

1 +

∑
k∈[T ]\{i}
di,k=Di,m

exp(Ri,k,l −Ri,j,l)

∑
k∈[T ]\{i}
di,k>Di,m

exp(Ri,k,l −Ri,j,l)


(24)

and combining it with Eq. (7) we have

LVLO ≥ L⋆ +
1

T (T − 1)

T∑
i=1

Mi∑
m=1

∑
j∈[T ]\{i}
di,j=Di,m

log

1 +

∑
k∈[T ]\{i}
di,k>Di,m

exp(Ri,k,l −Ri,j,l)

∑
k∈[T ]\{i}
di,k=Di,m

exp(Ri,k,l −Ri,j,l)



> L⋆ +
1

T (T − 1)
log

1 +
exp(Ri,k,l −Ri,j,l)∑

h∈[T ]\{i}
di,h=di,j

exp(Ri,h,l −Ri,j,l)


(25)
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∀i ∈ [T ], j ∈ [T ]\{i}, k ∈ {k ∈ [T ]\{i} | di,j < di,k}. When LVLO < L⋆ + ϵ, we al-
ready have |Ri,h,l −Ri,j,l| < δ,∀di,h = di,j , which derives Ri,h,l − Ri,j,l < δ and thus
exp (Ri,h,l −Ri,j,l) < exp(δ). By putting this into Eq. (24), we have ∀i ∈ [T ], j ∈ [T ]\{i}, k ∈
{k ∈ [T ]\{i} | di,j < di,k},

LVLO > L⋆ +
1

T (T − 1)
log

(
1 +

exp (Ri,k,l −Ri,j,l)

ni,ri,j exp(δ)

)
(26)

where ri,j ∈ [Mi] is the index such that Di,ri,j = di,j .

Further, given LVLO < L⋆ + ϵ < L⋆ + 1
T (T−1) log

(
1 + 1

ni,ri,j
exp(δ+ 1

δ )

)
, we have

log

(
1 +

exp (Ri,k,l −Ri,j,l)

ni,ri,j exp(δ)

)
< log

(
1 +

1

ni,ri,j exp
(
δ + 1

δ

)) (27)

which derives Ri,j,l > Ri,k,l +
1
δ ,∀i ∈ [T ], j ∈ [T ]\{i}, k ∈ {[T ]\{i} | di,j < di,k}. Finally,

∀i ∈ [T ], j, k ∈ [T ]\{i},Ri,j,l < Ri,k,l − 1
δ if di,j > di,k directly follows from Ri,j,l > Ri,k,l +

1
δ

if di,j < di,k.

C.2 Proofs of Theorem 2

Setup and Assumptions. To provide the vision-language continuity, we first assume that the
frame embeddings {vt}, where t ∈ [1, T ] are regularized under a Brownian Bridge process B(t)
as discussed in Section 3.2, where the transition density for any intermediate time t ∈ [n(i), n(j)]
within a sampled interval is given as:

B(t) ∼ N (E[B(t)],Var[B(t)]) , (28)

with:

E[B(t)] = vi +
t− n(i)

n(j)− n(i)
(vj − vi), Var[B(t)] =

(t− n(i))(n(j)− t)

n(j)− n(i)
. (29)

All time steps t ∈ [1, T ] are covered by at least one sampled interval, ensuring the entire video
sequence satisfies the Brownian Bridge regularization. Now, let vk,vl ∈ Rd be arbitrary embeddings,
not necessarily the endpoints vi and vj of a sampled interval. These embeddings fall within the
union U of all sampled local intervals. Without loss of generality, here we can identify the interval
[n(i), n(j)] ∈ U from the union containing vk and vl.

Bounding Local Continuity. Recall that semantic alignment score R(vk,vl, l) is defined as:

R(vk,vl, l) = −∥ sim(vk, l)− sim(vl, l)∥2,
where sim(·) is Lipschitz continuous with constant C > 0 when embeddings are normalized as unit
vectors. By the Lipschitz continuity of sim(·), we have:

∥ sim(vk, l)− sim(vl, l)∥2 ≤ C · ∥vk − vl∥2.

To ensure the continuity of R, we must bound ∥vk−vl∥2. Under the Brownian Bridge regularization,
the embeddings are aligned with the mean trajectory E[B(t)], and deviations are constrained by the
variance Var[B(t)]. Specifically:

∥vt − E[B(t)]∥22 ≤ λ ·Var[B(t)],

where λ > 0 depends on the strength of the Brownian Bridge loss LBB. Below we omit λ for
simplicty. Substituting the variance:

Var[B(t)] =
(t− n(i))(n(j)− t)

n(j)− n(i)
.

Bounding Pairwise Distance. The total pairwise distance between vk and vl can be expressed as:

∥vk − vl∥2 ≤ ∥E[B(k)]− E[B(l)]∥2 +
√
Var[B(k)] +

√
Var[B(l)].
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Since the mean trajectory E[B(t)] is linear within the interval [n(i), n(j)], we have:

∥E[B(k)]− E[B(l)]∥2 ≤ |k − l|
n(j)− n(i)

∥vj − vi∥2.

Combining these bounds, now we can rewrite into the following inequality:

∥vk − vl∥2 ≤ |k − l|
n(j)− n(i)

∥vj − vi∥2 +

√
(k − n(i))(n(j)− k)

n(j)− n(i)
+

√
(l − n(i))(n(j)− l)

n(j)− n(i)
.

For the variance terms, the Brownian Bridge process achieves its maximum variance at the midpoint
t = n(i)+n(j)

2 . This gives us,

Var[B(tmax)] =
n(j)− n(i)

4
, ∥vk − vl∥2 ≤ 2

|k − l|
n(j)− n(i)

+
√
(n(j)− n(i)).

Bounding Semantic Alignment Score. Finally, by substituting this bound into the Lipschitz
continuity of sim, we obtain,

|R(vk,vl, l)| ≤ C ·
(

2|k − l|
n(j)− n(i)

+
√
(n(j)− n(i))

)
.

To ensure |R(vk,vl, l)| < ϵ, we require:

C ·
(
2

|k − l|
n(j)− n(i)

+
√
n(j)− n(i)

)
< ϵ.

Here, we consider these two terms respectively:

2C
|k − l|

n(j)− n(i)
<

ϵ

2
, C
√
n(j)− n(i) <

ϵ

2
,

which gives:

|k − l| < δ1 =
ϵ · (n(j)− n(i))

4C
, n(j)− n(i) <

( ϵ

2C

)2
.

Combining these conditions, we choose:

δ = min

(
ϵ · (n(j)− n(i))

4C
,

ϵ2

4C2

)
.

Final Conclusion. For any given ϵ > 0, setting δ = min
(

ϵ·(n(j)−n(i))
4C , ϵ2

4C2

)
ensures:

∥vk − vl∥2 < δ ⇒ |R(vk,vl, l)| < ϵ.

C.3 Proofs of Theorem 3

From the definition of the semantic alignment score, we have:

R(vi,vj , l) = −| sim(vi, l)− sim(vj , l)|, R(vi,vj , l
′) = −| sim(vi, l

′)− sim(vj , l
′)|.

The difference in scores can be bounded using the reverse triangle inequality:

|R(vi,vj , l
′)−R(vi,vj , l)| ≤ |(sim(vi, l

′)− sim(vj , l
′))− (sim(vi, l)− sim(vj , l))|.

Simplifying the inequalities above, it gives us:

|R(vi,vj , l
′)−R(vi,vj , l)| ≤ | sim(vi, l

′)− sim(vi, l)|+ | sim(vj , l
′)− sim(vj , l)|.

By the Lipschitz continuity of sim, we have: for some constant C > 0,

| sim(vi, l
′)− sim(vi, l)| ≤ C∥l′ − l∥2, | sim(vj , l

′)− sim(vj , l)| ≤ C∥l′ − l∥2.
Substituting these bounds and considering ∥l′ − l∥2 ≤ δl

|R(vi,vj , l
′)−R(vi,vj , l)| ≤ 2C∥l′ − l∥2 ≤ 2Cδl. (30)
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D Broader Impacts

We introduce Action Temporal Coherence Learning (AcTOL), a vision-language pretraining frame-
work aimed at improving the generalization capabilities of embodied agents in a variety of ma-
nipulation tasks. By learning from large-scale human action videos, AcTOL helps agents acquire
temporally consistent representations aligned with natural language, which can support more flexible
and data-efficient robotic learning. However, some potential risks should be acknowledged. If
AcTOL is trained on video data that contains societal biases or stereotypes, those patterns may be
reflected in the model’s behavior. For instance, if certain groups or actions are underrepresented or
portrayed inaccurately, the resulting agents could behave in ways that are inappropriate or unreliable
in diverse real-world settings. While these challenges are common across many data-driven systems
in robotics and vision-language learning, we believe future work should explore strategies such as
dataset auditing, fairness-aware training, and improved transparency to support more responsible and
robust deployment.
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