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ABSTRACT

Restricted Boltzmann Machines (RBMs) are powerful tools for modeling complex
systems and extracting insights from data, but their training is hindered by the slow
mixing of Markov Chain Monte Carlo (MCMC) processes, especially with highly
structured datasets. In this study, we build on recent theoretical advances in RBM
training and focus on the stepwise encoding of data patterns into singular vectors of
the coupling matrix, significantly reducing the cost of generating new samples and
evaluating the quality of the model, as well as the training cost in highly clustered
datasets. The learning process is analogous to the thermodynamic continuous phase
transitions observed in ferromagnetic models, where new modes in the probability
measure emerge in a continuous manner. We leverage the continuous transitions in
the training process to define a smooth annealing trajectory that enables reliable
and computationally efficient log-likelihood estimates. This approach enables
online assessment during training and introduces a novel sampling strategy called
Parallel Trajectory Tempering (PTT) that outperforms previously optimized MCMC
methods. To mitigate the critical slowdown effect in the early stages of training, we
propose a pre-training phase. In this phase, the principal components are encoded
into a low-rank RBM through a convex optimization process, facilitating efficient
static Monte Carlo sampling and accurate computation of the partition function.
Our results demonstrate that this pre-training strategy allows RBMs to efficiently
handle highly structured datasets where conventional methods fail. Additionally,
our log-likelihood estimation outperforms computationally intensive approaches
in controlled scenarios, while the PTT algorithm significantly accelerates MCMC
processes compared to conventional methods.

1 INTRODUCTION

Energy-based models (EBMs) are a long-established approach to generative modeling, with the
Boltzmann Machine (BM) (Hinton & Sejnowski, 1983) and Restricted Boltzmann Machine
(RBM) (Smolensky, 1986; Ackley et al., 1985) being among the earliest examples. They offer
a clear framework for capturing complex data interactions and, with simple energy functions, can
reveal underlying patterns, making them especially valuable for scientific applications. Pairwise-
interacting models (Nguyen et al., 2017) have been widely used for decades for inference applications
in fields like neuroscience (Hertz et al., 2011) and computational biology (Cocco et al., 2018).
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More recent research has shown that RBMs can also be reinterpreted as many-body physical mod-
els (Decelle et al., 2024; Bulso & Roudi, 2021), analyzed to identify hierarchical relationships in the
data (Decelle et al., 2023), or used to uncover biologically relevant constituent features (Tubiana et al.,
2019; Fernandez-de Cossio-Diaz, 2025). In essence, RBMs present a great compromise between
expressibility and interpretability: they are universal approximators capable of modeling complex
datasets and simple enough to allow a direct extraction of insights from data. This interpretative task
is particularly challenging when dealing with more powerful models, such as generative convolutional
network EBMs (Xie et al., 2016; Song & Kingma, 2021) and other state-of-the-art models in general.
At this point, it is also important to stress that RBM are not only interpretable, but they perform
particularly well when dealing with tabular datasets with discrete variables and where data are not
abundant, which is often the case in genomics/proteomics or neural recording datasets. For example,
RBMs have been shown to be among the most reliable approaches to generate synthetic human
genomes (Yelmen et al., 2021; 2023) or to model the immune response (Bravi et al., 2021a;b; 2023)
or neural activity (van der Plas et al., 2023; Quiroz Monnens et al., 2024).

RBMs, like other EBMs, are challenging to train due to the difficulty of computing the log-likelihood
gradient, which requires ergodic exploration of a complex free-energy landscape via Markov Chain
Monte Carlo (MCMC). Training with non-convergent MCMC introduces out-of-equilibrium memory
effects, as shown in recent studies (Nijkamp et al., 2019; 2020; Decelle et al., 2021), which can be
analytically explained using moment-matching arguments (Nijkamp et al., 2019; Agoritsas et al.,
2023). While these effects enable fast and accurate generative models for structured data (Carbone
et al., 2024a) and high-quality images with RBMs (Liao et al., 2022), they create a sharp disconnect
between the model’s Gibbs-Boltzmann and dataset distributions, undermining parameter interpretabil-
ity (Agoritsas et al., 2023; Decelle et al., 2024). For meaningful insights, RBMs require proper chain
mixing during training, emphasizing the need for equilibrium models.

Working with equilibrium RBMs poses three primary challenges: training, evaluating model quality,
and sampling from the trained model. Both training and sampling rely on MCMC methods to
draw equilibrium samples, but their efficiency depends heavily on the dataset’s structure. While
RBMs can be effectively trained on image datasets like MNIST or CIFAR-10 with sufficient MCMC
steps, this approach falters for highly structured datasets (Béreux et al., 2023), such as genomics,
neural recordings, or low-temperature physical systems. These datasets often exhibit multimodal
distributions with distinct clusters, as revealed by PCA (Fig. 1), which hinder mixing. Clustering is
prominent in the first four datasets studied here, in contrast to the more compact PCA pattern seen in
CelebA or full MNIST. Dataset details are provided in Fig. 1. Multimodal distributions exacerbate
sampling challenges since mixing times depend on the MCMC chains’ ability to transition between
clusters. In RBMs, these distant modes emerge during training through continuous phase transitions
(e.g., second-order or critical transitions) that encode patterns (Decelle et al., 2017; 2018; Bachtis
et al., 2024). These transitions lead to critical slowdown (Hohenberg & Halperin, 1977), where mixing
times diverge with system size as the transition point nears. Critical slowdown along the training
trajectory was recently analyzed in (Bachtis et al., 2024). For a brief introduction to phase transitions
and associated dynamical effects, see Supplemental Information (SI) G. All this hampers both the
training process and the model’s ability to generate independent samples, as achieving adequate
mixing requires prohibitively long simulations. Model quality evaluation adds to the challenge,
particularly in unsupervised learning. A common qualitative approach compares equilibrium samples
to data via PCA projections. Quantitatively, moment comparisons between data and generated
distributions offer insights but fail to detect mode collapse. Log-likelihood computation provides
a single-score metric and tracks overfitting during training, but exact computation is infeasible
due to the intractable partition function. Instead, methods such as Annealed Importance Sampling
(AIS) (Neal, 2001) are used for estimation but become unreliable for highly multimodal distributions
and are computationally impractical for online evaluations (see Section 4.1).

In this paper, we build on recent advances in understanding the evolution of the landscape during the
training of RBM models to propose 3 innovative approaches for tackling the challenges of evaluating,
generating samples and training RBMs on highly structured datasets:

1. We propose a novel method for estimating log-likelihood (LL) by leveraging the softness of the
training trajectory. This approach enables efficient online LL computation during training at mini-
mal cost or offline reconstruction using trajectory annealing or parallel tempering. Moreover, we
demonstrate that this method is not only less computationally expensive than existing techniques
but also more accurate in controlled experiments. The method is introduced in Sect. 4.1.
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Figure 1: Datasets. Panels A-E display 5 distinct datasets projected onto their first two PCA
components. In some instances, the dots are color-coded to indicate different labels. In A, the MNIST
01 dataset, featuring images of the digits 0 and 1 from the complete MNIST collection, along with
a few sample images. In B, the “Mickey” dataset, an artificial dataset whose PCA representation
forms the shape of Mickey Mouse’s face. In C, the Human Genome Dataset (HGD), which consists
of binary vectors representing mutations or non-mutations for individuals compared to a reference
genome across selected genes. In D, the Ising dataset, showcasing equilibrium configurations of the
2D ferromagnetic Ising model at an inverse temperature of β = 0.44. In E, the CelebA dataset in
black and white, resized to 32x32 pixels. For more details on these datasets, please refer to the SI.

2. We propose a variation of the standard parallel tempering algorithm, where parameters from
different stages of the learning process are exchanged instead of temperatures. This new sampling
approach significantly outperforms previous optimized methods and is detailed in Section 4.2.

3. We introduce a pretraining strategy based on the low-rank RBM framework of (Decelle &
Furtlehner, 2021a) to mitigate gradient degradation in early training, caused by mixing time
divergence when encoding distant modes in structured datasets. Our approach extends this
framework to real datasets by increasing constrained directions and incorporating a trainable bias,
essential for image data. We also refine static Monte Carlo sampling for efficient equilibrium
sampling. See Section 5 and SI A for details.

We also provide an in-depth discussion in Sect. 2 on the physical reasons behind the failure of
previous algorithms when handling clustered datasets.

2 RELATED WORK

Training EBMs by maximizing log-likelihood has long been a challenge (LeCun et al., 2006; Song &
Kingma, 2021). The introduction of contrastive divergence (Hinton, 2002) popularized EBMs by
using short MCMC runs initialized on minibatch examples, but this approach often produces models
with poor equilibrium properties, limiting their effectiveness as generative models (Salakhutdinov
& Murray, 2008; Desjardins et al., 2010; Decelle et al., 2021). Persistent contrastive divergence
(PCD) (Tieleman, 2008) improves gradient estimation by maintaining a continuous MCMC chain
between updates, acting like a slow annealing process. However, PCD struggles with clustered data,
as the chain’s properties can drift from the equilibrium measure, degrading the model (Béreux et al.,
2023). This issue, tied to phase coexistence, can be mitigated with constrained MCMC methods,
leveraging order parameters from the singular value decomposition of the RBM coupling matrix to
reconstruct multimodal distributions (Béreux et al., 2023). While effective for model evaluation, this
approach is too computationally intensive for practical training, despite producing models with strong
equilibrium properties.

The population annealing algorithm, which adjusts the statistical weights of parallel chains after each
parameter update, has been proposed as an alternative (Krause et al., 2018). Similarly, reweighting
chains using non-equilibrium physics concepts like the Jarzynski equation has been explored (Carbone
et al., 2024b). However, both methods face challenges with highly structured data, where frequent
reweighting (duplicating only a few samples) skews the equilibrium measure due to an insufficient
number of independent chains. To mitigate this, more sampling steps or lower learning rates are
required, leading to excessively long training times to maintain equilibrium.
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In our case, applying these methods to our datasets resulted in training that was either too unstable or
prohibitively slow when auto-adjusting learning rates and Gibbs steps. Another approach uses EBMs
as corrections for flow-based models (Nijkamp et al., 2022), simplifying sampling but sacrificing
the interpretability of the energy function, which is central to our work. Alternatively, evolving flow
models can act as fast sampling proposers for EBMs (Grenioux et al., 2023), but this requires training
two separate networks and leads to lower acceptance rates as the EBM becomes more specialized.

The Parallel Tempering (PT) algorithm (Hukushima & Nemoto, 1996), in which the model is
simulated in parallel at different temperatures which are exchanged once in a while using the
Metropolis rule, has been proposed to both speed up the sampling and to improve the training
process (Salakhutdinov, 2009; Desjardins et al., 2010) showing important improvements in certain
datasets (Krause et al., 2020).

However, PT is expensive because it requires sampling at multiple temperatures while using samples
from only one model. It’s also often ineffective with highly clustered data due to first-order phase
transitions in EBMs, where modes disappear abruptly at certain temperatures, as discussed by
(Decelle & Furtlehner, 2021a). This leads to sharp drops in acceptance rates for exchanges between
temperatures near the transition. For this reason, first-order transitions typically hinder PT, as many
intermediate temperatures are needed to allow sufficient acceptance rates in the exchanges. In contrast,
continuous transitions, as seen during the training trajectory, cause modes to gradually separate as the
model parameters are changed. The “Stacked Tempering” algorithm (Roussel et al., 2023), recently
proposed for RBMs, accelerates sampling by training smaller RBMs with latent variables from
previous models, enabling fast updates via a PT-like algorithm. While significantly faster than PT, it
is unsuitable for learning, as it requires sequential training of multiple stacked models.

Separately, a theoretical study (Decelle & Furtlehner, 2021a) demonstrated that a low-rank RBM can
be trained via a convex, fast optimization process to reproduce the statistics of the data projected along
the d first data principal directions through a convex and very fast optimization process (see (Decelle
& Furtlehner, 2021a) and the discussion below) using a mapping to another model, the so-called
Restricted Coulomb Machine. This low-rank model can be seen as a good approximation to the
correct RBM needed to describe the data, and has the nice property that it can be efficiently sampled
via a static Monte Carlo process. While this work showed the efficiency of this training process to
describe simple synthetic datasets embedded in only one or two dimensions, the use of this algorithm
to obtain reliable low-rank RBMs with real data requires further developments that will be discussed
in this paper, in particular: (i) the training of a bias, which is crucial to gain almost for free an
additional dimension and to deal with image datasets, and (ii) a tuning of the RBM fast sampling
process, which was not properly investigated in the original paper.

In this paper, we show that the training trajectory can be exploited to estimate log-likelihood with
minimal computational cost, enabling reliable online computation. We also introduce Parallel
Trajectory Tempering (PTT), an efficient sampling method that outperforms optimized MCMC
approaches like Parallel Tempering (PT) and Stacked Tempering (Roussel et al., 2023), requiring
only a few model parameters stored at different stages of the training. Additionally, we demonstrate
that initializing RBM training with a low-rank RBM in highly clustered datasets mitigates the effect
of initial dynamical arrests, significantly improving model quality at a comparable cost. Combining
these strategies allows us to train equilibrium models that capture diverse modes in datasets prone to
mode collapse, efficiently evaluate RBMs during training, and sample from multimodal distributions.

3 THE RESTRICTED BOLTZMANN MACHINE

The RBM consists of Nv visible nodes and Nh hidden nodes. In our study, we primarily use binary
variables {0, 1} or ±1 for both layers. The visible and hidden layers interact through a weight matrix
W , with no intra-layer couplings. Each variable is further influenced by local biases, θ for visible
units and η for hidden units. The Gibbs-Boltzmann distribution for this model is given by

p(v,h) = 1
Z exp [−H(v,h)] whereH(v,h) = −∑ia viWiaha −

∑
i θivi −

∑
a ηaha, (1)

where Z is the partition function of the system. As with other models containing hidden variables, the
training objective is to minimize the distance between the empirical distribution of the data, pD(v),
and the model’s marginal distribution over the visible variables, p(v) =

∑
h exp [−H(v,h)] /Z =

exp [−H(v)] /Z. Minimizing the Kullback-Leibler divergence is equivalent to maximizing the
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likelihood of observing the training dataset in the model. Thus, the log-likelihood L = ⟨−H(v)⟩D −
logZ can be maximized using the classical stochastic gradient ascent. For a training dataset D =
{v(m)}m=1,...,M , the log-likelihood gradient is given by

∂L
∂Wia

= ⟨viha⟩D − ⟨viha⟩RBM,
∂L
∂θi

= ⟨vi⟩D − ⟨vi⟩RBM,
∂L
∂ηa

= ⟨ha⟩D − ⟨ha⟩RBM, (2)

where ⟨f(v,h)⟩D = M−1
∑

m

∑
{h} f(v

(m),h)p(h|v(m)) denotes the average with respect to the
entries in the dataset, and ⟨f(v,h)⟩RBM with respect to p(v,h).

Since Z is intractable, gradient estimates typically rely on Ns independent MCMC processes,
replacing observable averages ⟨o(v,h)⟩RBM with

∑R
r=1 o(v

(r),h(r))/R, where (v(r),h(r)) are the
final states of R parallel chains. Reliable estimates require proper mixing before each parameter
update, but enforcing equilibrium at every step is impractical and slow. The widespread use of non-
convergent MCMC processes underlies most training difficulties and anomalous dynamics in RBMs,
as discussed in (Decelle et al., 2021). In order to minimize out-of-equilibrium effects, it is often useful
to keep R permanent (or persistent) chains, which means that the last configurations reached with the
MCMC process used to estimate the gradient at a given parameter update t, Pt ≡ {(v(r)

t ,h
(r)
t )}Rr=1,

are used to initialize the chains of the subsequent update t+ 1. This algorithm is typically referred
to as PCD. In this scheme, the process of training can be mimicked as a slow cooling process,
only that instead of varying a single parameter, e.g. the temperature, a whole set of parameters
Θt = (wt,θt,ηt) is updated at every step to Θt+1 = Θt + γ∇Lt with ∇Lt being the gradient in
equation 2 estimated using the configurations in Pt, and γ being the learning rate.

Typical MCMC mixing times in RBMs are initially short but increase as training progresses (Decelle
et al., 2021). Studies reveal sharp mixing time peaks when the model encodes new modes (Bachtis
et al., 2024), a phenomenon known as critical slowing down Hohenberg & Halperin (1977), associated
with critical phase transitions. In RBMs, these transitions are related with the alignment of the
singular vectors of W with the dataset’s principal components (Decelle et al., 2017; 2018; Decelle
& Furtlehner, 2021b; Bachtis et al., 2024). However, these dominant modes can be identified via
PCA before training and efficiently encoded through convex optimization, circumventing standard
maximum likelihood training. This approach prevents gradient degradation due to diverging mixing
times at the first second-order transitions. The advantages of using the low-rank construction from
Decelle & Furtlehner (2021a) as a pretraining method will be discussed in Section 5.

4 TRAJECTORY ANNEALING PARADIGM

One major challenge with structured datasets is quantifying the model’s quality, since sampling the
equilibrium measure of a well-trained model is often too time-consuming. This affects the reliability
of generated samples and indirect measures such as log-likelihood (LL) estimation through Annealing
Importance Sampling (AIS) (Krause et al., 2020), making them inaccurate and meaningless. The
evolution of parameters during training can be seen as a smoother annealing process compared to the
standard temperature annealing used in algorithms like annealing importance sampling (AIS) for LL
estimation or in sampling algorithms like simulated annealing or PT. This is because it avoids the
first-order transitions that typically occur with temperature in clustered datasets, see SI H for more
detailed explanations of this phenomenon in clustered datasets. However, these methods can still be
applied to trajectory annealing using the parameters of different stages of training, rather than scaling
the model parameters by a common factor βi, as is done in temperature-based protocols.

4.1 TRAJECTORY ANNEALING IMPORTANCE SAMPLING

The standard method for log-LL estimation in the literature is AIS (Neal, 2001); see (Krause et al.,
2020) for a review on its application to RBMs. A detailed algorithm description is provided in
SI D. AIS estimates the partition function of a model with parameters Θ = {W ,θ,η} by gradually
increasing the inverse temperature β from 0 to 1 over Nβ steps. At β = 0, where p0 = pref ,
the partition function Z0 is tractable, allowing estimation of Zi at neighboring βi values via path
sampling. The reference distribution pref is typically uniform, but improved performance has been
reported when using the independent site distribution centered on the dataset, see SI D for details.
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A B C

Figure 2: Comparison of LL estimation error (relative to the exact value) across different methods:
AIS (A), AIS with a reference distribution fixed to the independent site distribution matching the
dataset’s empirical center (B), and Tr-AIS (ours, C). For Tr-AIS, we evaluate three approaches: online
during training, offline using saved models, and with PTT. The RBM, pretrained and trained with
20 hidden nodes (allowing exact LL computation), for 104 gradient steps on the HGD dataset. PTT
selects a subset of saved models ensuring a 0.25 acceptance rate between consecutive models. Lines
show the mean LL over 10 independent runs, with shaded areas representing one standard deviation.

AIS is quite costly because it requires a large number of annealing steps Nβ for reliable estimations,
making it impractical to compute the log-likelihood online during training. As a result, it is often
calculated offline using a set of models at different temperatures. However, since the training process
itself follows an annealing trajectory, it makes more sense to use the evolution of parameters during
training as annealing steps rather than relying on temperature. Additionally, at the start of training,
parameters are set to zero, making Z0 tractable, which also holds when initializing with a low-rank
RBM. Since updating the partition function only involves calculating the energy difference between
the new and old parameters, this can be efficiently computed online during each parameter update,
allowing for very small integration steps. We refer to this method as online Tr-AIS. Alternatively,
similar to standard AIS, multiple models can be saved during training for an offline Tr-AIS estimation.

To evaluate the reliability of our new approach, we trained several RBMs using datasets with a
maximum of 20 hidden nodes, allowing for the exact computation of the partition function through
direct enumeration. We then calculated the difference between the true partition function and the
estimations obtained from various methods. The results for the HGD dataset are presented in Fig. 2,
while similar qualitative results for the other datasets can be found in the SI, see Figs. 15, 16, 17
and 18. In Fig. 2, we display the estimation errors in the LL using three different methods: standard
temperature AIS (panel A), AIS with non-flat reference distribution (panel B), and Tr-AIS (panel
C). For the temperature AIS estimates, we show results for different values of Nβ in distinct colors.
In panel C, we compare the online estimation in black with the offline Tr-AIS estimation, using the
same models analyzed in panels A and B. Additionally, we present the error in LL estimation using
just a few machines saved during the training and the trajectory parallel tempering (PTT), which will
be detailed in the next section. Overall, the online Tr-AIS estimation consistently outperforms the
other methods, and only the PTT estimation yields similar results in offline analyses.

4.2 EXPLOITING THE TRAINING TRAJECTORY FOR SAMPLING

The trajectory annealing paradigm can also be exploited to significantly accelerate the sampling of
equilibrium configurations, as we show in Fig. 3. Before presenting our parallel trajectory annealing
(PTT) algorithm, we first discuss the limitations of standard methods like Alternating Gibbs Sampling
(AGS), and introduce the standard parallel tempering (PT) algorithm. The AGS procedure involves
iteratively alternating between two steps: conditioning on all hidden variables given fixed visible
variables, and then conditioning on all visible variables given fixed hidden variables.

Problems with the standard AGS method– Let us consider the MNIST01, HGD, and Ising 2D
datasets. MNIST01 and Ising 2D exhibit strong bimodality in their PCA representations, while
HGD is trimodal, as shown in Fig. 1. Suppose that we have trained an RBM on each of these
datasets, for example using the low-rank RBM pretraining (see Section 5), and we aim to sample the
equilibrium measure of these models. Typically, this involves running MCMC processes from random
initializations and iterating them until convergence. The mixing time in such cases is determined
by the jumping time between clusters. Accurate estimation of the relative weights between modes
requires the MCMC processes to be ergodic, necessitating frequent back-and-forth jumps. However,
as shown in the chains in Figs. 3–B1-3, AGS dynamics are exceedingly slow, rarely producing jumps
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Figure 3: Comparison of the performance of different MCMC sampling methods on RBMs trained
with the pretraining+PCD procedure on the MNIST01 (row-1), the HGD (row-2) and Ising 2D
datasets (row-3). In A and B columns, we show the trajectory of two independent Markov chains
(red and orange) iterated for 104 MCMC steps using either PTT or AGS, projected onto the first two
principal components of the dataset. The position of the chains is plotted every 10 MCMC steps.
The black contour represents the density profile of the dataset. In column C, we show the averaged
number of jumps between the two regions separated by the dashed grey line in the PCA plots using
different MCMC methods: AGS, Parallel Tempering (PT) (Hukushima & Nemoto, 1996), without
or with reference configuration (PTref) (Krause et al., 2020), the Stacked Tempering (Roussel et al.,
2023), and the Trajectory Parallel Tempering (PTT) proposed in this work. The average is calculated
over a population of 1000 chains and the shadow around the lines indicates the error of the mean.

even after 104 MCMC steps. The red curves in Figs. 3–C1-3 illustrate the mean number of jumps over
1000 independent chains as a function of MCMC steps, indicating that achieving proper equilibrium
generation would require at least 106-107 MCMC steps. To accelerate sampling, we therefore explore
optimized Monte Carlo methods inspired by Parallel Tempering.

Trajectory Parallel Tempering– Parallel tempering (PT) is used to simulate multiple systems
in parallel at different inverse temperatures β (Hukushima & Nemoto, 1996; Marinari & Parisi,
1992), with occasional temperature swaps between models based on the Metropolis rule. Since
this move satisfies detailed balance, the dynamics will converge to the Boltzmann distribution
pβ(x) ∝ exp(−βH(x)) at each β. However, a more general approach involves simulating multiple
systems with distincts set of parameters. For a set of parameters Θt we associate the system pΘt(x).
This includes the classic PT case, with Θt

PT = β(t)Θ where the temperature ladder is typically
defined as β(t) = t/NT , where t = 0, . . . , NT − 1, and NT represents the number of systems
simulated in parallel. Alternatively, recent work (Roussel et al., 2023) introduced a variant of
this algorithm called Stacked Tempering, which uses a series of nested RBMs, where the hidden
configurations of one machine are exchanged with the visible configurations of the next in the stack,
analogous to the mechanism in deep belief networks.

We introduce a novel variant where model parameters from different training phases are exchanged.
Using the learning trajectory, we define the parameter set Θt, with t indexing models at specific
training steps. We call this method Parallel Trajectory Tempering (PTT). Configuration exchanges
x=(v,h) between neighboring models at t and t−1 follow the rule:

pacc(x
t↔xt−1)=min

[
1, exp

(
∆Ht(xt)−∆Ht(xt−1)

)]
with∆Ht(x)≡Ht(x)−Ht−1(x), (3)
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where again the index t indicates that the Hamiltonian is evaluated using the parameters Θt. This
move satisfies detailed balance with our target equilibrium distribution p(x) = exp(−H(x))/Z,
ensuring that the moves lead to the same equilibrium measure. The reason for using the trajectory is
that PT-like algorithms work very well when a system undergoes a continuous phase transition. As
discussed in the SI G, adjusting the inverse temperature can lead to discontinuous transitions for which
PT is not known to perform very well, while following the trajectory, the system undergoes several
continuous transitions as discussed in (Decelle et al., 2018; Bachtis et al., 2024). The pseudocodes
for the standard PT and our new PTT algorithms are provided in SI B.1.

Figs. 3–A1-3 show the evolution of two independent Markov chains on the most trained model using
the PTT sampling, showing a significant increase in the number of jumps compared to Figs. 3–B1-3.
We also compare the number of mode jumps observed with PTT with those of other algorithms,
as a function of the total number of AGS steps performed. For the PT algorithm, we test different
values of NT and include the variant with a reference configuration (Krause et al., 2020). For Stacked
Tempering, we replicate the method of (Roussel et al., 2023). The total AGS steps are taken as the
product of the number of parallel models and the AGS steps per model, as shown in Fig. 3–C1-3.
PTT consistently outperforms all other algorithms in all datasets.

Our PTT approach leverages the ease of sampling configurations from an initial RBM. During
classical PCD training, early “non-specialized” models thermalize quickly, behaving like Gaussian
distributions. The same is true for RBMs pre-trained from the low-rank RBM of Decelle & Furtlehner
(2021a), as independent configurations for the first machine can be efficiently sampled by a static
Monte Carlo algorithm (see SI A.1). The trajectory flow greatly accelerates equilibrium convergence,
particularly in multimodal structures. The time interval between successive models is set to maintain
an acceptance probability for exchanges (Eq. 3) around 0.25. Notably, the total time required to
thermalize a PTT chain (AGS steps × number of machines) is unaffected by acceptance values within
[0.2, 0.5] (see SI B.2 for details). In practice, effective models (i.e. the parameters of the model) can
be saved during training by monitoring the acceptance rate between the last saved model and the
current one. Pre-trained models require far fewer saved models, as many are naturally positioned near
major phase transitions. The number of models used for each sampling process, along with a detailed
description of the algorithm, is provided in the SI. PTT offers the advantage of requiring no extra
training (unlike Stacked Tempering) or unnecessary temperature simulations and can be fully applied
to other energy-based models. Instead, the equilibrium samples obtained from different models during
sampling can be used to compute the log-likelihood, similar to the standard PT approach (Krause
et al., 2020). In Fig. 2–right we show that the quality of this estimation is comparable with the
online trajectory AIS. Another desirable advantage of the PT algorithms is that one can easily check
the thermalisation of the MCMC process by investigating the ergodicity of the random walk in
models (Banos et al., 2010), as shown in SI B.2. In addition, we evaluated other indicators of sample
quality and potential overfitting in SI I. Our method consistently provides high-quality samples
across all datasets and, thanks to precise likelihood computation, can effectively detect overfitting.

On the failure of thermal algorithms– Thermal sampling algorithms (such as Simulated Annealing
or PT) have difficulties in efficiently sampling models that describe structured data sets. This is mainly
because in these types of models, remote modes can simply disappear or appear discontinuously
when the temperature is slightly changed. This phenomenon is known in physics as a discontinuous
or first-order phase transition. For a detailed introduction to this effect and an illustration of its
occurrence when changing the temperature in an RBM toy model, see SI H. The presence of this or
these temperature transitions can affect the performance of the PT algorithm, as a change between
two neighboring temperatures is rarely accepted (and therefore much denser temperature ladders are
required), but in multimodal models the problem can be even more harmful and difficult to detect: PT
can even forget configurations in certain minority clusters while maintaining high swap acceptances.
We illustrate this problem in Fig. 4-A, where we compare the equilibrium distribution p(m) of a
well-trained machine trained with the HGD dataset when sampled at two different temperatures
β = 0.9 and β = 1. This marginal distribution can be efficiently calculated using the tethered MC
algorithm Béreux et al. (2023). We can see that from β = 1 to β = 0.9 the East Asian cluster (the
upper right cluster) disappears from the measure. Since the jump to this cluster is strongly suppressed
with AGS, as shown in Fig. 3-C2, simulating the system at higher temperatures does not help to
find this cluster more easily, but prevents it from being found with a standard 1-temperature swap +
1AGS scheme (because it will be never nucleated at low temperatures). Indeed, in 4-B we show the
distribution of samples generated at β = 1 by a long PT sampling run (with all swap acceptances

8
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Figure 4: On the left: Panel A compares the marginal distribution p(m) along the first two principal
components for the pretrained+PCD RBM on the HGD dataset at inverse temperatures β=1 and
β=0.9. Panel B presents sampling results at β=1 using PT, PTT, and 106 AGS steps, initialized from
configurations generated by both algorithms. Right panels: Panels C and D compare equilibrium
samples from RBMs trained with PCD alone vs. PCD initialized on low-rank RBMs for MNIST01,
Mickey, HGD, Ising2D, and CelebA. Scatter plots and histograms of projections onto the first two
principal components show data (black) vs. generated samples (red). Panel E tracks log-likelihood
evolution (train: solid, test: dashed) using online Tr-AIS. Results, averaged over 10 low-rank RBM
initializations, show minimal variance, as indicated by narrow shaded regions.

above 0.8) completely forgetting the Asian cluster. One might wonder if this is indeed the right
balance between clusters learned by the model, so we checked it by performing a long (106 AGS
steps) run initialized with these PT-generated samples, finding that the missing clusters gradually
resettle. Instead, the PTT samples correctly identify all the clusters and the sampled distribution
statistics remain unchanged when a normal AGS run is re-run from that initialisation.

5 THE LOW-RANK RBM PRETRAINING

In (Decelle & Furtlehner, 2021a), it was shown that an RBM with only a few modes in its W can
be trained precisely through a mapping to a Restricted Coulomb Machine and solving a convex
optimization problem (see SI A.2). This approach enables training RBMs with simplified W :

W =
∑d

α=1 wαūαu
⊤
α , with (uα, ūα) ∈ RNv × RNh , (4)

where {wα} are the singular values of the coupling matrix and the right singular vectors {uα}dα=1
correspond exactly to the first d principal directions of the data set. Under this assumption, p(v) is a
function of only d order parameters, given by the magnetizations along each of the uuuα components,
i.e. mα(v) = uα · v/

√
Nv. In particular,

H(v) = −∑d
α=0 θαmα −

∑
a log cosh

(√
Nv

∑d
α=1 ūαawαmα + ηa

)
= H(m(v)), (5)

where m = (m1, . . . ,mα) and θα is the projection of the visible bias onto the extended u matrix. To
initialize the visible bias as proposed in (Montavon & Müller, 2012), we add an additional direction
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u0 associated with the magnetization m0 generated by the part of the visible bias that is not contained
in the intrinsic space of W . This is an improvement over (Decelle & Furtlehner, 2021a) because it
effectively adds an additional direction at minimal cost. We also found that the addition of the bias
term is crucial to obtain reliable low-rank RBMs for image data. The optimal parameters are obtained
by solving a convex optimization problem (SI A.2). This yields a probability distribution p(m)
in a lower-dimensional space than p(v), which can be efficiently sampled using inverse transform
sampling. However, discretizing the m-space limits practicality to intrinsic dimensions d ≤ 4 due
to memory constraints. These low-rank RBMs replicate dataset statistics projected onto the first d
principal components and, despite their simplicity, can approximate the dataset, as demonstrated in
Supplemental Figure 19 for the 5 datasets.

At the start of RBM training, the model encodes the strongest PCA components through multiple
critical transitions (Decelle et al., 2017; 2018; Bachtis et al., 2024). Pretraining with a low-rank
construction bypasses these transitions, avoiding out-of-equilibrium effects from critical slowing
down, which becomes prohibitive in highly clustered datasets. Once the main directions are in-
corporated, mixing times stabilize at much lower values, as barriers between clusters shrink when
modes align properly Béreux et al. (2023), making it a more reliable starting point for PCD train-
ing. However, since mixing times still increase over training, pretraining primarily mitigates poor
initialization effects, while issues from insufficient MCMC steps may reappear later. Bypassing
these transitions significantly improves model quality and data statistics reproduction, especially for
short training times. In Fig. 4, we compare equilibrium samples from two RBMs trained on five
datasets with identical settings (see SI C) but different strategies: one trained from scratch using
standard PCD (Tieleman, 2008), the other using PCD after low-rank RBM pretraining. We also tested
Jarzynski reweighting (Carbone et al., 2024a) (see SI E), but results were unstable on most datasets
and are omitted. Across all datasets, pretraining improves sample quality and test log-likelihood.
The pre-trained+PCD RBM balances modes effectively, as confirmed by PCA projections, and
consistently achieves higher log-likelihood values using online Tr-AIS. Samples are drawn with the
PTT algorithm, both described in Section 4.1. Scatter plots highlight the importance of pretraining
for balanced models in clustered datasets, significantly improving test log-likelihood. However,
for less clustered datasets like CelebA and full MNIST, pretraining offers little benefit, as splitting
distributions into isolated modes is unnecessary (see Fig. 20 in SI J).

6 CONCLUSIONS

In this work, we address the challenges of training, evaluating, and sampling high-quality equilibrium
Restricted Boltzmann Machines (RBMs) on highly structured datasets. Our primary focus is on
improving the sampling process and accurately estimating the log-likelihood during training. We
introduce a novel approach that leverages the progressive feature learning inherent in RBM training
to enhance both evaluation and sampling. This method facilitates precise, online computation of
log-likelihood and enables an efficient sampling strategy, overcoming the limitations of the standard
parallel tempering algorithm. Additionally, our results indicate that for datasets with tightly clustered
structures in their principal component analysis (PCA) representation, incorporating a pre-training
phase can improve training outcomes. This pre-training involves encoding the principal directions of
the data into the model through a convex optimization technique. However, this RBM-specific pre-
training method shows limited advantages for less structured datasets or extended training durations,
where chains deviate from equilibrium. In the latter case, the presented training approach should be
combined in the future with optimized MCMC methods to achieve its maximum capacity.

CODE AVAILABILITY

The code and datasets are available at https://github.com/DsysDML/fastrbm
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Aurélien Decelle, Beatriz Seoane, and Lorenzo Rosset. Unsupervised hierarchical clustering using the
learning dynamics of restricted Boltzmann machines. Phys. Rev. E, 108:014110, Jul 2023. doi: 10.
1103/PhysRevE.108.014110. URL https://link.aps.org/doi/10.1103/PhysRevE.
108.014110.
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with adaptive flow sampling. In ICML 2023 Workshop on Structured Probabilistic Inference and
Generative Modeling, 2023.

John Hertz, Yasser Roudi, and Joanna Tyrcha. Ising models for inferring network structure from
spike data. 2011.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

Geoffrey E Hinton and Terrence J Sejnowski. Optimal perceptual inference. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, volume 448, pp. 448–453. Citeseer,
1983.

Pierre C Hohenberg and Bertrand I Halperin. Theory of dynamic critical phenomena. Reviews of
Modern Physics, 49(3):435, 1977.

Koji Hukushima and Koji Nemoto. Exchange monte carlo method and application to spin glass
simulations. Journal of the Physical Society of Japan, 65(6):1604–1608, 1996.
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Supplemental Information
A DETAILS OF THE PRE-TRAINING OF A LOW RANK RBM

A.1 THE LOW-RANK RBM AND ITS SAMPLING PROCEDURE

Our goal is to pre-train an RBM to directly encode the first d principal modes of the dataset in the
model’s coupling matrix. This approach avoids the standard procedure of progressively encoding
these modes through a series of second-order phase transitions, which negatively impact the quality
of gradient estimates during standard training. It also helps prevent critical relaxation slowdown of
MCMC dynamics in the presence of many separated clusters.

Given a dataset, we want to find a good set of model parameters (W , θ and η) for which the statistics
of the generated samples exactly match the statistics of the data projected onto the first d directions
of the PCA decomposition of the training set. Let us call each of these α = 1, . . . , d projections
mα = uα · v/

√
Nv the magnetizations along the mode α, where uα is the α-th mode of the PCA

decomposition of the dataset. A simple way to encode these d-modes is to parameterize the w-matrix
as:

W =

d∑
α=1

wαūαu
⊤
α , with (uα, ūα) ∈ RNv × RNh , (6)

where u and û are respectively the right-hand and left-hand singular vectors of W , the former being
directly given by the PCA, while wα are the singular values of W . Using this decomposition, the
marginal energy on the visible variables,H(v) = log

∑
h expH(v,h) can be rewritten in terms of

these magnetizations m ≡ (m1, . . . ,md)

H(v) = −
∑
a

log cosh

(√
Nvūa

d∑
α=1

wαmα + ηa

)
= H(m(v)). (7)

Now, the goal of our pre-training is not to match the entire statistics of the dataset, but only the
marginal probability of these magnetizations. In other words, we want to model the marginal
distribution

pemp(m) ≡
∑
v

pemp(v)

d∏
α=1

δ

(
mα −

1√
Nv

uT
αv

)
, (8)

where δ is the Dirac δ-distristribution. In this formulation, the distribution of the model over the
magnetization m can be easily characterized

p(m) =
1

Z

∑
v

e−H(v)
d∏

α=1

δ

(
mα −

1√
Nv

uT
αv

)
(9)

=
1

Z
N (m) exp

∑
a

log cosh

(
ūa

d∑
α=1

wαmα + ηa

)
(10)

=
1

Z
e−H(m)+NvS(m) =

1

Z
e−Nvf(m) (11)

where N (m) =
∑

v

∏d
α=1 δ

(
mα − 1√

Nv
uT
αv
)

is the number of configurations with magnetiza-
tions m, and thus S(m) = logN(m)/Nv is the associated entropy. Now, for large Nv the entropic
term can be determined using large deviation theory, and in particular the Gärtner-Ellis theorem:

pprior(m) =
eNvS(m)

2Nv
≈ exp (−NvI(m)) , (12)

with the rate function

I(m) = sup
µ

[
mTµ− ϕ(µ)

]
= mTµ∗ − ϕ(µ∗), (13)
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and

ϕ(µ) = lim
Nv→∞

1

Nv
log
〈
eNvm

Tµ
〉
= lim

Nv→∞

1

Nv
log

1

2Nv

∑
v

e
√
Nv

∑d
α=1 µα

∑
i uα,ivi (14)

= lim
Nv→∞

1

Nv

Nv∑
i=1

log cosh

(√
Nv

d∑
α=1

µαuα,i

)
. (15)

Then, given a magnetization m, we can compute the minimizer µ∗(m) of ϕ(µ)−mTµ which is
convex, using e.g. Newton method which converge really fast since we are in small dimension. Note
that in practice we will obviously use finite estimates of ϕ, assuming Nv is large enough. As a result
we get µ∗(m) satisfying implicit equations given by the constraints given at given Nv:

mα =
1√
Nv

Nv∑
i=1

uα
i tanh

√Nv

d∑
β=1

uβ
i µ

∗
β

 . (16)

It is then straightforward to check that spins distributed as

pprior(v|m) ∝ eNvµ
∗Tm(v) (17)

fulfill well the requirement, as
〈
uT
αv/
√
Nv

〉
pprior

= mα. In other words, we can generate samples
having mean magnetization mα just by choosing vi as

pprior(vi = 1|m) = sigmoid

(
2
√
Nv

d∑
α=1

uα,iµ
∗
α(m)

)
(18)

The training can therefore be done directly in the subspace of dimension d. In Ref. (Decelle &
Furtlehner, 2021a), it has been shown that such RBM can be trained by mean of the Restricted
Coulomb Machine, where the gradient is actually convex in the parameter’s space. It is then possible
to do a mapping from the RCM to the RBM to recover the RBM’s parameters. In brief, the training
of the low-dimensional RBM is performed by the RCM, and then the parameters are obtrained via a
direct relation between the RCM and the RBM’s parameters. The detail of the definition and of the
training of the RCM is detailed in the appendix A.2.

A.2 THE RESTRICTED COULOMB MACHINE

As introduced in (Decelle & Furtlehner, 2021a), it is possible to precisely train a surrogate model
for the RBM, called the Restricted Coulomb Machine (RCM), on a low dimensional dataset without
explicitly sampling the machine allowing to learn even heavily clustered datasets.

The RCM is an approximation of the marginal distribution of the RBM with {−1, 1} binary variables:

H(v) = −
∑
i

viθi −
∑
a

log cosh

(∑
i

Wiavi + ηa

)
. (19)

We then project both the parameters and variables of the RBM on the first d principal components of
the dataset:

mα :=
1√
Nv

Nv∑
i=1

viuiα, wαa :=

Nv∑
i=1

Wiauiα, θα :=
1√
Nv

Nv∑
i=1

θiuiα (20)

with α ∈ {1, . . . , d} and u the projection matrix of the PCA. The projected distribution of the model
is then given by

pRBM(m) =
exp

(
Nv

[
S(m) +

∑d
α=1 θαmα + 1

Nv

∑Nh

a=1 log cosh
(√

Nv

∑d
α=1 mαwαa + ηa

)])
Z

(21)
where we ignore the fluctuations related to the transverse directions and S[m] accounts for the
non-uniform prior on m due to the projection of the uniform prior on s for the way to compute it.
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The RCM is then built by approximating

log cosh(x) ≃ |x| − log 2, (22)

which is valid for x large enough. The probability of the RCM is thus given by:

pRCM(m) =
exp

(
Nv

[
S(m) +

∑d
α=1 θαmα +

∑Nh

a=1 qa

∣∣∣∑d
α=1 nαmα + za

∣∣∣])
Z

(23)

where

qa =

√√√√Nv

d∑
α=1

w2
αa, na =

wαa√∑d
α=1 w

2
αa

, za =
ηa√

Nv

∑d
α=1 w

2
αa

. (24)

This can be easily inverted as

wαa =
1√
Nv

qana and ηa = qaza,

in order to obtain the RBM from the RCM. The model is then trained through log-likelihood
maximization over its parameters. However, this objective is non-convex if all the parameters are
trained through gradient ascent. To relax the problem, since we’re in low dimension, we can define a
family of hyperplanes (n, z) covering the space and let the model only learn the weights of each to the
hyperplane. We can then discard the ones with a low weights to keep the approximation (equation 22)
good enough.

The gradients are given by

∂J(Θ)

∂qa
= Em∼pD(m)

[
|nT

am+ za|
]
− Em∼pRCM(m)

[
|nT

am+ za|
]
, (25)

∂J(Θ)

∂θα
= Em∼pD(m) [mα]− Em∼pRCM(m) [mα] . (26)

The positive term is straightforward to compute. For the negative term, we rely on a discretization of
the longitudinal space to estimate the probability density of the model and compute the averages.

A.3 LEARNING THE BIAS

To initialize the model with its bias set to the dataset’s mean, we define the 0-th direction of the
longitudinal space as the direction obtained by projecting the configuration space onto the normalized
mean vector of the dataset.

The RBM will only contribute to this direction through the visible bias:

H(m(v)) = −
Nv∑
α=0

θαmα −
1

Nv

∑
a

log cosh

(√
Nv

d∑
α=1

mαwαa + ηa

)
. (27)

This implies that this direction is independent of the others within the model. Consequently, we can
create an independent mesh for this direction to learn it. The rest of the training is performed using
the same procedure as before.

B SAMPLING VIA PARALLEL TEMPERING USING THE LEARNING TRAJECTORY

Assuming we have successfully trained a robust equilibrium model, there remains the challenge of
efficiently generating equilibrium configurations from this model. Although models trained at equi-
librium exhibit faster and more ergodic dynamics compared to poorly trained models, the sampling
time can still be excessively long when navigating a highly rugged data landscape. Consequently,
we devised a novel method for sampling equilibrium configurations that draws inspiration from
the well-established parallel tempering approach. In this traditional method, multiple simulations
are conducted in parallel at various temperatures, and configurations are exchanged among them
using the Metropolis rule. Unlike this conventional technique, our method involves simultaneously
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Initialization

Sampling

1 mcmc step

Swap

RCM sampling
(only pre-train+PCD)

1 mcmc step
(only JarRBM and PCD)

Figure 5: Scheme of PTT. We Initialize the chains of the models by starting from a configuration x
(0)
0

and passing it through the machines along the training trajectory, each time performing k̃ mcmc steps.
For pre-train+PCD, x(0)

0 is a sampling from the RCM, otherwise it is a uniform random initialization.
The sampling consists of alternating one mcmc step for each model with a swap attempt between
adjacent machines. For pre-train+PCD, at each step we sample a new independent configuration for
RBM0 using the RCM.

simulating different models that are selected from various points along the training trajectory. This
approach is motivated by the perspective that learning represents an annealing process for the model,
encountering second-order type phase transitions during training. In contrast, annealing related to
temperature changes involves first-order phase transitions, making traditional parallel tempering less
effective for sampling from clustered multimodal distributions.

A sketch of the Parallel Trajectory Tempering (PTT) is represented in fig. 5. Specifically, we save
tf models at checkpoints t = 1, . . . , tf along the training trajectory. We denote the Hamiltonian of
the model at checkpoint t asHt, and refer to the Hamiltonian of the RCM model asH0. We define
GibbsSampling(H,x, k) as the operation of performing k Gibbs sampling updates using the model
H starting from the state x. In all our sampling simulations we used k = 1.

The first step is to initialize the models’ configurations efficiently. This involves sampling N

chains from the RCM model, x(0)
0 ∼ RCMSampling(H0), and then passing the chains through

all the models from t = 1 to t = tf , performing k Gibbs steps at each stage: x
(0)
t ∼

GibbsSampling(Ht,x
(0)
t−1, k).

The sampling process proceeds in steps where we update the configuration of each model exceptH0

with k Gibbs steps, and sample a completely new configuration for the RCM modelH0. Following
this update step, we propose swapping chains between adjacent models with an acceptance probability
given by:

pacc(xt ↔ xt−1) = min (1, exp (∆Ht(xt)−∆Ht(xt−1))) , (28)

where ∆Ht(x) = Ht(x)−Ht−1(x). We continue alternating between the update step and the swap
step until a total of Nmcmc steps is reached.

A comparison of performances between PTT and standard Gibbs sampling is reported in Fig.3.

B.1 PSEUDO-CODE OF PTT VS PT

We provide here the pseudo code for both Parallel Tempering (Alg. 1) and Parallel Trajectory
Tempering (Alg. 2) sampling schemes. The difference between both algorithms lies in the way the
parallel models are selected. In the case of Parallel Tempering, an annealing on the temperature is
made, whereas for Parallel Trajectory Tempering several models are saved during training.
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Algorithm 1 Parallel Tempering
Require: {βj}j={1,...,Nβ},Θ = {w,θ,η},Niter,Nincrement,Nsample

for j = 1, . . . , Nβ do
chains[j] = RandomBinaryChains(Nsample)

end for
for i = 1, . . . ,Niter do

for j = 1, . . . ,Nβ do
chains[j]← AlternateGibbsSampling(Nincrement, βjΘ,chains[j])

end for
for j = 1, . . . ,Nβ − 1 do

chains[j],chains[j+1]← SwapConfigurations(chains[j], βjΘ,chains[j+
1], βj+1Θ)

end for
end for

Algorithm 2 Parallel Trajectory Tempering
Require: {Θj = {wj ,θj ,ηj}}j={1,...,Nmodel},Niter,Nincrement,Nsample

for j = 1, . . . ,Nmodel do
chains[j] = RandomBinaryChains(Nsample)

end for
for i = 1, . . . ,Niter do

for j = 1, . . . ,Nmodel do
chains[j]← AlternateGibbsSampling(Nincrement,Θj ,chains[j])

end for
for j = 1, . . . ,Nmodel − 1 do

chains[j],chains[j+1]← SwapConfigurations(chains[j],Θj ,chains[j+
1],Θj+1)

end for
end for
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dataset τexp τint
MNIST01 258(29) 9.0(15)

HGD 48(10) 3.8(7)
Mickey 2(0) 1(0)

Ising 18(3) 2.4(5)

Table 1: Autocorrelation times associated to the random walk dynamics between models in the PTT
sampling obtained with the models trained with pre-training+PCD on different datasets. Models used
in the PTT are all chosen with the a = 0.25 criterion.

B.2 CONTROLLING EQUILIBRATION TIMES WITH PTT

One of the advantages of PT-like approaches is that they allow easy control over thermalization times
by studying the random walk in temperatures (or models for the PTT) visited by each run over time,
as proposed in Ref. (Banos et al., 2010). From now on, we will refer only to the number of models
used in the PTT sampling, denoted as Nm. In an ergodic sampling process, each run should spend
roughly the same amount of time at each of the Nm different model indices, as all models have the
same probability.

The mean temperature/model index is known to be ⟨n⟩ = (Nm − 1)/2 (assuming the model indices
run from 0 to Nm − 1). This simplifies the computation of the time-autocorrelation function of the
model indices ni(t) visited by each sample i at time t:

C(t) =
(ni(t+ t0)− ⟨n⟩)(ni(t0)− ⟨n⟩)

(ni(t0)− ⟨n⟩)2

Here, the symbol (· · · ) refers to the average over all samples i and initial times t0 obtained from our
PTT runs. This allows us to compute the exponential autocorrelation time, τexp, from a fit to

C(t) ∼ Ae−t/τexp for large t,

as well as the integrated autocorrelation time, τint, using the self-consistent equation (Sokal, 1997;
Amit & Martin-Mayor, 2005):

τint =
1

2
+

6τint∑
t=0

C(t).

These two times provide different insights: τexp gives insight into the time needed to thermalize the
simulations (setting the length of the runs to at least 20τexp is generally a safe (and very conserva-
tive) choice to ensure thermalization (Sokal, 1997)), while τint gives the time needed to generate
independent samples. To keep track of the fluctuations, we compute a different Cm(t) for each
m = 1, . . . , Nm system index simulated in parallel in the PTT, where each Cm(t) is averaged over
1000 independent realizations (with all runs initialized to the same model index). We then compute
the average over all parallel runs C(t) = Cm(t) and use this curve to extract τexp and τint. The errors
in C and the times are then extracted from the error of the mean of the values extracted with each of
the Cm(t) curves.

For example, in Fig. 6 (left), we show the averaged curves C(t) obtained with the PTT sampling of the
machines discussed in the main text in the MNIST01 (top) and HGD (bottom) datasets. The extracted
times are τexp = 258(29) and τint = 9.0(1.5) for MNIST01, and τexp = 48(10) and τint = 3.8(7)
for HGD. These numbers guarantee us that the 104 steps used to generate the scatterplots in Fig. 4
were long enough to ensure equilibration in this dataset, but also in the others, as shown in Table 1.

With these measures, we can try to optimize the number of models that we use for the PTT and that
are automatically selected during training. The criterion here is that the acceptance of PTT exchanges
between neighboring models must not go below a target acceptance a. In the figures shown so
far, a = 0.25. Let us justify this choice. The total physical time we need to simulate Nm models
grows proportionally with Nm (unless one manages to properly parallelize the sampling, which is
feasible but we did not do it), while the time needed to flow between very well trained and poorly
trained models controlling the mixing time scales as

√
Nm/a, where a is the average acceptance

of the exchanges between the models. Since Nm grows with a in practice (as shown in the inset of
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Figure 6: (Left) We show the autocorrelation function C(t) obtained as in Eq. equation B.2 when we
analyze the random walk in the model indices during PTT sampling with the same RBMs analyzed
in the main text (trained with pretraining+PCD) for the MNIST01 (top) and HGD (bottom) datasets.
Both curves were obtained with a PTT run of 5 · 104 MCMC steps, where the models used were
automatically selected during training using the PTT moves acceptance criterion of 0.25. (Right)
In blue we show the τexp as a function of the target acceptance rate for MNIST01 (top) and HGD
(bottom). The error bar results from the error of the mean of the values extracted from the different
Cm(t) and the shading marks the range between the largest and the smallest value of the Nm curves.
In orange, we show the total simulation costs (τexp multiplied by the number of models to be
simulated in parallel) as a function of the target acceptance rate. This number of models saved, as a
function of the acceptance rate, is shown in green in the inset.

Fig. 6–right), it is expected that the total time can be optimized for a given value of a. In Fig. 6–right
we show τexp in blue (and τexpNm in orange) as a function of a for the data sets MNIST01 (top)
and HGD (bottom). These figures show that the choice of a is not particularly crucial as long as it is
between 0.2 and 0.5.

C TRAINING DETAILS

We describe in Tables 2 and 3 the datasets and hyperparameters used during training. The test set was
used to evaluate the metrics.

Table 2: Details of the datasets used during training.
Name #Samples #Dimensions Train size Test size

CelebA 30 000 1024 60% 40%
Human Genome Dataset (HGD) 4500 805 60% 40%
Ising 20 000 64 60% 40%
Mickey 16 000 1000 60% 40%
MNIST-01 10 610 784 60% 40%
MNIST 50 000 784 60% 40%
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Table 3: Hyperparameters used for the training of RBMs.
Name Batch size #Chains #Epochs Learning rate #MCMC steps #Hidden nodes

CelebA

PCD 2000 2000 10 000 0.01 100 500
Pre-train+PCD 2000 2000 10 000 0.01 100 500

HGD

PCD 2000 2000 10 000 0.01 100 200
Pre-train+PCD 2000 2000 10 000 0.01 100 200

Ising

PCD 2000 2000 10 000 0.01 100 200
Pre-train+PCD 2000 2000 10 000 0.01 100 200

Mickey

PCD 2000 2000 10 000 0.01 100 200
Pre-train+PCD 2000 2000 10 000 0.01 100 200

MNIST-01

PCD 2000 2000 10 000 0.01 100 200
Pre-train+PCD 2000 2000 10 000 0.01 100 200

MNIST

PCD 2000 2000 10 000 0.01 100 200
Pre-train+PCD 2000 2000 10 000 0.01 100 200

All experiments were run on a RTX 4090 with an AMD Ryzen 9 5950X.

D COMPUTATION OF THE LIKELIHOOD USING AIS

To compute the likelihood of the RBMs we used the Annealed Importance Sampling method intro-
duced by (Neal, 2001) and recently studied in the case of the RBM (Krause et al., 2020).

D.1 OFFLINE AIS

We follow the method described in (Krause et al., 2020). The AIS estimate is based on creating a
sequence of machines, at one end a machine from which we can compute the partition function and
at the other end the machine from which we want to compute the partition function. Let’s consider
that we have i = 0, . . . , Nrbm machines described by

pi(x) =
e−Hi(x)

Z
=

p∗i (x)

Z
,

where p0 = pref denote the RBM from which we can compute the partition function (typically a
RBM where the weight matrix is zero) and pNrbm

= ptarget the machine from which we want to
estimate the partition function. For each machine, we denote its set of parameters Θi = {wi,θi,ηi}.
Following (Krause et al., 2020), defining a transition rule Ti(xi−1 → xi) in order to pass from a
configuration xi−1 of the system i− 1 to xi of the system i, that we have the following identity

ZNrbm

Z0
=

〈
exp

(
−

Nrbm∑
i=1

Hi+1(xi)−Hi(xi)

)〉
ForwardPath

. (29)

There, if one can compute Z0, the estimate of ZNrbm
is obtained by averaging the r.h.s. of Eq. 29

over the forward trajectory starting from a configuration x0 using the operators Ti. While the method
is exact, the variance of the estimation relies on on close are two successive distribution pi, pi+1.
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Table 4: Training time of the RBMs
Name Training time (s)

CelebA

PCD 119.2± 0.8
Pre-train+PCD 3134.0± 0.6

HGD

PCD 106.2± 0.3
Pre-train+PCD 266± 3

Ising

PCD 62± 1
Pre-train+PCD 104± 2

Mickey

PCD 118.3± 3
Pre-train+PCD 246.0± 0.7

MNIST-01

PCD 100.6± 0.3
Pre-train+PCD 258.0± 0.9

MNIST

PCD 105.7± 0.2
Pre-train+PCD 233.9± 0.2

Table 5: RCM Hyperparameters
Dataset name # Dimensions # Hidden nodes Training time (s)

CelebA 4 100 3006

HGD 3 100 150

Ising 3 100 32

Mickey 2 100 118

MNIST-01 3 100 148

MNIST 3 100 119

Temperature AIS: a commonly used implementation of AIS, is to multiply the Hamiltonian of
the system by a temperature, and to the different systems indexed by i, by a set of βi where β0 = 0,
βi < βi+1 and βNrbm

= 1. Therefore, it is equivalent to choosing Θi = βi{w,θ,η}. Another
version of Temperature AIS consist in choosing a slightly different reference distribution p0 that take
into account the bias of the model. In this setting, the intermediate distribution are taken as

pi(x) =
p
(1−βi)
ref e−βiH(x)

Zi
.

The main difference is that a prior distribution is used as reference p0 = pref and the temperatures
interpolate between this prior and the target distribution. It is quite common to take

pref(x) =
exp (

∑
i θivi +

∑
a ηaha)∏

i 2 cosh(θi)
∏

a 2 cosh(ηa)
.

Trajectory AIS: the general derivation of AIS allow in principle to choose the set forward proba-
bility and/or intermediate system as one sees fit. Since again, a change of temperature in the system
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can induce discontinuous transition for which, successive distribution will be far away. While, when
considering system that are neighbors in the learning trajectory, the system should pass through
continuous transition which do not suffer this problem. Hence, we consider a set of RBMs along the
learning trajectory. The RBMs are chosen following the prescription that the exchange rate between
configuration (see Eq. 3) is about ∼ 0.3). Then the formula Eq. 29 is used to estimate the partition
function.

D.2 ONLINE AIS

The online AIS (Annealed Importance Sampling) is the trajectory AIS evaluated at every gradient
update during training. A set of permanent chains is initialized at the beginning of the training process.
Every time the parameters are updated, a step is performed on these chains before using them to
compute the current importance weights. This approach is computationally efficient relative to the
cost of sampling (1 step vs. 100 steps) and allows for a very precise estimation.

E TRAINING OF THE RBM USING THE JARZYNSKI EQUATION

In this section, we describe the procedure introduced in (Carbone et al., 2024b) for training energy-
based models by leveraging the Jarzynki equation, and we adapt it to the specific case of the RBM.
At variance with (Carbone et al., 2024b), we introduce an additional assumption on the transition
probability of the parameters that will lead us to the the reweighting implemented in population
annealing methods (Weigel et al., 2021).

In one of its formulations, the Jarzynski equation states that we can relate the ensemble average of an
observable O with the average obtained through many repetitions of an out-of-equilibrium dynamical
process. Let us consider a path yyy = {(xxx0, θθθ0), (xxx1, θθθ1), . . . , (xxxt, θθθt)}, where xi = (vi,ht) refers to
the model variables and θi = (wi, ηi, θi), the model parameters, both at time i.

If we consider the training trajectory of an RBM, p0 → p1 → · · · → pt−1 → pt, we can write the
average of an observable O over the last model of the trajectory pt as

⟨O⟩t =

〈
O e−W t

〉
traj

⟨e−W t⟩traj
=

∑R
r=1O(yyyr) e−W t

r∑R
r=1 e

−W t
r

, (30)

where W t is a trajectory-dependent importance factor and the averages on the rhs are taken across
many different trajectory realizations. In particular, Wt is given by the recursive formula:

W t(y) = Ht(xt)−H0(x0)−
t∑

i=1

log T̃ i(yi → yi−1) +

t∑
i=1

log T i(yi−1 → yi) (31)

= W t−1(y) +Ht(xt)−Ht−1(xt−1)− log
T̃ t(yt → yt−1)

T t(yt−1 → yt)
(32)

Where T and T̃ are, respectively, the forward and backward transition probabilities.

The transition matrix between two states yt−1 → yt is factorized into two different subsequent
movements:

1. Update the variables xt−1 → xt on the fixed model θt−1,
2. Update the parameters θt−1 → θt on fixed variables xt.

In other words,
T (yt−1 → yt) = wθt−1(xt−1 → xt)txt(θt−1 → θt), (33)

and
T̃ (yt → yt−1) = txt(θt → θt−1)wθt−1(xt → xt−1), (34)

so that

log
T̃ t(yt → yt−1)

T t(yt−1 → yt)
= log

wθt−1(xt → xt−1)

wθt−1(xt−1 → xt)
+ log

txt(θt → θt−1)

txt(θt−1 → θt)
. (35)
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We know the ratio between the transition probabilities between xt−1 → xt, because evolution of the
variables during the simulation is performed using MCMC simulations that satisfy detailed balance.
This means that:

log
wθt−1(xt → xt−1)

wθt−1(xt−1 → xt)
= Ht−1(xt)−Ht−1(xt−1), (36)

and we are left with

W t(y) = W t−1(x) +Ht(xt)−Ht−1(xt)− log
txt(θt → θt−1)

txt(θt−1 → θt)
. (37)

The standard formula that we use in the paper assumes that the changes in θ are so small that we can
consider the transition probabilities to be symmetrical and the last term in the rhs cancels out. In that
case, we recover the known expressions of the population annealing.

Notice that, since Eq. equation 30 is an exact result, the importance weights should, in principle,
eliminate the bias brought by the non-convergent chains used for approximating the log-likelihood
gradient in the classical PCD scheme. However, after many updates of the importance weights, one
finds that only a few chains carry almost all the importance mass. In other words, the vast majority of
the chains we are simulating are statistically irrelevant, and we expect to get large fluctuations in the
estimate of the gradient because of the small effective number of chains contributing to the statistical
average. A good observable for monitoring this effect is the Effective Sample Size (ESS), defined as
(Carbone et al., 2024b)

ESS =

(
R−1

∑R
r=1 e

−W (r)
)2

R−1
∑R

r=1 e
−2W (r)

∈ [0, 1], (38)

which measures the relative dispersion of the weights distribution. Then, a way of circumventing the
weight concentration on a few chains is to resample the chain population according to the importance
weights every time the ESS drops below a certain threshold, for instance 0.5. After this resampling,
all the chain weights have to be set to 1 (W (r) = 0 ∀r = 1, . . . , R).

F TUNING OF THE HYPERPARAMETERS

In order to justify our choice of hyperparameters in the main text, we illustrate on Fig. 7 the value of
the log-likelihood as a function of the number of hidden nodes and of the learning of the machine.
In order to be fair, the comparison is done at a constant number of gradient updates of 10000. In
this regime, the machines that perform the best have a learning rate of γ ∼ 0.1, 0.005 and about
Nh = 500, 1000 hidden nodes. We can expect that smaller learning rates reach the same value of
the log-likelihood but for a much longer training. We clearly see the benefit of the RCM, where the
log-likelihood achieves much higher values in general.

G CONTINUOUS PHASE TRANSITION

In statistical physics, and more precisely in mean-field model, a model described by the Gibbs-
Boltzmann distribution is studied in the infinite size limit, N →∞, and characterize the state of the
system by investigating the free energy of the system, defined by minus the log partition function

F [θ] = − log(Z[θ])

One of the goals is thus to determine the typical configurations that should be expected given a set of
model parameters. In the case of the RBM, the question is what are the typical visible (and/or hidden)
variables that one expects to observe. For example, one may ask what typical energies one expects to
observe for the parameters θ. For this purpose, let us rewrite the partition function as a sum over all
possible values of the energy

Z =
∑
E

e−Eg(E) =
∑
E

e−E+S(E) =
∑
E

e−F (E) =
∑
E

e−Nf(E)

where g(E) the number of states with a given energy E, and thus S(E) = log g(E) is the entropy.
Finally, the free energy is defined as F (E) = E − S(E) and f(E) = F (E)/N is the free energy
per variable. All Z, E and F depend on the model parameters. N refers to the number of variables.
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Figure 7: Comparison of the end log-likelihood reached by the RBM using different pairs of values
for the learning rate and the hidden layer dimension on MNIST-01. The left panel shows these result
when performing PCD training and the right one the results when pre-training the RBM before PCD.

For N →∞, the sum in Z is then dominated by the states with minimum free energy. A “first order”,
or discontinuous transition, occurs in the parameters if the first derivative of f(E) is discontinuous
with respect to the parameters (in physics, the parameter is typically the temperature). A “second
order”, or continuous transition, occurs when the first derivative is continuous, but the second
derivative is discontinuous.

In the case of the RBM, the first learning transition can be mapped to a very simple model, the
so-called Curie-Weiss model, as recently described in Ref. (Bachtis et al., 2024). The Curie-Weiss
model is fully solvable, and for this reason the meaning of a continuous transition is perhaps easier to
understand there. Let’s give it a try. The Curie-Weiss model consists in a set of N discrete variables
si = ±1. We define the (exponential) distribution over these variables as

p(s) =
1

Z
exp(

β

N

∑
i<j

sisj + βH
∑
i

si)

where β and H are parameters of the model and Z the normalization constant also called partition
function. The question is to understand the “structure” of the distribution as a function of β.

Case H = 0: we expect that for β small each spin behaves as an isolated Rademacher random
variables (each spin being ±1 with probability one-half), while for large value of β, the distribution
of the system is dominated by configurations where the variables have (almost) all the same signs.
The key mathematical aspect is to study the system in the limit where N →∞. A way to study this
distribution is to investigate the moment generating function. It is possible to show (rigorously in this
precise model), that the probability of m = N−1

∑
i si, also called the magnetization of the system,

is given by p(m) ∝ exp(−NΩ(m)) (in the large N limit) where Ω(m) is a large deviation function.
In the CW model, it is given by

Ω(m) =
βm2

2
− log [2 cosh(βm)] .

The structure of Ω(m) is such that for β < βc = 1, it is a convex function with only one minimum
in m = 0, while for β > βc it has two symmetric minima m = ±m(β) ̸= 0 with Ω(m(β)) =
Ω(−m(β)) (the two minimum are equally probable). The values (in function of β) of the m are
continuous: m = 0 for β ∈ [0, 1], and then positive until it saturates to 1 as β →∞. In practice, it
means that the distribution p(m) pass from an unimodal distribution to a bimodal one as β increases.
The point where it happens is at βc = 1 and is called a second order (continuous) phase transition
because de value of m changes continuously from zero to non-zero values. A particular interesting
properties is that at βc, the function Ω(m) develops a non-analyticity in its second-order derivative,
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Figure 8: Left: The case H = 0 for various temperature. We illustrate the symmetric shape of the
large deviation function and how the two minima emerges from the centers. The minima of m go
continuously from zero to non-zero values. In the inset we also illustrate the shape of the probability
distribution for moderately large size N = 500. For N →∞ they converge toward a δ distribution.
Right: The case H ̸= 0. In this example, we illustrate what happen where the bias parameter H is
changed at a fix temperature β = 1.15 > 1. We see that for small values of H , Ω has two minima,
yet the dominant one suppresses exponentially the other one for large system size. For larger values
of the bias the metastable minimum disappears. We show how the place of the minimum jump when
the bias goes from negative to positive values.

that can be linked with long-range fluctuations. For a recent review (Kochmański et al., 2013), and
for more rigorous results (Sinai, 2014).

Case H ̸= 0: in this case we expect that the system will always be biased toward configurations
where the spins have the same direction(sign) as the bias (or field) H . Yet, for small value of β, the
bias will be quite small, hence the magnetization will be small but not zero, m ∼ βH . When β
is large, the system will now have a stronger and strong magnetization toward the magnetic field
m ∼ sign(H). Now we can again compute the large deviation function of the system

Ω(m) =
βm2

2
− log [2 cosh(βm)] +Hm.

Again, it is possible to analyze the function Ω as a function of β and H . For β < 1 the function
is convex and there is only one minimum located at m > 0. When β > 1 two situations can be
distinguished. First, let’s denote

Hsp(β) =

√
β − 1

β
− atanh

(
β − 1

β

)
.

If H > Hsp(β), then the large deviation function has only one minimum for positive m. Now if
H < Hsp(β), then Ω will present two minima. A first one for positive m and a second one for
negative m. The reason is that the pairwise interactions “manage” to create a metastable state for
negative magnetization even in the presence of a positive field or bias. It is clear that this state will be
unstable w.r.t. the one with positive magnetization which traduces in a minimum of higher value in the
large deviation function. By changing the value of H from large positive values toward large negative
ones, we then pass from a system with only one state, then two states with one being subdominant,
and finally back to one state but where the magnetization has changed its sign. In the infinite size
limit, the system will always dominated by the state where Ω is at its lowest value. However, if one
prepares a system close to a metastable state, the system will remain trapped there until it disappears.

How is this related to the training of the RBM ? First, it has been shown in previous works (De-
celle et al., 2018; Bachtis et al., 2024) that the RBM’s training undergoes a set of continuous
transitions, at least at the beginning of the learning. Hence, changing the parameters of the RBM
following the learning trajectories, the transitions are continuous. Then in (Decelle & Furtlehner,
2021a) it is shown that the relaxed version of the RBM, namely the RCM undergoes a first-order
transition when changing the temperature. Schematically to understand that, it is enough to see how
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the parameters β acts on the system. In the case of the RCM, the energy term behaves in the standard
way, i.e. linearly with the inverse temperature β and the free energy takes the ordinary form

log(Z) = −βF = −βE + S.

Therefore β act as a trade-off parameters between the energy E and the entropy S. By varying β, we
change the contribution of the energy while keeping the entropy fixed. Hence, when the corresponding
large deviation function of the RCM has reached a point having many minima with the same value of
the free energy up to O(1/N) corrections, all these minima realize in principle different trade-off
between energy and entropy. As a result a slight change in β will offset this sensible balance and
the respective free energies will acquire differences of order O(N) leading to favor dramatically one
state against the others, i.e. the one having originally the lowest [resp. the largest] energy when β is
increased. It is very likely that by changing β a discontinuous transition is encountered, where the
minima of Ω vanishes far away from each other rather than a continuous one. Concerning the RBM
the argument for the occurence of such a phase transition, is only slightly more involved than for
Coulomb machine because for RBM the energy (obtained after summing over latent variables) has
a non-linear behavior w.r.t. β. A formal argument would go schematically as follows: just writing
the local minima of the free energy (function of magnetization in the reduced intrinsic space) and
looking at how the equilibrium is displaced with temperature shows that their energy vary indeed in a
non-linear way with temperature and non-uniformly regarding their position on the magnetization
manifold, while the entropy contribution again do not change. This again necessarily implies that
changing even slightly the temperature will break the highly sensitive equilibrium obtained between
these state corresponding to the multimodal distribution and will again typically favor one state
among all. This scenario is expected to occur as soon as the data are located on low dimensional space
(d = O(1) ) compared to a large embedding space (d = O(N), N ≫ 1) which is quite common in
our point of view, at least for the type of data we are interested in.

To conclude, moving the parameters along the learning trajectory, leads the system to undergo
continuous transition where pΘ(t)(s) is very close to pΘ(t+δt)(s). Changing the temperature tends
to produces discontinuous transition where pβ(t)Θ(s) can happen to be very far from pβ(t+δt)Θ(s).

H FIRST ORDER TRANSITIONS IN RBMS

In this section, we examine the appearance of first-order transitions when adjusting the temperature of
a well-trained RBM on clustered datasets—a phenomenon that significantly hinders the performance
of thermal sampling algorithms. We first illustrate this issue using an analytically tractable toy model,
followed by an analysis of the first-order temperature transition observed in the RBM trained on the
HGD dataset, as discussed in the main text.

H.1 THEORETICAL ANALYSIS IN A SIMPLE MODEL

We propose a simple model of dataset on which we will show that the learned RBM is having a first
order transition in temperature. We first consider an artificial dataset using a Curie-Weiss model. We
defined the following Hamiltonian on the variables si = ±1

H = − 1

2Nv

(∑
i

si

)2

, p(s) =
1

Z
exp(−βTH).

When the inverse temperature βT is below one, the distribution in the Nv →∞ limit is unimodal,
with the Boltzmann average of the variables s being ⟨s⟩ = 0. For βT > 1, the system becomes
bimodal, with ⟨si⟩ = m, where m satisfies the self-consistent equation m = tanh(βTm). We
propose to model this dataset using a Bernoulli-Gauss RBM with one hidden node. The visible
nodes, σ = {0, 1}, follow a Bernoulli distribution, while the hidden node, τ , follows a Gaussian
distribution with zero mean and variance 1/Nv, combined with a local visible bias. When the inverse
temperature βT is below one, the distribution in the Nv → ∞ limit is unimodal and the average
w.r.t. the Boltzmann distribution of the values of the variables s’s is ⟨s⟩ = 0. When βT is above
one, the system becomes bimodal with ⟨|si|⟩ = m when m is defined by the self-consistent equation
m = tanh(βTm). We now propose to learn this dataset using a Bernoulli-Gauss RBM with one
hidden node, where the visible nodes are σ = {0, 1}, and the hidden one τ is Gaussian distribution
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Figure 9: Free energy −βf(mτ ) for β ∈ [0.8, 1.05] for the optimal RBM’s parameters learned on
a CW model with βT = 1.4. At β = 1.0 the two minima are perfectly adjusted. As we change the
temperature of the RBM, they get destabilized showing the presence of a first order transition.

of zero mean and variance 1/Nv, and a local visible bias. The Hamiltonian is then

H = −
∑
i

σiWiτ −
∑
i

ηiσi,

where Wi is the weight matrix and ηi the biases. The leaning then consist in converting the binary
variable of the Curie-Weiss model into {0, 1} and to learn the coresponding dataset. By a rapid
inspection (in the infinite size limit), we can easily show that the optimal learned parameters for the
RBM are

wi = 2
√
βT and ηi = −2βT .

Now, thanks to the simplicity of the model, we can actually compute the free energy of the model
where the Hamiltonian has been rescaled by an annealing temperature β, we obtain

−f(mT ) =
m2

τ

2
−N−1

∑
i

log [1 + exp(βwimτ + βηi)]

where mτ =
1

N

∑
i

βwisigm [1 + exp(βwimτ + βηi]

In Fig. 9, we plot−βf(mT ) for ten different values of β within the range [0.8, 1.05]. It is evident that
β = 1 represents the coexistence point, indicating a first-order transition in temperature. Note that
the probability p(m) ≈ e−Nβf(mT ) for large N , implying that for β > 1, the typical configuration
corresponds to m > 1, whereas for β < 1, it corresponds to m < 1. This clearly shows that even on
simple case we observe such transition when doing annealing.

H.2 FIRST ORDER PHASE TRANSITION IN TEMPERATURE ON A TRAINED RBM ON A REAL
DATASET

We now consider the RBM trained on the HGD dataset using the pretraining and 50 000 updates of
PCD training. As we vary the temperature, we recover the probability p(m) learned by the model
using the TMC method (Béreux et al., 2023), projected along the second principal component in Fig.
11 and on both first and second principal components in Fig. 10. While β < 1.0, the probability
distribution is dominated by the central mode, equilibrating between all modes β = 1.0. As β goes
above 1.0, the distribution becomes dominated by the two external clusters.

The effect is clearly visible when sampling the model using the PT algorithm (Fig. 12). The
sampling was performed with 200 temperatures with a minimum acceptance rate of 0.78 between two
temperatures. We see a dataset cluster being ignored with only a few samples in it. However, when
resampling sampling the model for 106 AGS steps starting from the samples obtained through PT, we
see a clear change in the distribution, equilibrating with the missing cluster. In contrast, performing
the same experiment with PTT instead of PT, we observe no shift in the empirical distribution of the
samples after 106 AGS, as the upper cluster is already sampled.
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Figure 10: Projection of the negative log probability (top) and probability (bottom) learned by the
model, constrained to visible magnetizations m0 and m1, for various values of β. The red dots
represent the training data projected onto the first two principal components.
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Figure 11: Negative log probability (left) and probability (right) learned by the model constrained to
have a given m1 for several values of β. The equilibrium distribution of the model is displayed as the
black dotted line (β = 1).

I OVERFITTING AND PRIVACY LOSS AS QUALITY INDICATORS

In this section, we examine the quality of the samples generated, regarding overfitting and privacy
criteria which have been defined for genomic data in particular. We look at this on the models trained
with PCD with and without pre-training. We focus on the human genome dataset, as shown in
Fig. 1–C, to evaluate the ability of various state-of-the-art generative models to generate realistic
fake genomes while minimizing privacy concerns (i.e., reducing overfitting). Recent studies (Yelmen
et al., 2021; 2023) have thoroughly investigated this for a variety of generative models. Both studies
concluded that the RBM was the most accurate method for generating high-quality and private
synthetic genomes. The comparison between models relies primarily on the Nearest Neighbor
Adversarial Accuracy (AATS) and privacy loss indicators, introduced in Ref. (Yale et al., 2020),
which quantify the similarity and the level of ”privacy” of the data generated by a model w.r.t. the
training set. We have AATS = 1

2

(
AATrue + AASynth

)
where AATrue [resp. AASynth] are two

quantities in [0, 1] obtained by merging two sets of real and synthetic data of equal size Ns and
measuring respectively the frequency that a real [rep. synthetic] has a synthetic [resp. real] as
nearest neighbor. If the generated samples are statistically indistinguishable from real samples, both
frequencies AATrue and AASynth should converge to 0.5 at large Ns. AATS can be evaluated both
with train or test samples and the privacy loss indicator is defined as Privacy loss = AAtest

TS −AAtrain
TS

and is expected to be strictly positive. Fig. 14 shows the comparison of AATS and privacy loss
values obtained with our two models, demonstrating that the pre-trained RBM clearly outperforms the
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Figure 12: Comparison of the sampling results of PT (left) and PTT (right). The top row corresponds
to sample generated with each methods compared with the dataset distribution. The bottom row
compares samples obtained by performing 106 AGS starting from the PT and PTT samples with their
starting position.
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Figure 13: Evolution of the AATS (first row) and privacy loss (second row) indicator during the
training of pretrained RBMs. The online estimation of the train and test LL is given at the third row.
The overfitting is clearly detected in the HGD and MICKEY dataset and the divergence between the
train and test LL coincides with a sharp rise in the privacy loss.

other model, and even achieves better results (AATS values much closer to 0.5) than those discussed
in (Yelmen et al., 2021).

J EXTRA FIGURES
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Figure 14: Comparison of the evolution of overfitting metrics along the log-likelihood between a
RBM trained from scratch using PCD (A) and a pretrained RBM (B). (C) shows the comparison
between the AASyn and AATruth between the two machines. The machines were selected in order to
have a comparable privacy loss (D), right before starting to overfit.
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Figure 15: Comparison of log-likelihood estimation w.r.t. the exact ll on the MNIST-01 dataset.
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Figure 16: Comparison of log-likelihood estimation w.r.t. the exact ll on the MNIST dataset.
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Figure 17: Comparison of log-likelihood estimation w.r.t. the exact ll on the Ising dataset.
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Figure 18: Comparison of log-likelihood estimation w.r.t. the exact ll on the MICKEY dataset.
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Figure 19: Samples generated with the low-rank RBM trained with 3 directions plus a bias. We
show the samples generated by the pre-trained machined for the 5 datasets discussed in the paper and
projected on the PCA of the dataset. For the image datasets, we also show the images generated.
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