000 FOCALLENS: INSTRUCTION TUNING ENABLES ZERO-SHOT CONDITIONAL IMAGE REPRESENTATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Visual feature extraction is fundamental to many vision tasks. Most existing methods extract visual features by encoding an image into a generic feature vector. However, an image naturally contains rich information, and there may be multiple perspectives to describe it. For each application, we might be interested in different aspects of an image and want to prioritize those features over others. For instance, in an image of a dog carrying a toy, if we are primarily interested in the dog, we would expect the extracted features to emphasize the dog over the toy. In this work, we introduce FocalLens, a conditional visual feature extraction method that produces different representations for the same image based on the context of interest, expressed flexibly through natural language. We leverage vision instruction tuning data and contrastively tune a pretrained vision encoder to take natural language instructions as additional inputs and produce conditional image representations. Extensive experiments validate that conditional image representation from FocalLens better pronounce the visual features of interest compared to generic features produced by standard vision encoders like CLIP. In addition, we show FocalLens further leads to performance improvements on a range of downstream tasks including image-image retrieval, image classification, and image-text retrieval, with an average gain of 5 and 10 points on the challenging SugarCrepe and MMVP-VLM benchmarks, respectively.

028 029

031

001

002 003 004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

1 INTRODUCTION

032 Visual feature extraction is a crucial component that underlies many modern vision and multi-modal 033 systems (Ramesh et al., 2021; Li et al., 2022; Liu et al., 2024a; Reid et al., 2024; McKinzie et al., 034 2024). In recent years, vision foundation models that are pretrained with large-scale datasets (Dosovitskiy, 2020; Chen et al., 2022; Radford et al., 2021; Schuhmann et al., 2022) have become the cornerstone for visual feature extraction, powering downstream applications ranging from classifi-037 cation (Dosovitskiy, 2020), segmentation (Caron et al., 2021), retrieval (Radford et al., 2021), to 038 embodied applications (Driess et al., 2023). Despite the variety of pretraining schemes (Radford et al., 2021; Caron et al., 2021; He et al., 2022; Oquab et al., 2023; El-Nouby et al., 2024), most commonly used vision foundation models, such as CLIP (Radford et al., 2021), are designed to en-040 code the rich information contained in (a patch of) an image into a single feature vector, wherein 041 this general feature representation is expected to encapsulate all information that may be leveraged 042 by various potential downstream tasks. 043

044 However, by aiming to extract general-purpose features that can serve as many downstream tasks as possible, image representations obtained from these task-agnostic vision foundation models may inevitably compromise relevant information that is *specific* to the downstream task of interest. For 046 instance, CLIP models are known to produce image representations that capture the high-level se-047 mantics well (Radford et al., 2021; Ramesh et al., 2021), but often struggle with understanding the 048 finer-grained details and intrinsics of the image, such as attribute associations, spatial relationships, camera perspective, and so on (Vaze et al., 2023; Hsieh et al., 2024; Tong et al., 2024b). 050

051 In this work, instead of aiming to learn a model that produces a fixed image representation in fulfilling different goals, we consider learning an *adaptive* vision foundation model that encodes an image 052 differently conditioned on the downstream task of interest, allowing the resultant image representations to prioritize information relevant to the specified condition over other available semantics.

Figure 1: For a given image, the CLIP embedding space is static and structured based on overall semantics. However, FocalLens dynamically rearranges the embedding space based on the specified condition, bringing instances that are more similar under that condition closer together. We show the top-2 nearest neighbors for both CLIP and FocalLens embeddings (once conditioned on "background" and once on "quantity").

Furthermore, as opposed to pre-defining the downstream tasks in a priori (Salehi et al., 2024; Wu et al., 2021), our goal is an *adaptive generalist* model that is able to adapt to broad potential use cases in a *zero-shot* fashion. Specifically, we consider utilizing free-form natural language texts as a rich and flexible interface to condition¹ the model given different downstream purposes, inspired by recent literature (Wei et al., 2021; Su et al., 2022; Liu et al., 2024a). For instance, given a task of retrieving images of similar background scene to a given query image, by specifying through the text condition: "*What is the background in the image?*", we expect to guide the model in focusing more on the background features of the image, as illustrated in Fig. 1.

To develop an adaptive vision foundation model, we start out by first identifying two fundamental characteristics required by the model: (1) the ability to comprehend text conditions, and (2) 079 the ability to produce a corresponding *image representation* with the focus on the given condition. 080 Recent advancement in multi-modal large language models (MLLMs) (Li et al., 2022; 2023; Liu 081 et al., 2024a; McKinzie et al., 2024; Beyer et al., 2024) have shown that these models possess strong capability in understanding both text conditions and images, as demonstrated through their impres-083 sive performances on vision question answering tasks. Nonetheless, as these models are inherently 084 trained with the goal of producing next- (text) token predictions, it is unclear whether they could 085 be used to produce *image representations* that generally requires encoding not only the semantics 086 but also other low-level dense features. On the other hand, while existing vision encoders (Radford 087 et al., 2021; Oquab et al., 2023), can produce versatile image representations for various downstream 880 tasks, their representations are fixed and can omit information relevant to specific contexts.

089 In this work, we propose *FocalLens*, which aligns representations of a pretrained vision-language 090 model (VLM) leveraging instruction tuning data of MLLMs in a contrastive learning manner, to 091 achieve a text-conditional feature extractor to better "focus" on information relevant to the instruc-092 tions. We take representative pretrained MLLM and vision encoder, LLaVA (Liu et al., 2024a) and 093 CLIP (Radford et al., 2021), as examples, and turn them into conditional feature extractors via Focal-094 Lens. We call the resulting models FocalLens-MLLM and FocalLens-CLIP, respectively, as shown in Fig. 2. In both setups, we use a relatively small vision instruction tuning dataset in the form of 095 (instruction, image, output), as considered in prior MLLM studies (Dai et al., 2023; Liu 096 et al., 2024a). We learn to align the visual representations to respect the specified condition. 097

098 Through extensive evaluations on over 60 tasks, we observe that FocalLens models demonstrate a 099 strong ability to condition representations based on the given text instructions, significantly outper-100 forming existing baselines like CLIP. On average, FocalLens achieves up to 9 points higher performance, with even greater improvements on specific tasks, for image-image retrieval tasks. In addi-101 tion, when used in downstream applications, FocalLens's conditional image representations further 102 lead to clear gains compared to existing baselines. For instance, on image-text retrieval bench-103 marks, we show an average improvements of 5 and 10 points respectively on SugarCrepe (Hsieh 104 et al., 2024) and MMVP-VLM (Tong et al., 2024b), comparing favorably to other CLIP models 105 that are much larger (up to $2.5 \times$) in size. On image classification, FocalLens also shows superior 106

107

063

064

065

066

067

¹We use "condition (conditional)" and "adapt (adaptive)" interchangeably in this paper.

performances than CLIP, especially in low-data regime. Finally, further qualitative study showcases
 various intriguing application scenarios that can be supported by FocalLens.

110 111 112

2 RELATED WORK

113 Foundation models for vision encoding. Recently, the computer vision community has witnessed 114 a transformative revolution wherein foundation models pretrained with web-scale datasets (Doso-115 vitskiy, 2020; Jia et al., 2021; Schuhmann et al., 2022; Oquab et al., 2023) are used as the common 116 underlying visual feature extractor to produce versatile image representations that drive various 117 downstream applications (Dosovitskiy, 2020; Radford et al., 2021; Ramesh et al., 2021; Kirillov 118 et al., 2023; Zhou et al., 2022). While there are many pretraining objectives (Oquab et al., 2023; 119 He et al., 2022; El-Nouby et al., 2024; Radford et al., 2021), existing schemes typically train the 120 vision models to produce a single "general" image representation that hopefully captures all relevant information contained in the given image, or utilize information derived from diverse captions 121 to help learning more discriminative image features (Lavoie et al., 2024). Nonetheless, as an image 122 naturally contains rich and dense information, a fixed and general-purpose representation may not 123 sufficiently pronounce information relevant to specific downstream contexts of interest (Kar et al., 124 2024; Wang et al., 2024; Tong et al., 2024b; Hsieh et al., 2024). These observations motivate our 125 design of a foundation vision encoder that is capable of extracting different representations from 126 a single image conditioned on downstream use cases at test-time, different from universal image 127 embedding approaches that aim to learn a universal model for different domains without explicit 128 conditioning (Google Research, 2023; Ypsilantis et al., 2023). 129

130 **Conditional vision representations.** Implicit and task-specific conditioning of visual features 131 have been studied in the literature (Liu et al., 2024a; Dai et al., 2023; Tong et al., 2024a; Eftekhar 132 et al., 2023; Vani et al., 2024; Chameleon Team, 2024). For instance, the hidden representations in MLLMs may be interpreted as a type of conditional image representation, where the visual fea-133 tures are fused with text instructions for producing different output responses (Chameleon Team, 134 2024). Along this line, InstructBLIP (Dai et al., 2023) further designed a mechanism to extract 135 instruction-aware visual features that are shown to better guide MLLMs to focus on relevant visual 136 features. In the context of embodied AI, conditional (or typically called selective) visual represen-137 tation has also been demonstrated to much improve downstream agent's performances in navigation 138 and displacement tasks (Eftekhar et al., 2023). Nonetheless, conditional visual representations con-139 sidered in these work are designed and tied in specifically to their model and respective applications. 140 In this work, we are interested in conditional visual representations that may be adopted in broad 141 downstream use cases. 142

143 Vision-language joint representation learning. There is a rich literature in vision-language 144 (joint) representation learning (Lu et al., 2019; Li et al., 2019; Kim et al., 2021; Radford et al., 2021; 145 Jiang et al., 2024). Our work is related as we aim for a model that can comprehend both images and natural language conditions. Concurrent to our work, E5-V (Jiang et al., 2024) considers MLLM's 146 output space as a universal representation space for both the vision and language inputs. Nonethe-147 less, in addition to the MLLM-based approach, we investigate an alternative promising CLIP-based 148 approach with comprehensive analysis. Relatedly, composed image retrieval (Wu et al., 2021; Saito 149 et al., 2023; Zhang et al., 2024) considers developing models of underlying similar capabilities that 150 generate image embeddings given both image and text. However, different from our goal to use text 151 conditioning to extract downstream-specific *intrinsic* visual features, their goal is to *extrinsically* 152 "compose" semantics from both texts and images, largely towards image-retrieval purposes.

153 154

155

3 CONDITIONAL EMBEDDINGS VIA INSTRUCTION CONTRASTIVE TUNING

Our goal is to develop an adaptive vision foundation model that is capable of encoding an image into tailored embeddings conditioned on the downstream task of interest, as specified through natural language texts. Also, we are interested in a conditional representation not tied to specific tasks, but able to generalize to broad instructions.

161 We consider the visual instruction tuning data (Liu et al., 2024a), which covers diverse tasks, and has demonstrated great generalization of MLLMs in different benchmarks. The visual instruction tuning

Figure 2: FocalLens is applied to two vision-language models to extract text-conditioned visual features: (a) modifying Llava-like VLMs, which already have text-conditioning capabilities, to produce a global visual feature, and (b) modifying ViT (Dosovitskiy, 2020) based CLIP-like VLMs, which already produce a global visual feature, to condition their output feature based on a text condition.

data is in the triplet format of (image, instruction, output). For instance, given an image of "a Yorkshire Terrier wearing a green cloth", the output is "The dog is wearing a green cloth 181 with strawberry prints on it" with the instruction "What is the dog wearing?". Alternatively, 182 when the instruction is "What is the type of the dog", the output is "The dog is a Yorkshire Terrier" 183 correspondingly. MLLMs (Dai et al., 2023; Liu et al., 2024a) leverage the triplet instruction tuning 184 for text generation: given (image, instruction), generating output. Instead, we propose to 185 utilize contrastive learning (Radford et al., 2021) on the triplet instruction tuning data. Specifically, given an image encoder conditioned on the *instruction*, we match the output embedding with a text embedding of *output*. We call the proposed method as *FocalLens*, which leverage instruction tuning 187 data to contrastively tune the pretrained image encoder, such that it can better focus on desired infor-188 mation and generalize to diverse downstream tasks. We explore tuning two different representative 189 vision-language models with FocalLens: MLLMs (Section 3.1) and CLIP (Section 3.2). 190

191 192

193

3.1 FOCALLENS WITH MLLMS

MLLMs (Liu et al., 2024a; Dai et al., 2023) generate textual responses regarding an image based on the given input text instructions. Given (instruction, image), the goal is to generate output. However, as the original model objective is text generation rather than producing explicit representation for downstream tasks, the conditional visual information may be dispersed throughout the model, and there is no direct access to them by design.

In FocalLens, instead of training the MLLM to generate output given (image, instruction) as in the original auto-regressive objective, we append a special indicator token <eos_token> to MLLM's input sequence, and consequently train the indicator's output token to align with the CLIP text embedding of the targeted output in a constrative manner. Here, we use an off-the-shelf frozen CLIP text encoder to obtain the target output embedding. With the contrastive objective, we encourage the model to condense information relevant to the image, with the specified instructions, into a single output representation. We show the overall model architecture in Fig. 2a.

205 206 207

3.2 FOCALLENS WITH CLIP

208 Unlike MLLMs, CLIP models by design generate image representations (Radford et al., 2021), 209 where these image embeddings are already widely utilized in a variety of downstream tasks (Ramesh 210 et al., 2021; Liu et al., 2024a). However, CLIP models are inherently limited to producing a fixed 211 representation for each image, regardless of the downstream task of interest. Although strong in 212 capturing high-level semantics, these general visual features are shown to lack various aspects of 213 fine-grained image details that can be critical for downstream tasks (Hsieh et al., 2024; Tong et al., 2024b). To tackle this, we propose to make CLIP's vision encoder task-aware, such that it is able 214 to adapt its representations based on specific requirements, thereby capturing specific aspects of the 215 image essential for different applications.

216 To incorporate natural language instructions into CLIP's vision encoder, we consider first convert-217 ing instruction into a "condition text embedding", which is then treated as an additional token 218 that is fed into the image encoder alongside the standard image tokens and the CLS token. Af-219 terwards, the model is trained as in standard CLIP using a contrastive loss, aligning the resultant 220 text-conditioned image representations with their corresponding textual outputs. By instruction tuning, we aim to allow the vision encoder to generalize to a broad range of scenarios of interest that 221 can be described via natural language at test-time (Wei et al., 2021; Su et al., 2022). We illustrate 222 the FocalLens-CLIP training setup in Fig. 2b. 223

224 225

226

233

4 EXPERIMENTS

In this section, we first demonstrate the benefits of conditional image representations (Section 4.1) over the generic representations produced by CLIP, using a toy dataset. We then extensively evaluate FocalLens models' capability in characterizing downstream conditions on a variety of tasks, compared to existing baselines (Section 4.2). By zooming in on FocalLens-CLIP, we demonstrate that its conditional image representations improve performance across a range of downstream tasks, including image-text retrieval, image classification, and image-image retrieval (Section 4.4).

234 Setup. We train FocalLens models with the visual instruction tuning data used in LLaVA (Liu 235 et al., 2024a). The dataset contains around 150k examples, wherein 60k examples are multi-turn 236 conversations and thus can be treated as multiple triplets of (image, instruction, output), where the image remains the same. During training, we expand conversation data within batches to 237 encourage models to output different representations given the same image but different instructions. 238 For FocalLens-MLLM, we follow the training recipe of LLaVA (Liu et al., 2024a) to obtain a base 239 MLLM before further training with the proposed contrastive loss. For FocalLens-CLIP, we initialize 240 the base CLIP model with OpenAI's CLIP-ViT-L-14-336 (Radford et al., 2021), which is also the 241 underlying vision encoder used in LLaVA. We initialize the additional text encoder for instructions 242 to have the same weight as the original text encoder. 243

For contrastive instruction tuning, given a batch of triplet instruction data $(x_{img}^{(i)}, x_{ins}^{(i)}, y^{(i)})$, where $y^{(i)}$ is the expected output for sample *i*, we form the pair-wise similarity matrix *S*, such that

245 246 247

244

248

254

255

256

257

258

259

260

261

 $S_{i,j} = \phi(\boldsymbol{x}_{ing}^{(i)}, \boldsymbol{x}_{ins}^{(i)})^T \mathcal{T}(\boldsymbol{y}^{(j)}), \qquad (1)$ where ϕ is the encoding process that produce the conditional image embedding from both image

where ϕ is the encoding process that produce the conditional image embedding from both image x_{img} and instruction x_{ins} , and \mathcal{T} is the (frozen) text encoder that generates the target embedding from y. We apply scaled Softmax to the rows of similarity matrix and compute the contrastive loss following CLIP (Radford et al., 2021). We report further training details in Appendix C. In addition, we report all prompts used for conditioning FocalLens models during evaluation in Appendix D.

Image-image retrieval as an evaluation protocol. We consider the common image-image retrieval evaluation to measure the quality of image representations produced from different vision encoders (Google Research, 2023; Caron et al., 2021). Specifically, given a query image, image-image retrieval tasks the model to retrieve other images from a gallery that are "similar" to the query image. We are especially interested in the scenario wherein the very definition of "similar" changes as the downstream tasks vary (Vaze et al., 2023). To facilitate such evaluations, we adopt datasets where we may define various similarities between images based on *test-time* interest determined through a text condition. We introduce these datasets in the following sections. For each dataset, when not otherwise specified, we report mean Average Precision (mAP) as the evaluation metric.

4.1 CONDITIONAL REPRESENTATIONS BETTER CHARACTERIZE TASK-SPECIFIC DETAILS

We empirically validate the benefits of having the flexibility to encode an image based on the given condition of interest over using a fixed representation when downstream purpose varies, as considered in most prevailing vision encoding paradigms (Radford et al., 2021; Caron et al., 2021). Here, we restrict ourselves to a toy dataset to demonstrate the idea, and we shall expand our studies in the following sections.

			Cont.		
Model	Color	Shape	Both	Avg.	Color
CLIP (task-agnostic)	57.10	<u>90.24</u>	<u>99.36</u>	82.23	0.158
FocalLens-MLLM FocalLens-CLIP	99.94 <u>87.28</u>	82.56 93.51	98.92 99.99	93.80 <u>93.59</u>	0.560 <u>0.405</u>

Figure 3: ColorShape examples with a query image, three conditions, and corresponding positives and distractors.

279

280

281 282 283

284

285

286

287

288

Table 1: Image-image retrieval results on ColorShape dataset.
Conditional representations from FocalLens better capture the
given conditions compared to the task-agnostic representations
of CLIP.

A toy ColorShape dataset. ColorShape is a synthetic dataset where each image contains a certain colored shape. There are in total 4 different colors and shapes respectively. We generate 500 different images with random position and size of the object for each combination of color and shape. At test-time, we may define the intent for retrieval based on different aspects. Specifically, we may group each image into different categories based on either only its color, only its shape, or both. Fig. 3 shows some examples from the dataset.

The pretrained CLIP model (Radford et al., 2021) serves as the standard encoder baseline where the image representations are fixed even when the test-time condition varies. For the conditional vision encoders, we consider both FocalLens-MLLM and FocalLens-CLIP models discussed in Section 3. We show their retrieval performances on the ColorShape dataset when the test-time condition varies.

Non-adapative image representations overlook specific aspects of images. From Table 1, on 294 the simple ColorShape dataset, CLIP yields almost perfect retrieval performances when we define 295 image categories based on both color and shape. However, in the context where we are specifically 296 interested in categorizing images based only on the color, CLIP's performance drops significantly 297 to 57 mAP point. On the other hand, when we define similarity based only on shape, CLIP achieves 298 relatively better performances at 90 mAP point. Combining the results, while CLIP can produce 299 general representation that is strong at grouping objects of certain shape and color together, its 300 overall representation space is biased towards the "shape" of objects, and much less discriminative 301 over the "color" aspect. This also echos the observations made in recent works (Tong et al., 2024b; 302 Hsieh et al., 2024), suggesting that CLIP's representation, while powerful for general tasks, may overlook fine-grained details such as color, highlighting a need for approaches to better adapt and 303 capture the nuanced visual characteristics, depending on the task at hand. 304

Conditional image representations better capture information relevant to the downstream task. In Table 1, as opposed to CLIP model, the conditional image representations produced from both adaptive vision encoders, the MLLM-based and the CLIP-based model, achieve much more balanced (and superior) results than CLIP's representation when the downstream condition varies. When averaged across three different scenarios ("color", "shape", and "both"), both conditional vision encoders improve over 10 mAP point compared to CLIP. The conditional CLIP-based model also always outperforms CLIP, when evaluated separately on the three respective conditions.

In addition to using discrete color labels (e.g., "red", "blue") to define image similarity, we also consider a more sophisticated setup where image similarity is measured based on L2 distance in RGB space. Specifically, in this Continuous Color variant, we assign randomly sampled RGB colors to the objects. During evaluation, our goal is to retrieve images with colors closer to that of the query image. We compute the rank correlation between the similarity measured in the model's image representation space and the ground-truth similarity defined in RGB space. In this setup, both FocalLens models significantly outperform CLIP as show in the last column of Table 1.

- 319
- 320 321

4.2 FOCALLENS IMPROVES IMAGE REPRESENTATIONS ACROSS BENCHMARKS

Using the ColorShape toy dataset, we validated the benefits of adapting image representations for
 downstream tasks. We now compare FocalLens to existing vision encoders and relevant baselines
 across a comprehensive set of evaluation benchmarks.

3	2	4
3	2	5
_	_	_

Table 2: Res	sults on CelebA-Attrib	ute and GeneCIS.
--------------	------------------------	------------------

			GeneCIS					
Model	Blond Hair	Smiling	Wavy Hair	Lipstick	Avg. 29 tasks	Attribute	Object	Avg.
CLIP	6.20	8.68	7.54	41.45	13.59	43.10	25.81	34.46
InstructBLIP	21.03	21.71	13.91	34.64	16.19	47.00	34.03	40.52
MagicLens	8.24	9.98	10.76	54.12	13.42	39.00	<u>35.50</u>	37.25
FocalLens-MLLM FocalLens-CLIP	<u>25.76</u> 32.22	34.43 22.11	17.61 <u>16.89</u>	68.07 <u>62.50</u>	22.67 <u>21.32</u>	<u>45.35</u> 43.30	30.20 43.72	37.78 43.5 1

TT 1 1 0	D 1.	T	<u> </u>	c · 1	1	1
Table 3:	: Results on	ImageNet-	Subset and	fine-grained	classification	datasets.

			ImageNe	t-Subset		Fine-grained classification datasets				
Model	Ball	Cat	Dog	Fish	Avg. 14 tasks	Flower	Car	Aircraft	Food	Avg.
CLIP InstructBLIP MagicLens	64.63 66.44 68.10	53.00 51.22 50.14	16.55 9.60 17.28	<u>61.79</u> 59.16 58.84	51.03 47.67 46.36	83.87 <u>80.26</u> 74.88	$\frac{45.14}{25.97}$ 23.95	25.96 13.47 17.55	58.66 54.32 65.13	<u>53.41</u> 43.51 45.38
FocalLens-MLLM FocalLens-CLIP	78.99 70.01	<u>53.24</u> 56.80	<u>29.25</u> 33.15	57.40 65.37	<u>52.34</u> 55.29	43.92 80.23	18.59 54.72	14.73 <u>21.44</u>	50.93 <u>64.16</u>	32.04 55.14

Evaluation benchmarks. We consider a total of 49 different tasks across 4 coarse-grained categories in our evaluation suite as briefly described below. We include dataset details in Appendix A.

- CelebA-Attribute (Liu et al., 2015): CelebA is a dataset consisting of celebrity face images. Each face image is associated with various properties spanning from the hair color of the person, the eyebrow shape, to whether the person is wearing eyeglasses, and so on. We vary the downstream condition of interest across different properties for retrieval. For instance, when conditioned on "eyeglasses" with a query image showing a person is (not) wearing eyeglasses, the model is tasked to retrieve other face images with (without) eyeglasses. We manually select a total of 29 different properties that can be objectively labeled, and exclude more subjective properties such as "attractiveness" or "young". We notice that the class within each attribute may be imbalanced, resulting in high mAP even with random guess. We thus report scaled performances w.r.t. random guess by: $\frac{p-r}{1-r}$, where p is the original mAP and r is the random guess mAP.
- GeneCIS (Vaze et al., 2023): GeneCIS presents various image retrieval tasks for evaluating conditional image similarity. Given a query image ("a white laptop") and a condition ("color"), the goal is to retrieve the most similar image (another "white laptop") from a gallery that contains implicitly similar distractors with wrong conditions (e.g., "a black laptop"). We report the "Focus attribute" and "Focus object" tasks from GeneCIS. As each query image contains only a single positive in the gallery, we report Recall@3 following prior work (Zhang et al., 2024).
- ImageNet-Subset (Deng et al., 2009): In addition to the above benchmarks with specific down-stream conditions of interest, we as well evaluate our models on standard ImageNet classes, where the condition corresponds to the image "classes" as defined by ImageNet. Specifically, we create 14 different retrieval sub-tasks based on coarse-grained categories from WordNet (Miller, 1995) hierarchy (e.g., ball, bird, dog, etc.). In each task (e.g., dog), the goal is to retrieve images (from all dog images) with the same type of instance (same breed of dog) as the query image.
- Fine-grained classification datasets: Similar to ImageNet, we incorporate 4 finer-grained classification datasets, including Oxford Flowers (Nilsback & Zisserman, 2008), Stanford Cars (Krause et al., 2013), FGVC Aircraft (Maji et al., 2013), and Food-101 (Bossard et al., 2014).
- Baselines. We consider CLIP (Radford et al., 2021) as the task-agnostic vision encoder model.
 We also compare to models that are able to generate conditional visual representations, including the Q-former used in InstructBLIP (Li et al., 2023; Dai et al., 2023), and MagicLens (Zhang et al., 2024) that is designed specifically for composed image-retrieval with open-ended instructions. We include details of the baselines in Appendix B.
- **FocalLens improves significantly over existing baselines given specific downstream conditions.** From Table 2, both variants of FocalLens provide significant gains over the task-agnostic CLIP

baseline on CelebA-Attribute and GeneCIS, when there are specific conditions to respect. We see
an overall gain of 9 points on CelebA-Attribute. Looking more closely at the individual conditions
on CelebA-Attribute (complete results reported in Appendix E), we observe that when the condition
of interest is "smiling", we see a significant gap of 26 points between CLIP and FocalLens, where
the gap is as large as 48 points on certain attributes. Similarly on the GeneCIS benchmark, by
specifying the attribute such as color or certain object to focus on, FocalLens improves over CLIP
by an average of 9 points.

On CelebA-Attribute and GeneCIS, we also see FocalLens models demonstrate outperforming (or favorable) results when compared to prior task-aware vision encoders (i.e., InstructBLIP and MagicLens), that are also given the downstream condition of interest when generating the image representations. Specifically, FocalLens-CLIP achieves the best overall performances, winning over the stronger InstructBLIP baseline by 5 and 3 points respectively on CelebA-Attribute and GeneCIS, validating the effectiveness of our proposed strategy.

391 FocalLens maintains or improves over existing baseline on generic conditions. Here, we com-392 pare model performances on ImageNet-Subset and the fine-grained classification datasets, where 393 the downstream goal is generic instance classification. First, CLIP model demonstrates competitive 394 performances on both ImageNet-Subset and fine-grained classification tasks, showing that its em-395 beddings are indeed strong at representing generic features when it comes to standard "type" classification. In contrast, InstructBLIP and MagicLens suffer performance drops on both ImageNet-Subset 396 and fine-grained tasks. On the other hand, we see FocalLens (especially FocalLens-CLIP) maintains 397 comparable performances to CLIP on fine-grained datasets and attains even better performances on 398 ImageNet-Subset. We explain the improvement on ImageNet by that conditioning FocalLens with 399 instructions such as "What is the type of dog?" helps the model to better focus on the specific object 400 of interest but not other potential distractors in the image (e.g., the "toy" besides the dog). 401

401 402 403

4.3 COMPARATIVE ANALYSIS OF FOCALLENS VARIANTS

Both FocalLens-MLLM and FocalLens-CLIP yield promising results in the experiments. One major
difference between FocalLens-MLLM and FocalLens-CLIP is their underlying pretrained models'
output modality. Specifically, the original MLLM model in FocalLens-MLLM is trained to autoregressively produce textual outputs, while CLIP's vision encoder is trained to produce image
embeddings. We are thus interested in understanding whether this difference affects the underlying
characteristics of the output representations in FocalLens-MLLM and FocalLens-CLIP.

To test this, we consider downstream conditions that require visual features beyond semantic concepts that are

412 describable by text. In particular, on CelebA, instead 413 of considering conditions such as whether the person is 414 wearing glasses or not, which is answerable in simple 415 words ("yes" or "no"), we consider a fuzzy condition 416 where the image similarity is defined by the *identity* of the person. Textual representations that do not carry vi-417 sual information may fail at achieving good performance 418 on this task, as identity is hardly describable through nat-419 ural language. 420

Table4:ComparisonbetweenFocalLens-MLLMandFocalLens-CLIPonfuzzyconditionswithCelebA-Identity.

Model	CelebA-Identity
FocalLens-MLLM	14.48
FocalLens-CLIP	46.84

In Table 4, we observe that FocalLens-MLLM suffers from a clear performance gap compared to
FocalLens-CLIP. This suggests that FocalLens-MLLM may rely more on MLLM's original textual
output modality, which is limited for tasks requiring rich visual information. Similar observations
are also hinted by its relatively low performance on fine-grained classification results in Table 3.
In contrast, FocalLens-CLIP, with its underlying model being a vision encoder, is better suited for
tasks requiring richer visual detail. Based on this observation, we focus on FocalLens-CLIP for the
remainder of the experiments.

428 429

430

4.4 FOCALLENS REPRESENTATIONS IMPROVE DOWNSTREAM APPLICATIONS

In addition to evaluations based only on image representations, we show how image representations produced from FocalLens-CLIP can drive improvement on downstream tasks including image-text

retrieval and image classification in a low-data regime where only a small amount of downstream task data is available for training.

Image-text retrieval. A prevailing usage of image representations is to enable cross-modality re trieval. Here, we include two image-text prediction benchmarks, where the goal is to predict the correct textual description of a given image. Specifically, we adopt SugarCrepe (Hsieh et al., 2024) and MMVP-VLM (Tong et al., 2024b). SugarCrepe presents challenging hard-negative text distrators along with a positive description for the model to select from, where existing models are shown to struggle with. Similarly, MMVP-VLM particularly collects examples with visual patterns where CLIP vision encoder are shown to fall short.

In Table 6 on SugarCrepe, we compare FocalLens-CLIP to several standard CLIP models of different 442 sizes, and trained with different data sizes. First, compared to the underlying CLIP model used in 443 FocalLens-CLIP (i.e., OpenAI ViT-L-14), FocalLens-CLIP achieves around 4.7 point improvements 444 on average, with consistent improvements across all different sub-tasks with individual gains up to 445 9 points on Replace-rel and Add-att. Interestingly, the two sub-tasks test the model's capability in 446 understanding fine-grained relationships and attributes in the image, where standard CLIP models 447 struggle the most (Hsieh et al., 2024). This suggests FocalLens-CLIP's image representations are 448 able to better characterize fine-grained visual details. Furthermore, by scaling up the model size 449 from 428M to 623M, the RN50x64 model still underperform our smaller FocalLens-CLIP model (551M for both image and text encoders). On the other hand, FocalLens-CLIP shows competitive 450 performances compared to the $2.5 \times$ bigger ViT-g-14 model trained on $5 \times$ more data. 451

From Table 7 on MMVP-VLM, we see FocalLens-CLIP significantly outperforms the baseline ViT-L-14 model consistently across all sub-tasks, by an average of 9.7 points. Furthermore, we note that our FocalLens-CLIP model also compares favorably to the much larger ViT-H-14 ($1.8 \times$ larger) and ViT-g-14 ($2 \times$ larger) on individual sub-tasks, where FocalLens-CLIP achieves the best overall performance with a lead of 5.2 point.

457 458

Linear probing in low-data regime. We evaluate the 459 performance of FocalLens-CLIP in a linear probing setup, 460 where only a small amount of downstream task data 461 is available for training. We use the largest dataset in 462 ImageNet-Subset introduced in Section 4.2, focusing on 463 different dog breeds (a total of 118 classes). In the low-464 data setup (Henaff, 2020; Luo et al., 2017; Vemulapalli 465 et al.), we assume there are k instances available for each class for training and consider k = 5, 10, 15. We freeze 466 the backbone and replace the CLIP projection layer with 467 a linear layer to perform 118-way classification. The lin-468 ear probe is trained for 100 epochs following prior works 469 like (Liu et al., 2024b). We sweep over learning rates 470 from 1e-2 to 1e-4 in steps of 2.5e-3 and report the perfor-471 mance of the best checkpoint. We compare FocalLens-472 CLIP to OpenAI ViT-L-14 in this setup, as shown in Ta-473 ble 5. In the extreme setting, where only 5 instances per

Table 5: Linear probing results comparing CLIP and FocalLens-CLIP.

class is available to train the linear probe, FocalLens-CLIP outperforms CLIP-ViT-L by 5.3%. This
 result further reinforces our observation that conditional image representations are more efficient in
 extracting information relevant to downstream tasks.

477 Qualitative analysis on conditional image-retrieval. We qualitatively compare the top-k images 478 retrieved by using FocalLens-CLIP's conditional image embeddings with those retrieved by standard 479 CLIP, specifically when given various downstream conditions. For this qualitative study, we treat 480 all images in the 14 coarse-grained categories considered in ImageNet-Subset as the gallery for 481 retrieval. In Fig. 4, we showcase several intriguing examples across various aspects of conditioning 482 FocalLens-CLIP captures. In the top-left example, we consider a scenario where we are interested 483 in retrieving images of similar background to the query image. Given the query image of "a goose on a grassy field", although the images retrieved by CLIP do all contain goose, all images have the 484 background of water instead of grassy field. Conversely, we see images retrieved by FocalLens-CLIP 485 all have similar grassy background as expected. Similarly, in the top-right, we see FocalLens-CLIP

				SugarCrepe				
Model	Replace-obj	Replace-att	Replace-rel	Swap-obj	Swap-att	Add-obj	Add-att	Avg.
OpenAI ViT-L-14 (2021)	94.49	80.58	66.78	64.08	62.46	80.74	74.27	74.77
OpenAI RN50x64 (2021)	94.49	83.50	70.63	61.79	66.67	83.27	73.99	76.33
LAION ViT-g-14 (2022)	95.76	85.03	<u>72.40</u>	<u>63.01</u>	71.17	91.51	82.08	80.14
FocalLens-CLIP	95.64	84.51	75.53	65.30	66.36	86.12	83.09	79.51

Table 6: Image-Text Retrieval on SugarCrepe for vision-language compositionality evaluation.

				Ν	MMVP-VI	.M				
Model	Orientation	Presence	State	Quantity	Spatial	Color	Structure	Text	Camera	Avg.
OpenAI ViT-L-14 (2021)	6.7	20.0	26.7	6.7	13.3	33.3	46.7	20.0	13.3	20.7
MetaCLIP ViT-H-14 (2023)	6.7	13.3	60.0	13.3	6.7	53.3	26.7	13.3	33.3	25.2
EVA01 ViT-g-14 (2023)	6.7	26.7	<u>40.0</u>	6.7	<u>13.3</u>	66.7	13.3	13.3	20.0	23.0
FocalLens-CLIP	6.7	33.3	33.3	40.00	26.7	66.7	20.0	26.7	20.0	30.4

Table 7: Image-Text Retrieval on MMVP-VLM.

faithfully reflects the interested condition of quantity, retrieving images with 3 dogs as in the query image, whereas images retrieved by CLIP is largely based on their instance type (same species of dog), and cannot reflect the downstream interest. More examples demonstrate that color or even implicit visual features such as camera angle can also be characterized by FocalLens-CLIP.

Figure 4: Comparison between CLIP and FocalLens-CLIP on conditional image retrieval.

CONCLUSION

In this work, we introduced FocalLens, a zero-shot conditional visual embedding model that focuses the representation on specific aspects of the image described in the given text. FocalLens is trained using existing visual instruction tuning datasets to align the conditional image representation with the textual description. Experiments on a comprehensive set of tasks, including image-to-image retrieval, image classification, and image-to-text retrieval, demonstrate that FocalLens matches or exceeds the performance of state-of-the-art models.

Limitations. Although experiments demonstrate that FocalLens can be effectively trained using visual instruction tuning datasets, model performance could be enhanced by designing customized datasets for this task, which we leave for future study. Moreover, the relatively small scale of the visual instruction tuning datasets may hinder alignment accuracy for highly specialized concepts that are entirely absent from the dataset.

540 REFERENCES 541

542 543 544	Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al. Paligemma: A versatile 3b vlm for transfer. <i>arXiv preprint arXiv:2407.07726</i> , 2024.
545 546 547	Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101-mining discriminative compo- nents with random forests. In <i>Computer vision–ECCV 2014: 13th European conference, zurich,</i> <i>Switzerland, September 6-12, 2014, proceedings, part VI 13</i> , pp. 446–461. Springer, 2014.
548 549 550 551	Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In <i>Proceedings of the IEEE/CVF international conference on computer vision</i> , pp. 9650–9660, 2021.
552 553	Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. <i>arXiv preprint</i> arXiv:2405.09818, 2024.
554 555 556 557	Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled multilingual language-image model. <i>arXiv preprint arXiv:2209.06794</i> , 2022.
558 559 560	Wenliang Dai, Junnan Li, D Li, AMH Tiong, J Zhao, W Wang, B Li, P Fung, and S Hoi. Instruct- blip: Towards general-purpose vision-language models with instruction tuning. arxiv 2023. <i>arXiv</i> <i>preprint arXiv:2305.06500</i> , 2, 2023.
561 562 563	Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, K. Li, and Li Fei-Fei. Imagenet: A large-scale hier- archical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255, 2009. URL https://api.semanticscholar.org/CorpusID:57246310.
565 566	Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. <i>arXiv preprint arXiv:2010.11929</i> , 2020.
567 568 569	Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-modal language model. <i>arXiv preprint arXiv:2303.03378</i> , 2023.
570 571 572 573	Ainaz Eftekhar, Kuo-Hao Zeng, Jiafei Duan, Ali Farhadi, Ani Kembhavi, and Ranjay Krishna. Selective visual representations improve convergence and generalization for embodied ai. <i>arXiv preprint arXiv:2311.04193</i> , 2023.
574 575 576	Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev, Vaishaal Shankar, Joshua M Susskind, and Armand Joulin. Scalable pre-training of large autoregressive image models. <i>arXiv preprint arXiv:2401.08541</i> , 2024.
577 578 579 580	Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. Eva: Exploring the limits of masked visual representation learning at scale. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19358–19369, 2023.
581 582 583 584 585	Google Research. Introducing the google universal image embedding challenge, April 2023. URL http://research.google/blog/ introducing-the-google-universal-image-embedding-challenge/. Accessed: 2024-09-30.
586 587 588	Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> , pp. 16000–16009, 2022.
589 590 591	Olivier Henaff. Data-efficient image recognition with contrastive predictive coding. In <i>International conference on machine learning</i> , pp. 4182–4192. PMLR, 2020.
592 593	Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay Krishna. Sugarcrepe: Fixing hackable benchmarks for vision-language compositionality. <i>Advances in neural informa-</i> <i>tion processing systems</i> , 36, 2024.

602

603

604

605

623

- ⁵⁹⁴ Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.
 ⁵⁹⁷ PMLR, 2021.
- Ting Jiang, Minghui Song, Zihan Zhang, Haizhen Huang, Weiwei Deng, Feng Sun, Qi Zhang,
 Deqing Wang, and Fuzhen Zhuang. E5-v: Universal embeddings with multimodal large language
 models. arXiv preprint arXiv:2407.12580, 2024.
 - Oğuzhan Fatih Kar, Alessio Tonioni, Petra Poklukar, Achin Kulshrestha, Amir Zamir, and Federico Tombari. Brave: Broadening the visual encoding of vision-language models. *arXiv preprint arXiv:2404.07204*, 2024.
- Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convolution or region supervision. In *International conference on machine learning*, pp. 5583–5594.
 PMLR, 2021.
- Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4015–4026, 2023.
- Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 categorization. In *Proceedings of the IEEE international conference on computer vision work- shops*, pp. 554–561, 2013.
- Samuel Lavoie, Polina Kirichenko, Mark Ibrahim, Mahmoud Assran, Andrew Gordon Wildon, Aaron Courville, and Nicolas Ballas. Modeling caption diversity in contrastive vision-language pretraining. *arXiv preprint arXiv:2405.00740*, 2024.
- G Li, N Duan, Y Fang, M Unicoder-VL Gong, D Jiang, and M Unicoder-VL Zhou. A universal encoder for vision and language by cross-modal pre-training. arXiv 2019. arXiv preprint arXiv:1908.06066, 2019.
- Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pretraining for unified vision-language understanding and generation. In *International conference on machine learning*, pp. 12888–12900. PMLR, 2022.
- Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 pre-training with frozen image encoders and large language models. In *International conference on machine learning*, pp. 19730–19742. PMLR, 2023.
- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
 in neural information processing systems, 36, 2024a.
- Kingbin Liu, Jinghao Zhou, Tao Kong, Xianming Lin, and Rongrong Ji. Exploring target representations for masked autoencoders. In *International Conference on Learning Representations*, 2024b.
- Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
 In *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.
- Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. *Advances in neural information processing systems*, 32, 2019.
- Zelun Luo, Yuliang Zou, Judy Hoffman, and Li F Fei-Fei. Label efficient learning of transferable
 representations acrosss domains and tasks. *Advances in neural information processing systems*, 30, 2017.
- 647 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

- Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter, Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, et al. Mm1: Methods, analysis & insights from multimodal IIm pre-training. *arXiv preprint arXiv:2403.09611*, 2024.
- George A Miller. Wordnet: a lexical database for english. *Communications of the ACM*, 38(11): 39–41, 1995.
- Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp. 722–729. IEEE, 2008.
- Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 models from natural language supervision. In *International conference on machine learning*, pp.
 8748–8763. PMLR, 2021.
- Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine learning*, pp. 8821–8831. Pmlr, 2021.
- Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem ini 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.
- Kuniaki Saito, Kihyuk Sohn, Xiang Zhang, Chun-Liang Li, Chen-Yu Lee, Kate Saenko, and Tomas
 Pfister. Pic2word: Mapping pictures to words for zero-shot composed image retrieval. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19305–19314, 2023.
- Mohammadreza Salehi, Mehrdad Farajtabar, Maxwell Horton, Fartash Faghri, Hadi Pouransari, Raviteja Vemulapalli, Oncel Tuzel, Ali Farhadi, Mohammad Rastegari, and Sachin Mehta. Clip meets model zoo experts: Pseudo-supervision for visual enhancement. In *Transactions* on Machine Learning Research (TMLR), 2024. URL https://arxiv.org/abs/2310. 14108v1.
- Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 open large-scale dataset for training next generation image-text models. *Advances in Neural Information Processing Systems*, 35:25278–25294, 2022.
- Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih,
 Noah A Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instruction-finetuned
 text embeddings. *arXiv preprint arXiv:2212.09741*, 2022.
- Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training techniques for clip at scale. *arXiv preprint arXiv:2303.15389*, 2023.
- Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
 Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, et al. Cambrian-1: A fully open,
 vision-centric exploration of multimodal llms. *arXiv preprint arXiv:2406.16860*, 2024a.
- Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 shut? exploring the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9568–9578, 2024b.
- Ankit Vani, Bac Nguyen, Samuel Lavoie, Ranjay Krishna, and Aaron Courville. Sparo: Selective attention for robust and compositional transformer encodings for vision. *arXiv preprint arXiv:2404.15721*, 2024.

- Sagar Vaze, Nicolas Carion, and Ishan Misra. Genecis: A benchmark for general conditional image similarity. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6862–6872, 2023.
- Raviteja Vemulapalli, Hadi Pouransari, Fartash Faghri, Sachin Mehta, Mehrdad Farajtabar, Mohammad Rastegari, and Oncel Tuzel. Knowledge transfer from vision foundation models for efficient training of small task-specific models. In *Forty-first International Conference on Machine Learning*.
- Haoxiang Wang, Pavan Kumar Anasosalu Vasu, Fartash Faghri, Raviteja Vemulapalli, Mehrdad
 Farajtabar, Sachin Mehta, Mohammad Rastegari, Oncel Tuzel, and Hadi Pouransari. Sam-clip:
 Merging vision foundation models towards semantic and spatial understanding. In *Proceedings*of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3635–3647, 2024.
- Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. *arXiv preprint arXiv:2109.01652*, 2021.
- Hui Wu, Yupeng Gao, Xiaoxiao Guo, Ziad Al-Halah, Steven Rennie, Kristen Grauman, and Rogerio Feris. Fashion iq: A new dataset towards retrieving images by natural language feedback. In *Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition*, pp. 11307–11317, 2021.
- Hu Xu, Saining Xie, Xiaoqing Ellen Tan, Po-Yao Huang, Russell Howes, Vasu Sharma, Shang-Wen
 Li, Gargi Ghosh, Luke Zettlemoyer, and Christoph Feichtenhofer. Demystifying clip data. *arXiv preprint arXiv:2309.16671*, 2023.
- Nikolaos-Antonios Ypsilantis, Kaifeng Chen, Bingyi Cao, Mário Lipovskỳ, Pelin Dogan-Schönberger, Grzegorz Makosa, Boris Bluntschli, Mojtaba Seyedhosseini, Ondřej Chum, and André Araujo. Towards universal image embeddings: A large-scale dataset and challenge for generic image representations. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 11290–11301, 2023.
- Kai Zhang, Yi Luan, Hexiang Hu, Kenton Lee, Siyuan Qiao, Wenhu Chen, Yu Su, and Ming-Wei
 Chang. Magiclens: Self-supervised image retrieval with open-ended instructions. *arXiv preprint arXiv:2403.19651*, 2024.
- Chong Zhou, Chen Change Loy, and Bo Dai. Extract free dense labels from clip. In *European Conference on Computer Vision*, pp. 696–712. Springer, 2022.

756 A DATASETS

765

770

777

CelebA-Attribute. There are a total of 40 different binary attributes in CelebA dataset (Liu et al., 2015), from which we select 29 attributes we consider objective, including: "Arched Eyebrows", "Bags Under Eyes", "Bald", "Bangs", "Black Hair", "Blond Hair", "Brown Hair", "Gray Hair", "Blurry", "Bushy Eyebrows", "Double Chin", "Eyeglasses", "Goatee", "Male", "Mouth Slightly Open", "Mustache", "No Beard", "Oval Face", "Pale Skin", "Rosy Cheeks", "Sideburns", "Smiling", "Straight Hair", "Wavy Hair", "Wearing Earrings", "Wearing Hat", "Wearing Lipstick", "Wearing Necklace", "Wearing Necktie".

ImageNet-Subset. The ImageNet dataset (Deng et al., 2009) is organized according to the nouns in the WordNet hierarchy (Miller, 1995) and consists of 1000 classes. To evaluate the performance of conditioned representations, we form multiple subsets of ImageNet using the intermediate nodes from the WordNet hierarchy. We list all the ImageNet subsets we created in Table 8.

Table 8: ImageNet-Subset datasets and number of classes per each.

Node Name	Dog	Bird	Musical Instrument	Snake	Fish	Monkey	Ball	Car	Edible Fruit	Beetle	Cat	Spider	Bag	Piano
Num classes	118	59	28	17	16	13	10	10	10	8	7	6	5	2

B BASELINES

CLIP. We consider CLIP as a task-agnostic vision encoder baseline. In all experiments, we use
OpenAI's CLIP-ViT-L-patch14-336 released checkpoint (Radford et al., 2021). The model size is
428M including both vision and text encoder. We consider the same model checkpoint in FocalLens-MLLM and FocalLens-CLIP.

783 **InstructBLIP.** InstructBLIP (Dai et al., 2023) is a MLLM that connects a frozen vision encoder, 784 CLIP (Fang et al., 2023), to a large language model (LLM) decoder to enable multi-modal capa-785 bilities. Specifically, it adopts an instruction-aware Q-former architecture (Li et al., 2023) as the 786 connector. The Q-former takes in as input the image embedding extracted from the underlying vi-787 sion encoder, along with tokenized text instructions. Through cross-attention design, the Q-former 788 outputs multiple instruction-aware image tokens to be fed into the LLM decoder. In our experiments, 789 we average over all image tokens to obtain the image representation used in our evaluations. We use 790 the same instructions as in FocalLens for conditioning InstructBLIP.

MagicLens. MagicLens (Zhang et al., 2024) is a model trained specifically for composed image retrieval with a web-scale 36M-sized dataset. The model takes in both a reference image and natural language text to produce image representations that composes the semantics from both the input image and text. In our experiments, we condition MagicLens model using the same text instructions used for FocalLens.

797 798

799 800

801 802

803

804

805 806

808

791

C EXPERIMENT DETAILS

Computation resource. We train FocalLens models on single node machines with 8 A100 GPUs.

Hyperparameters. For contrastive training with FocalLens, we report the hyperparameters used in Table 9.

Model	Batch size	Epoch	Learning rate	Weight decay	Warmup ratio
FocalLens-MLLM	384	$2 \\ 20$	2e-5	0.	0.03
FocalLens-CLIP	2048		2e-5	0	0.03

Table 9: Training hyperparameters.

810 D INSTRUCTIONS USED FOR DIFFERENT TASKS

Here, we detail the instructions we use for different tasks for conditioning FocalLens and other instruction-aware baselines.

Table 10: Instructions and templates used for different datasets and conditions.

Data	set	Condition	Instruction
Color	Shape	Color	What is the color of the object in the image?
		Shape	What is the shape of the object in the image?
		Both	what is the color and shape of the object in the image?
Celet	A-Attribute	Noun attributes (e.g., Arched Eyebrows)	Does the person in the image have {attribute}?
		Adjective attributes (e.g., Bald)	Is the person in the image {attribute}?
Celeb	A-Identity	-	Gender, age, eye color, hair color, face shape, facial hair of the person.
Gene	CIS	Focus attribute	Focus on the {attribute}.
		Focus object	Is there {object}?
Imag	eNet-Subset	category (e.g., dog)	What type of {category} is in the image?
Fine-	grained datasets	category (e.g., flower)	What type of {category} is in the image?
Sugar	Crepe	Replace-obj	Focus on the presence of objects in the image.
		Replace-att	Focus on the color, patterns and other attributes of the objects in the image.
		Replace-rel	What are the relationships between the objects in the image?
		Swap-obj Swap-att	What are the actions, states, colors, patterns and relationships of the objects in the image?
		Add-obi	What is not in the image?
		Add-att	What is not in the image?
MMV	/P-VLM	Orientation	Describe the orientation, position, or the direction of the object.
		Presence	Focus on the presence of objects in the image.
		Quantity	Focus on the quantity of the objects in the image.
		Spatial	Describe the spatial relationship and the positions of the objects in the image.
		Color	Focus on the color of the objects in the image.
		Structural	Describe the state of the objects in the image.
		Text	Focus on the texts on the objects in the image.
		Camera	Describe the perspective and view from which the photo is taken.

E FULL EXPERIMENT RESULTS

E.1 CELEBA-ATTRIBUTE FULL RESULTS

We report full CelebA-Attribute results in Table 11.

Table 11: Full results on CelebA-Attribute.

Model	Arched Eyebrows	Bags Under Eyes	Bald	Bangs	Black Hair	Blond Hair	Blurry	Brown Hair	Bushy Eyebrows	Double Chin
CLIP	8.13	12.00	24.52	2.86	7.96	6.20	5.52	-0.58	11.98	18.35
InstructBLIP	7.12	8.35	27.40	4.95	9.50	21.03	14.67	-0.81	3.73	11.01
MagicLens	11.32	12.10	15.14	2.44	7.48	8.24	8.95	-3.22	6.75	13.88
FocalLens-MLLM	15.15	14.98	19.23	4.38	17.95	25.76	6.14	4.44	6.88	15.37
FocalLens-CLIP	13.38	13.00	26.68	8.19	10.24	32.22	11.03	5.53	9.99	15.94
Model	Eyeglasses	Goatee	Gray Hair	Male	Mouth Slightly Open	Mustache	No Beard	Oval Face	Pale Skin	Rosy Cheeks
CLIP	17.84	20.16	24.19	54.55	4.72	20.92	27.64	1.63	3.22	-3.15
nstructBLIP	41.83	16.17	22.56	43.66	12.87	19.16	23.75	0.77	2.73	-3.45
MagicLens	15.52	11.28	20.13	64.56	6.04	13.50	27.52	1.83	1.98	1.95
FocalLens-MLLM	47.72	20.96	22.40	96.82	33.41	19.30	34.30	1.66	1.36	5.85
FocalLens-CLIP	24.90	29.04	23.86	95.04	10.82	26.59	41.80	0.94	4.58	-0.90
Model	Sideburns	Smiling	Straight Hair	Wavy Hair	Wearing Earrings	Wearing Hat	Wearing Lipstick	Wearing Necklace	Wearing Necktie	
CLIP	18.21	8.68	3.47	7.54	7.32	17.60	41.45	-0.67	21.81	
InstructBLIP	12.10	21.71	3.17	13.91	13.51	45.11	34.64	1.94	36.56	
MagicLens	11.54	9.98	2.84	10.76	10.92	21.19	54.12	3.58	16.97	
FocalLens-MLLM	20.02	34.43	4.50	17.61	21.54	34.32	68.07	5.05	37.86	
FocalLens-CLIP	32.35	22.11	2.81	16.89	12.39	33.58	62.50	3.07	29.80	

E.2 IMAGENET-SUBSET FULL RESULTS

We report full ImageNet-Subset results in Table 12.

Model

CLIP

	Bag	Ball	Beetle	Bird	Car	Cat
	55.61	64.63	51.84	66.72	57.73	53.00
Р	60.13	66.44	51.10	45.86	60.54	51.22

Dog

16.55

Table 12: Full results on ImageNet-Subset.

InstructBLIP	60.13	66.44	51.10	45.86	60.54	51.22	9.60
MagicLens	53.22	68.10	43.37	51.69	54.15	50.14	17.28
FocalLens-MLLM	63.95	78.99	41.44	54.14	54.46	53.24	29.25
FocalLens-CLIP	59.44	70.01	46.88	64.62	61.84	56.80	33.15
Model	Fruit	Fish	Monkey	Music Instrument	Piano	Snake	Spider
CLIP	60.95	61.79	37.79	39.18	61.97	32.03	54.61
InstructBLIP	49.74	59.16	27.96	41.44	66.17	26.45	51.61
MagicLens	57 40	58 84	26.82	41.18	57.40	25.74	43.76
	57.10	50.01	20.02	11.10	01110		
FocalLens-MLLM	65.98	57.40	34.81	57.83	57.14	29.47	54.69