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ABSTRACT

Visual feature extraction is fundamental to many vision tasks. Most existing meth-
ods extract visual features by encoding an image into a generic feature vector.
However, an image naturally contains rich information, and there may be multiple
perspectives to describe it. For each application, we might be interested in dif-
ferent aspects of an image and want to prioritize those features over others. For
instance, in an image of a dog carrying a toy, if we are primarily interested in the
dog, we would expect the extracted features to emphasize the dog over the toy. In
this work, we introduce FocalLens, a conditional visual feature extraction method
that produces different representations for the same image based on the context
of interest, expressed flexibly through natural language. We leverage vision in-
struction tuning data and contrastively tune a pretrained vision encoder to take
natural language instructions as additional inputs and produce conditional image
representations. Extensive experiments validate that conditional image represen-
tation from FocalLens better pronounce the visual features of interest compared to
generic features produced by standard vision encoders like CLIP. In addition, we
show FocalLens further leads to performance improvements on a range of down-
stream tasks including image-image retrieval, image classification, and image-text
retrieval, with an average gain of 5 and 10 points on the challenging SugarCrepe
and MMVP-VLM benchmarks, respectively.

1 INTRODUCTION

Visual feature extraction is a crucial component that underlies many modern vision and multi-modal
systems (Ramesh et al., 2021; Li et al., 2022; Liu et al., 2024a; Reid et al., 2024; McKinzie et al.,
2024). In recent years, vision foundation models that are pretrained with large-scale datasets (Doso-
vitskiy, 2020; Chen et al., 2022; Radford et al., 2021; Schuhmann et al., 2022) have become the
cornerstone for visual feature extraction, powering downstream applications ranging from classifi-
cation (Dosovitskiy, 2020), segmentation (Caron et al., 2021), retrieval (Radford et al., 2021), to
embodied applications (Driess et al., 2023). Despite the variety of pretraining schemes (Radford
et al., 2021; Caron et al., 2021; He et al., 2022; Oquab et al., 2023; El-Nouby et al., 2024), most
commonly used vision foundation models, such as CLIP (Radford et al., 2021), are designed to en-
code the rich information contained in (a patch of) an image into a single feature vector, wherein
this general feature representation is expected to encapsulate all information that may be leveraged
by various potential downstream tasks.

However, by aiming to extract general-purpose features that can serve as many downstream tasks
as possible, image representations obtained from these task-agnostic vision foundation models may
inevitably compromise relevant information that is specific to the downstream task of interest. For
instance, CLIP models are known to produce image representations that capture the high-level se-
mantics well (Radford et al., 2021; Ramesh et al., 2021), but often struggle with understanding the
finer-grained details and intrinsics of the image, such as attribute associations, spatial relationships,
camera perspective, and so on (Vaze et al., 2023; Hsieh et al., 2024; Tong et al., 2024b).

In this work, instead of aiming to learn a model that produces a fixed image representation in fulfill-
ing different goals, we consider learning an adaptive vision foundation model that encodes an image
differently conditioned on the downstream task of interest, allowing the resultant image represen-
tations to prioritize information relevant to the specified condition over other available semantics.
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Image CLIP embedding space FocalLens embedding space

Condition: “background” Condition: “quantity”

Figure 1: For a given image, the CLIP embedding space is static and structured based on overall
semantics. However, FocalLens dynamically rearranges the embedding space based on the specified
condition, bringing instances that are more similar under that condition closer together. We show
the top-2 nearest neighbors for both CLIP and FocalLens embeddings (once conditioned on “back-
ground” and once on “quantity”).

Furthermore, as opposed to pre-defining the downstream tasks in a priori (Salehi et al., 2024; Wu
et al., 2021), our goal is an adaptive generalist model that is able to adapt to broad potential use
cases in a zero-shot fashion. Specifically, we consider utilizing free-form natural language texts as
a rich and flexible interface to condition 1 the model given different downstream purposes, inspired
by recent literature (Wei et al., 2021; Su et al., 2022; Liu et al., 2024a). For instance, given a task
of retrieving images of similar background scene to a given query image, by specifying through the
text condition: “What is the background in the image?”, we expect to guide the model in focusing
more on the background features of the image, as illustrated in Fig. 1.

To develop an adaptive vision foundation model, we start out by first identifying two fundamen-
tal characteristics required by the model: (1) the ability to comprehend text conditions, and (2)
the ability to produce a corresponding image representation with the focus on the given condition.
Recent advancement in multi-modal large language models (MLLMs) (Li et al., 2022; 2023; Liu
et al., 2024a; McKinzie et al., 2024; Beyer et al., 2024) have shown that these models possess strong
capability in understanding both text conditions and images, as demonstrated through their impres-
sive performances on vision question answering tasks. Nonetheless, as these models are inherently
trained with the goal of producing next- (text) token predictions, it is unclear whether they could
be used to produce image representations that generally requires encoding not only the semantics
but also other low-level dense features. On the other hand, while existing vision encoders (Radford
et al., 2021; Oquab et al., 2023), can produce versatile image representations for various downstream
tasks, their representations are fixed and can omit information relevant to specific contexts.

In this work, we propose FocalLens, which aligns representations of a pretrained vision-language
model (VLM) leveraging instruction tuning data of MLLMs in a contrastive learning manner, to
achieve a text-conditional feature extractor to better “focus” on information relevant to the instruc-
tions. We take representative pretrained MLLM and vision encoder, LLaVA (Liu et al., 2024a) and
CLIP (Radford et al., 2021), as examples, and turn them into conditional feature extractors via Focal-
Lens. We call the resulting models FocalLens-MLLM and FocalLens-CLIP, respectively, as shown
in Fig. 2. In both setups, we use a relatively small vision instruction tuning dataset in the form of
(instruction, image, output), as considered in prior MLLM studies (Dai et al., 2023; Liu
et al., 2024a). We learn to align the visual representations to respect the specified condition.

Through extensive evaluations on over 60 tasks, we observe that FocalLens models demonstrate a
strong ability to condition representations based on the given text instructions, significantly outper-
forming existing baselines like CLIP. On average, FocalLens achieves up to 9 points higher perfor-
mance, with even greater improvements on specific tasks, for image-image retrieval tasks. In addi-
tion, when used in downstream applications, FocalLens’s conditional image representations further
lead to clear gains compared to existing baselines. For instance, on image-text retrieval bench-
marks, we show an average improvements of 5 and 10 points respectively on SugarCrepe (Hsieh
et al., 2024) and MMVP-VLM (Tong et al., 2024b), comparing favorably to other CLIP models
that are much larger (up to 2.5×) in size. On image classification, FocalLens also shows superior

1We use “condition (conditional)” and “adapt (adaptive)” interchangeably in this paper.
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performances than CLIP, especially in low-data regime. Finally, further qualitative study showcases
various intriguing application scenarios that can be supported by FocalLens.

2 RELATED WORK

Foundation models for vision encoding. Recently, the computer vision community has witnessed
a transformative revolution wherein foundation models pretrained with web-scale datasets (Doso-
vitskiy, 2020; Jia et al., 2021; Schuhmann et al., 2022; Oquab et al., 2023) are used as the common
underlying visual feature extractor to produce versatile image representations that drive various
downstream applications (Dosovitskiy, 2020; Radford et al., 2021; Ramesh et al., 2021; Kirillov
et al., 2023; Zhou et al., 2022). While there are many pretraining objectives (Oquab et al., 2023;
He et al., 2022; El-Nouby et al., 2024; Radford et al., 2021), existing schemes typically train the
vision models to produce a single “general” image representation that hopefully captures all rele-
vant information contained in the given image, or utilize information derived from diverse captions
to help learning more discriminative image features (Lavoie et al., 2024). Nonetheless, as an image
naturally contains rich and dense information, a fixed and general-purpose representation may not
sufficiently pronounce information relevant to specific downstream contexts of interest (Kar et al.,
2024; Wang et al., 2024; Tong et al., 2024b; Hsieh et al., 2024). These observations motivate our
design of a foundation vision encoder that is capable of extracting different representations from
a single image conditioned on downstream use cases at test-time, different from universal image
embedding approaches that aim to learn a universal model for different domains without explicit
conditioning (Google Research, 2023; Ypsilantis et al., 2023).

Conditional vision representations. Implicit and task-specific conditioning of visual features
have been studied in the literature (Liu et al., 2024a; Dai et al., 2023; Tong et al., 2024a; Eftekhar
et al., 2023; Vani et al., 2024; Chameleon Team, 2024). For instance, the hidden representations
in MLLMs may be interpreted as a type of conditional image representation, where the visual fea-
tures are fused with text instructions for producing different output responses (Chameleon Team,
2024). Along this line, InstructBLIP (Dai et al., 2023) further designed a mechanism to extract
instruction-aware visual features that are shown to better guide MLLMs to focus on relevant visual
features. In the context of embodied AI, conditional (or typically called selective) visual represen-
tation has also been demonstrated to much improve downstream agent’s performances in navigation
and displacement tasks (Eftekhar et al., 2023). Nonetheless, conditional visual representations con-
sidered in these work are designed and tied in specifically to their model and respective applications.
In this work, we are interested in conditional visual representations that may be adopted in broad
downstream use cases.

Vision-language joint representation learning. There is a rich literature in vision-language
(joint) representation learning (Lu et al., 2019; Li et al., 2019; Kim et al., 2021; Radford et al., 2021;
Jiang et al., 2024). Our work is related as we aim for a model that can comprehend both images and
natural language conditions. Concurrent to our work, E5-V (Jiang et al., 2024) considers MLLM’s
output space as a universal representation space for both the vision and language inputs. Nonethe-
less, in addition to the MLLM-based approach, we investigate an alternative promising CLIP-based
approach with comprehensive analysis. Relatedly, composed image retrieval (Wu et al., 2021; Saito
et al., 2023; Zhang et al., 2024) considers developing models of underlying similar capabilities that
generate image embeddings given both image and text. However, different from our goal to use text
conditioning to extract downstream-specific intrinsic visual features, their goal is to extrinsically
“compose” semantics from both texts and images, largely towards image-retrieval purposes.

3 CONDITIONAL EMBEDDINGS VIA INSTRUCTION CONTRASTIVE TUNING

Our goal is to develop an adaptive vision foundation model that is capable of encoding an image into
tailored embeddings conditioned on the downstream task of interest, as specified through natural
language texts. Also, we are interested in a conditional representation not tied to specific tasks, but
able to generalize to broad instructions.

We consider the visual instruction tuning data (Liu et al., 2024a), which covers diverse tasks, and has
demonstrated great generalization of MLLMs in different benchmarks. The visual instruction tuning
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“What is the type 
of the dog?”
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“The dog is a Yorkshire 
Terrier.”
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🔥

OutputImage

Instruction

🔥

(a) FocalLens-MLLM

Vision Encoder

Text Encoder
🔥

Adapter 🔥

“What is the dog 
wearing?”

🔥
Text Encoder

Contrastive Loss

InstructionImageOutput

“The dog is wearing a 
green cloth with 

strawberry prints on it.”

Condition token

❄

🔥: Learnable❄: Frozen

(b) FocalLens-CLIP

Figure 2: FocalLens is applied to two vision-language models to extract text-conditioned visual fea-
tures: (a) modifying Llava-like VLMs, which already have text-conditioning capabilities, to produce
a global visual feature, and (b) modifying ViT (Dosovitskiy, 2020) based CLIP-like VLMs, which
already produce a global visual feature, to condition their output feature based on a text condition.

data is in the triplet format of (image, instruction, output). For instance, given an image
of “a Yorkshire Terrier wearing a green cloth”, the output is “The dog is wearing a green cloth
with strawberry prints on it” with the instruction “What is the dog wearing?”. Alternatively,
when the instruction is “What is the type of the dog”, the output is “The dog is a Yorkshire Terrier”
correspondingly. MLLMs (Dai et al., 2023; Liu et al., 2024a) leverage the triplet instruction tuning
for text generation: given (image, instruction), generating output. Instead, we propose to
utilize contrastive learning (Radford et al., 2021) on the triplet instruction tuning data. Specifically,
given an image encoder conditioned on the instruction, we match the output embedding with a text
embedding of output. We call the proposed method as FocalLens, which leverage instruction tuning
data to contrastively tune the pretrained image encoder, such that it can better focus on desired infor-
mation and generalize to diverse downstream tasks. We explore tuning two different representative
vision-language models with FocalLens: MLLMs (Section 3.1) and CLIP (Section 3.2).

3.1 FOCALLENS WITH MLLMS

MLLMs (Liu et al., 2024a; Dai et al., 2023) generate textual responses regarding an image based on
the given input text instructions. Given (instruction, image), the goal is to generate output.
However, as the original model objective is text generation rather than producing explicit represen-
tation for downstream tasks, the conditional visual information may be dispersed throughout the
model, and there is no direct access to them by design.

In FocalLens, instead of training the MLLM to generate output given (image, instruction)
as in the original auto-regressive objective, we append a special indicator token <eos token>
to MLLM’s input sequence, and consequently train the indicator’s output token to align with the
CLIP text embedding of the targeted output in a constrative manner. Here, we use an off-the-shelf
frozen CLIP text encoder to obtain the target output embedding. With the contrastive objective, we
encourage the model to condense information relevant to the image, with the specified instructions,
into a single output representation. We show the overall model architecture in Fig. 2a.

3.2 FOCALLENS WITH CLIP

Unlike MLLMs, CLIP models by design generate image representations (Radford et al., 2021),
where these image embeddings are already widely utilized in a variety of downstream tasks (Ramesh
et al., 2021; Liu et al., 2024a). However, CLIP models are inherently limited to producing a fixed
representation for each image, regardless of the downstream task of interest. Although strong in
capturing high-level semantics, these general visual features are shown to lack various aspects of
fine-grained image details that can be critical for downstream tasks (Hsieh et al., 2024; Tong et al.,
2024b). To tackle this, we propose to make CLIP’s vision encoder task-aware, such that it is able
to adapt its representations based on specific requirements, thereby capturing specific aspects of the
image essential for different applications.
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To incorporate natural language instructions into CLIP’s vision encoder, we consider first convert-
ing instruction into a “condition text embedding”, which is then treated as an additional token
that is fed into the image encoder alongside the standard image tokens and the CLS token. Af-
terwards, the model is trained as in standard CLIP using a contrastive loss, aligning the resultant
text-conditioned image representations with their corresponding textual outputs. By instruction tun-
ing, we aim to allow the vision encoder to generalize to a broad range of scenarios of interest that
can be described via natural language at test-time (Wei et al., 2021; Su et al., 2022). We illustrate
the FocalLens-CLIP training setup in Fig. 2b.

4 EXPERIMENTS

In this section, we first demonstrate the benefits of conditional image representations (Section 4.1)
over the generic representations produced by CLIP, using a toy dataset. We then extensively eval-
uate FocalLens models’ capability in characterizing downstream conditions on a variety of tasks,
compared to existing baselines (Section 4.2). By zooming in on FocalLens-CLIP, we demonstrate
that its conditional image representations improve performance across a range of downstream tasks,
including image-text retrieval, image classification, and image-image retrieval (Section 4.4).

Setup. We train FocalLens models with the visual instruction tuning data used in LLaVA (Liu
et al., 2024a). The dataset contains around 150k examples, wherein 60k examples are multi-turn
conversations and thus can be treated as multiple triplets of (image, instruction, output),
where the image remains the same. During training, we expand conversation data within batches to
encourage models to output different representations given the same image but different instructions.
For FocalLens-MLLM, we follow the training recipe of LLaVA (Liu et al., 2024a) to obtain a base
MLLM before further training with the proposed contrastive loss. For FocalLens-CLIP, we initialize
the base CLIP model with OpenAI’s CLIP-ViT-L-14-336 (Radford et al., 2021), which is also the
underlying vision encoder used in LLaVA. We initialize the additional text encoder for instructions
to have the same weight as the original text encoder.

For contrastive instruction tuning, given a batch of triplet instruction data (x
(i)
img,x

(i)
ins ,y

(i)), where
y(i) is the expected output for sample i, we form the pair-wise similarity matrix S, such that

Si,j = ϕ(x
(i)
img,x

(i)
ins )

TT (y(j)), (1)

where ϕ is the encoding process that produce the conditional image embedding from both image
ximg and instruction xins, and T is the (frozen) text encoder that generates the target embedding
from y. We apply scaled Softmax to the rows of similarity matrix and compute the contrastive loss
following CLIP (Radford et al., 2021). We report further training details in Appendix C. In addition,
we report all prompts used for conditioning FocalLens models during evaluation in Appendix D.

Image-image retrieval as an evaluation protocol. We consider the common image-image re-
trieval evaluation to measure the quality of image representations produced from different vision
encoders (Google Research, 2023; Caron et al., 2021). Specifically, given a query image, image-
image retrieval tasks the model to retrieve other images from a gallery that are “similar” to the query
image. We are especially interested in the scenario wherein the very definition of “similar” changes
as the downstream tasks vary (Vaze et al., 2023). To facilitate such evaluations, we adopt datasets
where we may define various similarities between images based on test-time interest determined
through a text condition. We introduce these datasets in the following sections. For each dataset,
when not otherwise specified, we report mean Average Precision (mAP) as the evaluation metric.

4.1 CONDITIONAL REPRESENTATIONS BETTER CHARACTERIZE TASK-SPECIFIC DETAILS

We empirically validate the benefits of having the flexibility to encode an image based on the given
condition of interest over using a fixed representation when downstream purpose varies, as consid-
ered in most prevailing vision encoding paradigms (Radford et al., 2021; Caron et al., 2021). Here,
we restrict ourselves to a toy dataset to demonstrate the idea, and we shall expand our studies in the
following sections.

5
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Figure 3: ColorShape examples
with a query image, three condi-
tions, and corresponding positives
and distractors.

ColorShape Cont.
ColorModel Color Shape Both Avg.

CLIP (task-agnostic) 57.10 90.24 99.36 82.23 0.158

FocalLens-MLLM 99.94 82.56 98.92 93.80 0.560
FocalLens-CLIP 87.28 93.51 99.99 93.59 0.405

Table 1: Image-image retrieval results on ColorShape dataset.
Conditional representations from FocalLens better capture the
given conditions compared to the task-agnostic representations
of CLIP.

A toy ColorShape dataset. ColorShape is a synthetic dataset where each image contains a certain
colored shape. There are in total 4 different colors and shapes respectively. We generate 500 different
images with random position and size of the object for each combination of color and shape. At test-
time, we may define the intent for retrieval based on different aspects. Specifically, we may group
each image into different categories based on either only its color, only its shape, or both. Fig. 3
shows some examples from the dataset.

The pretrained CLIP model (Radford et al., 2021) serves as the standard encoder baseline where the
image representations are fixed even when the test-time condition varies. For the conditional vision
encoders, we consider both FocalLens-MLLM and FocalLens-CLIP models discussed in Section 3.
We show their retrieval performances on the ColorShape dataset when the test-time condition varies.

Non-adapative image representations overlook specific aspects of images. From Table 1, on
the simple ColorShape dataset, CLIP yields almost perfect retrieval performances when we define
image categories based on both color and shape. However, in the context where we are specifically
interested in categorizing images based only on the color, CLIP’s performance drops significantly
to 57 mAP point. On the other hand, when we define similarity based only on shape, CLIP achieves
relatively better performances at 90 mAP point. Combining the results, while CLIP can produce
general representation that is strong at grouping objects of certain shape and color together, its
overall representation space is biased towards the “shape” of objects, and much less discriminative
over the “color” aspect. This also echos the observations made in recent works (Tong et al., 2024b;
Hsieh et al., 2024), suggesting that CLIP’s representation, while powerful for general tasks, may
overlook fine-grained details such as color, highlighting a need for approaches to better adapt and
capture the nuanced visual characteristics, depending on the task at hand.

Conditional image representations better capture information relevant to the downstream
task. In Table 1, as opposed to CLIP model, the conditional image representations produced from
both adaptive vision encoders, the MLLM-based and the CLIP-based model, achieve much more
balanced (and superior) results than CLIP’s representation when the downstream condition varies.
When averaged across three different scenarios (“color”, “shape”, and “both”), both conditional vi-
sion encoders improve over 10 mAP point compared to CLIP. The conditional CLIP-based model
also always outperforms CLIP, when evaluated separately on the three respective conditions.

In addition to using discrete color labels (e.g., “red”, “blue”) to define image similarity, we also
consider a more sophisticated setup where image similarity is measured based on L2 distance in
RGB space. Specifically, in this Continuous Color variant, we assign randomly sampled RGB colors
to the objects. During evaluation, our goal is to retrieve images with colors closer to that of the
query image. We compute the rank correlation between the similarity measured in the model’s
image representation space and the ground-truth similarity defined in RGB space. In this setup, both
FocalLens models significantly outperform CLIP as show in the last column of Table 1.

4.2 FOCALLENS IMPROVES IMAGE REPRESENTATIONS ACROSS BENCHMARKS

Using the ColorShape toy dataset, we validated the benefits of adapting image representations for
downstream tasks. We now compare FocalLens to existing vision encoders and relevant baselines
across a comprehensive set of evaluation benchmarks.

6
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Table 2: Results on CelebA-Attribute and GeneCIS.

CelebA-Attribute GeneCIS

Model Blond Hair Smiling Wavy Hair Lipstick Avg. 29 tasks Attribute Object Avg.

CLIP 6.20 8.68 7.54 41.45 13.59 43.10 25.81 34.46
InstructBLIP 21.03 21.71 13.91 34.64 16.19 47.00 34.03 40.52
MagicLens 8.24 9.98 10.76 54.12 13.42 39.00 35.50 37.25

FocalLens-MLLM 25.76 34.43 17.61 68.07 22.67 45.35 30.20 37.78
FocalLens-CLIP 32.22 22.11 16.89 62.50 21.32 43.30 43.72 43.51

Table 3: Results on ImageNet-Subset and fine-grained classification datasets.

ImageNet-Subset Fine-grained classification datasets

Model Ball Cat Dog Fish Avg. 14 tasks Flower Car Aircraft Food Avg.

CLIP 64.63 53.00 16.55 61.79 51.03 83.87 45.14 25.96 58.66 53.41
InstructBLIP 66.44 51.22 9.60 59.16 47.67 80.26 25.97 13.47 54.32 43.51
MagicLens 68.10 50.14 17.28 58.84 46.36 74.88 23.95 17.55 65.13 45.38

FocalLens-MLLM 78.99 53.24 29.25 57.40 52.34 43.92 18.59 14.73 50.93 32.04
FocalLens-CLIP 70.01 56.80 33.15 65.37 55.29 80.23 54.72 21.44 64.16 55.14

Evaluation benchmarks. We consider a total of 49 different tasks across 4 coarse-grained cate-
gories in our evaluation suite as briefly described below. We include dataset details in Appendix A.

• CelebA-Attribute (Liu et al., 2015): CelebA is a dataset consisting of celebrity face images. Each
face image is associated with various properties spanning from the hair color of the person, the
eyebrow shape, to whether the person is wearing eyeglasses, and so on. We vary the downstream
condition of interest across different properties for retrieval. For instance, when conditioned on
“eyeglasses” with a query image showing a person is (not) wearing eyeglasses, the model is tasked
to retrieve other face images with (without) eyeglasses. We manually select a total of 29 different
properties that can be objectively labeled, and exclude more subjective properties such as “attrac-
tiveness” or “young”. We notice that the class within each attribute may be imbalanced, resulting
in high mAP even with random guess. We thus report scaled performances w.r.t. random guess
by: p−r

1−r , where p is the original mAP and r is the random guess mAP.

• GeneCIS (Vaze et al., 2023): GeneCIS presents various image retrieval tasks for evaluating con-
ditional image similarity. Given a query image (“a white laptop”) and a condition (“color”), the
goal is to retrieve the most similar image (another “white laptop”) from a gallery that contains
implicitly similar distractors with wrong conditions (e.g., “a black laptop”). We report the “Focus
attribute” and “Focus object” tasks from GeneCIS. As each query image contains only a single
positive in the gallery, we report Recall@3 following prior work (Zhang et al., 2024).

• ImageNet-Subset (Deng et al., 2009): In addition to the above benchmarks with specific down-
stream conditions of interest, we as well evaluate our models on standard ImageNet classes, where
the condition corresponds to the image “classes” as defined by ImageNet. Specifically, we create
14 different retrieval sub-tasks based on coarse-grained categories from WordNet (Miller, 1995)
hierarchy (e.g., ball, bird, dog, etc.). In each task (e.g., dog), the goal is to retrieve images (from
all dog images) with the same type of instance (same breed of dog) as the query image.

• Fine-grained classification datasets: Similar to ImageNet, we incorporate 4 finer-grained classi-
fication datasets, including Oxford Flowers (Nilsback & Zisserman, 2008), Stanford Cars (Krause
et al., 2013), FGVC Aircraft (Maji et al., 2013), and Food-101 (Bossard et al., 2014).

Baselines. We consider CLIP (Radford et al., 2021) as the task-agnostic vision encoder model.
We also compare to models that are able to generate conditional visual representations, including
the Q-former used in InstructBLIP (Li et al., 2023; Dai et al., 2023), and MagicLens (Zhang et al.,
2024) that is designed specifically for composed image-retrieval with open-ended instructions. We
include details of the baselines in Appendix B.

FocalLens improves significantly over existing baselines given specific downstream conditions.
From Table 2, both variants of FocalLens provide significant gains over the task-agnostic CLIP
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baseline on CelebA-Attribute and GeneCIS, when there are specific conditions to respect. We see
an overall gain of 9 points on CelebA-Attribute. Looking more closely at the individual conditions
on CelebA-Attribute (complete results reported in Appendix E), we observe that when the condition
of interest is “smiling”, we see a significant gap of 26 points between CLIP and FocalLens, where
the gap is as large as 48 points on certain attributes. Similarly on the GeneCIS benchmark, by
specifying the attribute such as color or certain object to focus on, FocalLens improves over CLIP
by an average of 9 points.

On CelebA-Attribute and GeneCIS, we also see FocalLens models demonstrate outperforming (or
favorable) results when compared to prior task-aware vision encoders (i.e., InstructBLIP and Mag-
icLens), that are also given the downstream condition of interest when generating the image repre-
sentations. Specifically, FocalLens-CLIP achieves the best overall performances, winning over the
stronger InstructBLIP baseline by 5 and 3 points respectively on CelebA-Attribute and GeneCIS,
validating the effectiveness of our proposed strategy.

FocalLens maintains or improves over existing baseline on generic conditions. Here, we com-
pare model performances on ImageNet-Subset and the fine-grained classification datasets, where
the downstream goal is generic instance classification. First, CLIP model demonstrates competitive
performances on both ImageNet-Subset and fine-grained classification tasks, showing that its em-
beddings are indeed strong at representing generic features when it comes to standard “type” classifi-
cation. In contrast, InstructBLIP and MagicLens suffer performance drops on both ImageNet-Subset
and fine-grained tasks. On the other hand, we see FocalLens (especially FocalLens-CLIP) maintains
comparable performances to CLIP on fine-grained datasets and attains even better performances on
ImageNet-Subset. We explain the improvement on ImageNet by that conditioning FocalLens with
instructions such as “What is the type of dog?” helps the model to better focus on the specific object
of interest but not other potential distractors in the image (e.g., the “toy” besides the dog).

4.3 COMPARATIVE ANALYSIS OF FOCALLENS VARIANTS

Both FocalLens-MLLM and FocalLens-CLIP yield promising results in the experiments. One major
difference between FocalLens-MLLM and FocalLens-CLIP is their underlying pretrained models’
output modality. Specifically, the original MLLM model in FocalLens-MLLM is trained to au-
toregressively produce textual outputs, while CLIP’s vision encoder is trained to produce image
embeddings. We are thus interested in understanding whether this difference affects the underlying
characteristics of the output representations in FocalLens-MLLM and FocalLens-CLIP.

Table 4: Comparison between
FocalLens-MLLM and FocalLens-
CLIP on fuzzy conditions with
CelebA-Identity.

Model CelebA-Identity

FocalLens-MLLM 14.48
FocalLens-CLIP 46.84

To test this, we consider downstream conditions that re-
quire visual features beyond semantic concepts that are
describable by text. In particular, on CelebA, instead
of considering conditions such as whether the person is
wearing glasses or not, which is answerable in simple
words (“yes” or “no”), we consider a fuzzy condition
where the image similarity is defined by the identity of
the person. Textual representations that do not carry vi-
sual information may fail at achieving good performance
on this task, as identity is hardly describable through nat-
ural language.

In Table 4, we observe that FocalLens-MLLM suffers from a clear performance gap compared to
FocalLens-CLIP. This suggests that FocalLens-MLLM may rely more on MLLM’s original textual
output modality, which is limited for tasks requiring rich visual information. Similar observations
are also hinted by its relatively low performance on fine-grained classification results in Table 3.
In contrast, FocalLens-CLIP, with its underlying model being a vision encoder, is better suited for
tasks requiring richer visual detail. Based on this observation, we focus on FocalLens-CLIP for the
remainder of the experiments.

4.4 FOCALLENS REPRESENTATIONS IMPROVE DOWNSTREAM APPLICATIONS

In addition to evaluations based only on image representations, we show how image representations
produced from FocalLens-CLIP can drive improvement on downstream tasks including image-text
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retrieval and image classification in a low-data regime where only a small amount of downstream
task data is available for training.

Image-text retrieval. A prevailing usage of image representations is to enable cross-modality re-
trieval. Here, we include two image-text prediction benchmarks, where the goal is to predict the
correct textual description of a given image. Specifically, we adopt SugarCrepe (Hsieh et al., 2024)
and MMVP-VLM (Tong et al., 2024b). SugarCrepe presents challenging hard-negative text distra-
tors along with a positive description for the model to select from, where existing models are shown
to struggle with. Similarly, MMVP-VLM particularly collects examples with visual patterns where
CLIP vision encoder are shown to fall short.

In Table 6 on SugarCrepe, we compare FocalLens-CLIP to several standard CLIP models of different
sizes, and trained with different data sizes. First, compared to the underlying CLIP model used in
FocalLens-CLIP (i.e., OpenAI ViT-L-14), FocalLens-CLIP achieves around 4.7 point improvements
on average, with consistent improvements across all different sub-tasks with individual gains up to
9 points on Replace-rel and Add-att. Interestingly, the two sub-tasks test the model’s capability in
understanding fine-grained relationships and attributes in the image, where standard CLIP models
struggle the most (Hsieh et al., 2024). This suggests FocalLens-CLIP’s image representations are
able to better characterize fine-grained visual details. Furthermore, by scaling up the model size
from 428M to 623M, the RN50x64 model still underperform our smaller FocalLens-CLIP model
(551M for both image and text encoders). On the other hand, FocalLens-CLIP shows competitive
performances compared to the 2.5× bigger ViT-g-14 model trained on 5× more data.

From Table 7 on MMVP-VLM, we see FocalLens-CLIP significantly outperforms the baseline ViT-
L-14 model consistently across all sub-tasks, by an average of 9.7 points. Furthermore, we note
that our FocalLens-CLIP model also compares favorably to the much larger ViT-H-14 (1.8× larger)
and ViT-g-14 (2× larger) on individual sub-tasks, where FocalLens-CLIP achieves the best overall
performance with a lead of 5.2 point.

5 10 20
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65
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op
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CLIP

FocalLens-CLIP

Table 5: Linear probing results compar-
ing CLIP and FocalLens-CLIP.

Linear probing in low-data regime. We evaluate the
performance of FocalLens-CLIP in a linear probing setup,
where only a small amount of downstream task data
is available for training. We use the largest dataset in
ImageNet-Subset introduced in Section 4.2, focusing on
different dog breeds (a total of 118 classes). In the low-
data setup (Henaff, 2020; Luo et al., 2017; Vemulapalli
et al.), we assume there are k instances available for each
class for training and consider k = 5, 10, 15. We freeze
the backbone and replace the CLIP projection layer with
a linear layer to perform 118-way classification. The lin-
ear probe is trained for 100 epochs following prior works
like (Liu et al., 2024b). We sweep over learning rates
from 1e-2 to 1e-4 in steps of 2.5e-3 and report the perfor-
mance of the best checkpoint. We compare FocalLens-
CLIP to OpenAI ViT-L-14 in this setup, as shown in Ta-
ble 5. In the extreme setting, where only 5 instances per
class is available to train the linear probe, FocalLens-CLIP outperforms CLIP-ViT-L by 5.3%. This
result further reinforces our observation that conditional image representations are more efficient in
extracting information relevant to downstream tasks.

Qualitative analysis on conditional image-retrieval. We qualitatively compare the top-k images
retrieved by using FocalLens-CLIP’s conditional image embeddings with those retrieved by standard
CLIP, specifically when given various downstream conditions. For this qualitative study, we treat
all images in the 14 coarse-grained categories considered in ImageNet-Subset as the gallery for
retrieval. In Fig. 4, we showcase several intriguing examples across various aspects of conditioning
FocalLens-CLIP captures. In the top-left example, we consider a scenario where we are interested
in retrieving images of similar background to the query image. Given the query image of “a goose
on a grassy field”, although the images retrieved by CLIP do all contain goose, all images have the
background of water instead of grassy field. Conversely, we see images retrieved by FocalLens-CLIP
all have similar grassy background as expected. Similarly, in the top-right, we see FocalLens-CLIP
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Table 6: Image-Text Retrieval on SugarCrepe for vision-language compositionality evaluation.

SugarCrepe

Model Replace-obj Replace-att Replace-rel Swap-obj Swap-att Add-obj Add-att Avg.

OpenAI ViT-L-14 (2021) 94.49 80.58 66.78 64.08 62.46 80.74 74.27 74.77
OpenAI RN50x64 (2021) 94.49 83.50 70.63 61.79 66.67 83.27 73.99 76.33
LAION ViT-g-14 (2022) 95.76 85.03 72.40 63.01 71.17 91.51 82.08 80.14

FocalLens-CLIP 95.64 84.51 75.53 65.30 66.36 86.12 83.09 79.51

Table 7: Image-Text Retrieval on MMVP-VLM.

MMVP-VLM

Model Orientation Presence State Quantity Spatial Color Structure Text Camera Avg.

OpenAI ViT-L-14 (2021) 6.7 20.0 26.7 6.7 13.3 33.3 46.7 20.0 13.3 20.7
MetaCLIP ViT-H-14 (2023) 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 (2023) 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0

FocalLens-CLIP 6.7 33.3 33.3 40.00 26.7 66.7 20.0 26.7 20.0 30.4

faithfully reflects the interested condition of quantity, retrieving images with 3 dogs as in the query
image, whereas images retrieved by CLIP is largely based on their instance type (same species of
dog), and cannot reflect the downstream interest. More examples demonstrate that color or even
implicit visual features such as camera angle can also be characterized by FocalLens-CLIP.

Query Condition:  
Background Query

Query Query

CLIP

FocalLens
Condition:  
Quantity

CLIP

FocalLens

Condition:  
Color

CLIP

FocalLens
Condition:  

Camera 
Angle

CLIP

FocalLens

Figure 4: Comparison between CLIP and FocalLens-CLIP on conditional image retrieval.

5 CONCLUSION

In this work, we introduced FocalLens, a zero-shot conditional visual embedding model that focuses
the representation on specific aspects of the image described in the given text. FocalLens is trained
using existing visual instruction tuning datasets to align the conditional image representation with
the textual description. Experiments on a comprehensive set of tasks, including image-to-image
retrieval, image classification, and image-to-text retrieval, demonstrate that FocalLens matches or
exceeds the performance of state-of-the-art models.

Limitations. Although experiments demonstrate that FocalLens can be effectively trained using
visual instruction tuning datasets, model performance could be enhanced by designing customized
datasets for this task, which we leave for future study. Moreover, the relatively small scale of the
visual instruction tuning datasets may hinder alignment accuracy for highly specialized concepts
that are entirely absent from the dataset.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES
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A DATASETS

CelebA-Attribute. There are a total of 40 different binary attributes in CelebA dataset (Liu et al.,
2015), from which we select 29 attributes we consider objective, including: “Arched Eyebrows”,
“Bags Under Eyes”, “Bald”, “Bangs”, “Black Hair”, “Blond Hair”, “Brown Hair”, “Gray Hair”,
“Blurry”, “Bushy Eyebrows”, “Double Chin”, “Eyeglasses”, “Goatee”, “Male”, “Mouth Slightly
Open”, “Mustache”, “No Beard”, “Oval Face”, “Pale Skin”, “Rosy Cheeks”, “Sideburns”, “Smil-
ing”, “Straight Hair”, “Wavy Hair”, “Wearing Earrings”, “Wearing Hat”, “Wearing Lipstick”,
“Wearing Necklace”, “Wearing Necktie”.

ImageNet-Subset. The ImageNet dataset (Deng et al., 2009) is organized according to the nouns
in the WordNet hierarchy (Miller, 1995) and consists of 1000 classes. To evaluate the performance
of conditioned representations, we form multiple subsets of ImageNet using the intermediate nodes
from the WordNet hierarchy. We list all the ImageNet subsets we created in Table 8.

Table 8: ImageNet-Subset datasets and number of classes per each.

Node Name Dog Bird Musical
Instrument Snake Fish Monkey Ball Car Edible

Fruit Beetle Cat Spider Bag Piano

Num classes 118 59 28 17 16 13 10 10 10 8 7 6 5 2

B BASELINES

CLIP. We consider CLIP as a task-agnostic vision encoder baseline. In all experiments, we use
OpenAI’s CLIP-ViT-L-patch14-336 released checkpoint (Radford et al., 2021). The model size is
428M including both vision and text encoder. We consider the same model checkpoint in FocalLens-
MLLM and FocalLens-CLIP.

InstructBLIP. InstructBLIP (Dai et al., 2023) is a MLLM that connects a frozen vision encoder,
CLIP (Fang et al., 2023), to a large language model (LLM) decoder to enable multi-modal capa-
bilities. Specifically, it adopts an instruction-aware Q-former architecture (Li et al., 2023) as the
connector. The Q-former takes in as input the image embedding extracted from the underlying vi-
sion encoder, along with tokenized text instructions. Through cross-attention design, the Q-former
outputs multiple instruction-aware image tokens to be fed into the LLM decoder. In our experiments,
we average over all image tokens to obtain the image representation used in our evaluations. We use
the same instructions as in FocalLens for conditioning InstructBLIP.

MagicLens. MagicLens (Zhang et al., 2024) is a model trained specifically for composed image
retrieval with a web-scale 36M-sized dataset. The model takes in both a reference image and natural
language text to produce image representations that composes the semantics from both the input
image and text. In our experiments, we condition MagicLens model using the same text instructions
used for FocalLens.

C EXPERIMENT DETAILS

Computation resource. We train FocalLens models on single node machines with 8 A100 GPUs.

Hyperparameters. For contrastive training with FocalLens, we report the hyperparameters used
in Table 9.

Table 9: Training hyperparameters.

Model Batch size Epoch Learning rate Weight decay Warmup ratio

FocalLens-MLLM 384 2 2e-5 0. 0.03
FocalLens-CLIP 2048 20 2e-5 0 0.03
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D INSTRUCTIONS USED FOR DIFFERENT TASKS

Here, we detail the instructions we use for different tasks for conditioning FocalLens and other
instruction-aware baselines.

Table 10: Instructions and templates used for different datasets and conditions.

Dataset Condition Instruction
ColorShape Color What is the color of the object in the image?

Shape What is the shape of the object in the image?
Both What is the color and shape of the object in the image?

CelebA-Attribute Noun attributes (e.g., Arched Eyebrows) Does the person in the image have {attribute}?
Adjective attributes (e.g., Bald) Is the person in the image {attribute}?

CelebA-Identity - Gender, age, eye color, hair color, face shape, facial hair of the person.

GeneCIS Focus attribute Focus on the {attribute}.
Focus object Is there {object}?

ImageNet-Subset category (e.g., dog) What type of {category} is in the image?

Fine-grained datasets category (e.g., flower) What type of {category} is in the image?

SugarCrepe Replace-obj Focus on the presence of objects in the image.
Replace-att Focus on the color, patterns and other attributes of the objects in the image.
Replace-rel What are the relationships between the objects in the image?
Swap-obj What are the actions, states, colors, patterns and relationships of the objects in the image?
Swap-att What kind of objects are in the image?
Add-obj What is not in the image?
Add-att What is not in the image?

MMVP-VLM Orientation Describe the orientation, position, or the direction of the object.
Presence Focus on the presence of objects in the image.
State Focus on the specific state or the condition of the objects in the image.
Quantity Focus on the quantity of the objects in the image.
Spatial Describe the spatial relationship and the positions of the objects in the image.
Color Focus on the color of the objects in the image.
Structural Describe the state of the objects in the image.
Text Focus on the texts on the objects in the image.
Camera Describe the perspective and view from which the photo is taken.

E FULL EXPERIMENT RESULTS

E.1 CELEBA-ATTRIBUTE FULL RESULTS

We report full CelebA-Attribute results in Table 11.

Table 11: Full results on CelebA-Attribute.

Model Arched Eyebrows Bags Under Eyes Bald Bangs Black Hair Blond Hair Blurry Brown Hair Bushy Eyebrows Double Chin

CLIP 8.13 12.00 24.52 2.86 7.96 6.20 5.52 -0.58 11.98 18.35
InstructBLIP 7.12 8.35 27.40 4.95 9.50 21.03 14.67 -0.81 3.73 11.01
MagicLens 11.32 12.10 15.14 2.44 7.48 8.24 8.95 -3.22 6.75 13.88
FocalLens-MLLM 15.15 14.98 19.23 4.38 17.95 25.76 6.14 4.44 6.88 15.37
FocalLens-CLIP 13.38 13.00 26.68 8.19 10.24 32.22 11.03 5.53 9.99 15.94

Model Eyeglasses Goatee Gray Hair Male Mouth Slightly Open Mustache No Beard Oval Face Pale Skin Rosy Cheeks

CLIP 17.84 20.16 24.19 54.55 4.72 20.92 27.64 1.63 3.22 -3.15
InstructBLIP 41.83 16.17 22.56 43.66 12.87 19.16 23.75 0.77 2.73 -3.45
MagicLens 15.52 11.28 20.13 64.56 6.04 13.50 27.52 1.83 1.98 1.95
FocalLens-MLLM 47.72 20.96 22.40 96.82 33.41 19.30 34.30 1.66 1.36 5.85
FocalLens-CLIP 24.90 29.04 23.86 95.04 10.82 26.59 41.80 0.94 4.58 -0.90

Model Sideburns Smiling Straight Hair Wavy Hair Wearing Earrings Wearing Hat Wearing Lipstick Wearing Necklace Wearing Necktie

CLIP 18.21 8.68 3.47 7.54 7.32 17.60 41.45 -0.67 21.81
InstructBLIP 12.10 21.71 3.17 13.91 13.51 45.11 34.64 1.94 36.56
MagicLens 11.54 9.98 2.84 10.76 10.92 21.19 54.12 3.58 16.97
FocalLens-MLLM 20.02 34.43 4.50 17.61 21.54 34.32 68.07 5.05 37.86
FocalLens-CLIP 32.35 22.11 2.81 16.89 12.39 33.58 62.50 3.07 29.80

E.2 IMAGENET-SUBSET FULL RESULTS

We report full ImageNet-Subset results in Table 12.
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Table 12: Full results on ImageNet-Subset.

Model Bag Ball Beetle Bird Car Cat Dog

CLIP 55.61 64.63 51.84 66.72 57.73 53.00 16.55
InstructBLIP 60.13 66.44 51.10 45.86 60.54 51.22 9.60
MagicLens 53.22 68.10 43.37 51.69 54.15 50.14 17.28
FocalLens-MLLM 63.95 78.99 41.44 54.14 54.46 53.24 29.25
FocalLens-CLIP 59.44 70.01 46.88 64.62 61.84 56.80 33.15

Model Fruit Fish Monkey Music Instrument Piano Snake Spider

CLIP 60.95 61.79 37.79 39.18 61.97 32.03 54.61
InstructBLIP 49.74 59.16 27.96 41.44 66.17 26.45 51.61
MagicLens 57.40 58.84 26.82 41.18 57.40 25.74 43.76
FocalLens-MLLM 65.98 57.40 34.81 57.83 57.14 29.47 54.69
FocalLens-CLIP 69.78 65.37 38.30 61.29 60.60 32.06 53.93
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