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FLEXTRAJ: IMAGE-TO-VIDEO GENERATION WITH
FLEXIBLE POINT TRAJECTORY CONTROL
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Figure 1: Examples synthesized by FlexTraj. FlexTraj supports multi-granularity trajectory con-
trol, including dense (e.g., motion clone, camera redirection, mesh-to-video), spatially sparse (e.g.,
drag-to-video, partial mesh-to-video), and temporally sparse (e.g., motion interpolation—only pro-
vide motion on temporally sparse frames) settings. Also it allows unaligned control (e.g., flexible
action control, coarse mesh-to-video). Panels a–d are source and e–h are generated frames.

ABSTRACT

We present FlexTraj, a framework for image-to-video generation with flexible
point trajectory control. FlexTraj introduces a unified point-based motion rep-
resentation that encodes each point with a segmentation ID, a temporally consis-
tent trajectory ID, and an optional color channel for appearance cues, enabling
both dense and sparse trajectory control. Instead of injecting trajectory condi-
tions into the video generator through token concatenation or ControlNet, FlexTraj
employs an efficient sequence-concatenation scheme that achieves faster conver-
gence, stronger controllability, and more efficient inference, while maintaining
robustness under unaligned conditions. To train such a unified point trajectory-
controlled video generator, FlexTraj adopts an annealing training strategy that
gradually reduces reliance on complete supervision and aligned condition. Exper-
imental results demonstrate that FlexTraj enables multi-granularity, alignment-
agnostic trajectory control for video generation, supporting various applications
such as motion cloning, drag-based image-to-video, motion interpolation, camera
redirection, flexible action control and mesh animations.
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1 INTRODUCTION

While recent diffusion-based models (e.g., Sora (Brooks et al., 2024), CogVideoX (Yang et al.,
2024b), Wan (Wan et al., 2025)) have achieved impressive visual quality in video generation, con-
trollability remains an open challenge. To enable controllability, prior methods have proposed differ-
ent types of conditioning signals such as depth maps (Lin et al., 2024; Jiang et al., 2025), edges (Xing
et al., 2024; Guo et al., 2024), bounding boxes (Wang et al., 2024a; Ma et al., 2024), or masks (Li
et al., 2025; Xing et al., 2025), which provide task-specific guidance but remain limited to a single
control granularity. In contrast, point-trajectory control can naturally express a continuous spec-
trum of granularity through adjustable sampling density. Yet this capability has been underexplored:
most prior methods (Yin et al., 2023; Wu et al., 2024) are limited to 2D dragging trajectories, while
those extending into 3D remain are restricted to either sparse (Wang et al., 2025a) or dense con-
trol (Gu et al., 2025). A recent work (Geng et al., 2025) attempts to unify sparse and dense control
by densifying sparse signals at inference with manually crafted templates. However, this design is
fundamentally limited in both precision and flexibility, as the templates are hand-engineered and
the model is not explicitly trained to accommodate diverse input conditions. Moreover, these ap-
proaches typically assume strict structural alignment between the input condition and the first source
frame, which greatly constrains their practical applicability.

Motivated by these limitations, we propose FlexTraj, a unified framework for multi-granularity and
alignment-agnostic point-trajectory control. We represent motion as a sequence of annotated 3D
points, each associated with three attributes: a segmentation ID to distinguish object instances, a
trajectory ID to ensure temporal correspondence across frames, and an optional1 color attribute to
encode appearance cues. These annotated points are projected into pixel space to form two condi-
tioning videos: (i) an ID-coded video, combining segmentation and trajectory IDs, and (ii) a Color-
cue video, encoding per-point colors. Both are directly processed by the pretrained video VAE to
produce compact condition tokens. By varying the point sampling density, it enables controllability
across different granularities, while projecting all densities into conditioning videos ensures a uni-
fied encoding. Furthermore, spatial shifts simulate unaligned inputs, allowing the model to adapt to
misaligned conditions.

Injecting the above condition tokens into the generative model is not straightforward. A simple
approach is to employ a ControlNet-style injector (Zhang et al., 2023); however, it shows subopti-
mal controllability on DiT backbones (Zhang et al., 2025a; Tan et al., 2024) and implicitly enforces
structural alignment, making it unsuitable for unaligned inputs (e.g., last row in Fig.1). To address
this, we propose an efficient sequence-concatenation strategy, which concatenates condition tokens
with text embeddings and noisy latent tokens while using LoRA adaptation. Through attention in-
teractions rather than direct addition, our method better accommodates unaligned inputs. Following
EasyControl (Zhang et al., 2025a), we further introduce a causal mask that restricts condition tokens
to attend only to themselves within the attention layers, ensuring self-consistency without interfering
with other modalities. This design also enables KV caching at inference for faster computation.

As illustrated in Fig. 1, our framework can accommodate diverse conditions, including dense (e.g.,
1st row), spatially sparse (e.g., 2nd row), temporally sparse (e.g., 3rd row), and unaligned inputs
(e.g., 8th row). Training a single model to capture all these scenarios is non-trivial, and simply mix-
ing tasks by random sampling during training leads to suboptimal results, as the model struggles to
balance dense, sparse, and unaligned supervision simultaneously. To address this, we adopt a den-
sity and alignment annealing training curriculum: the model is first trained on complete conditions
then gradually exposed to incomplete conditions, and finally to unaligned cases. This progression
enables the model to generalize smoothly across levels of sparsity and alignment.

Thanks to our flexibility, our FlexTraj can naturally support different types of user groups. For
general users, FlexTraj directly supports creative tasks such as video motion transfer, camera redi-
recting, motion interpolation, and drag-based image to video. For professional CG users, FlexTraj
significantly reduces production effort. It can transform untextured renders into photorealistic videos
in the dense setting, propagate motion from a partially rigged mesh to animate the full scene in the
sparse setting, and synthesize plausible videos from coarse meshes in the unaligned setting (e.g., use
simple primitives like cubes to provide motion guidance.) Experiments demonstrate that FlexTraj

1The color attribute is optional: it is specified for cases like camera redirecting or when explicitly mentioned;
otherwise, it is omitted, and the model can handle both settings.
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can not only generates high-quality, temporally coherent videos, but also provides flexible control
across diverse scenarios. We summarize main contributions as follows:

• We introduce FlexTraj, the first framework to support multi-granularity and alignment-
agnostic trajectory control, enabling varieties of applications shown in Fig.1.

• We propose a point trajectory representation that encodes segmentation IDs, temporal IDs,
and optional color attributes in a unified manner, thereby establishing a general and flexible
paradigm for controllable video generation.

• We present an efficient sequence-concatenation strategy that not only accelerates conver-
gence and enhances controllability compared to ControlNet-style architectures, but also
inherently supports unaligned conditions.

• We develop an annealing training curriculum that transitions from complete to incomplete
and unaligned conditions, improving generalization across diverse user inputs.

2 RELATED WORK

Video Diffusion. Video diffusion models (VDMs) have advanced rapidly, extending the success
of image diffusion into the temporal domain. Early efforts such as AnimateDiff (Guo et al., 2023)
added temporal layers to pre-trained image diffusion models, while VideoCrafter (Chen et al., 2024)
and SVD (Blattmann et al., 2023) improved fidelity and consistency. A major milestone came
with Sora (Brooks et al., 2024), which demonstrated that combining a DiT (Peebles & Xie, 2023)
backbone with massive training corpora can generate videos lasting up to a minute while maintaining
high fidelity. Building on this trend, open-source models including CogVideoX (Yang et al., 2024b),
WAN (Wan et al., 2025) and Hunyuan (Weijie Kong & Jie Jiang, 2024) follow the DiT paradigm
and employ spatiotemporal VAEs to jointly compress space and time, but they still rely primarily on
text or image prompts, leaving fine-grained motion controllability an open challenge.

Non-Point Based Control. Early controllable video generation approaches (Chen et al., 2023;
Lin et al., 2024) primarily extended ControlNet (Zhang et al., 2023) conditions into the temporal
domain. These conditions included structural cues such as depth maps, sketches, and edges (Lin
et al., 2024; Jiang et al., 2025; Xing et al., 2024; Guo et al., 2024), which guided frame-by-frame
synthesis. Human poses (Chang et al., 2023; Hu, 2024) also became popular, enabling dance or
action videos with skeleton sequences. Beyond dense conditions, other approaches support sparse
inputs such as bounding boxes or camera poses. For example, methods like Direct-A-Video (Yang
et al., 2024a) or MotionCanva (Xing et al., 2025) allow users to direct camera and object movements.
Extending into 3D, Cinemaster (Wang et al., 2025b) and 3DTrajMaster (Xiao et al., 2024a) leverage
3D bounding boxes or 6D pose sequences for motion control. A recent attempt, MagicMotion (Li
et al., 2025), uses masks and boxes for dense and sparse control, but the two remain discrete rather
than continuous; it only supports object-level 2D motion without part-level or 3D control.

Point-Trajactory Based Control. A range of 2D-based methods have been proposed to translate
user-specified strokes or trajectories into video motion. DragNuwa (Yin et al., 2023) and MotionC-
trl (Wang et al., 2023) map sparse strokes to Gaussian-maps, while DragAnything (Wu et al., 2024)
further combines entity representations for entity-level control. Motion-I2V (Shi et al., 2024) and
MoFA (Niu et al., 2024) introduce a two-stage pipeline that first predicts motion from strokes and
then generates videos conditioned on predicted motion, but this requires two separate models and
adds complexity. More recently, ToRA (Zhang et al., 2025b) leverages a DiT backbone (Peebles &
Xie, 2023) to achieve state-of-the-art results, while Go-with-the-Flow (Burgert et al., 2025) explores
dense trajectory control through optical flow warping. Motion-Prompt (Geng et al., 2025) further
supports both sparse and dense control by densifying sparse signals with templates, but these are
hand-crafted and the model is not trained for diverse conditions. Despite these advances, existing
methods remain limited in handling 3D phenomena such as occlusions and rotations.

Some recent works have started to explore 3D-aware control. LeviTor (Wang et al., 2025a) clusters
segmentation masks into sparse points and augments them with depth, but the points lack corre-
spondence and the U-Net–based architecture constrains performance. DAS (Gu et al., 2025) en-
ables 3D-aware dense control by propagating colors initialized in the first frame to enforce temporal
consistency, but since point identities are fixed at initialization, it cannot represent newly emerging
objects. Moreover, all prior approaches assume trajectories are aligned with the first frame, which
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Figure 2: Overview of the FlexTraj framework. Given 3D-tracking points annotated with TrackID,
SegID, and optional Color, users can sparsify or shift trajectories to define spatially sparse, tempo-
rally sparse, or unaligned controls. These modified trajectories are projected into condition videos
(ID-coded and color-cue) and combined with the first frame and text prompt as inputs to a video
diffusion model via efficient sequence-concatenation.

restricts their applicability. To address these limitations, we propose FlexTraj, a multi-granularity,
alignment-agnostic trajectory control framework for image-to-video generation.

3 METHOD

We show the framework of FlexTraj in Fig. 2. We begin by encoding either a real-world video or a
CG scene into a 3D trajectory representation and obtain a ID-coded condition video and a Color-cue
condition video §3.1. We then employ a pre-trained VAE to encode both video conditions into token
representations, which are subsequently fused and injected into the video generator via a efficient
sequence concatenation strategy to conditionally generate the final videos §3.2. To effectively train-
ing such a framework, we adopt a density and alignment annealing training strategy that gradually
reduces reliance on complete conditioning, thereby enabling robust controllability even under sparse
or unaligned motion supervision §3.3.

3.1 TRAJECTORY REPRESENTATION

A good point trajectory representation should be flexible, expressive, and capable of preserving
correspondence. Yet existing approaches either lack correspondence (Wu et al., 2024; Yin et al.,
2023) or are not comprehensive (Gu et al., 2025; Geng et al., 2025), as described in §A.3. These
shortcomings motivate FlexTraj to define a set of point trajectories in the following form:

P =
{
pti = (xt

i, y
t
i , z

t
i , si, ui, ai)

∣∣∣ i = 1, . . . , N, t = 1, . . . , T
}
, (1)

where (xt
i, y

t
i , z

t
i) denotes the 3D location of point i at frame t. Each point pti carries three attributes:

a segmentation identifier si ∈ N distinguishing object instances, a trajectory identifier ui ∈ N
ensuring temporal correspondence, and an optional vector ai ∈ R3 providing color cues.

From the annotated trajectories, we render two condition videos: the ID-coded video VID, which
encodes segmentation identifiers in the red channel and trajectory identifiers in the green–blue chan-
nels, and the color-cue video VColor, which records the optional color vector ai projected onto the
image plane. Together, these videos provide a compact encoding of object identity, temporal con-
sistency, and visual appearance, which will serve as conditioning inputs in the next section.

3.2 CONDITION INJECTING CONTROL

After obtaining the trajectory conditions, the next step is to incorporate these conditions into the
generative model. An intuitive approach is to use ControlNet (Zhang et al., 2023), as illustrated in
Fig.3-(a). However, this method is suboptimal on the DiT backbones (Zhang et al., 2025a) and en-
courages strict structural alignment. To accommodate unaligned conditions, an alternative approach
is direct sequence concatenation, as shown in Fig.3-(b), but this leads to significant computational
complexity during training. To address this, we propose an efficient sequence-concatenation, which
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Figure 3: Comparison of condition-injection frameworks. (a) ControlNet-Style condition injection.
(b) Sequence-Concatenation condition injection. (c) Our Efficient Sequence-Concatenation with
LoRA and masked attention. (d) Causal mask.

achieves both flexibility and efficiency, as shown in Fig.3-(c). In the following, we outline three key
components of this design: condition token fusion, LoRA adaptation with its training objective, and
causal masking with KV caching for efficient inference.

Condition Token Fusion. We first encode the ID-coded video VID and the color-cue video VColor
into latent representations using a pretrained VAE encoder from CogVideoX (Yang et al., 2024b):

ZID = VAE(VID), ZColor = VAE(VColor). (2)
We then fuse both condition tokens as follows:

Zc = ZID +WZColor, (3)
where W is a zero-initialized linear projection ensuring that appearance cues are integrated without
overwriting structural information. Then, Zc is concatenated with the noise Zn and text tokens Zt,
forming the unified input sequence Z, defined as

Z = [Zn ; Zt ; Zc]. (4)
It should be noted that the condition tokens Zc are assigned the same positional encoding as the
noise tokens Zn, thereby preserving spatial alignment cues with the image tokens.

LoRA-Adaptation and Training Objective. We adopt Low-Rank Adaptation (LoRA (Hu et al.,
2022)) to efficiently finetune the model while freezing the base diffusion transformer. To preserve
the pretrained generative ability, LoRA is applied in query–key–value projections and only enabled
when processing condition tokens. Formally, if (Qc,Kc, Vc) denote the original projections for
condition tokens, the adapted forms are

Q′
c = Qc +∆Qc, K ′

c = Kc +∆Kc, V ′
c = Vc +∆Vc, (5)

where ∆Qc,∆Kc,∆Vc are low-rank updates learned during training. The model is trained using
the standard diffusion objective (Ho et al., 2020). Given a clean video latent x0, a noise sample
ϵ ∼ N (0, I), and a timestep t, the noisy latent is defined as: xt =

√
αt x0 +

√
1− αt ϵ, where αt is

the variance schedule. The denoising network ϵθ(xt, t, Z), conditioned on the concatenated tokens
Z, is optimized by

Ldiff = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t, Z)∥22

]
. (6)

Causal Mask and KV Cache. Following EasyControl (Zhang et al., 2025a), we apply a causal
attention mask that prevents condition tokens from attending to noise or text tokens, while still
allowing the latter to query information from conditions. The mask is defined as:

Mij =

{
−∞, i ∈ Zc, j ∈ (Zn ∪ Zt),

0, otherwise,
(7)

Since condition tokens remain fixed across timesteps, their key–value projections (Kc, Vc) can be
computed once at t = 0 and cached for reuse, which substantially reduces inference cost without
altering the conditioning effect.
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3.3 DENSITY AND ALIGNMENT ANNEALING TRAINING STRATEGY

Training such a unified framework that supports multi-granularity control is not trivial, especially
when incorporating unaligned conditions. Initially, we attempted to mix tasks by randomly sampling
conditions of different types, but the results were unsatisfactory. We attribute this to the expanded
parameter search space: densely aligned inputs offer strong determinism, while unaligned inputs
require greater flexibility. This disparity creates a challenge for stable convergence, as the model
struggles to balance the two contrasting demands.

To address this issue, we introduce an annealing training curriculum consisting of four stages. 1) In
the first stage, the model is trained under the most deterministic conditions: a dense and aligned set-
ting where both ID-coded and color-cue videos are consistently provided, ensuring rich information
and rapid convergence. 2) In the second stage, supervision remains dense, but the color-cue video
is randomly omitted with probability pc. Despite partially reduced input signals, the deterministic
nature of the dense setting ensure stable convergence. 3) After the model stabilizes with dense in-
puts, we gradually introduce spatial and temporal sparsity. Spatial sparsity is simulated either by
randomly discarding trajectories or by segment-wise dropping, retaining only ps of the trajectories.
Temporal sparsity is introduced in parallel by retaining only pt of the frames, selected either uni-
formly across the sequence or randomly. 4) In the final stage, the model is trained under unaligned
conditions, where point trajectories are shifted relative to the input frame and a reduced learning rate
is applied to mitigate catastrophic forgetting of capabilities acquired in earlier stages. To increase
variation, we also synthesize unaligned trajectory pairs from CG scenes.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Dataset. For training, we construct a dataset comprising approximately 40K real-world videos from
VideoPainter (Bian et al., 2025) and 2.5K dance videos from HumanVid (Wang et al., 2024b). In
addition, we synthesize around 5K videos using 3D meshes and animations collected from Mix-
amo (Blackman, 2014), incorporating identical poses across different characters to construct un-
aligned pairs. For evaluation, we adopt DAVIS (Pont-Tuset et al., 2017) and configure it for
four evaluated tasks: dense, spatially sparse, temporally sparse, and unaligned. We also curate
FlexBench, which contains 40 videos to showcase our method’s strengths. See §A.1 for details.

Baseline. Since no existing baseline uniformly supports all evaluated tasks (dense, spatially sparse,
temporally sparse, and unaligned), we select the most suitable methods for each task. In total, we
compare our method with six baselines: four point-trajectory–based approaches (DAS (Gu et al.,
2025), ToRA (Zhang et al., 2025b), LeviTor (Wang et al., 2025a), and Go-with-the-Flow (Burgert
et al., 2025)), one box/mask-trajectory–based approach (MagicMotion (Li et al., 2025)), and one
temporally sparse edge-map–based approach (SparseCtrl (Guo et al., 2024)). For each baseline, we
format the inputs as required and generate results using their released code and pretrained models.
The specific tasks supported by each method are summarized in Tab. 2.

Metrics. We evaluate our results using standard metrics: Fréchet Video Distance (FVD (Unterthiner
et al., 2018)) and Frame Consistency (Esser et al., 2023) for video quality, and Trajectory Error
(TrajError (Wu et al., 2024)) and Trajectory Similarity (TrajSIM (Pondaven et al., 2025)) for motion
controllability. Details are provided in §A.1.

4.2 QUALITATIVE COMPARISON

Dense Control. We first evaluate the dense control on applications such as motion clone and mesh-
to-video, comparing against MagicMotion (mask-trajectory-based) (Li et al., 2025), Go-with-the-
Flow (Burgert et al., 2025), and DAS (Gu et al., 2025). As shown in Fig. 4, the 2D-based methods
MagicMotion and Go-with-the-Flow struggle with fine details, as evident in the girl’s head orienta-
tion and the jumping person’s limbs. DAS also fails to capture the girl’s head movement that appears
in later frames, since its trajectory representation cannot accommodate newly emerging points. In
contrast, our method, benefiting from a robust point representation and 3D awareness, achieves the
best alignment with the source frames.
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Figure 4: Qualitative comparison on dense control. MagicMotion (Li et al., 2025) and Go-with-the-
Flow (Burgert et al., 2025) struggle with fine-grained details; DAS (Gu et al., 2025) fails to handle
newly emerging points, whereas our method closely follows the source motion.

Figure 5: Qualitative comparison on spatially sparse control. The subject outlined in green is
occluded by the subject outlined in blue. 2D-based methods (MagicMotion (Li et al., 2025),
ToRA (Zhang et al., 2025b)) fail in handling occlusion, U-Net-based method LeviTor (Wang et al.,
2025a) introduces artifacts, while ours accurately captures occlusion with high visual fidelity.

Spatially Sparse Control. Next, we evaluate spatially sparse control, comparing our method with
two point-trajectory approaches (ToRA (Zhang et al., 2025b) and LeviTor (Wang et al., 2025a)) and
the box-trajectory method MagicMotion (Li et al., 2025). As shown in Fig. 5, MagicMotion and
ToRA both fail to handle occlusion correctly, as they are 2D-based and lack 3D awareness. LeviTor,
while 3D-aware, produces noticeable artifacts (such as the distorted boy’s face and unnatural render-
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Figure 6: Qualitative comparison on temporally sparse control. SparseCtrl (Guo et al., 2024) yields
unsatisfactory results, while MagicMotion (Li et al., 2025) shows weak alignment and blurriness.
Our method aligns with the anchor-frame motion and generates coherent in-between frames.

ing of the fish), reflecting limitations of its U-Net–based architecture. In contrast, our method, with
its robust 3D-aware representation, faithfully captures occlusion while preserving visual fidelity.

Temporally Sparse Control. Then, we evaluate temporally sparse control against two baselines:
the sketch-based SparseCtrl (Guo et al., 2024) and the box-trajectory-based MagicMotion (Li et al.,
2025), where the motion is specified only on a few anchor frames and the remaining frames are
generated freely. As shown in Fig. 6, SparseCtrl, limited by its U-Net architecture, produces unsat-
isfactory results. MagicMotion exhibits weak alignment, with the dog disappearing and reappearing
incorrectly and the rabbit’s head appearing blurry. In contrast, our method generates coherent inter-
mediate frames that remain well aligned with the motion indicated by the anchor frames.

Unaligned Control. Finally, we evaluate our method under unaligned conditions, comparing it with
two dense point–trajectory approaches: DAS (Gu et al., 2025) and Go-with-the-Flow (Burgert et al.,
2025). As shown in Fig. 7, DAS produces red artifacts around the subject, reflecting the strict align-
ment bias of ControlNet (Zhang et al., 2023). Go-with-the-Flow yields implausible results, such as
a squirrel with a distorted tail and a bag suddenly appearing on a boy’s back, due to mismatches
between the input image and the motion field. In contrast, our method shows greater flexibility by
referencing motion cues from the input without relying on strict spatial alignment.

4.3 QUANTITATIVE COMPARISON

We present a comprehensive quantitative evaluation in Tab. 1. Our approach consistently demon-
strates superior trajectory control, achieving the lowest trajectory error (TrajErr (Wu et al., 2024))
and highest trajectory similarity (TrajSIM (Pondaven et al., 2025)) across four evaluated tasks. In
addition to precise trajectory alignment, our method delivers competitive or improved video quality
in terms of FVD (Unterthiner et al., 2018) and Frame Consistency (Esser et al., 2023), highlighting
its ability to balance controllability with generation fidelity.

4.4 ABLATION

We evaluate the effectiveness of our core design choices (trajectory representation, condition injec-
tion, and the annealing training strategy) with qualitative examples and conclude with quantitative
results. Details are provided in §A.4.
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Figure 7: Qualitative comparison on unaligned control. DAS (Gu et al., 2025) introduces artifacts
(red artifacts around the subject) from strict alignment, while Go-with-the-Flow (Burgert et al.,
2025) produces implausible results. Our method flexibly follows input motion.

Table 1: Quantitative comparison with baseline methods. Our approach consistently outperforms all
baselines in trajectory control, achieving the lowest TrajErr and highest TrajSIM. In terms of overall
video quality (FVD and Consistency), our method attains competitive or superior performance.

Task Method DAVIS FlexBench

FVD↓ Consistency↑ TrajErr↓ FVD↓ Consistency↑ TrajErr↓

Dense

DAS 714.3 0.981 0.029 1338.8 0.982 0.039
GoFlow 793.1 0.975 0.044 1560.7 0.977 0.026
MagicM 705.3 0.980 0.116 1621.0 0.985 0.062
Ours 532.4 0.979 0.017 1397.8 0.982 0.014

Spatially
Sparse

ToRA 1233.3 0.974 0.058 1210.2 0.988 0.037
Levitor 1337.3 0.951 0.050 1944.2 0.970 0.044
MagicM 860.5 0.980 0.080 978.1 0.988 0.045
Ours 710.4 0.980 0.025 851.6 0.991 0.017

Temporally
Sparse

SparCtrl 2533.4 0.967 0.087 2949.8 0.981 0.021
MagicM 1054.4 0.978 0.100 1719.4 0.985 0.074
Ours 837.0 0.983 0.031 1144.8 0.994 0.017

FVD↓ Consistency↑ TrajSIM↑ FVD↓ Consistency↑ TrajSIM↑

Unaligned

DAS 773.9 0.979 0.861 2716.3 0.992 0.656
GoFlow 1050.5 0.973 0.808 2978.3 0.991 0.704
Ours 622.3 0.976 0.908 2654.2 0.993 0.757

5 CONCLUSION

We introduced FlexTraj, a unified framework for video generation with multi-granularity, alignment-
agnostic trajectory control. By encoding segmentation, correspondence, and optional appearance
cues into a unified compact representation, FlexTraj overcomes the fragmentation of task-specific
conditions. Our efficient sequence-concatenation strategy enables effective conditioning, while the
annealing curriculum promotes robust generalization across dense, sparse, and unaligned supervi-
sion. Extensive experiments show that FlexTraj not only advances controllability but also broadens
the practical applicability of diffusion-based video generation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made every effort to ensure our work is reproducible. The core technical components
(trajectory representation, condition injection, and training strategy) are detailed in §3. Additional
details of the implementation can be found in A.1. To further facilitate replication, we report com-
parative results on DAVIS in Tab. 3 and Tab. 1. Finally, we will publicly release the source code and
corresponding model weights upon publication.
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A APPENDIX

A.1 EXPERIMENT DETAILS

Implementation details. We start by constructing trajectory representations. For real-world videos,
we first annotate points by SAM (Ravi et al., 2024) for video segmentation and SpatialTracker (Xiao
et al., 2024b) for tracking 4,900 uniformly distributed 3D points. We then project these points onto
the 2D plane as videos, where the point size is dynamically adjusted to accommodate different levels
of granularity: h = ⌊2s⌋ and w = ⌊3s⌋, where s = min (sqrt(H/x/1.7), 4) and x denotes grid
size. For CG synthetic videos, we render the condition video directly in Blender, where each mesh
is treated as an instance and each vertex serves as a tracking point.

After constructing trajectory representations, we next describe our annealing training schedule,
which consists of four stages: a complete stage of 1,200 steps, a dense stage of 2,400 steps, a
sparse stage of 14,000 steps, and finally an unaligned stage of 4,000 steps. We set pc to 0.5, while
ps and pt take values in the range [0, 1]. The learning rate is fixed at 1× 10−4 for the aligned stages
(first three) and reduced to 1× 10−5 for the unaligned stage.

Our model is fine-tuned on the recent video diffusion model CogVideoX-5B I2V (Yang et al.,
2024b), which is based on the MM-DiT architecture (Esser et al., 2024). Fine-tuning is performed
with LoRA (rank 128, batch size 1) applied to the self-attention query, key, and value projections.
Training requires about one week on 8 NVIDIA H800 GPUs, and inference takes roughly five min-
utes per video when using KV-cache.

Evaluation dataset. For evaluation, we use DAVIS (Pont-Tuset et al., 2017) as the standard bench-
mark and configure it for four tasks: dense, spatially sparse, temporally sparse, and unaligned.
Spatial sparsity is simulated by randomly sampling 10 points, while temporal sparsity is obtained
by uniformly sampling 2–4 frames from the full sequence. The unaligned setting is generated by
randomly jittering the condition videos: we first resize the video to a larger resolution and then crop
it back to the target size to obtain tracking points. In addition, we curate FlexBench, which includes
10 videos for each task, half collected from online sources and half synthesized with Blender, to
demonstrate applicability for both general and professional users. All videos are trimmed to 49
frames and cropped to 720× 480.

Metrics. We employ several standard metrics. For overall video quality, we report Fréchet Video
Distance (FVD (Unterthiner et al., 2018)) and Frame Consistency (Esser et al., 2023), which mea-
sures CLIP similarity (Radford et al., 2021) between consecutive frames. For motion controllability,
we use Trajectory Error (TrajError) (Wu et al., 2024), defined as the average Euclidean distance be-
tween trajectories extracted from the generated video and their matched trajectories extracted from
the source video. For the unaligned setting, we adopt Trajectory Similarity (TrajSIM) (Pondaven
et al., 2025), computed as the mean cosine similarity between the displacement directions of each
extracted trajectory in generated video and its closest counterpart in the source video.

Baseline. We compare with the most relevant methods for each task. We provide a capability
comparison of controllable I2V methods on Tab 2.

Table 2: Comparison of Controllable I2V Methods. (SS: Spatially Sparse, TS: Temporally Sparse)
Controllable Methods Point-Traj 3D-aware Dense SS TS Unaligned
Diffusion-As-Shader ✓ ✓ ✓
Go-with-the-flow ✓ ✓
MagicMotion ✓ ✓ ✓
Levitor ✓ ✓ ✓
ToRA ✓ ✓
SparseCtrl ✓
Ours ✓ ✓ ✓ ✓ ✓ ✓

A.2 THE USE OF LARGE LANGUAGE MODELS

We used large language models to correct grammar and refine wording for a more formal, academic
style during the writing process.
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Table 3: Quantitative results for ablation. Our method has the lowest TrajError on the aligned tasks
(Dense, Spatially Sparse, Temporally Sparse) and also highest TrajSIM on the unaligned task.

Ablation Method TrajErr↓ (Aligned Tasks) TrajSIM↑ (Unaligned Task)

DAVIS FlexBench DAVIS FlexBench

Trajectory Representation \w CorrID 0.029 0.018 0.904 0.729
\w SegID 0.040 0.019 0.895 0.732

Injection Control ControlNet 0.131 0.084 0.556 0.539

Training Strategy RandomMix 0.126 0.084 0.588 0.523
Sparse2dense 0.126 0.094 0.592 0.662

Final Model Ours 0.024 0.016 0.908 0.757

A.3 ANALYSIS ON TRAJECTORY REPRESENTATION METHODS

Existing trajectory representations can be broadly grouped into three categories. Gaussian
map–based methods (Wu et al., 2024; Yin et al., 2023; Zhang et al., 2025b) enlarge point fea-
tures with a local radius, which allows capturing neighborhood context. However, they lack explicit
temporal correspondence. Color-propagation approaches such as DAS (Gu et al., 2025) establish
temporal correspondence by propagating colors defined on the first frame, but they cannot represent
points that appear later, nor do they encode segmentation information. Random-embedding vectors
methods (Geng et al., 2025) offer flexibility to model newly appearing points and maintain tempo-
ral correspondences, yet they still omit segmentation and appearance cues. In contrast, our method
accommodates new points and encodes comprehensive information, including correspondence, seg-
mentation, and optional color.

A.4 ABLATION STUDY

Trajectory Representation. Our representation combines SegID, TrajID, and optional color. With-
out SegID, there is no distinction on different instances, e.g. two people entering from opposite
sides are mistakenly placed together in Fig. 8 (b). Without color, instances are separated correctly
but appearance deviates, whereas adding it restores fidelity. On the other hand, motion interpolation
becomes ambiguous without TrajID: although the overall shape is preserved, point correspondences
are mismatched, causing the pinwheel to rotate incorrectly in Fig. 8 (a).

Condition Injection Scheme. A ControlNet-style scheme shows limited control capacity under our
training setting: for example, the turtle’s head in Fig. 8 (c) fails to rotate to the intended direction,
whereas our injection produces accurate motion.

Training strategy. We further analyze training strategies. When adopting random mixing or
reversed-dense schedule, motion control performance drops. As shown in Figure 8 (d), the girl’s
head fails to rotate to the correct orientation. In contrast, our annealing strategy maintains stable
optimization and ensures precise motion alignment.

Quantitative Result. Our method yields the lowest TrajErr on aligned tasks (Dense, Spatially
Sparse, Temporally Sparse) and the highest TrajSIM on the unaligned task, confirming both precise
motion following and robustness.

A.5 MORE RESULTS

We provide additional results in Fig. 10, covering all applications introduced in Fig. 1, to more
clearly demonstrate the effectiveness of our method.

A.6 LIMITATION

Our method faces two main limitations. First, it relies on tracking quality: when tracking fails,
regions missed by tracking default to free generation, as in Fig. 9 where the woman’s glove is
misaligned. Second, it inherits constraints from the underlying video generator, including difficulty
with large rotations and limited long-term scene memory. For instance, after a 360° camera orbit,
scene quality degrades and the original scene cannot be faithfully recovered. Future work includes
exploring the integration of explicit memory mechanisms to enhance long-term scene consistency.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: Ablation study examples. (a) Trajectory representation (TrajID): without TrajID, accurate
trajectory control fails due to ambiguous correspondences. (b) Trajectory representation (SegID and
Color): without SegID, newly emerging regions are generated randomly; with SegID, they follow the
segmentation but lose appearance cues; with all attributes, generation matches the GT. (c) Condition
injection: ControlNet-style (Zhang et al., 2023) injection provides limited control, whereas ours
achieves accurate motion. (d) Training strategy: Random mixing or reversed schedules degrade
performance, while our annealing strategy preserves accurate alignment.

Figure 9: Limitations. Motion alignment is limited by tracking quality (top row: glove), and gener-
ation is constrained by the base video model (bottom row: fails on a 360° camera orbit.)
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Figure 10: More results. We provide additional results on all the applications here.
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