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Abstract

Hypergraphs are powerful tools for modeling complex interactions across various domains,
including biomedicine. However, learning meaningful node representations from hyper-
graphs remains a challenge. Existing supervised methods often lack generalizability, thereby
limiting their real-world applications. We propose a new method, Pre-trained Hypergraph
Convolutional Neural Networks with Self-supervised Learning (PhyGCN), which leverages
hypergraph structure for self-supervision to enhance node representations. PhyGCN intro-
duces a unique training strategy that integrates variable hyperedge sizes with self-supervised
learning, enabling improved generalization to unseen data. Applications on multi-way chro-
matin interactions and polypharmacy side-effects demonstrate the effectiveness of PhyGCN.
As a generic framework for high-order interaction datasets with abundant unlabeled data,
PhyGCN holds strong potential for enhancing hypergraph node representations across var-
ious domains.

1 Introduction

Hypergraphs are essential data structures adept at modeling complex multi-entity relationships. Conven-
tional graph neural networks (GNNs), limited to pairwise interactions, cannot effectively capture the higher-
order interactions inherent to hypergraphs. This shortfall led to previous methods (Agarwal et al., 2005;
2006; Satchidanand et al., 2015) expanding hypergraphs to graphs using clique expansion (Sun et al., 2008).
More recent works (Yadati et al., 2019; Dong et al., 2020; Arya et al., 2020; Bai et al., 2021; Yi & Park,
2020; Sun et al., 2021) have adopted GNN structure such as graph convolutional networks (GCNs) and
extended them to the hypergraph setting. HyperGCN (Yadati et al., 2019) and HNHN (Dong et al., 2020),
in particular, achieved state-of-the-art performances on hypergraph benchmark datasets. However, these
supervised methods heavily rely on labeled nodes, which are often scarce in practical scenarios. In situations
with insufficient labels, these methods fail to fully utilize the rich structural information of hypergraphs,
leading to less effective and poorly generalizable node representations.

Self-supervised learning (SSL), an approach that extract meaningful knowledge from abundant unlabeled
data to enhance model generalization (Doersch et al., 2015; Kolesnikov et al., 2019), presents a promising
strategy to address these challenges. SSL creates pretext tasks from unlabeled data to predict unobserved
input based on the observed part, enhancing the generalizability of models trained for computer vision (e.g.,
ImageNet pre-training (Girshick et al., 2014; He et al., 2019)) and natural languages (e.g., BERT (Devlin
et al., 2019)). While SSL methods have been proposed for GNNs (Hu et al., 2020a; You et al., 2020b; Hu
et al., 2020b; Wu et al., 2021; Jin et al., 2022; Hwang et al., 2020; Hao et al., 2021; Sun et al., 2020), their
application to hypergraph learning is underexplored. Noteworthy works (Xia et al., 2021; Yu et al., 2021;
Xia et al., 2022) have targeted specific applications such as recommender systems, while others (Du et al.,
2021) propose pre-training GNNs on hypergraphs, primarily focusing on hyperedge prediction. A detailed
discussion of related works can be found in Appendix A.

In this work, we introduce PhyGCN to address the urgent need for a general method that can effectively
leverage unlabeled data from hypergraphs to enhance node representation learning. This self-supervised
method extracts knowledge from the hypergraph structure using self-supervised tasks, generating robust
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node representations for diverse downstream tasks. Constructing self-supervised tasks in hypergraphs poses
a unique challenge due to the variable sizes of hyperedges. We tackle this challenge by designing a self-
supervised task that predicts masked hyperedges from observed ones and by incorporating an attention
mechanism into our model architecture (Zhang et al., 2020) to predict variable-sized hyperedges.

Link prediction, an effective pre-training task for traditional graphs, typically involves designing a neural
network with fixed-length input to predict edges. Hyperedge prediction, however, is more challenging due
to variable sizes. Simple average pooling of node embeddings has been found insufficient to model a hyper-
edge (Tu et al., 2018). Although some works (Xia et al., 2021; Yu et al., 2021; Xia et al., 2022; Du et al.,
2021) have explored the potential of self-supervised learning on hypergraphs, our PhyGCN method is the
first straightforward and effective approach to utilize hypergraph structure and can be generally applied to
many tasks.

We demonstrate the effectiveness of PhyGCN through various evaluations across multiple tasks and datasets,
showing its advantage over state-of-the-art hypergraph learning methods. Notably, PhyGCN has been ap-
plied to study multi-way chromatin interactions and polypharmacy side-effect network data, confirming
its advantages in producing enhanced node embeddings and modeling higher-order interactions. Together,
PhyGCN, a self-supervised method for hypergraph representation learning, can be applied broadly to a
variety of problems.

2 Preliminaries

2.1 Graph Neural Networks

We denote a graph by G = (V, E), where V is the vertex set with node v ∈ V and E is the edge set with
pairwise edge (u, v) ∈ E. Graph neural networks (GNNs) mostly follow the following scheme (Xu et al.,
2019):

xl
v = COMBINE(l)(x(l−1)

v , AGG(l)({
x(l−1)

u : u ∈ N (v)
}))

, (1)

where x(l)
v is the embedding vector of node v at layer l of the network, x(0)

v is the input data, and N (v)
is the set of nodes that are adjacent to v. Here AGG(·) and COMBINE(·) are two functions usually used
to aggregate the neighboring embeddings and combine the aggregated embedding with the original node
embedding to output the embedding of a given node. Different GNN models may have different choices
of COMBINE(·) and AGG(·) functions. As a most popular approach to aggregate and combine the node
vectors, GCN (Kipf & Welling, 2017) averages over all the first-order neighboring nodes including the node
itself. Let X(l) represent the embedding matrix of all nodes at layer l, and the equation boils down to

X(l) = σ
(
ÂX(l−1)Θ(l−1)), (2)

where σ is some activation function, Â ∈ RN×N is the normalized adjacency matrix with N denoting the
number of nodes. Θ ∈ Rhl−1×hl is the weight matrix at layer l − 1 where hl as the hidden embedding size
at each layer l. And X(0) ∈ RN×d0 is the input node features of all nodes where d0 is the size of the input
node feature size.

2.2 Hypergraph Convolutional Networks

In an attempt to adapt GCN for tasks on hypergraph, the problem naturally arises: how do we appropriately
adapt the adjacency matrix for hypergraphs? Adjacency matrix is natural to construct for graphs: setting
the entry Aij = 1 for each edge (vi, vj). However, hyperedge involve more than two nodes and constructing
A will thus be tricky. As Feng et al. (2019) proposed, for a hypergraph G = (V, E), a hypergraph can be
represented by an incidence matrix H ∈ RN×M , with N as the number of nodes and M as the number of
hyperedges. When a hyperedge ej ∈ E is incident with a vertex vi ∈ V, Hij = 1, otherwise equals 0. We
denote W as the hyperedge weight matrix, and then a straightforward definition for the adjacency matrix
will be A = HWH⊤. And to normalize it similarly as in GCN, we take

Â = D−1/2
v HWD−1

e H⊤D−1/2
v , (3)
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where the diagonal matrices De ∈ RM×M , Dv ∈ RN×N respectively represent the degree of hyperedges and
the degree of vertices (Feng et al., 2019) and Â ∈ RN×N . A layer of such hypergraph GCN model will then
be similar to the regular GCN but with a different adjacency matrix

X(l) = σ
(
ÂX(l−1)Θ(l−1)). (4)

Similarly, Θ ∈ Rhl−1×hl is the weight matrix at layer l −1 and X(0) ∈ RN×d0 is the input node features of all
nodes. We adopt such simple architectures in our work, along with several techniques in GNNs to enhance
the model’s learning on both self-supervised and main tasks.

3 Our Proposed Method

In this section, we present our framework of learning from Pre-trained Hypergraph Convolutional Neural Net-
works with Self-supervised Learning (PhyGCN). We start with an overview of the workflow of our framework
in Section 3.1. We then present the detailed network structure design and the self-supervised pre-training
pipeline in Sections 3.2 and 3.3 respectively. We conclude the section by presenting the loss functions that
will be used in node-level downstream tasks in Section 3.4.

3.1 Overview of PhyGCN

Fig. 1 provides a detailed depiction of PhyGCN’s model architecture and general workflow. PhyGCN aims
to enhance node representation learning in hypergraphs by effectively leveraging abundant unlabeled data.
To this end, we propose 1) a self-supervised learning strategy that pre-trains the model directly on the
hypergraph structure before proceeding with any downstream tasks, and 2) a corresponding model archi-
tecture comprising a base hypergraph convolutional network for representation learning, and an attention
network (Zhang et al., 2020) for executing the self-supervised task.

As shown in Fig. 1a, to pre-train the model, we establish a self-supervised hyperedge prediction task using
randomly masked hyperedges (20%). The neural networks are then trained to reconstruct them using only
the remaining hyperedges (80%). The pre-trained neural network can then be used for downstream tasks
such as node classification and continual signal prediction. See Section 3.3 for the details of the pre-training
scheme. Fig. 1b details the architecture of the neural network model, consistent of a base hypergraph
convolutional network and two end networks for different tasks. The base convolutional network computes
the embedding of each node in the hypergraph, which is then directed either to the attention network for
variable-sized hyperedge prediction, or to a fully connected layer for node-level downstream tasks. During
the pre-training phase, the base model and the attention network are trained while the fully connected layer
for downstream tasks remains randomly initialized. We select and retain the base model that exhibits the
best performance on the pre-training task (hyperedge prediction) on the validation set, and subsequently
fine-tune it with the fully connected layer for downstream tasks. During this stage, we incorporate the
original hypergraph data with its complete hyperedge information, and use the downstream task labels as
the supervisory signals for training.

To calculate the embedding for a target node, the hypergraph convolutional network aggregates information
from neighboring nodes connected to it via hyperedges, and combines it with the target node embedding
to output a final embedding. These computations are carried out at each layer of the network. The base
hypergraph convolutional network is a stack of such hypergraph convolutional layers (see Section 3.2). To
mitigate over-smoothing (Chen et al., 2020) and enhance the performance of the base model, we concatenate
the output of each layer in the end to generate the final embeddings for the nodes. Furthermore, we adapt
DropEdge (Rong et al., 2020) and introduce DropHyperedge, where we randomly mask the values of the
adjacency matrix for the base hypergraph convolutional network during each training iteration to prevent
overfitting and improve generalization in the pre-training phase. By integrating the model architecture
and pre-training scheme, PhyGCN effectively learns from a hypergraph structure and applies the learned
knowledge to downstream tasks.
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Figure 1: Overview of PhyGCN. a. The general workflow of PhyGCN begins with a hypergraph and its
hyperedge information. Hyperedge prediction is employed as a self-supervised task for model pre-training.
The pre-trained embedding model is then used for downstream tasks. b. This illustration elaborates on
PhyGCN’s detailed workflow, which involves generating labeled data for self-supervised learning by randomly
taking 80% of the hyperedges as positive samples, and creating negative samples by changing the nodes in
each positive sample. This data facilitates the training of the base hypergraph convolutional network with
the attention network. The pre-trained base model is subsequently used for downstream tasks with a fully
connected layer.

3.2 Base Hypergraph Convolutional Network

We thus propose a self-supervised learning strategy, along with a simple but effective hypergraph con-
volutional network architecture, to better capture the structural knowledge of a hypergraph. Our base
convolutional model follows from the previous setup of a hypergraph convolutional network, where

X(l) = σ
(
ÂX(l−1)Θ(l−1)). (5)

And we further introduce the following modifications to the base hypergraph convolutional model.

Skip/Dense Connection. GCNs have been known to the have vanishing gradient problem where stacking
multiple convolution layers in a GCN model causes the derivative of the loss function to approach zero and
thus hard to train (Wu et al., 2020). To make GCNs deeper and prevent the vanishing gradient problem, Li
et al. (2019) proposes several adapted strategies based on the methods frequently used for CNNs. Similar
vanishing gradient problems have also been observed in hypergraph convolutional networks (Chen & Zhang,
2022). Therefore, we design a similar but more computing-efficient strategy where we concatenate the
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Figure 2: Illustration of the method. a. For the base hypergraph convolutional network, we propose
two adapted strategies (DropHyperedge and Skip/Dense Connection) to further improve the pre-training
of PhyGCN. b. For the self-supervised pre-training task, we randomly mask 20% of the hyperedges in the
hypergraph and generate negative samples with regard to each positive training example. c. The pre-training
scheme requires prediction of hyperedges that are arbitrarily sized. Therefore, we adopt an attention network
(Zhang et al., 2020) to fulfill the task.

outputs of all layers of the model only after the last layer (instead of concatenating the previous outputs
at each layer as in Li et al. (2019)), as illustrated in Figure 2a. That is, we keep all the previous layers
unchanged and set the last layer of the convolutional model as:

X(n) =
[
σ(ÂX(n−1)Θ(n−1)), X(n−1), ..., X(0)]. (6)

And we denote x(l)
j as the j-th row of X(l), which is the embedding at layer l for node j. Such design helps

us save computation time while preventing the model’s performance from dropping with more layers. The
eventual base model we use is then the n-layer convolutional model with concatenation at the last layer. We
either add an attention layer for the self-supervised task or an MLP layer for the main task.

DropHyperedge. Overfitting is a common issue in the use of neural networks, where the network learns
to fit the training data too well and fails to generalize to test data. To mitigate such an effect, dropout has
been a popular technique for many fields and is also commonly used for GCNs. To further reduce overfitting
and improve generalization in GCNs, Rong et al. (2020) introduced a new regularization technique designed
for GCNs called DropEdge, which randomly mask the edges of the graph at each iteration. In this work, to
address the over-fitting issues with PhyGCN and encourage better generalization in the pre-training stage,
we adapt the DropEdge strategy to our model by randomly masking the values on the adjacency matrix Â
at each iteration (as illustrated in Figure 2a). Note that such a strategy is only used for the self-supervised
hyperedge prediction task. We use the same dropout strategy in the main task as the other baselines.

3.3 Pre-training with Self-supervisory Signals

Self-supervised task. As shown in Figure 2b, given a hypergraph G = (V, E), we randomly divide the
set of hyperedges E into the positive training set Etrain and the positive validation set Evalid. Moreover, we
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generate 5 negative samples for each hyperedge in Etrain and Evalid, and denote the negative sample sets as
E′

valid and E′
valid. The final training and validation set is then

Strain =
{

(Ei, zi)
∣∣ Ei ∈ Etrain, for zi = 1; Ei ∈ E′

train, for zi = 0
}

,

and
Svalid =

{
(Ei, zi)

∣∣ Ei ∈ Evalid, for zi = 1; Ei ∈ E′
valid, for zi = 0

}
,

where Ei = {v1, . . . , vk} is a set of nodes of arbitrary size k. We then train the model by the hyperedge
prediction task: given a set of node features {x(0)

j }j∈[Ei] with arbitrary size k and x(0)
j ∈ Rd0 , the goal is to

predict zi ∈ {0, 1}: whether the nodes form a hyperedge. Therefore, given the training set Strain, we aim to
minimize the following cross-entropy loss with regard to each training batch S:

Lpretrain = − 1
|S|

∑
i∈[S],S∈Strain

zi · log
(
g
({

f(x(0)
j )

}
j∈[Ei]

))
. (7)

Here, f(·) : Rd0 → Rd1 denotes the base hypergraph convolution model, where d0 is the input feature size
and d1 is the size of the output embedding x(n)

j of the network. Moreover, g(·) :
{
Rd1

}
|Ei| → [0, 1] denotes

the attention network, which takes a arbitrary-size set of node embeddings x(n)
j and output the probability

p of whether the nodes form a hyperedge. The base hypergraph convolutional model f(·) and attention
network g(·) are trained together, and the base model’s weight parameters are saved for further fine-tuning
in downstream tasks.

Negative sampling. We generate negative samples similarly to Zhang et al. (2020); Tu et al. (2018), where
the negative samples are 5 times the number of positive samples provided by the hypergraph structure.
Specifically, given a existing hyperedge Ei = {v1, . . . , vk} ∈ Etrain, we generate E′

i by randomly alternating
one or multiple of the node in Ei such that the new set does not belong to the existing hypergedge set, as
shown in Figure 2b. Moreover, the sampling strategy varies for different hypergraphs. For hypergraph with
only one node type (for example, citation network), we have

E′
i = {v1, . . . , v′

j , . . . , vk} : E′
i ̸∈ ∪{Etrain, Evalid}.

For hypergraphs with different node types (for example, polypharmacy side-effect data), we randomly alter-
nate a node within its node type. Take hypergraph with two node types v and u for example, the hyperedge
is Ei = {v1, . . . , vk, u1, . . . , ul}. The negative samples are then

E′
i = {v1, . . . , v′

j , . . . , vk, u1, . . . , ul} : E′
i ̸∈ ∪{Etrain, Evalid},

E′
i = {v1, . . . , vk, u1, . . . , u′

j , . . . , ul} : E′
i ̸∈ ∪{Etrain, Evalid}.

Furthermore, for hypergraphs with fixed-length hyperedges like the polypharmacy dataset (Zitnik et al.,
2018), we propose an enhanced negative sampling strategy. Let the fixed length k = 3 and Ei = {v1, v2, v3},
we generate the negative sample as

E′
i = {v′

1, v′
2, v3} : E′

i ̸∈ ∪{Etrain, Evalid}, Ej = {v′
1, v′

2, v′
3} ∈ ∪{Etrain, Evalid}.

so that the altered nodes in the negative sample are guaranteed to interact in another hyperedge.

Attention Network. As in Figure 2c, the attention network follows the design in Zhang et al. (2020) with
weight matrices WQ ∈ Rd1×dα , WK ∈ Rd1×dα , and WV ∈ Rd1×d2 . Given the a node set E of size k and
the node embeddings {x(n)

j = f(x(0)
j )}vj∈E , the normalized attention coefficient αil regarding node vi and

node vl is computed as

αil = exp
((

W⊤
Qx(n)

i

)⊤(
W⊤

Kx(n)
l

))
/
∑k

j=1 exp
((

W⊤
Qx(n)

i

)⊤(
W⊤

Kx(n)
j

))
. (8)

Then, the dynamic embedding of each node vi ∈ E is computed as di = tanh
( ∑k

l=1 αilW⊤
V xl

)
∈ Rd2 . And

with weight matrix WS ∈ Rd1×d2 , the static embedding of each node vi ∈ E is computed as si = W⊤
S xi ∈

Rd2 . Finally, with another layer WO ∈ Rd2 , the output of the attention network is then the probability that
the node set is a hyperedge:

p = 1/k
∑k

i=0 σ
(
W⊤

O

(
di − si

)◦2 + b
)
. (9)

where σ is the sigmoid function and b ∈ R. Notation ◦ denotes element-wise power operation.

6



Under review as submission to TMLR

3.4 Downstream Tasks

We evaluate how well the model learns node representation through node-level downstream tasks. Loading
the saved base model and adding a fully connected layer for prediction, we fine-tune the model by the
downstream task. Based on the pre-trained model f(·) that generates node embeddings with the information
it leveraged from the pre-training task, we can utilize it to do node-level downstream tasks in a wide range
of applications.

Let h(·) denote the fully connected layer that is task-specific for different data. For node classification
tasks with C classes as in Section 4.1, we have h(·) : Rd1 → RC . Given the training set Strain with input
feature x(0)

i ∈ Rd0 for each node i the label yi ∈ [C] representing the node class, we minimize the following
cross-entropy loss with regard to each training batch S:

Lmain = − 1
|S|

∑
i∈[S],S∈Strain

log
(
exp

(
h

(
f(x(0)

i )
)

yi

)
/exp

( ∑C
c=1 h

(
f(x(0)

i )
)

c

))
. (10)

For continual signal prediction tasks as in Section 4.2, we have h(·) : Rd1 → R. Given the training set Strain

with input feature x(0)
i ∈ Rd0 for each node i the label yi ∈ R, we minimize the following mean squared error

with regard to each training batch S:

Lmain = 1/|S|
∑

i∈[S],S∈Strain
(h(f(x(0)

i )) − yi)2. (11)

In the downstream tasks, we keep fine-tuning the base convolutional network f(·) with the task-specific fully
connected layer h(·).

4 Experiments

4.1 Self-supervised learning improves performance

We start with the fundamental question: can PhyGCN more effectively utilize the structural information
in a hypergraph? To assess this, we benchmarked PhyGCN against the current state-of-the-art hypergraph
learning methods, including HyperGCN (Yadati et al., 2019) and HNHN (Dong et al., 2020). We also estab-
lished a baseline by merely decomposing the hypergraphs into graphs and applying a standard GCN (Kipf
& Welling, 2017). We evaluated these methods using the benchmark node classification task on citation
networks (including Citeseer, Cora, DBLP, and PubMed) whose hyperedges denote either co-authorship or
co-citation relationships. Given that the baselines utilize different data splits for their evaluations, we con-
sistently evaluated our method along with all the baselines on the same random data splits across a range
of training data ratios. Detailed statistics, experiment settings, and results are provided in Appendix B.2.

In order to ascertain how each hypergraph learning method performs with limited training data, we first
set the training data ratio to 0.5% across the five datasets. The results are shown in Fig. 3a. Across 10
random data splits, we found that both HyperGCN and HNHN fail to outperform the standard GCN model,
which merely transforms the hypergraphs into conventional graphs. Conversely, PhyGCN, equipped with
pre-training on the self-supervisory signals obtained directly from the hypergraph, performs significantly
better when dealing with a small training data ratio. It outperforms GCN across all datasets, particularly
on small networks such as Citeseer and Cora. The improvement over GCN suggests that PhyGCN in more
adept at learning from the higher-order hypergraph structure as opposed to merely decomposing it into a
binary graph. Furthermore, the pre-training scheme allows PhyGCN to extract more information for node
representation learning, especially when dealing with small hypergraphs.

To evaluate PhyGCN against the baselines on a wider range of training data ratios, we generated data
splits with increasing training data ratios of 1%, 2%, and 4%. The results on the Cora (co-authorship)
dataset are shown in Fig. 3b, while comprehensive results of all models on the five datasets are provided in
Appendix B.2. Overall, PhyGCN outperforms the other methods, demonstrating more robust performance
under random data splits. Across varying training data ratios, PhyGCN consistently outperforms the three
baselines. At training data ratios of 2% and 4%, PhyGCN’s performance is considerably more stable than
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Figure 3: Evaluation of our model on node classification on citation networks with variable hyperedge sizes
(Citeseer, Cora (co-authorship), Cora (co-citation), DBLP, and PubMed). The baseline methods include
HNHN (Dong et al., 2020), HyperGCN (Yadati et al., 2019), and vanilla GCN (Kipf & Welling, 2017). a.
Comparison of PhyGCN’s accuracy with the baseline methods when the training data is minimal (0.05%). b.
On the Cora (co-citation) dataset, PhyGCN consistently outperforms the baselines across various training
data ratios (0.05%, 1%, 2%, 4%).

that of the baselines, as indicated by the significant decrease in the variance of PhyGCN’s accuracy across
10 random data splits.

These observations suggest that the pre-training stage enables the model to more effectively gather informa-
tion from unlabeled data, allowing it to perform well even when a small amount of data is available. The
results underscore the potential of PhyGCN in learning with higher-order interactions without the strong
requirement of ample labeled data for a specific task. By fully leveraging the hypergraph structure for self-
supervised training and designing a simple but effective model architecture, PhyGCN can achieve superior
and more stable performances on downstream tasks compared to existing baselines.

4.2 Exploring multi-way chromatin interaction

To further demonstrate the advantages of PhyGCN, particularly its potential for advancing discoveries in
biological data, we applied it to multi-way chromatin interaction datasets. Such datasets reflect simul-
taneous interactions involving multiple genomic loci within the same nuclei, providing an opportunity to
probe higher-order genome organization within a single nucleus. However, due to the limitation of cur-
rent mapping technology and the exponentially growing combination space of genomic loci, these datasets
tend to be extremely sparse and noisy. We evaluated our method on a node classification problem on the
SPRITE (Quinodoz et al., 2018) data from the GM12878 cell line, where the aim is to predict the Hi-C
subcompartment label for each genomic bin. The details of the experimental setup, including the tasks,
baselines, and datasets, can be found in Appendix B.3.

Why pre-training? We first evaluated how the pre-training scheme improves the learned representations
for the downstream tasks with a node classification problem on the SPRITE data. In this task, we aim to
predict the Hi-C subcompartment label for each genomic bin and we split the data by chromosome indices.
Fig. 4a shows the results of the node classification problem. Without pre-training, our “plain” model
is directly trained on the subcompartment labels to make predictions. With self-supervised learning that
extracts the hyperedge information, the pre-trained model performs much better on the cross-chromosome
subcompartment label prediction task.
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Figure 4: Application to the SPRITE data of chromatin interactions. a. Classification accuracy for subcom-
partment labels of the GM12878 cell line. b. AUROC and AUPR scores for predicting multi-way chromatin
interactions, where we compare our method with MATCHA (Zhang & Ma, 2020) across hyperedges of sizes 2,
3, and 4. c. Regression results on the GM12878 cell line, compared against the baseline A/B Compartments.
d. Regression results on the HFFc6 cell line, where we compared our transferred PhyGCN results with the
baseline A/B Compartments. e. Browser shot on chromosome 1 for Repli-seq prediction task (regression on
HFFc6). The boxplot shows the MSE distribution between the ground truth and the result from PhyGCN
or the baseline. MSE is calculated within each region of 5 Mb.
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Why the hypergraph convolutional network? In Fig. 4b, we investigate the effectiveness of PhyGCN’s
hypergraph convolutional architecture in learning multi-way chromatin interactions of variable sizes, which
is the pre-training task of the model. Specifically, we compared PhyGCN against MATCHA (Zhang & Ma,
2020), which uses an autoencoder to generate node representations. As in the same setting in Zhang & Ma
(2020), we consider hyperedges with the size of 2, 3, and 4 and use the AUROC and AUPR scores as the
evaluation metrics. We found that, with the hypergraph convolutional architecture, PhyGCN outperforms
MATCHA on the three different hyperedge sizes with a small fraction of training data provided. It should
be noted that the hyperedge prediction task aims to provide a pre-trained model for downstream tasks. To
further evaluate the effectiveness of our base model, we performed several other hyperedge prediction tasks as
a thorough ablation study. The results, detailed in Appendix B.5, confirm that the introduced convolutional
architecture enables the model to consistently and stably capture hyperedge information across different
datasets, providing a better pre-training stage.

Comparison with previous methods. To investigate whether our pre-trained model captures informative
patterns of multi-way chromatin interactions, we conducted a downstream regression task to predict the DNA
replication timing of each genomic bin using corresponding embeddings as input. We fit the signals on even
or odd chromosomes given the training labels on odd or even chromosomes. As a baseline, we used A/B
compartment scores (Lieberman-Aiden et al., 2009). The results are shown in Fig. 4c, where the x-axis
represents the Pearson correlation score of A/B compartment scores and Repli-seq signals, and the y-axis
denotes the Pearson correlation score of the output of PhyGCN and ground truth labels. Each data point
on Fig. 4c corresponds to a chromosome. Based on the downstream tasks, we found that with pre-training
on the hyperedge interactions, our model can effectively capture the underlying patterns of 3D genome
organization, generating more informative embeddings that are relevant to important biological functions
such as DNA replication.

Transferring knowledge to a different hypergraph structure. We further explored the potential of
PhyGCN on learning and adapting to new hypergraph structures. Specifically, we evaluated our method on
transferring the association between multi-way chromatin interactions and DNA replication timing learned
from the SPRITE data of the GM12878 cell line to that of the HFFc6 cell line. To achieve this, we first
pre-trained our base model and the attention network to predict multi-way chromatin interactions of the
GM12878 cell line using the self-supervised learning task. We then fixed the base model and fine-tune the
fully connected layer to predict replication timing of genomic loci in the GM12878 cell line. Next, with the
attention network fixed, we fine-tuned the base model with the task of predicting multi-way chromatin inter-
actions in the HFFc6 cell line using the hypergraph constructed from the SPRITE data of HFFc6 following
the same SSL setting as the dataset of the GM12878 cell line. With an additional regularizer on the base
model weights, we expect our base model to learn the subtle knowledge in hypergraph structural differences
and combined with the fixed fully connected layer to make accurate predictions of Repli-seq signals in HFFc6
cell line. The results are shown in Fig. 4d, where we use boxplots to show the Pearson and Spearman corre-
lation scores on each chromosome and compare them with the A/B compartment score calculated from the
contact of SPRITE data in HFFc6. In Fig. 4e, we show an example from chromosome 1 where we compared
the ground truth Repli-seq signals to the predictions from A/B compartments regression and PhyGCN with
PhyGCN reaching an overall smaller MSE. Together, our results demonstrate that PhyGCN can better learn
the representation based on multi-way chromatin interactions and utilize it to make downstream inferences.

4.3 Application to predicting polypharmacy side effect

Next, we sought to apply PhyGCN on the polypharmacy side effect dataset and demonstrate the advantages
of learning such data as a hypergraph rather than a graph. Typically, the association between drugs and side
effects is represented as a pairwise drug-side-effect network. However, during disease treatment, multiple
drugs are often used in combination, and undesirable combinations can cause side effects not known to
either individual drug in the combination (polypharmacy side-effect) (Zitnik et al., 2018). Recent works like
Zitnik et al. (2018); Nováček & Mohamed (2020) have used GNNs to predict polypharmacy side-effects with
noteworthy performance. These methods treat drugs as nodes and side effects associated with a drug pair
as the attributes for the corresponding edge. However, the number of unique side effects is comparable to or
even exceeds the number of unique drugs, making it inefficient to model the data as multiple graphs for each
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side effect. Furthermore, real-world data likely involve drug combinations with more than two drugs that
cause side-effects, which GNN methods may not be able to handle. In contrast, hypergraph methods like
PhyGCN can easily adapt to such datasets. Since the polypharmacy side-effect data involves interactions
beyond pairwise, it can be naturally learned as a hypergraph with drugs and side effects as the nodes. We
investigated how PhyGCN learns such interactions and compared it with state-of-the-art methods, including
graph-based methods such as Decagon (Zitnik et al., 2018) and ComplEX (Nováček & Mohamed, 2020), and
hypergraph-based method Hyper-SAGNN (Zhang et al., 2020). Further details are provided in Appendix B.4.

Decagon
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a b
AUROC score on different datasets AUROC score on different datasets
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AU
R

O
C

AU
R

O
C

c
Drug 
Side effect 
Known 

Expected:

D1 E1

D2

Unexpected:

D1 E1

D2

Original negative sampling:

D1 E1

D2

D3 E1

D4

Enhanced negative sampling:

D1 E1

D2

D5 E1

D6

D5 E2

D6
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Figure 5: Application to the polypharmacy side effects dataset. a. We display the AUROC score for
polypharmacy side effect prediction across different data splits, distinguishing between performances on
“expected” and “unexpected” polypharmacy side effects. b. The AUROC score for polypharmacy side effect
prediction across different data splits under an enhanced negative sampling strategy. c. We concretely
demonstrate our definition of expected/unexpected relations. In the expected interactions, we have prior
knowledge that one of the drugs causes the side effect, as indicated by the red arrow. Furthermore, we
illustrate the difference between the original negative sampling and the enhanced negative sampling. The
latter selects drug pairs that generate other side effects to be combined with the current example.

In Zitnik et al. (2018); Nováček & Mohamed (2020), only side-effects known to be associated with more
than 500 drug combinations were used for test data. In addition to this original setting, we report results on
random data splits where any side effect can be used for testing. Our findings, presented in Fig. 5a, indicate
that modeling the data as a hypergraph (using Hyper-SAGNN (Zhang et al., 2020) and PhyGCN) yields
better performance than modeling it as graphs (using Decagon (Zitnik et al., 2018) and ComplEX (Nováček
& Mohamed, 2020)) in both the original and random settings.

We conducted additional experiments to investigate how PhyGCN benefits from learning the data as a
hypergraph by testing it on different types of data splits. Specifically, we considered interactions that
involve a known pairwise relationship as “expected” and those that do not involve any known relationship as
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“unexpected” in the original dataset, as some side-effects are already known to be associated with a single
drug (see Appendix B.4). We empirically studied how the baselines and our method performed when testing
only on expected or unexpected data. As shown in Fig. 5a, GNN methods such as Decagon and ComplEX
showed a drop in performance from “expected” to “unexpected”, while PhyGCN maintained a consistent
performance on both types of data. As the unexpected polypharmacy side-effect triplet does not contain
any potential pairwise interactions (while “expected” ones have), the “unexpected” test data serves as a
useful indicator of how well a method captured such high-order interactions. The consistency of PhyGCN
and Hyper-SAGNN on the different data splits further demonstrates the advantage of modeling complex
interactions as a hypergraph. Additionally, our results showed that PhyGCN outperformed Hyper-SAGNN,
indicating its superior capability to learn from hypergraphs.

Enhanced negative sampling strategy. To investigate the effect of negative sampling on the polyphar-
macy side effect dataset, we conducted an experiment to compare the traditional random negative sampling
method with our proposed negative sampling strategy. The traditional approach (Zitnik et al., 2018; Nováček
& Mohamed, 2020) generates negative samples by randomly sampling two drugs that do not cause the spe-
cific side effect in the training data. However, we hypothesize that this strategy may lead to a model that
learns the bias of the likelihood that a drug combination causes any side effect rather than the specific side
effect in question. To address this, we propose a stronger criterion for negative sampling, which involves
sampling a drug combination that is known to cause other side effects and combining it with the given
side effect as a negative sample. This strategy forces the model to differentiate between the positive and
negative samples and learn the subtle differences between them. In other words, the model is forced to
make distinctions for each side effect. The results of our experiment are presented in Fig. 5b. We found
that our proposed negative sampling strategy poses a greater challenge for all methods to perform well,
with an average test accuracy below 80%. However, we observed that PhyGCN outperforms the baselines
and performs stably well across different data splits. This strongly suggests that PhyGCN is better able
to grasp the complex interactions without bias, unlike the baselines. We further present detailed examples
in Fig. 5c to demonstrate the expected and unexpected side effect, and our enhanced negative sampling
strategy. Together, the results of this experiment highlight the importance of careful negative sampling in
achieving good performance in learning hypergraphs.

5 Discussion

In this paper, we introduced PhyGCN, a hypergraph convolutional network model with a self-supervised
pre-training scheme, designed to effectively capture higher-order information of hypergraphs. We demon-
strated the effectiveness of PhyGCN on node classification tasks of benchmark citation networks and con-
duct comprehensive studies on a multi-way chromatin interaction dataset, highlighting the contribution of
each component to capturing informative interaction patterns. We also showed the advantages of modeling
polypharmacy side effects as hypergraphs and propose an improved negative sampling scheme to evaluate
models with less bias.

While self-supervised training has been extensively studied for graphs with pairwise links (Hu et al., 2020a;
You et al., 2020b; Hu et al., 2020b; Wu et al., 2021; Jin et al., 2022; Hwang et al., 2020; Hao et al., 2021;
Sun et al., 2020), few works have explored it for hypergraph representation learning (Du et al., 2021). Our
focus is on leveraging the attention mechanism (Zhang et al., 2020) to predict hyperedges with arbitrary
lengths and capture the indecomposiblity of a hyperedge, allowing PhyGCN to extract useful information
from complex hypergraph structures.

With its ability to model higher-order interactions in various graph-structured data, such as social networks
with group interactions, PhyGCN has great potential for a wide range of applications. Many real-world
graph-structured data possess higher-order interactions. For example, social networks have group interac-
tions that are inherently hypergraph-structured, and decomposing them into pairwise interactions may lose
valuable information. By modeling such graph data as hypergraph, PhyGCN can provide valuable node
representations by extracting information from the structure. This offers opportunities for leveraging the
method in various applications, from drug discovery to social network analysis, where complex, multi-way
interactions play a critical role.
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A Related Work

Interactions naturally occur among objects in real-world datasets. The pairwise interactions are conveniently
modeled as graphs, facilitating their analysis through deep learning models such as graph neural networks
(GNNs) (Li et al., 2016; Kipf & Welling, 2017; Veličković et al., 2018; Xu et al., 2019). GNNs leverage the
graph structure to generate representations of unknown nodes for various downstream tasks such as node
classification (Yao et al., 2019; Hong et al., 2020), predicting possible unknown interactions between two
nodes (Yuan & Bar-Joseph, 2020), and classification of graphs (Zhang et al., 2018). However, real-world
data often exhibit relationships that are more complex than pairwise interactions; higher-order interactions
involve more than two nodes. For example, in the Cora co-citation network (McCallum et al., 2000), multiple
papers are connected by citations from a common paper. Similarly, in the drug side-effect network (Zitnik
et al., 2018), interactions may exist among multiple drugs and side effects. Such graph structures with
higher-order interactions defines as hypergraph (Bretto, 2013), extending the concept of conventional
graphs with pairwise interactions. In a hypergraph, these interactions are termed as hyperedges. Being a
more complex data structure, hypergraphs contain richer information comapred to graphs with only pairwise
edges. However, this complexity poses challenges to classical GNN models, which requires the development of
new methods to represent and learn the interactions among arbitrarily many nodes instead of just pairwise.

Reflecting on the well-explored domains GNNs, a mainstream approach for utilizing graph structures is
Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017). TGCNs aim to learn node representations
by aggregating information from neighboring nodes and combining it with the node’s own information. A
detailed illustration of GCNs is Section 2. While GCNs have proven effective in representation learning
for graphs, the difference in structures between graphs and hypergraphs poses a challenge when adapting
GCNs to hypergraphs, especially in capturing the additional information brought by the hyperedges. A
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straightforward approach to tackle this challenge is to transform the hypergraph into a conventional pairwise
graph through clique expansion (Sun et al., 2008), then applying standard GCN methods. Essentially, this
entails treating each pair of nodes within a hyperedge as an edge in conventional graphs. Analogous to
such expansion, simple convolutional architectures for hypergraphs have been proposed and used in several
works (Feng et al., 2019; Bai et al., 2021). Feng et al. (2019) is the first work to introduce a simple neural
network structure with a convolutional layer for hyperedges.

Several other works aim to enhance the performance of hypergraph GCNs by altering the aggregation and
combination of neighboring node information. Technically, this variety stems from different designs of the
hypergraph’s Laplacian matrix (elaborated in Section 2). Yadati et al. (2019) also approximates hyperedges
with a set of pairwise edges, proposing the HyperGCN scheme that achieves the best result and FastHyper-
GCN that trains faster albeit with compromised performance. Subsequently, to better capture hyperedge
information, Dong et al. (2020) proposes Hypergraph Networks with Hyperedge Neurons (HNHN), a hyper-
graph convolutional network applying nonlinear activation functions to both nodes and hyperedges. This
model computes embeddings for nodes and hyperedges. However, under varied train-test data splits on
multiple hypergraph data, these methods could exhibit instability and perform worse than a common GCN
learning on hypergraphs expanded as regular graphs. Other attempts to adapt graph architectures to hyper-
graphs either achieve similar or slightly improved performance compared to HyperGCN (Arya et al., 2020;
Bai et al., 2021; Yi & Park, 2020) or are evaluated under different conditions such as a larger amount of
training data (Sun et al., 2021).

Expansions like clique expansion assume a hyperedge’s decomposability, implying that any subset of nodes in
a hyperedge can form another hyperedge. However, this assumption becomes unreasonable when a hyperedge
contains nodes of different types. For instance, a hyperedge may represent a triplet relationship between a
user, drug, and reaction. Treating such a hyperedge as pairwise edges could be detrimental to downstream
tasks. This issue is similarly noted in Tu et al. (2018), where the authors attempt to model the hypergraph
with a simple encoder-decoder model. Yes, as evidenced in our empirical analysis for the multiway chromatin
interaction data, such a model does not match the capability of a deep hypergraphgraph convolutional model.

While relatively few works explore self-supervised training or pre-training on hypergraphs, the field of graphs
has seen many mature works. Comprehensive studies (Hu et al., 2020a; You et al., 2020b; Wu et al., 2021;
Jin et al., 2022) have introduced and examined multiple self-supervised tasks for graphs at both the node
and graph level. Additionally, some works (Hu et al., 2020b; Hwang et al., 2020; Hao et al., 2021; Sun
et al., 2020) are tailored for specific settings, employing one or more similar self-supervised tasks to enhance
model performance and adapt to chosen scenarios. In another subfield of self-supervised training, contrastive
learning for GNNs has also been explored in recent studies (Hassani & Khasahmadi, 2020; You et al., 2020a;
Qiu et al., 2020).

Self-supervised learning and pre-training for hypergraphs remain largely unexplored. The majority of works
(Xia et al., 2021; Yu et al., 2021; Xia et al., 2022) focus on specific applications in recommender systems. Xia
et al. (2021) introduces Dual Channel Hypergraph Convolutional Networks (DHCN), explicitly designed for
session-based recommendation. DHCN’s self-supervised learning task seeks to maximize mutual information
between session representations learned by a graph convolutional network and DHCN, aiming to enhance
hypergraph network learning. Yu et al. (2021) also focuses on recommender systems, leveraing higher-
order interactions to improve recommendation quality. They introduce a self-supervised task to compensate
for the loss incured by their multi-channel hypergraph convolutional network, aiming to maximize mutual
information concerning the representations of the user node, the neighboring sub-hypergraph of the user,
and the entire hypergraph. Xia et al. (2022) aims to enhance recommendation and user representations
via a hypergraph transformer network that uses a cross-view generative self-supervised learning for data
augmentation. Lastly, Du et al. (2021) proposes pre-training with GNNs on hypergraphs for hyperedge
classification. This method uses GNNs with self-supervised pre-training tasks, achieving state-of-the-art
performances on both inductive and transductive hyperedge classification.
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DBLP Pubmed Cora Cora Citeseer
(co-authorship) (co-citation) (co-authorship) (co-citation) (co-citation)

# nodes, |V | 41302 3840 2388 1434 1458
# hyperedges, |E| 22363 7963 1072 1579 1079
avg hyperedge size 4.5 ± 5.4 4.3 ± 5.7 4.3 ± 4.2 3.0 ± 1.0 3.2 ± 2.0

# features, d 1425 500 1433 1433 3703
# classes, q 6 3 7 7 6

Table 1: The statistics for the citation dataset used in node classification, where each data has the hyperedge
either as a co-authorship relation (papers written by the same author) or as a co-citation relation (papers
cited by the same paper).

B Experimental Details

B.1 Model Parameter Setting in Pre-training

For PhyGCN, we consider three hypergraph convolutional layers, each with a uniform hidden layer size of
128 and an output embedding size of 64. In the multi-head attention layer used for pre-training, we set the
number of heads to 8, aligning with setting in Zhang et al. (2020). The number of training epochs is set
to be 300, and the training batch of the pre-training task contains 32 positive samples while we generate 5
negative samples with regard to each positive sample. We use Adam optimizer of learning rate 0.001 with
weight decay 5e-4. The dropout rate is set to 0.5, and the coefficient for dropedge is set to 0.3: masking 30%
of the values of the adjacency matrix Â at each training iteration.

B.2 Supplementary Information for the Citation Networks Data

Baselines. We compare our approach with two recent baselines on hypergraph neural networks alongside
an additional baseline derived from modifying the graph convolutional network:

• HyperGCN, proposed by Yadati et al. (2019), represents their best performing model. This method
incorporates node features when calculating the Laplacian to improve performances. However, such
computation significantly increases the computation cost for the method.

• HNHN, introduced by Dong et al. (2020), divides the aggregation process into two steps, computing
embeddings for hyperedges and nodes separately.

• GCN, here we expand the hypergraph into graphs with pairwise edges through clique expansion and
apply a straightforward GCN model (Kipf & Welling, 2017) for prediction.

Datasets. The details of the datasets used for the evaluation of node classification are shown in Table
1. It is noteworthy that the data used by Yadati et al. (2019) contains a lot of isolated nodes, implying
that a significant portion of nodes, not part of any hyperedge, are classified solely based on their feature
information. This is not an ideal setting for evaluating the capacity of a graph/hypergraph neural network
in capturing structural information. We opt for a similar setting to Dong et al. (2020), where we remove the
isolated nodes from the raw data. Moreover, since the compared works (Yadati et al., 2019; Dong et al., 2020)
use different train-test ratios for each dataset, we make a uniform setting of ratios for all data and models:
0.5%, 1%, 2%, 4%. Specifically, we conduct four experiments on each dataset for each model, incrementally
increasing the training data ratio from 0.5% to 4%. Training data with a larger proportion includes the
nodes from the training data of a smaller proportion. Lastly, we perform 10 random splits for each ratio of
each dataset to evaluate the average performance alongside the standard deviation.

Training. All baselines are trained using the Adam optimizer (Kingma & Ba, 2014) as specified in their
respective papers. The selected hyperparameters for each baseline also adhere to those suggested in the
respective papers. For PhyGCN, we use SGD of learning rate 0.003 with momentum 0.9 for the node
classification task.
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Dataset Model Training Ratio
0.5% 1% 2% 4%

Citeseer

HyperGCN 30.71 ± 7.0 41.02 ± 10.6 51.50 ± 8.5 63.10 ± 4.6
HNHN 26.33 ± 7.5 28.61 ± 5.9 34.65 ± 6.9 45.35 ± 6.5
GCN 32.66 ± 10.4 44.02 ± 9.7 53.91 ± 6.4 62.54 ± 3.7

Our model (plain) 32.74 ± 6.2 38.99 ± 6.5 49.21 ± 0.5 56.72 ± 3.2
Our model (pre-trained) 47.35 ± 8.4 54.22 ± 7.2 62.87 ± 4.3 67.02 ± 1.0

HyperGCN 33.08 ± 8.6 39.50 ± 4.7 49.24 ± 4.8 57.36 ± 5.2
Cora HNHN 30.48 ± 5.5 38.23 ± 10.4 53.53 ± 4.0 63.51 ± 3.1

(co-authorship) GCN 38.92 ± 9.3 54.34 ± 7.4 60.35 ± 5.3 69.00 ± 2.2
Our model (plain) 38.21 ± 7.6 50.21 ± 5.6 59.66 ± 5.7 68.53 ± 2.6

Our model (pre-trained) 49.43 ± 6.5 60.75 ± 5.8 67.21 ± 3.6 71.86 ± 1.9
HyperGCN 33.06 ± 6.2 37.31 ± 7.3 45.97 ± 6.9 56.72 ± 5.6

Cora HNHN 26.16 ± 4.5 28.44 ± 4.7 38.51 ± 7.5 55.60 ± 3.3
(co-citation) GCN 39.52 ± 9.7 48.37 ± 6.8 58.72 ± 7.0 71.15 ± 3.5

Our model (plain) 33.37 ± 6.6 38.31 ± 5.6 48.77 ± 5.5 62.28 ± 3.2
Our model (pre-trained) 48.82 ± 8.2 58.46 ± 5.5 65.71 ± 4.5 72.35 ± 3.2

DBLP

HyperGCN 65.35 ± 4.3 66.30 ± 6.2 63.79 ± 4.7 65.84 ± 6.4
HNHN 74.41 ± 1.9 79.86 ± 0.9 82.19 ± 0.4 83.73 ± 0.2
GCN 81.11 ± 2.9 83.65 ± 2.0 85.32 ± 0.7 85.84 ± 0.5

Our model (plain) 81.90 ± 0.6 83.71 ± 0.4 85.24 ± 0.2 86.52 ± 0.2
Our model (pre-trained) 84.69 ± 0.6 86.12 ± 0.4 86.96 ± 0.2 87.80 ± 0.2

PubMed

HyperGCN 67.84 ± 6.3 72.29 ± 5.4 77.10 ± 2.1 79.63 ± 1.0
HNHN 63.61 ± 2.9 68.86 ± 3.9 72.24 ± 3.2 76.49 ± 1.6
GCN 70.29 ± 4.4 74.31 ± 2.8 77.92 ± 1.5 79.66 ± 1.0

Our model (plain) 70.96 ± 3.7 75.07 ± 2.2 78.01 ± 1.0 79.84 ± 0.5
Our model (pre-trained) 74.66 ± 3.9 78.00 ± 1.6 79.09 ± 1.6 79.96 ± 0.9

Table 2: Test accuracy for different datasets at different data split ratio (training data % = 0.5% , 1% , 2%
, 4%). We report mean test accuracy ± standard deviation among 10 random train-test split for each split
ratio.

Detailed Empirical Results Detailed results of the average test accuracy ± standard deviation for all
models on all datasets are shown in Table 2. We found that PhyGCN outperforms all baselines on each
dataset regardless of the training data ratios. On smaller hypergraphs like Cora and Citeseer, PhyGCN
is able to leverage more information with self-supervised learning and outperforms all baselines by a large
margin. Similarly, in scenarios with low training data ratio on large networks, PhyGCN maintains remarkable
robustness and exemplary performance, while other hypergraph methods such as HyperGCN and HNHN
falter. An ablation study of the pre-training scheme presents results of our hypergraph convolutional network
both with and without pre-training. A direct comparison shows the substantial benefit of pre-training. For
instance, on the Cora dataset, where the plain model underperforms when compared to the vanilla GCN,
pre-training enables the hypergraph convolutional network to better capture higher-order information, and
significantly outperforming GCN.

B.3 Supplementary Information for the Multiway Chromatin Interaction Data

Baselines. For the hyperedge prediction task on multi-way chromatin interaction, we evaluated against a
recent work, MATCHA (Zhang & Ma, 2020), which employs hypergraph representation learning techniques
on a specially constructed hypergraph from multi-way chromatin interaction data, aimed at denoising the
data and making de-novo predictions of yet undetected multi-way chromatin interactions. For the baseline
of Fig. 4c and Fig. 4d, we used A/B compartment scores (Lieberman-Aiden et al., 2009), a 3D genome
features that is known to correlate with DNA replication timing. The A/B compartment scores are calculated
using the Cooler software (Abdennur & Mirny, 2020) by taking the SPRITE contact map as input.

Dataset. To systematically evaluate if our proposed new approach could improve the analysis of multi-way
chromatin interaction data, we use the SPRITE data (Quinodoz et al., 2018) from the GM12878 lymphoblas-
toid human cell line following the same processing procedure in MATCHA (Zhang & Ma, 2020). Specifically,
genomic bins at the 1Mb resolution are considered as nodes, and interactions involving multiple loci are
treated as hyperedges. In Fig. 4a, a split by chromosome indices is performed, where nodes odd chromosome
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Accuracy
Plain 28.42 %

Pre-trained 80.79 %

Table 3: Classification on GM12878.

MATCHA Our Method
Size= 2 (0.898, 0.787) (0.934, 0.827)
Size= 3 (0.988, 0.962) (0.996, 0.977)
Size= 4 (0.996, 0.981) (0.998, 0.992)

Table 4: Hyperedge prediction on SPRITE data. Size denotes the length of the hyperedge. We report the
(AUROC, AUPR) scores.

indices constitute the training data, and those from even indices form the test data. For cross-validation, a
swapping of the training and test set is conducted, followed by the reporting of the average accuracy for each
method. Fig. 4b displays a comparison against MATCHA (Zhang & Ma, 2020) under a more challenging
training split, constructing the hypergraph from SPRITE data with 20% designated as training set and the
remaining 80% as test data. Fig. 4c and Fig. 4d, the replication timing for each genomic bin is quantified
using Repli-seq (Marchal et al., 2018).

Detailed Empirical Results. Table 3 shows the detailed results for Fig. 4a. Table 4 shows the detailed
results for Fig. 4b.

B.4 Supplementary Information for Polypharmacy Side Effect Data

Baselines. We compared our approach with several methods on polypharmacy side effect prediction:

• Decagon, proposed by Zitnik et al. (2018) as the initial work that studies the polypharmacy side-
effect data.

• ComplEX, proposed in Nováček & Mohamed (2020) that has the best reported performances.

• HyperSAGNN, with the encoder-decoder model for representation learning as proposed in Zhang
et al. (2020).

Dataset. We use the polypharmacy side-effect dataset (Zitnik et al., 2018), which contains 645 unique
drugs and 63,473 drug-drug interactions. Within the hypergraph framework, there are 4,651,131 hyperedges
representing the drug-drug side-effect associations, featuring 1,317 unique side effects. The evaluation on
side-effect prediction was conducted across four distinct train-test split scenarios:

• Original: The same as in Zitnik et al. (2018), where the test set only contains side effects associated
with more than 500 drug combinations, whilst side-effects liked with less than 500 drug combinations
are allocated to the training set.

• Random: All side-effects are utilized for both training and testing, distributed randomly across
training and test sets.

• Expected: A subset of 30 side-effects, already associated with a single drug, were deemed as expected,
leading to 20,787 expected drug-drug side-effect associations. Despite adhering to a random split for
training and test data, the “expected” scenario only tests on the expected triplets within the test
set.

• Unexpected: Similarly, whilst maintaining a random split for training and test data, testing is
conducted solely on the unexpected triplets in the test set.

For the side effect categorization task, we consider side effects with known categories from Zitnik et al.
(2018), yielding 561 side effects with 37 categories.
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Model and training scheme Accuracy
Plain 21.49 %

With pre-training, random negative sampling 33.65 %
With pre-training, modified negative sampling 35.23 %

Table 5: Classification of side-effects.

Decagon ComplEX Hyper-SAGNN Our Method
Original (0.814, 0.737) (0.929, 0.914) (0.938, 0.921) (0.945, 0.931)
Random (0.801, 0.729) (0.920, 0.903) (0.933, 0.912) (0.943, 0.926)
Expected (0.807, 0.733) (0.943, 0.931) (0.938, 0.924) (0.947, 0.932)

Unexpected (0.786, 0.713) (0.917, 0.890) (0.935, 0.918) (0.944, 0.922)

Table 6: Performances on different data split. Random negative sampling. We report the (AUROC, AUPR)
scores for each model on each data split.

Detailed Empirical Results. In Table 6 and Table 7, we show detailed results of the AUROC and
AUPR scores for all models on the four different evaluation sets. The AUROC scores in Table 6 correspond
to Fig. 4e and the AUROC scores in Table 7 correspond to Fig. 4f. The AUPR scores of Table 6 showed
a similar pattern as AUROC scores, where hypergraph methods tend to maintain their performance on
expected and unexpected test data while graph methods exhibit a decline in performance. Similarly, for the
AUPR scores of Table 7, the enhanced negative sampling strategy brings more challenge to the task and
forces the networks to learn the more subtle differences between positive and negative samples.

Our results demonstrated the adeptness of our model in learning higher-order interactions effectively. We
also studied how learning within the hypergraph structure could improve our model’s performance on tasks
pertinent to the nodes (drugs, side effects). We used the side effect category information from Zitnik et al.
(2018), where a proportion of the side effects within the network were classified into high-level categories.
As shown in Table 5, with pre-training on the hypergraph structure, our model exhibited enhanced cate-
gorization capabilities, even in the absence of additional information. Furthermore, the performance metric
could be improved through the implementation of a better negative sampling strategy.

B.5 The Base Convolutional Model Learns Hyperedge Information Well

We further evaluated how well the hypergraph convolutional network in PhyGCN captures the hyperedge
information. We conducted evaluation on the the four datasets used in the most current works on hyperedge
prediction (Tu et al., 2018; Zhang et al., 2020). These datasets, shown below, have uniform-length hyperedges
and no node features or node labels.

• GPS (Zheng et al., 2010): hyperedges represent (user, location, activity) relations.

• MovieLens (Harper & Konstan, 2015): hyperedges represent (user, movie, tag) relations.

• drug: hyperedges represent (user, drug, reaction) relations.

• wordnet (Bordes et al., 2013): hyperedges represent (head entity, relation, tail entity) relations
within words.

Hyperedge prediction methods need to use structural information as the features to make predictions. More-
over, these datasets are heterogeneous, meaning that the node types within a hyperedge are different and

ComplEX Hyper-SAGNN Our Method
Original (0.724, 0.702) (0.716, 0.702) (0.744, 0.731)
Random (0.723, 0.699) (0.715, 0.703) (0.743, 0.730)
Expected (0.739, 0.722) (0.719, 0.709) (0.746, 0.732)

Unexpected (0.703, 0.686) (0.718, 0.703) (0.742, 0.729)

Table 7: Performances on different data split. Modified negative sampling. We report the (AUROC, AUPR)
scores for each model on each data split.
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GPS MovieLens drug wordnet
Encoder (0.930, 0.744) (0.926, 0.793) (0.961, 0.888) (0.890, 0.694)

Conv (0.941, 0.738) (0.938, 0.801) (0.962, 0.890) (0.896, 0.710)

Table 8: The experiment results for the hyperedge prediction task over the four heterogeneous hypergraph
data with uniform-length hyperedges. We report (AUROC, AUPR) to evaluate how well our model learns
the structural knowledge. Our convolutional model is compared with the encoder-decoder model used in
Zhang et al. (2020), both using the attention layer for prediction.

Citeseer Cora (co-authorship) Cora (co-cocitation) DBLP PubMed
Encoder-1 (0.804, 0.573) (0.827, 0.626) (0.809, 0.591) (0.825, 0.655) (0.906, 0.722)
Encoder-2 (0.833, 0.612) (0.798, 0.553) (0.849, 0.590) (0.920, 0.727) (0.919, 0.730)
Encoder-3 (0.803, 0.583) (0.826, 0.660) (0.839, 0.607) (0.930, 0.773) (0.920, 0.752)

Conv (0.866, 0.605) (0.861, 0.657) (0.861, 0.597) (0.923, 0.755) (0.926, 0.727)

Table 9: The experiment results for hyperedge prediction over the five homogeneous datasets with variable-
length hyperedges. We report (AUROC, AUPR) similarly. We compare our convolutional model with the
encoder-decoder model that takes in three different features. Encoder-1: original features computed as in
Zhang et al. (2020). Encoder-2: node features provided by the data. Encoder-3: concatenation of the two.

therefore one could not simply expand the hyperedge into pairwise edges. Details of the experiment results
are reported in Table 8. We evaluated our base convolutional model against the encoder-decoder model
used in Tu et al. (2018); Zhang et al. (2020) for representation learning, using the same attention network
from Zhang et al. (2020) for combining the node embeddings and making the prediction. The performance
is evaluated by the AUROC and the AUPR score. We found that, with the introduction of convolutional
architecture, our model performs either better than or on par with the encoder-decoder model. We note
that the performances for the four datasets are already very high with the encoder-decoder model, our base
model still exhibit enhanced capability in capturing the hyperedge information.

In Table 9, we extended our evaluation to five datasets for the main task of node classification. These
datasets are citation networks where each node represents a publication and each hyperedge represents either
co-citation or co-authorship relation. These data are different from the above setting, where the hypergraph
is homogeneous with variable hyperedge size. We note that, for the previous hyperedge prediction data,
the methods typically use features constructed from the hypergraph structure: a detailed formulation of
the construction of input features are presented in Sections 2 and 3. However, as these five datasets have
node features themselves, we additionally add two modified baselines of the encoder-decoder model for a
more comprehensive evaluation. Specifically, we compare with encoder-decoder that takes in the constructed
features, the node features, and concatenation of the two. Our model soley utilizes the node feature for these
five datasets. We found that our convolutional base model outperforms the three baselines on AUROC score
consistently across the five datasets. Such results underscore the potential of our base model to effectively
and efficiently utilize both the node features and the structural information of the hypergraph. For the
hyperedge prediction task only, the base convolutional model has a stably better performance compared to
the simple model used in previous works. Such evaluation confirms that the model learns the structural
knowledge well in this pre-training task.
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