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ABSTRACT

Recent efforts have extended the capabilities of transformers in logical reasoning and symbolic
computations. In this work, we investigate their capacity for non-linear latent pattern discovery in
the context of functional decomposition, focusing on the challenging algebraic task of multivariate
polynomial decomposition. This problem, with widespread applications in science and engineering, is
proved to be NP-hard, and demands both precision and insight. Our contributions are threefold: First,
we develop a synthetic data generation pipeline providing fine-grained control over problem com-
plexity. Second, we train transformer models via supervised learning and evaluate them across four
key dimensions involving scaling behavior and generalizability. Third, we propose Beam Grouped
Relative Policy Optimization (BGRPO), a rank-aware reinforcement learning method suitable for
hard algebraic problems. Finetuning with BGRPO improves accuracy while reducing beam width
by up to half, resulting in approximately 75% lower inference compute. Additionally, our model
demonstrates competitive performance in polynomial simplification, outperforming Mathematica in
various cases.

1 INTRODUCTION

Transformers, initially developed for natural language processing Vaswani et al. (2017), have shown remarkable
versatility across diverse domains such as vision Dosovitskiy et al. (2020) and protein folding Jumper et al. (2021).
More recently, their applications in formal reasoning, symbolic mathematics and algorithmic tasks start to gain
traction. Several works have showcased transformer-based architectures’ ability to tackle highly structured problems,
including theorem proving Polu & Sutskever (2020); Trinh et al. (2024), integration Lample & Charton (2020), matrix
multiplication Fawzi et al. (2022) and equation solving Drori et al. (2022).

In this work, we investigate the transformer’s capacity for non-linear latent pattern discovery in the context of functional
decomposition, i.e. decomposing a complex function as the composition of simpler sub-functions. In contrast to
step-by-step logical deduction, or pattern recognition in data analysis, functional decomposition poses significant new
challenges to the transformer, because the forms of the sub-functions that we try to discover can be totally hidden or
obscured in the final compact form of the original function. Furthermore, it requires extreme precision without any
margin of error. Unlike more forgiving classification tasks, the decomposition problem admits only a sparse set of
correct solutions: even minor deviations in signs or coefficients can render outputs completely invalid.

Beyond its theoretical interest, functional decomposition has ubiquitous applications in software engineering Tempero
et al. (2024), systems biology Mori et al. (2023), mechanical design She et al. (2024), systems engineering Hernandez
et al. (2024) and digital logic design Adamski et al. (2005); Lin et al. (2008), where capturing hidden substructures
within high-dimensional functions leads to more tractable and efficient models. However, identifying a function’s latent
compositional structure requires models to look past surface-level correlations, attending instead to deep algebraic
symmetries and invariants.

A particularly rich case of functional decomposition arises in multivariate polynomial functions. The polynomial
decomposition problem over a ring k seeks to decompose a given polynomial f ∈ k[x1, . . . , xn] into polynomials
g ∈ k[y1, . . . , ym] and h1, . . . , hm ∈ k[x1, . . . , xn] such that

f(x1, . . . , xn) = g
(
h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)

)
. (1)

It has wide-ranging applications from cryptography Patarin & Goubin (1997) to dynamical modeling Dang & Testylier
(2012), signal processing Demirtas et al. (2012) and robotics Elias & Wen (2025); Manocha & Canny (1992).
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The multivariate polynomial decomposition problem has been proved to be NP-hard by Dickerson Dickerson (1987;
1993), although efficient algorithms for various special cases are discussed in Gathen et al. (2003); Von Zur Gathen
(1990a;b); Faugère & Perret (2009a;b); Zhao et al. (2012). Crucially, all existing methods either require multiple
polynomials as input (system-based approaches) or are restricted to univariate/special structural cases. We are the first
to address single-polynomial multi-multivariate decomposition over integers, a problem class for which no general
algorithms exist.

To illustrate the difficulty of the problem for the models, let us consider the following expression
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It has a hidden O(3)-symmetry, which can be revealed by decomposing f = g ◦ h, with g(y) = y2 + 2(4 + y)3 and
h = a1b1 + a2b2 + a3b3. This is a highly nontrivial task to identify the inner function h directly from the expanded
form of f , as its structure becomes completely obscured after polynomial substitution, expansion and simplification.
Even in this relatively constrained case where g is univariate, discovering the decomposition requires recognizing
non-linear latent patterns across dozens of terms. When g becomes multivariate, the complexity increases substantially,
making the problem even more challenging.

To tackle the polynomial decomposition problem, we develop a systematic approach with four key components. First,
we create a backward synthetic data generation pipeline that allows fine-grained control over polynomial complexity
involving range of coefficients, degree, and number of variables. Second, we train lightweight transformer models on
these synthetic datasets using supervised learning and analyze how performance scales across four axes (performance
complexity scaling, architecture scaling, distribution adaptation, search strategy analysis). Third, we discover that both
multi-sampling and greedy search methods struggle with the sparse solution space of the polynomial decomposition
problem, and we implement a beam search strategy to effectively extract the models’ capabilities. Finally, to address the
computational intensity of beam search, we develop a rank-aware variant of the Grouped Relative Policy Optimization
(GRPO) reinforcement learning algorithm, which encodes rank information directly in the reward function.

While our systematic evaluation employs synthetic data for controlled complexity analysis, the approach extends to
real-world domain-specific decompositions. Applications in crystal field theory (extracting symmetry coefficients),
robotics (polynomial barrier certificates), and error correction (syndrome polynomial factorization) typically involve
additional structural constraints that make them more tractable than our general case. Our supplementary experiments
on O(N) singlet identification achieved 100% accuracy, demonstrating successful transfer to structured problems
representative of these applications.

Our study makes the following contributions to neural approaches for polynomial decomposition. First, our backward
data generation pipeline enables targeted training across varying levels of decomposition difficulty. Second, our
comprehensive evaluation across four dimensions, for the first time, establishes robust baselines for transformers’
performance on polynomial decomposition tasks. Third, using the rank-aware Beam Grouped Relative Policy Opti-
mization (BGRPO), our models improve accuracy while reducing beam search width by up to 50%, resulting in 75%
lower computational requirements during inference. Additionally, our model demonstrates competitive performance
in polynomial simplification, outperforming Mathematica in various cases. This underscores the potential of neural
models to complement and extend classical symbolic computation capabilities.

2 METHOD

2.1 BACKWARD SYNTHETIC DATA GENERATION

We generate synthetic data for supervised learning using a backward approach, starting from the decomposed form.
First, we generate the inner functions (h1, . . . , hm in Eq. equation 1) and the outer function (g in Eq. equation 1)
with random monomial terms of bounded degree and random coefficients within a given range. Then, we obtain the
composed function (f in Eq. equation 1) via substitution, expansion, and term collection. See Appendix A for the
detailed algorithm. For each generated instance, we create a training pair consisting of the expanded polynomial f as
input and its decomposed components {g, h1, . . . , hvouter} as the target output. The model is trained to minimize the
standard negative log-likelihood loss function.
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Our synthetic data generation process provides fine-grained control over problem complexity through eight parameters:
Cinner (coefficient range for inner polynomials), dinner (maximum degree of inner polynomials), vinner (number of
variables in inner polynomials), tinner (maximum number of terms in inner polynomials), and similarly Couter, douter,
vouter, and touter for the outer polynomial.

2.2 BEAM SEARCH

Beam search is a breadth-first search algorithm that approximates optimal decoding by keeping track of the k most
probable sequences at each step Freitag & Al-Onaizan (2017). For each of the k current sequences, the algorithm
considers the top-k token extensions per sequence. These k2 candidate continuations are then ranked by the sum of log
probabilities of all tokens in the sequence, and only the top-k sequences with the highest cumulative log probability are
retained for the next step. In this paper, we refer to k as the beam width, and to the position (1st, 2nd, etc.) of an output
in the final beam as its rank.

Our analysis across all model outputs identified a specific error pattern in polynomial decomposition: the model
achieves approximately 90% accuracy for predicting non-sign tokens (operators, numbers, variables), but exhibits
near-random performance for deciding between positive and negative signs. This creates a unique inference challenge
where exploration needs to be constrained for high-confidence structural elements while simultaneously expanded for
uncertain sign choices.

Beam search is particularly well-suited for this situation as it maintains the high-confidence structural backbone while
systematically exploring variations in the uncertain components. Our experiments demonstrate that beam search
significantly outperforms greedy decoding and random sampling for polynomial decomposition tasks. See Appendix C
for a detailed error analysis and an explanation of beam search effectiveness for this task.

2.3 BGRPO : REINFORCEMENT LEARNING METHOD ENHANCING BEAM SEARCH EFFICIENCY

The computational cost of beam search scales quadratically with beam width. There would be a significant computational
advantage if we could improve the ranks of correct outputs. To address this, we introduce Beam Grouped Relative
Policy Optimization (BGRPO), a reinforcement learning method that extends GRPO, uniquely taking into account
rankings in the beam search, specifically designed for improving beam search inference efficiency.

Traditional RL methods like PPO Schulman et al. (2017) and standard GRPO create a training-inference mismatch: they
train on randomly sampled outputs but deploy beam search at inference. BGRPO addresses this by incorporating beam
search directly into the training loop, aligning training with deployment. While GRPO assumes independent samples
for baseline calculation, beam search generates correlated outputs that share high-confidence structural elements but
differ in uncertain components.

Reinforcement learning enables models to explore solution spaces more effectively than supervised learning alone,
enhancing the model’s capabilities by addressing specific weaknesses through a reward mechanism. This approach
encourages correct answers while discouraging incorrect ones based on an advantage function—the difference between
a solution’s reward and a baseline reward. Group Relative Policy Optimization (GRPO) Shao et al. (2024) estimates this
baseline for each question by sampling a group of outputs, and has shown promising results for reinforcement learning
in language generation tasks due to its sample efficiency and stability DeepSeek-AI (2025).

Our proposed Beam Grouped Relative Policy Optimization (BGRPO) extends this approach by using beam search
rather than independent sampling for generating the group of outputs. While this significantly alters the distribution of
outputs, making their average reward less suitable as a traditional baseline, it still provides valid training signals by
reinforcing correct answers and penalizing incorrect ones. BGRPO is particularly effective for our task because beam
search generates outputs with identical structure that differ only in the confusing elements (signs), creating a focused
learning signal.

Additionally, BGRPO incorporates rank information directly into the reward function by applying an exponential decay
factor based on the position in the beam. This incentivizes correct answers to appear at earlier positions in the beam
search, effectively pushing correct solutions toward the top of the beam ranking.

Training Objective For a prompt x, let B(x) = {y1, . . . , yw} be the set of beam search outputs with beam width w
generated by the old policy πθold . Each output sequence yi receives a reward ri, where ri = 0 for incorrect polynomial
decomposition and ri = 1 for correct decomposition. In BGRPO, we incorporate rank information by scaling the
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reward for correct decompositions using an exponential decay function e−rank/w. We optimize the policy model πθ for
µ iterations by maximizing the following objective:

JBGRPO(θ) =
1

w

w∑
i=1

(
min

(
πθ(yi|x)

πθold(yi|x)
Ai, clip

(
πθ(yi|x)

πθold(yi|x)
, 1− ε, 1 + ε

)
Ai

)
− βDKL(πθ||πref)

)
, (2)

where ε is the clipping parameter that constrains policy updates and β controls the KL divergence regularization term:

DKL(πθ||πref) =
πref(oi|q)
πθ(oi|q)

− log
πref(oi|q)
πθ(oi|q)

− 1. (3)

Here, πref is the reference policy, which is the initial model before BGRPO training. The advantage function Ai is
computed without normalization as Ai = ri −mean({r1, r2, · · · , rw}), following the approach in Liu et al. (2025).

3 EXPERIMENTAL SETUP

3.1 EVALUATION AXES

To systematically analyze our models’ capabilities for the polynomial decomposition problem, we consider four key
evaluation dimensions.

Problem Complexity Scaling (D1). We analyze how the model performance varies with respect to changes in the
complexity parameters for synthetic data generation. We vary the number of variables vinner, vouter, and the maximum
degrees dinner, douter for both the inner and outer polynomials.

Architecture Scaling (D2). We investigate how model performance scales with key architectural hyperparameters of
the transformer. In particular, we measure P(M(d, l, a)), the performance of models with embedding dimension d,
number of layers l, and number of attention heads a. Our goal is to characterize how these hyperparameters influence
model capabilities.

Distribution Adaptation (D3). A practical challenge in applying transformers to symbolic computation is their
sensitivity to the numerical ranges present in the training data. For example, models trained on specific coefficient
ranges tend to struggle with polynomials outside these ranges. On the other hand, we found that models can rapidly adapt
to new coefficient distributions with minimal additional training, suggesting that they manage to learn generalizable
pattern recognition rather than merely memorizing specific numerical relationships.

To quantify the model’s ability to transfer its polynomial decomposition skills to numerically distinct but structurally
identical problems, we prepare the model Mn

C1→C2
. This model is initially trained on 1M polynomial decomposition

examples with Couter = C1 and then fine-tuned with n examples with Couter = C2 where C1 ∩ C2 = ∅. We measure
the performance of model Mn

C1→C2
on a test set of polynomial decomposition problems with Couter = C2:

G(n) = P
(
Mn

C1→C2
, test set with Couter = C2

)
(4)

Search Strategy Analysis (D4). We investigate how beam search enhances model performance on polynomial
decomposition tasks, analyzing its effectiveness across different model architectures and levels of problem complexity.

3.2 SYNTHETIC DATASET SETUP

For the axis D1 of the problem complexity scaling, we first examine degree scaling by training a model on 2M
polynomial decomposition examples with different inner and outer degrees as described in Table 1. We then evaluate
this model on separate test datasets with the same configuration parameters, each corresponding to one of nine different
(dinner, douter) pairs to assess performance across varying problem complexities.

For the second part of the D1 axis, we train a model for each combination of vinner and vouter varying from 2 to 4 while
fixing the other parameter at 3. For each combination, we use 1M examples to train the model.

For the axis D2 of architecture scaling, we train multiple models with varying architectural configurations, all using the
same dataset of 2M examples with polynomial parameters as described in Table 1.
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For the axis D3 of distribution adaptation, we train initial models on 1M examples with Couter = C1 = [−5, 5] and
then adapt them to examples with Couter = C2 = [−10,−6] ∪ [6, 10]. Other parameters are the same across both
datasets as described in Table 1.

For the second part of D1 (Variable Scaling) and D2, we set tinner = touter = 3 to prevent expressions from becoming
too long. We describe our tokenization in Appendix B.

Table 1: Synthetic Dataset Configuration Across Evaluation Axes

Evaluation Axis Inner Coeff. Outer Coeff. Inner Degrees Outer Degrees Inner Vars Outer Vars

D1 (Degree Scaling) [−20, 20] [−20, 20] {2, 3, 4} {2, 3, 4} 1 1
D1 (Variable Scaling) [−5, 5] [−5, 5] 3 3 {2, 3, 4} {2, 3, 4}
D2 (Architecture) [−5, 5] [−5, 5] 3 3 3 3

D3 (Adaptation) [−20, 20] C1 = [−5, 5] {1, 2} {1, 2, 3, 4} 1 1
[−20, 20] C2 = [−10,−6] ∪ [6, 10] {1, 2} {1, 2, 3, 4} 1 1

3.3 ARCHITECTURE CONFIGURATION

We employ a decoder-only transformer architecture following standard design principles Vaswani et al. (2017). Table 2
summarizes our task-specific configurations across all experimental axes. For lightweight and effective training, we
developed our own model and training pipeline based on minGPT Karpathy (2020).

Table 2: Transformer Model Configuration Across Experiments

Experiment Context Window Embedding Dim. Layers Heads

D1 (Degree Scaling) 256 512 6 8
D1 (Variable Scaling) 850 512 6 8

D2 (Architecture) 850 {256, 512, 768} {4, 6} 8
D2 (Attention Heads) 850 512 6 {4, 8, 16}

D3 (Distribution) 256 512 4 8

Common settings: GELU activation, learned positional embeddings, multi-head attention with causal masking, MLP hidden
dimension = 4× embedding dimension.

3.4 SUPERVISED LEARNING DETAILS

We train our models using the Adam optimizer with an initial learning rate of 6× 10−4, incorporating a 10% warmup
period followed by cosine decay. Each configuration initially trains on 1M instances, with additional 1M training
examples added incrementally until performance saturation. We use a batch size of 200 throughout training. We train
models with enough epochs until it saturates with the given dataset.

3.5 BGRPO IMPLEMENTATION

For the BGRPO reinforcement learning phase, we generate candidate solutions using beam search with a width of 32
and temperature of 1.0. We implement our approach using the GRPO functionality from the trl library von Werra
et al. (2020). The training process consists of 5 policy update iterations after sampling outputs for 8 distinct polynomial
decomposition problems. We set the PPO clipping parameter ε to 0.2 and the KL divergence coefficient β to 0.01.
The learning rate during BGRPO training is 1× 10−5. We train models from D2 on a dataset of 200 non-repeating
problems, saving checkpoints every 5 iterations and selecting the best model based on performance with beam width 7.
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4 EXPERIMENTAL RESULTS

4.1 PROBLEM COMPLEXITY SCALING (D1)

In the first part of D1, we examine how model performance varies with the degrees of inner and outer polynomials. The
result is shown in Figure 1. We use greedy search for the inference. Regardless of the degrees of the polynomials, our
model achieves a remarkable single-output accuracy. Notably, when using beam search with a width of 10, the model’s
accuracy reaches 100% for these configurations.

Our analysis reveals a pattern: performance remains invariant to increases in the outer polynomial’s degree, while
decreasing when the inner polynomial’s degree increases. This demonstrates that the transformer’s decomposition
capability is primarily limited by the complexity of the inner polynomial rather than that of the outer polynomial.

In the second part of D1, we investigate how the performance scales with vinner and vouter, the number of variables in
the inner and outer polynomials. Figures 2 and 3 present these results.

Figure 1: Performance across different
dinner, douter

Figure 2: Performance across
different vouter

Figure 3: Performance across
different vinner

Given the challenging nature of multivariate polynomial decomposition, we evaluate the model’s performance using
beam search with a width of 30, considering a prediction correct if at least one of the 30 candidate outputs is correct
decomposition.

Our results reveal two trends: performance decreases dramatically as vouter increases, yet counter-intuitively improves
as vinner increases. This observation aligns with the following heuristic understanding: higher vouter creates an
information bottleneck, requiring the model to simultaneously resolve multiple interdependent inner functions. In
contrast, higher vinner provides more dimensions of input variation with additional structural indicators that can guide
the decomposition process.

4.2 ARCHITECTURE SCALING (D2)

Figure 4: Accuracies on different number of
layer and dimension.

In D2, we examine how model performance varies with architectural
parameters: embedding dimension, number of layers, and number
of attention heads. When varying the number of heads, we maintain
a constant total embedding dimension, meaning that models with
more heads have smaller per-head embedding dimensions. We use the
dataset described in Section 3.2 and evaluate using beam search with
a width of 30.

Figure 4 reveals the scaling behavior Kaplan et al. (2020) of trans-
former architectures on polynomial decomposition. As model capacity
increases through higher embedding dimensions and additional layers,
performance consistently improves.

Notably, our results demonstrate the presence of a data-dependent scal-
ing threshold. With limited training data (1M examples), larger models
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initially underperform their simpler counterparts, particularly evident
in the 6-layer configurations with higher embedding dimensions. How-

ever, this pattern reverses completely with additional training data, confirming that larger models possess superior
capacity for mathematical pattern recognition when provided with sufficient examples to leverage their parametric
advantage.

In D2, we also examine model performance with different numbers of attention heads. Our experiments reveal that
increasing the number of attention heads while maintaining constant total embedding dimension leads to progressively
deteriorating performance on polynomial decomposition tasks. Models with 4 heads achieved 32.0% accuracy, while
those with 8 and 16 heads reached only 28.0% and 25.0% accuracy, respectively. This suggests that for our specific task
of mathematical pattern recognition, fewer, more expressive attention heads with larger per-head dimensions provide
better performance than numerous specialized heads with smaller dimensions.

4.3 DISTRIBUTION ADAPTATION (D3)

We evaluate G(n) as defined in Eq. 4, which measures how quickly models adapt to new coefficient distributions as a
function of adaptation sample size n. For this experiment, we train a model with 4 layers and 512 embedding dimension
on the dataset described in Section 3.2. The initial training used 1M examples with outer polynomial coefficient range
C1, followed by fine-tuning on n examples with coefficient range C2 for a single epoch. We report the variance in
accuracy based on three independent trials.

Figure 5: Performance recovery when adapting
to a new coefficient distribution

Models trained exclusively on the first dataset achieve only
5.67% accuracy on the new distribution, despite reaching nearly
100% accuracy on the original distribution. Figure 5 illustrates
how performance recovers during adaptation. Notably, despite
using only ≈ 2% of the original training data size, the model
rapidly recovers its accuracy from single digits to over 90%.
This rapid adaptation indicates successful transfer learning, sug-
gesting that the model develops a general mathematical under-
standing of polynomial substructures rather than memorizing
specific numerical relationships.

We further investigate whether alternative data representations
could enhance this adaptation capability. We propose "split"
representation of polynomials, where we randomly select terms
from the expanded form and split their coefficients. For exam-
ple:

fnon-split(a) = −63 + 23a− 71a2 − 11a3 − 14a4 − 12a5 − 2a6

fsplit(a) = −63 + 23a− 4a2 − 67a2 − 8a3 − 3a3 − 7a4 − 7a4 − 12a5 − a6 − a6
(5)

In Figure 5, the red line demonstrates G(n) of the model trained on data with both normal and split representation.
Models trained on this mixed data including split representation demonstrate significantly faster adaptation, requiring
only 70% of the additional training examples to reach equivalent performance on the new distribution.

This enhanced generalization likely stems from the model being forced to recognize mathematically equivalent but
differently represented polynomials, compelling it to develop a deeper understanding of polynomial structure rather
than memorizing specific patterns.

4.4 SEARCH STRATEGY ANALYSIS (D4)

We evaluate how search strategies impact model performance on polynomial decomposition tasks, with a particular
focus on beam search efficiency. Figure 6 and 7 illustrate the accuracy achieved across different beam widths for
polynomials with varying numbers of variables.

Our results reveal an unusually dramatic impact of beam search for polynomial decomposition compared to typical NLP
tasks. For two-variable polynomials, accuracy improves from 11% with greedy search to 69% with a beam width of

7
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Figure 6: Beam width scaling with varying
vouter (vinner = 3)

Figure 7: Beam width scaling with varying
vinner (vouter = 3)

30—a remarkable 6.3× improvement. This stands in stark contrast to standard neural machine translation applications,
where beam search typically yields BLEU score improvements of only 2-4 points Huang et al. (2018); Ranzato et al.
(2016). Even more telling, most NMT systems show diminishing returns with beam widths beyond 5-10 Freitag &
Al-Onaizan (2017).

4.5 BGRPO RESULTS

We evaluated BGRPO across models of varying sizes from our architecture scaling experiments(D2), implementing
versions both with and without rank signal. Fig 8 illustrates these results.

BGRPO consistently improved accuracy across all beam widths regardless of model size. Without rank signal, BGRPO
gives average accuracy increases of 34.0%, 17.8%, and 12.4% for 6-layer models with dimension 256, 512, and 768
respectively. Including rank signal in BGRPO produces even more improvements, with average accuracy increases of
46.6%, 28.4%, and 30.2%.

These improvements translate to significant computational efficiency gains. For instance, the dimension-256 model
initially achieved 26.1% accuracy with beam width 30. After applying BGRPO with rank signal, comparable accuracy
(26.0%) was achieved with just beam width 16. This effectively halves the required beam width for equivalent
performance. Since beam search computation scales quadratically with beam width, this improvement reduces beam
search computation by approximately 75% while maintaining equivalent performance.

On average, BGRPO without rank signal reduced the required beam width by 31.3%, 14.9%, and 11.4% for 6-layer
models with dimension 256, 512, and 768 respectively. When incorporating rank signal, BGRPO reduced required
beam width even further, by 38.9%, 22.0%, and 26.5%.

4.6 SIMPLIFICATION COMPARISON WITH MATHEMATICA

While polynomial simplification and polynomial decomposition represent two distinct mathematical objectives, sim-
plification frequently arises as a consequence of decomposition, since decomposed forms generally exhibit reduced
algebraic complexity compared to the original expression. In this subsection, we briefly explore the capabilities of our
models for this related problem, and benchmark against the most powerful symbolic computation engine Mathematica.
Despite our lightweight parameter budgets and the absence of any explicit simplification objective in our training, the
models were able to reduce the leaf count Wolfram Research, Inc. (1996) of complex expressions, with performance on
par with — and in two of five complexity regimes surpassing —Mathematica’s state-of-the-art FullSimplify function
(see Table 3, competitive performances are bolded).

These findings highlight that transformers’ inherent ability to uncover latent patterns rivals that of the most advanced
symbolic computation methods.
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Figure 8: Accuracies on experiments with different dimension. Each experiment we have finetuned model with 2M data
and models trained with BGRPO with and without rank signal on top of that.

Table 3: Average leaf count comparison (Beam width = 30)

Problem Complexity Leaf Count (mean)

vO vS Transformer Mathematica ∆

2 3 27.28 30.03 -2.75
3 3 22.85 22.12 0.73
4 3 22.52 20.00 2.52
3 2 17.27 17.10 0.17
3 4 26.04 27.56 -1.52

5 CONCLUSION

Our investigation into transformers for polynomial decomposition uncovers key insights into how neural networks can
infer hidden algebraic structures.

We find that model performance depends asymmetrically on polynomial complexity parameters (D1): inner polynomial
degree plays a dominant role, while outer polynomial complexity has limited impact. Counterintuitively, increasing the
number of inner variables improves accuracy by imposing structural constraints, whereas more outer variables create
information bottlenecks.

From an architectural viewpoint (D2), we confirm that performance scales with model size. We observe that fewer but
more expressive attention heads are especially effective for this task. In terms of distribution adaptation (D3), models
transfer rapidly to new coefficient distributions, requiring as little as 2% of the original training data, indicating that they
internalize generalizable principles rather than rely on memorization. Moreover, we can enhance this generalization
capability through strategic dataset design.

Beam search analysis (D4) yields up to 6.3× improvement over greedy decoding due to the sparse, precise nature
of mathematical solutions. Models finetuned with our rank-aware BGRPO reinforcement learning method achieve
equivalent accuracy with up to 50% smaller beam widths, cutting inference computation by approximately 75%. Lastly,
our model demonstrates competitive performance in polynomial simplification compared with symbolic computation
tools in Mathematica.

Our work provides, for the first time, a systematic analysis of transformer capabilities for polynomial decomposition
through carefully controlled experiments across four dimensions. Our methodologies can serve as a road map
for exploring neural models in other domains that require non-local latent pattern discovery, such as functional
decomposition problems ranging from systems engineering and mechanical design to digital logic design. While we
developed BGRPO specifically for enhancing beam search in the polynomial decomposition problem, similar techniques
may prove useful in other domains with sparse solution spaces where models can identify correct structures but struggle
with specific details.
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A BACKWARD SYNTHETIC DATA GENERATION ALGORITHM

Our backward synthetic data generation in subsection 2.1 can be described as follows. [H] [1] Coefficient range
Cinner, Couter; maximal degrees dinner, douter; variable counts vinner, vouter; term limits tinner, touter. Generate outer
polynomial g with vouter variables, coefficients ∈ Couter, degree = douter, and no more than touter monomial terms.
Generate vouter inner polynomials h1, . . . , hvouter , where each hi has vinner variables, coefficients ∈ Cinner, degree
= dinner, and no more than tinner monomial terms. f ← g(h1, . . . , hvouter), i.e. substitute h1, . . . , hvouter into g, expand
and collect the monomial terms. return (f, g, h1, . . . , hvouter)

B TOKENIZATION

We encode polynomials using prefix notation, with separate tokens for operators, digits, and variables. Each number
includes its sign, so we only use addition, multiplication, and power operators. Subtraction is represented as addition
with a negative sign. Each input sequence consists of the tokenized expanded polynomial f followed by a question
mark token ’?’. The target output format depends on the number of outer variables: for vouter = 1, the target output is
simply the tokenized inner polynomial h; for vouter > 1, the target output begins with the tokenized outer polynomial g
followed by each tokenized inner polynomial h1, . . . , hvouter , with all polynomials separated by a delimiter token ’&’.

Below is an example of a tokenized training input ’x’ and target output ’y’:

x : + ∗ P 9 0 a + ∗ N 3 1 9 ˆ a P 2 + ∗ N 3 6 ˆ a P 3 ∗ N 1 ˆ a P 4 ? +N 5 + ∗ P 1 8 a ˆ a P 2 □ . . .
y :□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□+ N 5 + ∗ P 1 8 a ˆ a P 2□□ . . .

This example shows a training pair where the outer polynomial is 90a − 319a2 − 36a3 − a4 and the target inner
polynomial is −5 + 18a+ a2. The □ symbol represents a padding token which is excluded from the log-likelihood
loss calculation.

C EXAMPLE OUPUT LOGITS AND EFFECTIVENESS OF THE BEAM SEARCH

Figure 9 shows example top-3 probabilities for each token position in the answer sequence at temperature 1, using
the layer-6, embedding dimension 512 model from our D2 experiments. Correct answers are highlighted in red. The
visualization clearly illustrates that the model’s primary source of confusion occurs in sign decisions, while it confidently
predicts most of the other token types.

Table 4 quantifies this observation by showing the probability and accuracy statistics for different token types across
our model architectures from D2. These statistics were computed using a test set of 1000 polynomial decomposition
problems at temperature 1.
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Figure 9: Top-3 probability for each token position in the answer sequence where

Answer: + * N 5 ^ b1 P 3 + * N 4 * b0 ^ b2 P 2 * N 5 ^ b2 P 3 & + * P 2 * ^ a0 P 2 a2 * N 2 * a0 * a1
a2 & + * N 5 ^ a0 P 3 + * P 4 * ^ a0 P 2 a2 * N 5 * a0 * a1 a2 & + * P 4 * a0 * a1 a2 * P 2 * a1 ^ a2 P 2

Question: + * P 6 2 5 ^ a0 P 9 + * N 1 5 0 0 * ^ a0 P 8 a2 + * P 1 8 7 5 * ^ a0 P 7 * a1 a2 + * P 1 2 0
0 * ^ a0 P 7 ^ a2 P 2 + * N 3 0 0 0 * ^ a0 P 6 * a1 ^ a2 P 2 + * P 1 8 7 5 * ^ a0 P 5 * ^ a1 P 2 ^ a2 P 2 + * N 3 2 0 * ^ a0
P 6 ^ a2 P 3 + * P 1 2 0 0 * ^ a0 P 5 * a1 ^ a2 P 3 + * N 1 6 2 8 * ^ a0 P 4 * ^ a1 P 2 ^ a2 P 3 + * P 4 3 3 * ^ a0 P 3 * ^
a1 P 3 ^ a2 P 3 + * N 1 2 8 * ^ a0 P 3 * ^ a1 P 2 ^ a2 P 4 + * N 3 5 2 * ^ a0 P 2 * ^ a1 P 3 ^ a2 P 4 + * N 3 2 * ^ a0 P 2
* ^ a1 P 2 ^ a2 P 5 + * N 2 0 8 * a0 * ^ a1 P 3 ^ a2 P 5 * N 4 0 * ^ a1 P 3 ^ a2 P 6 ?
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Table 4: Token Type Analysis Across Different Model Architectures

Token Type Metric 4 Layers 6 Layers
256 dim 512 dim 768 dim 256 dim 512 dim 768 dim

Sign Probability 0.489± 0.001 0.489± 0.001 0.493± 0.001 0.491± 0.001 0.490± 0.001 0.490± 0.001
Accuracy 0.519± 0.006 0.531± 0.006 0.530± 0.006 0.522± 0.006 0.523± 0.006 0.521± 0.006

Operator Probability 0.920± 0.002 0.915± 0.002 0.919± 0.002 0.927± 0.002 0.925± 0.002 0.925± 0.002
Accuracy 0.937± 0.002 0.934± 0.002 0.935± 0.002 0.943± 0.002 0.941± 0.002 0.942± 0.002

Number Probability 0.880± 0.002 0.870± 0.002 0.878± 0.002 0.890± 0.002 0.885± 0.002 0.884± 0.002
Accuracy 0.901± 0.002 0.893± 0.003 0.897± 0.002 0.911± 0.002 0.905± 0.002 0.903± 0.002

Note: Values shown as mean ± standard error of the mean. The sign token probabilities are near-random, while operators and
numbers show high confidence and accuracy.

As discussed in Section 2.2, our models achieve approximately 90% accuracy when predicting non-sign tokens, but
exhibit near-random performance when choosing between positive and negative signs. This specific error pattern makes
beam search particularly effective for our task.

The effectiveness of beam search stems from its ability to explore multiple sign configurations while preserving the
high-confidence structural tokens. In probability terms, selecting a token with 0.1 probability instead of one with
0.9 probability is equivalent to making approximately 11 consecutive choices of a 0.45 probability token over a 0.55
probability token. Since our polynomial expressions typically contain fewer than 10 sign decisions, beam search with a
width of approximately 30 can efficiently cover most viable sign permutations while maintaining the correct monomial
structure identified with high confidence.

D ATTENTION SCORE ANALYSIS: MONOMIAL HEADS

Attention mechanism analysis has provided valuable insights into transformer model behaviors, with studies identifying
specialized attention heads that serve specific functions. For example, Olsson et al. (2022) identified "Induction Heads"
that play a crucial role in in-context learning, while Wang et al. (2022) provided a comprehensive understanding of
indirect object identification in GPT-2 Small.

In our analysis of attention patterns in polynomial decomposition models, we identified specialized attention heads that
recognize the structure of polynomials, particularly focusing on monomial identification. We call these "Monomial
Heads," and they appear consistently across all model sizes in our architecture scaling experiments (D2).

Monomial Heads manifest in two distinct patterns in our models. First, in layer 0, several attention heads consistently
attend to tokens 1-5 positions behind the current position, as shown in the leftmost plot of Figure 10. Second, in layer
1, we observe specialized behavior where certain heads focus attention on specific tokens within each monomial of
the input polynomial (middle plot), while others specifically attend to delimiter tokens in the decomposition output
(rightmost plot).

We hypothesize that this represents a two-stage process: in the first layer, the model identifies key tokens that serve as
indicators for each monomial by examining local context (1-5 tokens behind). In the second layer, tokens within each
monomial attend to these indicator tokens to establish their monomial membership. While this pattern is most clear in
the encoding of the input polynomial, the decomposition output shows evidence of boundary recognition, particularly at
the transitions between inner functions marked by delimiter tokens.
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Figure 10: Attention score visualization of selected attention heads from our 6-layer transformer model with embedding
dimension 768. The visualization shows attention patterns for a tokenized polynomial sequence and its decomposition.

Input polynomial: + ∗ P 2 5 6 ∧ a0 P 9 + ∗ N 1 9 2 ∗ ∧ a0 P 8 a1 + ∗ P 4 8 ∗ ∧ a0 P 7 ∧ a1 P 2 + ∗ N 4 ∗
∧ a0 P 6 ∧ a1 P 3 + ∗ N 6 4 ∗ ∧ a0 P 3 ∧ a1 P 6 + ∗ P 1 6 ∗ ∧ a0 P 2 ∧ a1 P 7 ∗ P 6 4 ∧ a1 P 9 ?

Model’s decomposition output: + ∗ N 4 ∧ b0 P 3 + ∗ b0 ∧ b2 P 2 ∗ N 1 ∧ b2 P 3 & + ∗ N 4 ∧ a0 P 3 ∗ ∧
a0 P 2 a1 & + ∗ N 3 ∧ a1 P 3 + ∗ N 2 ∗ a1 ∧ a2 P 2 ∗ N 4 ∧ a2 P 3 & ∗ N 4 ∧ a1 P 3 The visualization reveals how different
attention heads focus on specific structural elements when decomposing polynomials.
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