
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

DISCOVERING HIDDEN ALGEBRAIC STRUCTURES VIA TRANS-
FORMERS WITH RANK-AWARE BEAM GRPO

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent efforts have extended the capabilities of transformers in logical reasoning and symbolic
computations. In this work, we investigate their capacity for non-linear latent pattern discovery in
the context of functional decomposition, focusing on the challenging algebraic task of multivariate
polynomial decomposition. This problem, with widespread applications in science and engineering, is
proved to be NP-hard, and demands both precision and insight. Our contributions are threefold: First,
we develop a synthetic data generation pipeline providing fine-grained control over problem com-
plexity. Second, we train transformer models via supervised learning and evaluate them across four
key dimensions involving scaling behavior and generalizability. Third, we propose Beam Grouped
Relative Policy Optimization (BGRPO), a rank-aware reinforcement learning method suitable for
hard algebraic problems. Finetuning with BGRPO improves accuracy while reducing beam width
by up to half, resulting in approximately 75% lower inference compute. Additionally, our model
demonstrates competitive performance in polynomial simplification, outperforming Mathematica in
various cases.

1 INTRODUCTION

Transformers, initially developed for natural language processing Vaswani et al. (2017), have shown remarkable
versatility across diverse domains such as vision Dosovitskiy et al. (2020) and protein folding Jumper et al. (2021).
More recently, their applications in formal reasoning, symbolic mathematics and algorithmic tasks start to gain
traction. Several works have showcased transformer-based architectures’ ability to tackle highly structured problems,
including theorem proving Polu & Sutskever (2020); Trinh et al. (2024), integration Lample & Charton (2020), matrix
multiplication Fawzi et al. (2022) and equation solving Drori et al. (2022).

In this work, we investigate the transformer’s capacity for non-linear latent pattern discovery in the context of functional
decomposition, i.e. decomposing a complex function as the composition of simpler sub-functions. In contrast to
step-by-step logical deduction, or pattern recognition in data analysis, functional decomposition poses significant new
challenges to the transformer, because the forms of the sub-functions that we try to discover can be totally hidden or
obscured in the final compact form of the original function. Furthermore, it requires extreme precision without any
margin of error. Unlike more forgiving classification tasks, the decomposition problem admits only a sparse set of
correct solutions: even minor deviations in signs or coefficients can render outputs completely invalid.

Beyond its theoretical interest, functional decomposition has ubiquitous applications in software engineering Tempero
et al. (2024), systems biology Mori et al. (2023), mechanical design She et al. (2024), systems engineering Hernandez
et al. (2024) and digital logic design Adamski et al. (2005); Lin et al. (2008), where capturing hidden substructures
within high-dimensional functions leads to more tractable and efficient models. However, identifying a function’s latent
compositional structure requires models to look past surface-level correlations, attending instead to deep algebraic
symmetries and invariants.

A particularly rich case of functional decomposition arises in multivariate polynomial functions. The polynomial
decomposition problem over a ring k seeks to decompose a given polynomial f ∈ k[x1, . . . , xn] into polynomials
g ∈ k[y1, . . . , ym] and h1, . . . , hm ∈ k[x1, . . . , xn] such that

f(x1, . . . , xn) = g
(
h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)

)
. (1)

It has wide-ranging applications from cryptography Patarin & Goubin (1997) to dynamical modeling Dang & Testylier
(2012), signal processing Demirtas et al. (2012) and robotics Elias & Wen (2025); Manocha & Canny (1992).

1

052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103

The multivariate polynomial decomposition problem has been proved to be NP-hard by Dickerson Dickerson (1987;
1993), although efficient algorithms for various special cases are discussed in Gathen et al. (2003); Von Zur Gathen
(1990a;b); Faugère & Perret (2009a;b); Zhao et al. (2012). Crucially, all existing methods either require multiple
polynomials as input (system-based approaches) or are restricted to univariate/special structural cases. We are the first
to address single-polynomial multi-multivariate decomposition over integers, a problem class for which no general
algorithms exist.

To illustrate the difficulty of the problem for the models, let us consider the following expression
f =2a31b

3
1 + 25a21b

2
1 + 6a21a2b2b

2
1 + 6a21a3b3b

2
1 + 6a1a

2
2b

2
2b1 + 6a1a

2
3b

2
3b1

+ 96a1b1 + 50a1a2b2b1 + 50a1a3b3b1 + 12a1a2a3b2b3b1 + 2a32b
3
2 + 2a33b

3
3

+ 25a22b
2
2 + 25a23b

2
3 + 6a2a

2
3b2b

2
3 + 96a2b2 + 6a22a3b

2
2b3 + 96a3b3

+ 50a2a3b2b3 + 128

It has a hidden O(3)-symmetry, which can be revealed by decomposing f = g ◦ h, with g(y) = y2 + 2(4 + y)3 and
h = a1b1 + a2b2 + a3b3. This is a highly nontrivial task to identify the inner function h directly from the expanded
form of f , as its structure becomes completely obscured after polynomial substitution, expansion and simplification.
Even in this relatively constrained case where g is univariate, discovering the decomposition requires recognizing
non-linear latent patterns across dozens of terms. When g becomes multivariate, the complexity increases substantially,
making the problem even more challenging.

To tackle the polynomial decomposition problem, we develop a systematic approach with four key components. First,
we create a backward synthetic data generation pipeline that allows fine-grained control over polynomial complexity
involving range of coefficients, degree, and number of variables. Second, we train lightweight transformer models on
these synthetic datasets using supervised learning and analyze how performance scales across four axes (performance
complexity scaling, architecture scaling, distribution adaptation, search strategy analysis). Third, we discover that both
multi-sampling and greedy search methods struggle with the sparse solution space of the polynomial decomposition
problem, and we implement a beam search strategy to effectively extract the models’ capabilities. Finally, to address the
computational intensity of beam search, we develop a rank-aware variant of the Grouped Relative Policy Optimization
(GRPO) reinforcement learning algorithm, which encodes rank information directly in the reward function.

While our systematic evaluation employs synthetic data for controlled complexity analysis, the approach extends to
real-world domain-specific decompositions. Applications in crystal field theory (extracting symmetry coefficients),
robotics (polynomial barrier certificates), and error correction (syndrome polynomial factorization) typically involve
additional structural constraints that make them more tractable than our general case. Our supplementary experiments
on O(N) singlet identification achieved 100% accuracy, demonstrating successful transfer to structured problems
representative of these applications.

Our study makes the following contributions to neural approaches for polynomial decomposition. First, our backward
data generation pipeline enables targeted training across varying levels of decomposition difficulty. Second, our
comprehensive evaluation across four dimensions, for the first time, establishes robust baselines for transformers’
performance on polynomial decomposition tasks. Third, using the rank-aware Beam Grouped Relative Policy Opti-
mization (BGRPO), our models improve accuracy while reducing beam search width by up to 50%, resulting in 75%
lower computational requirements during inference. Additionally, our model demonstrates competitive performance
in polynomial simplification, outperforming Mathematica in various cases. This underscores the potential of neural
models to complement and extend classical symbolic computation capabilities.

2 METHOD

2.1 BACKWARD SYNTHETIC DATA GENERATION

We generate synthetic data for supervised learning using a backward approach, starting from the decomposed form.
First, we generate the inner functions (h1, . . . , hm in Eq. equation 1) and the outer function (g in Eq. equation 1)
with random monomial terms of bounded degree and random coefficients within a given range. Then, we obtain the
composed function (f in Eq. equation 1) via substitution, expansion, and term collection. See Appendix A for the
detailed algorithm. For each generated instance, we create a training pair consisting of the expanded polynomial f as
input and its decomposed components {g, h1, . . . , hvouter} as the target output. The model is trained to minimize the
standard negative log-likelihood loss function.

2

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Our synthetic data generation process provides fine-grained control over problem complexity through eight parameters:
Cinner (coefficient range for inner polynomials), dinner (maximum degree of inner polynomials), vinner (number of
variables in inner polynomials), tinner (maximum number of terms in inner polynomials), and similarly Couter, douter,
vouter, and touter for the outer polynomial.

2.2 BEAM SEARCH

Beam search is a breadth-first search algorithm that approximates optimal decoding by keeping track of the k most
probable sequences at each step Freitag & Al-Onaizan (2017). For each of the k current sequences, the algorithm
considers the top-k token extensions per sequence. These k2 candidate continuations are then ranked by the sum of log
probabilities of all tokens in the sequence, and only the top-k sequences with the highest cumulative log probability are
retained for the next step. In this paper, we refer to k as the beam width, and to the position (1st, 2nd, etc.) of an output
in the final beam as its rank.

Our analysis across all model outputs identified a specific error pattern in polynomial decomposition: the model
achieves approximately 90% accuracy for predicting non-sign tokens (operators, numbers, variables), but exhibits
near-random performance for deciding between positive and negative signs. This creates a unique inference challenge
where exploration needs to be constrained for high-confidence structural elements while simultaneously expanded for
uncertain sign choices.

Beam search is particularly well-suited for this situation as it maintains the high-confidence structural backbone while
systematically exploring variations in the uncertain components. Our experiments demonstrate that beam search
significantly outperforms greedy decoding and random sampling for polynomial decomposition tasks. See Appendix C
for a detailed error analysis and an explanation of beam search effectiveness for this task.

2.3 BGRPO : REINFORCEMENT LEARNING METHOD ENHANCING BEAM SEARCH EFFICIENCY

The computational cost of beam search scales quadratically with beam width. There would be a significant computational
advantage if we could improve the ranks of correct outputs. To address this, we introduce Beam Grouped Relative
Policy Optimization (BGRPO), a reinforcement learning method that extends GRPO, uniquely taking into account
rankings in the beam search, specifically designed for improving beam search inference efficiency.

Traditional RL methods like PPO Schulman et al. (2017) and standard GRPO create a training-inference mismatch: they
train on randomly sampled outputs but deploy beam search at inference. BGRPO addresses this by incorporating beam
search directly into the training loop, aligning training with deployment. While GRPO assumes independent samples
for baseline calculation, beam search generates correlated outputs that share high-confidence structural elements but
differ in uncertain components.

Reinforcement learning enables models to explore solution spaces more effectively than supervised learning alone,
enhancing the model’s capabilities by addressing specific weaknesses through a reward mechanism. This approach
encourages correct answers while discouraging incorrect ones based on an advantage function—the difference between
a solution’s reward and a baseline reward. Group Relative Policy Optimization (GRPO) Shao et al. (2024) estimates this
baseline for each question by sampling a group of outputs, and has shown promising results for reinforcement learning
in language generation tasks due to its sample efficiency and stability DeepSeek-AI (2025).

Our proposed Beam Grouped Relative Policy Optimization (BGRPO) extends this approach by using beam search
rather than independent sampling for generating the group of outputs. While this significantly alters the distribution of
outputs, making their average reward less suitable as a traditional baseline, it still provides valid training signals by
reinforcing correct answers and penalizing incorrect ones. BGRPO is particularly effective for our task because beam
search generates outputs with identical structure that differ only in the confusing elements (signs), creating a focused
learning signal.

Additionally, BGRPO incorporates rank information directly into the reward function by applying an exponential decay
factor based on the position in the beam. This incentivizes correct answers to appear at earlier positions in the beam
search, effectively pushing correct solutions toward the top of the beam ranking.

Training Objective For a prompt x, let B(x) = {y1, . . . , yw} be the set of beam search outputs with beam width w
generated by the old policy πθold . Each output sequence yi receives a reward ri, where ri = 0 for incorrect polynomial
decomposition and ri = 1 for correct decomposition. In BGRPO, we incorporate rank information by scaling the

3

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

reward for correct decompositions using an exponential decay function e−rank/w. We optimize the policy model πθ for
µ iterations by maximizing the following objective:

JBGRPO(θ) =
1

w

w∑
i=1

(
min

(
πθ(yi|x)

πθold(yi|x)
Ai, clip

(
πθ(yi|x)

πθold(yi|x)
, 1− ε, 1 + ε

)
Ai

)
− βDKL(πθ||πref)

)
, (2)

where ε is the clipping parameter that constrains policy updates and β controls the KL divergence regularization term:

DKL(πθ||πref) =
πref(oi|q)
πθ(oi|q)

− log
πref(oi|q)
πθ(oi|q)

− 1. (3)

Here, πref is the reference policy, which is the initial model before BGRPO training. The advantage function Ai is
computed without normalization as Ai = ri −mean({r1, r2, · · · , rw}), following the approach in Liu et al. (2025).

3 EXPERIMENTAL SETUP

3.1 EVALUATION AXES

To systematically analyze our models’ capabilities for the polynomial decomposition problem, we consider four key
evaluation dimensions.

Problem Complexity Scaling (D1). We analyze how the model performance varies with respect to changes in the
complexity parameters for synthetic data generation. We vary the number of variables vinner, vouter, and the maximum
degrees dinner, douter for both the inner and outer polynomials.

Architecture Scaling (D2). We investigate how model performance scales with key architectural hyperparameters of
the transformer. In particular, we measure P(M(d, l, a)), the performance of models with embedding dimension d,
number of layers l, and number of attention heads a. Our goal is to characterize how these hyperparameters influence
model capabilities.

Distribution Adaptation (D3). A practical challenge in applying transformers to symbolic computation is their
sensitivity to the numerical ranges present in the training data. For example, models trained on specific coefficient
ranges tend to struggle with polynomials outside these ranges. On the other hand, we found that models can rapidly adapt
to new coefficient distributions with minimal additional training, suggesting that they manage to learn generalizable
pattern recognition rather than merely memorizing specific numerical relationships.

To quantify the model’s ability to transfer its polynomial decomposition skills to numerically distinct but structurally
identical problems, we prepare the model Mn

C1→C2
. This model is initially trained on 1M polynomial decomposition

examples with Couter = C1 and then fine-tuned with n examples with Couter = C2 where C1 ∩ C2 = ∅. We measure
the performance of model Mn

C1→C2
on a test set of polynomial decomposition problems with Couter = C2:

G(n) = P
(
Mn

C1→C2
, test set with Couter = C2

)
(4)

Search Strategy Analysis (D4). We investigate how beam search enhances model performance on polynomial
decomposition tasks, analyzing its effectiveness across different model architectures and levels of problem complexity.

3.2 SYNTHETIC DATASET SETUP

For the axis D1 of the problem complexity scaling, we first examine degree scaling by training a model on 2M
polynomial decomposition examples with different inner and outer degrees as described in Table 1. We then evaluate
this model on separate test datasets with the same configuration parameters, each corresponding to one of nine different
(dinner, douter) pairs to assess performance across varying problem complexities.

For the second part of the D1 axis, we train a model for each combination of vinner and vouter varying from 2 to 4 while
fixing the other parameter at 3. For each combination, we use 1M examples to train the model.

For the axis D2 of architecture scaling, we train multiple models with varying architectural configurations, all using the
same dataset of 2M examples with polynomial parameters as described in Table 1.

4

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

For the axis D3 of distribution adaptation, we train initial models on 1M examples with Couter = C1 = [−5, 5] and
then adapt them to examples with Couter = C2 = [−10,−6] ∪ [6, 10]. Other parameters are the same across both
datasets as described in Table 1.

For the second part of D1 (Variable Scaling) and D2, we set tinner = touter = 3 to prevent expressions from becoming
too long. We describe our tokenization in Appendix B.

Table 1: Synthetic Dataset Configuration Across Evaluation Axes

Evaluation Axis Inner Coeff. Outer Coeff. Inner Degrees Outer Degrees Inner Vars Outer Vars

D1 (Degree Scaling) [−20, 20] [−20, 20] {2, 3, 4} {2, 3, 4} 1 1
D1 (Variable Scaling) [−5, 5] [−5, 5] 3 3 {2, 3, 4} {2, 3, 4}
D2 (Architecture) [−5, 5] [−5, 5] 3 3 3 3

D3 (Adaptation) [−20, 20] C1 = [−5, 5] {1, 2} {1, 2, 3, 4} 1 1
[−20, 20] C2 = [−10,−6] ∪ [6, 10] {1, 2} {1, 2, 3, 4} 1 1

3.3 ARCHITECTURE CONFIGURATION

We employ a decoder-only transformer architecture following standard design principles Vaswani et al. (2017). Table 2
summarizes our task-specific configurations across all experimental axes. For lightweight and effective training, we
developed our own model and training pipeline based on minGPT Karpathy (2020).

Table 2: Transformer Model Configuration Across Experiments

Experiment Context Window Embedding Dim. Layers Heads

D1 (Degree Scaling) 256 512 6 8
D1 (Variable Scaling) 850 512 6 8

D2 (Architecture) 850 {256, 512, 768} {4, 6} 8
D2 (Attention Heads) 850 512 6 {4, 8, 16}

D3 (Distribution) 256 512 4 8

Common settings: GELU activation, learned positional embeddings, multi-head attention with causal masking, MLP hidden
dimension = 4× embedding dimension.

3.4 SUPERVISED LEARNING DETAILS

We train our models using the Adam optimizer with an initial learning rate of 6× 10−4, incorporating a 10% warmup
period followed by cosine decay. Each configuration initially trains on 1M instances, with additional 1M training
examples added incrementally until performance saturation. We use a batch size of 200 throughout training. We train
models with enough epochs until it saturates with the given dataset.

3.5 BGRPO IMPLEMENTATION

For the BGRPO reinforcement learning phase, we generate candidate solutions using beam search with a width of 32
and temperature of 1.0. We implement our approach using the GRPO functionality from the trl library von Werra
et al. (2020). The training process consists of 5 policy update iterations after sampling outputs for 8 distinct polynomial
decomposition problems. We set the PPO clipping parameter ε to 0.2 and the KL divergence coefficient β to 0.01.
The learning rate during BGRPO training is 1× 10−5. We train models from D2 on a dataset of 200 non-repeating
problems, saving checkpoints every 5 iterations and selecting the best model based on performance with beam width 7.

5

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

4 EXPERIMENTAL RESULTS

4.1 PROBLEM COMPLEXITY SCALING (D1)

In the first part of D1, we examine how model performance varies with the degrees of inner and outer polynomials. The
result is shown in Figure 1. We use greedy search for the inference. Regardless of the degrees of the polynomials, our
model achieves a remarkable single-output accuracy. Notably, when using beam search with a width of 10, the model’s
accuracy reaches 100% for these configurations.

Our analysis reveals a pattern: performance remains invariant to increases in the outer polynomial’s degree, while
decreasing when the inner polynomial’s degree increases. This demonstrates that the transformer’s decomposition
capability is primarily limited by the complexity of the inner polynomial rather than that of the outer polynomial.

In the second part of D1, we investigate how the performance scales with vinner and vouter, the number of variables in
the inner and outer polynomials. Figures 2 and 3 present these results.

Figure 1: Performance across different
dinner, douter

Figure 2: Performance across
different vouter

Figure 3: Performance across
different vinner

Given the challenging nature of multivariate polynomial decomposition, we evaluate the model’s performance using
beam search with a width of 30, considering a prediction correct if at least one of the 30 candidate outputs is correct
decomposition.

Our results reveal two trends: performance decreases dramatically as vouter increases, yet counter-intuitively improves
as vinner increases. This observation aligns with the following heuristic understanding: higher vouter creates an
information bottleneck, requiring the model to simultaneously resolve multiple interdependent inner functions. In
contrast, higher vinner provides more dimensions of input variation with additional structural indicators that can guide
the decomposition process.

4.2 ARCHITECTURE SCALING (D2)

Figure 4: Accuracies on different number of
layer and dimension.

In D2, we examine how model performance varies with architectural
parameters: embedding dimension, number of layers, and number
of attention heads. When varying the number of heads, we maintain
a constant total embedding dimension, meaning that models with
more heads have smaller per-head embedding dimensions. We use the
dataset described in Section 3.2 and evaluate using beam search with
a width of 30.

Figure 4 reveals the scaling behavior Kaplan et al. (2020) of trans-
former architectures on polynomial decomposition. As model capacity
increases through higher embedding dimensions and additional layers,
performance consistently improves.

Notably, our results demonstrate the presence of a data-dependent scal-
ing threshold. With limited training data (1M examples), larger models

6

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

initially underperform their simpler counterparts, particularly evident
in the 6-layer configurations with higher embedding dimensions. How-

ever, this pattern reverses completely with additional training data, confirming that larger models possess superior
capacity for mathematical pattern recognition when provided with sufficient examples to leverage their parametric
advantage.

In D2, we also examine model performance with different numbers of attention heads. Our experiments reveal that
increasing the number of attention heads while maintaining constant total embedding dimension leads to progressively
deteriorating performance on polynomial decomposition tasks. Models with 4 heads achieved 32.0% accuracy, while
those with 8 and 16 heads reached only 28.0% and 25.0% accuracy, respectively. This suggests that for our specific task
of mathematical pattern recognition, fewer, more expressive attention heads with larger per-head dimensions provide
better performance than numerous specialized heads with smaller dimensions.

4.3 DISTRIBUTION ADAPTATION (D3)

We evaluate G(n) as defined in Eq. 4, which measures how quickly models adapt to new coefficient distributions as a
function of adaptation sample size n. For this experiment, we train a model with 4 layers and 512 embedding dimension
on the dataset described in Section 3.2. The initial training used 1M examples with outer polynomial coefficient range
C1, followed by fine-tuning on n examples with coefficient range C2 for a single epoch. We report the variance in
accuracy based on three independent trials.

Figure 5: Performance recovery when adapting
to a new coefficient distribution

Models trained exclusively on the first dataset achieve only
5.67% accuracy on the new distribution, despite reaching nearly
100% accuracy on the original distribution. Figure 5 illustrates
how performance recovers during adaptation. Notably, despite
using only ≈ 2% of the original training data size, the model
rapidly recovers its accuracy from single digits to over 90%.
This rapid adaptation indicates successful transfer learning, sug-
gesting that the model develops a general mathematical under-
standing of polynomial substructures rather than memorizing
specific numerical relationships.

We further investigate whether alternative data representations
could enhance this adaptation capability. We propose "split"
representation of polynomials, where we randomly select terms
from the expanded form and split their coefficients. For exam-
ple:

fnon-split(a) = −63 + 23a− 71a2 − 11a3 − 14a4 − 12a5 − 2a6

fsplit(a) = −63 + 23a− 4a2 − 67a2 − 8a3 − 3a3 − 7a4 − 7a4 − 12a5 − a6 − a6
(5)

In Figure 5, the red line demonstrates G(n) of the model trained on data with both normal and split representation.
Models trained on this mixed data including split representation demonstrate significantly faster adaptation, requiring
only 70% of the additional training examples to reach equivalent performance on the new distribution.

This enhanced generalization likely stems from the model being forced to recognize mathematically equivalent but
differently represented polynomials, compelling it to develop a deeper understanding of polynomial structure rather
than memorizing specific patterns.

4.4 SEARCH STRATEGY ANALYSIS (D4)

We evaluate how search strategies impact model performance on polynomial decomposition tasks, with a particular
focus on beam search efficiency. Figure 6 and 7 illustrate the accuracy achieved across different beam widths for
polynomials with varying numbers of variables.

Our results reveal an unusually dramatic impact of beam search for polynomial decomposition compared to typical NLP
tasks. For two-variable polynomials, accuracy improves from 11% with greedy search to 69% with a beam width of

7

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

Figure 6: Beam width scaling with varying
vouter (vinner = 3)

Figure 7: Beam width scaling with varying
vinner (vouter = 3)

30—a remarkable 6.3× improvement. This stands in stark contrast to standard neural machine translation applications,
where beam search typically yields BLEU score improvements of only 2-4 points Huang et al. (2018); Ranzato et al.
(2016). Even more telling, most NMT systems show diminishing returns with beam widths beyond 5-10 Freitag &
Al-Onaizan (2017).

4.5 BGRPO RESULTS

We evaluated BGRPO across models of varying sizes from our architecture scaling experiments(D2), implementing
versions both with and without rank signal. Fig 8 illustrates these results.

BGRPO consistently improved accuracy across all beam widths regardless of model size. Without rank signal, BGRPO
gives average accuracy increases of 34.0%, 17.8%, and 12.4% for 6-layer models with dimension 256, 512, and 768
respectively. Including rank signal in BGRPO produces even more improvements, with average accuracy increases of
46.6%, 28.4%, and 30.2%.

These improvements translate to significant computational efficiency gains. For instance, the dimension-256 model
initially achieved 26.1% accuracy with beam width 30. After applying BGRPO with rank signal, comparable accuracy
(26.0%) was achieved with just beam width 16. This effectively halves the required beam width for equivalent
performance. Since beam search computation scales quadratically with beam width, this improvement reduces beam
search computation by approximately 75% while maintaining equivalent performance.

On average, BGRPO without rank signal reduced the required beam width by 31.3%, 14.9%, and 11.4% for 6-layer
models with dimension 256, 512, and 768 respectively. When incorporating rank signal, BGRPO reduced required
beam width even further, by 38.9%, 22.0%, and 26.5%.

4.6 SIMPLIFICATION COMPARISON WITH MATHEMATICA

While polynomial simplification and polynomial decomposition represent two distinct mathematical objectives, sim-
plification frequently arises as a consequence of decomposition, since decomposed forms generally exhibit reduced
algebraic complexity compared to the original expression. In this subsection, we briefly explore the capabilities of our
models for this related problem, and benchmark against the most powerful symbolic computation engine Mathematica.
Despite our lightweight parameter budgets and the absence of any explicit simplification objective in our training, the
models were able to reduce the leaf count Wolfram Research, Inc. (1996) of complex expressions, with performance on
par with — and in two of five complexity regimes surpassing —Mathematica’s state-of-the-art FullSimplify function
(see Table 3, competitive performances are bolded).

These findings highlight that transformers’ inherent ability to uncover latent patterns rivals that of the most advanced
symbolic computation methods.

8

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

1 5 10 15 20 25 30
Beam Width

0
5

10
15
20
25
30
35

Ac
cu

ra
cy

 (%
)

26.1%
30.2%
31.7%

Accuracy @30

Dimension 256

1 5 10 15 20 25 30
Beam Width

0
5

10
15
20
25
30
35

Ac
cu

ra
cy

 (%
)

29.5%
32.0%
33.5%

Accuracy @30

Dimension 512
Before BGRPO After BGRPO without rank signal After BGRPO with rank signal

1 5 10 15 20 25 30
Beam Width

0
5

10
15
20
25
30
35

Ac
cu

ra
cy

 (%
)

32.1%
33.9%
35.4%

Accuracy @30

Dimension 768

BGRPO on finetuned models with layer 6

Figure 8: Accuracies on experiments with different dimension. Each experiment we have finetuned model with 2M data
and models trained with BGRPO with and without rank signal on top of that.

Table 3: Average leaf count comparison (Beam width = 30)

Problem Complexity Leaf Count (mean)

vO vS Transformer Mathematica ∆

2 3 27.28 30.03 -2.75
3 3 22.85 22.12 0.73
4 3 22.52 20.00 2.52
3 2 17.27 17.10 0.17
3 4 26.04 27.56 -1.52

5 CONCLUSION

Our investigation into transformers for polynomial decomposition uncovers key insights into how neural networks can
infer hidden algebraic structures.

We find that model performance depends asymmetrically on polynomial complexity parameters (D1): inner polynomial
degree plays a dominant role, while outer polynomial complexity has limited impact. Counterintuitively, increasing the
number of inner variables improves accuracy by imposing structural constraints, whereas more outer variables create
information bottlenecks.

From an architectural viewpoint (D2), we confirm that performance scales with model size. We observe that fewer but
more expressive attention heads are especially effective for this task. In terms of distribution adaptation (D3), models
transfer rapidly to new coefficient distributions, requiring as little as 2% of the original training data, indicating that they
internalize generalizable principles rather than rely on memorization. Moreover, we can enhance this generalization
capability through strategic dataset design.

Beam search analysis (D4) yields up to 6.3× improvement over greedy decoding due to the sparse, precise nature
of mathematical solutions. Models finetuned with our rank-aware BGRPO reinforcement learning method achieve
equivalent accuracy with up to 50% smaller beam widths, cutting inference computation by approximately 75%. Lastly,
our model demonstrates competitive performance in polynomial simplification compared with symbolic computation
tools in Mathematica.

Our work provides, for the first time, a systematic analysis of transformer capabilities for polynomial decomposition
through carefully controlled experiments across four dimensions. Our methodologies can serve as a road map
for exploring neural models in other domains that require non-local latent pattern discovery, such as functional
decomposition problems ranging from systems engineering and mechanical design to digital logic design. While we
developed BGRPO specifically for enhancing beam search in the polynomial decomposition problem, similar techniques
may prove useful in other domains with sparse solution spaces where models can identify correct structures but struggle
with specific details.

9

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

ACKNOWLEDGMENTS

REFERENCES

Marian Andrzej Adamski, Andrei Karatkevich, Marek Wegrzyn, Mariusz Rawski, Tadeusz Łuba, Zbigniew Jachna,
and Paweł Tomaszewicz. The influence of functional decomposition on modern digital design process. Design of
Embedded Control Systems, pp. 193–204, 2005.

Thao Dang and Romain Testylier. Reachability analysis for polynomial dynamical systems using the bernstein expansion.
Reliab. Comput., 17(2):128–152, 2012.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Sefa Demirtas, Guolong Su, and Alan V Oppenheim. Sensitivity of polynomial composition and decomposition for
signal processing applications. In 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals,
Systems and Computers (ASILOMAR), pp. 391–395. IEEE, 2012.

Matthew T Dickerson. Polynomial decomposition algorithms for multivariate polynomials. Technical report, Cornell
University, 1987.

Matthew T Dickerson. General polynomial decomposition and the s-1-decomposition are np-hard. International
Journal of Foundations of Computer Science, 4(02):147–156, 1993.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard Tang, Albert Lu, Elizabeth Ke, Kevin Liu, Linda Chen,
Sunny Tran, Newman Cheng, et al. A neural network solves, explains, and generates university math problems by
program synthesis and few-shot learning at human level. Proceedings of the National Academy of Sciences, 119(32):
e2123433119, 2022.

Alexander J Elias and John T Wen. Ik-geo: Unified robot inverse kinematics using subproblem decomposition.
Mechanism and Machine Theory, 209:105971, 2025.

Jean-Charles Faugère and Ludovic Perret. An efficient algorithm for decomposing multivariate polynomials and its
applications to cryptography. Journal of Symbolic Computation, 44(12):1676–1689, 2009a.

Jean-Charles Faugère and Ludovic Perret. High order derivatives and decomposition of multivariate polynomials. In
Proceedings of the 2009 international symposium on Symbolic and algebraic computation, pp. 207–214, 2009b.

Alhussein Fawzi, Khurram Kozhasov, Micah Goldblum, Jens Behrmann, Chaoning Zhang, Fabian Fuchs, Po-Sen
Huang, Lala Li, and Pushmeet Kohli. Discovering faster matrix multiplication algorithms with reinforcement learning.
In International Conference on Machine Learning (ICML), 2022.

Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation. In Proceedings
of the First Workshop on Neural Machine Translation. Association for Computational Linguistics, 2017. doi:
10.18653/v1/w17-3207. URL http://dx.doi.org/10.18653/v1/W17-3207.

Joachim von zur Gathen, Jaime Gutierrez, and Rosario Rubio. Multivariate polynomial decomposition. Applicable
Algebra in Engineering, Communication and Computing, 14(1):11–31, 2003.

Isabella Hernandez, Bryan C Watson, Marc J Weissburg, and Bert Bras. Using functional decomposition to bridge the
design gap between desired emergent multi-agent-system resilience and individual agent design. Systems Engineering,
27(5):911–930, 2024.

Liang Huang, Kai Zhao, and Mingbo Ma. When to finish? optimal beam search for neural text generation (modulo
beam size), 2018. URL https://arxiv.org/abs/1809.00069.

10

https://arxiv.org/abs/2501.12948
http://dx.doi.org/10.18653/v1/W17-3207
https://arxiv.org/abs/1809.00069

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasu-
vunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction with
alphafold. nature, 596(7873):583–589, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, and Tom B. Brown. Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361, 2020.

Andrej Karpathy. mingpt. https://github.com/karpathy/minGPT, 2020.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv preprint arXiv:2006.02974,
2020.

Hsuan-Po Lin, Jie-Hong R Jiang, and Ruei-Rung Lee. To sat or not to sat: Ashenhurst decomposition in a large scale.
In 2008 IEEE/ACM International Conference on Computer-Aided Design, pp. 32–37. IEEE, 2008.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin. Understanding
r1-zero-like training: A critical perspective, 2025. URL https://arxiv.org/abs/2503.20783.

Dinesh Manocha and John F Canny. Real time inverse kinematics for general 6r manipulators. In ICRA, pp. 383–389,
1992.

Matteo Mori, Chuankai Cheng, Brian R Taylor, Hiroyuki Okano, and Terence Hwa. Functional decomposition of
metabolism allows a system-level quantification of fluxes and protein allocation towards specific metabolic functions.
Nature Communications, 14(1):4161, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez,
Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark,
Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning and induction heads. Transformer Circuits
Thread, 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

Jacques Patarin and Louis Goubin. Asymmetric cryptography with s-boxes is it easier than expected to design efficient
asymmetric cryptosystems? In International Conference on Information and Communications Security, pp. 369–380.
Springer, 1997.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training with recurrent
neural networks, 2016. URL https://arxiv.org/abs/1511.06732.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K.
Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models,
2024. URL https://arxiv.org/abs/2402.03300.

Jinjuan She, Elise Belanger, and Caroline Bartels. Evaluating the effectiveness of functional decomposition in early-
stage design: development and application of problem space exploration metrics. Research in Engineering Design,
35(3):311–327, 2024.

Ewan Tempero, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, Diana Kirk, Juho Leinonen, Asma Shakil,
Robert Sheehan, James Tizard, Yu-Cheng Tu, et al. On the comprehensibility of functional decomposition: An
empirical study. In Proceedings of the 32nd IEEE/ACM International Conference on Program Comprehension, pp.
214–224, 2024.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry without human
demonstrations. Nature, 625(7995):476–482, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

11

https://github.com/karpathy/minGPT
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/1511.06732
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan Lambert, Shengyi
Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement learning. https://github.
com/huggingface/trl, 2020.

Joachim Von Zur Gathen. Functional decomposition ofpolynomials: the tame case. Journal of Symbolic Computation,
9(3):281–299, 1990a.

Joachim Von Zur Gathen. Functional decomposition of polynomials: the wild case. Journal of Symbolic Computation,
10(5):437–452, 1990b.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretability in the wild: a
circuit for indirect object identification in gpt-2 small, 2022. URL https://arxiv.org/abs/2211.00593.

Wolfram Research, Inc. ComplexityFunction – Wolfram Language Documentation. https://reference.
wolfram.com/language/ref/ComplexityFunction.html, 1996. Accessed 12 May 2025.

Shangwei Zhao, Ruyong Feng, and Xiao-Shan Gao. On functional decomposition of multivariate polynomials with
differentiation and homogenization. Journal of Systems Science and Complexity, 25(2):329–347, 2012.

A BACKWARD SYNTHETIC DATA GENERATION ALGORITHM

Our backward synthetic data generation in subsection 2.1 can be described as follows. [H] [1] Coefficient range
Cinner, Couter; maximal degrees dinner, douter; variable counts vinner, vouter; term limits tinner, touter. Generate outer
polynomial g with vouter variables, coefficients ∈ Couter, degree = douter, and no more than touter monomial terms.
Generate vouter inner polynomials h1, . . . , hvouter , where each hi has vinner variables, coefficients ∈ Cinner, degree
= dinner, and no more than tinner monomial terms. f ← g(h1, . . . , hvouter), i.e. substitute h1, . . . , hvouter into g, expand
and collect the monomial terms. return (f, g, h1, . . . , hvouter)

B TOKENIZATION

We encode polynomials using prefix notation, with separate tokens for operators, digits, and variables. Each number
includes its sign, so we only use addition, multiplication, and power operators. Subtraction is represented as addition
with a negative sign. Each input sequence consists of the tokenized expanded polynomial f followed by a question
mark token ’?’. The target output format depends on the number of outer variables: for vouter = 1, the target output is
simply the tokenized inner polynomial h; for vouter > 1, the target output begins with the tokenized outer polynomial g
followed by each tokenized inner polynomial h1, . . . , hvouter , with all polynomials separated by a delimiter token ’&’.

Below is an example of a tokenized training input ’x’ and target output ’y’:

x : + ∗ P 9 0 a + ∗ N 3 1 9 ˆ a P 2 + ∗ N 3 6 ˆ a P 3 ∗ N 1 ˆ a P 4 ? +N 5 + ∗ P 1 8 a ˆ a P 2 □ . . .
y :□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□+ N 5 + ∗ P 1 8 a ˆ a P 2□□ . . .

This example shows a training pair where the outer polynomial is 90a − 319a2 − 36a3 − a4 and the target inner
polynomial is −5 + 18a+ a2. The □ symbol represents a padding token which is excluded from the log-likelihood
loss calculation.

C EXAMPLE OUPUT LOGITS AND EFFECTIVENESS OF THE BEAM SEARCH

Figure 9 shows example top-3 probabilities for each token position in the answer sequence at temperature 1, using
the layer-6, embedding dimension 512 model from our D2 experiments. Correct answers are highlighted in red. The
visualization clearly illustrates that the model’s primary source of confusion occurs in sign decisions, while it confidently
predicts most of the other token types.

Table 4 quantifies this observation by showing the probability and accuracy statistics for different token types across
our model architectures from D2. These statistics were computed using a test set of 1000 polynomial decomposition
problems at temperature 1.

12

https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://arxiv.org/abs/2211.00593
https://reference.wolfram.com/language/ref/ComplexityFunction.html
https://reference.wolfram.com/language/ref/ComplexityFunction.html

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

Figure 9: Top-3 probability for each token position in the answer sequence where

Answer: + * N 5 ^ b1 P 3 + * N 4 * b0 ^ b2 P 2 * N 5 ^ b2 P 3 & + * P 2 * ^ a0 P 2 a2 * N 2 * a0 * a1
a2 & + * N 5 ^ a0 P 3 + * P 4 * ^ a0 P 2 a2 * N 5 * a0 * a1 a2 & + * P 4 * a0 * a1 a2 * P 2 * a1 ^ a2 P 2

Question: + * P 6 2 5 ^ a0 P 9 + * N 1 5 0 0 * ^ a0 P 8 a2 + * P 1 8 7 5 * ^ a0 P 7 * a1 a2 + * P 1 2 0
0 * ^ a0 P 7 ^ a2 P 2 + * N 3 0 0 0 * ^ a0 P 6 * a1 ^ a2 P 2 + * P 1 8 7 5 * ^ a0 P 5 * ^ a1 P 2 ^ a2 P 2 + * N 3 2 0 * ^ a0
P 6 ^ a2 P 3 + * P 1 2 0 0 * ^ a0 P 5 * a1 ^ a2 P 3 + * N 1 6 2 8 * ^ a0 P 4 * ^ a1 P 2 ^ a2 P 3 + * P 4 3 3 * ^ a0 P 3 * ^
a1 P 3 ^ a2 P 3 + * N 1 2 8 * ^ a0 P 3 * ^ a1 P 2 ^ a2 P 4 + * N 3 5 2 * ^ a0 P 2 * ^ a1 P 3 ^ a2 P 4 + * N 3 2 * ^ a0 P 2
* ^ a1 P 2 ^ a2 P 5 + * N 2 0 8 * a0 * ^ a1 P 3 ^ a2 P 5 * N 4 0 * ^ a1 P 3 ^ a2 P 6 ?

13

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

Table 4: Token Type Analysis Across Different Model Architectures

Token Type Metric 4 Layers 6 Layers
256 dim 512 dim 768 dim 256 dim 512 dim 768 dim

Sign Probability 0.489± 0.001 0.489± 0.001 0.493± 0.001 0.491± 0.001 0.490± 0.001 0.490± 0.001
Accuracy 0.519± 0.006 0.531± 0.006 0.530± 0.006 0.522± 0.006 0.523± 0.006 0.521± 0.006

Operator Probability 0.920± 0.002 0.915± 0.002 0.919± 0.002 0.927± 0.002 0.925± 0.002 0.925± 0.002
Accuracy 0.937± 0.002 0.934± 0.002 0.935± 0.002 0.943± 0.002 0.941± 0.002 0.942± 0.002

Number Probability 0.880± 0.002 0.870± 0.002 0.878± 0.002 0.890± 0.002 0.885± 0.002 0.884± 0.002
Accuracy 0.901± 0.002 0.893± 0.003 0.897± 0.002 0.911± 0.002 0.905± 0.002 0.903± 0.002

Note: Values shown as mean ± standard error of the mean. The sign token probabilities are near-random, while operators and
numbers show high confidence and accuracy.

As discussed in Section 2.2, our models achieve approximately 90% accuracy when predicting non-sign tokens, but
exhibit near-random performance when choosing between positive and negative signs. This specific error pattern makes
beam search particularly effective for our task.

The effectiveness of beam search stems from its ability to explore multiple sign configurations while preserving the
high-confidence structural tokens. In probability terms, selecting a token with 0.1 probability instead of one with
0.9 probability is equivalent to making approximately 11 consecutive choices of a 0.45 probability token over a 0.55
probability token. Since our polynomial expressions typically contain fewer than 10 sign decisions, beam search with a
width of approximately 30 can efficiently cover most viable sign permutations while maintaining the correct monomial
structure identified with high confidence.

D ATTENTION SCORE ANALYSIS: MONOMIAL HEADS

Attention mechanism analysis has provided valuable insights into transformer model behaviors, with studies identifying
specialized attention heads that serve specific functions. For example, Olsson et al. (2022) identified "Induction Heads"
that play a crucial role in in-context learning, while Wang et al. (2022) provided a comprehensive understanding of
indirect object identification in GPT-2 Small.

In our analysis of attention patterns in polynomial decomposition models, we identified specialized attention heads that
recognize the structure of polynomials, particularly focusing on monomial identification. We call these "Monomial
Heads," and they appear consistently across all model sizes in our architecture scaling experiments (D2).

Monomial Heads manifest in two distinct patterns in our models. First, in layer 0, several attention heads consistently
attend to tokens 1-5 positions behind the current position, as shown in the leftmost plot of Figure 10. Second, in layer
1, we observe specialized behavior where certain heads focus attention on specific tokens within each monomial of
the input polynomial (middle plot), while others specifically attend to delimiter tokens in the decomposition output
(rightmost plot).

We hypothesize that this represents a two-stage process: in the first layer, the model identifies key tokens that serve as
indicators for each monomial by examining local context (1-5 tokens behind). In the second layer, tokens within each
monomial attend to these indicator tokens to establish their monomial membership. While this pattern is most clear in
the encoding of the input polynomial, the decomposition output shows evidence of boundary recognition, particularly at
the transitions between inner functions marked by delimiter tokens.

14

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

Figure 10: Attention score visualization of selected attention heads from our 6-layer transformer model with embedding
dimension 768. The visualization shows attention patterns for a tokenized polynomial sequence and its decomposition.

Input polynomial: + ∗ P 2 5 6 ∧ a0 P 9 + ∗ N 1 9 2 ∗ ∧ a0 P 8 a1 + ∗ P 4 8 ∗ ∧ a0 P 7 ∧ a1 P 2 + ∗ N 4 ∗
∧ a0 P 6 ∧ a1 P 3 + ∗ N 6 4 ∗ ∧ a0 P 3 ∧ a1 P 6 + ∗ P 1 6 ∗ ∧ a0 P 2 ∧ a1 P 7 ∗ P 6 4 ∧ a1 P 9 ?

Model’s decomposition output: + ∗ N 4 ∧ b0 P 3 + ∗ b0 ∧ b2 P 2 ∗ N 1 ∧ b2 P 3 & + ∗ N 4 ∧ a0 P 3 ∗ ∧
a0 P 2 a1 & + ∗ N 3 ∧ a1 P 3 + ∗ N 2 ∗ a1 ∧ a2 P 2 ∗ N 4 ∧ a2 P 3 & ∗ N 4 ∧ a1 P 3 The visualization reveals how different
attention heads focus on specific structural elements when decomposing polynomials.

15

	Introduction
	Method
	Backward Synthetic Data Generation
	Beam Search
	BGRPO : Reinforcement Learning Method Enhancing Beam Search Efficiency

	Experimental Setup
	Evaluation Axes
	Synthetic Dataset Setup
	Architecture Configuration
	Supervised Learning Details
	BGRPO Implementation

	Experimental Results
	Problem Complexity Scaling (D1)
	Architecture Scaling (D2)
	Distribution Adaptation (D3)
	Search Strategy Analysis (D4)
	BGRPO Results
	Simplification Comparison with Mathematica

	Conclusion
	Backward Synthetic Data Generation Algorithm
	Tokenization
	Example Ouput Logits and Effectiveness of the Beam Search
	Attention Score Analysis: Monomial Heads

