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Abstract

Foundation models have transformed natural language processing and computer1

vision, and a rapidly growing literature on time-series foundation models (TSFMs)2

seeks to replicate this success in forecasting. While recent open-source mod-3

els demonstrate the promise of TSFMs, the field lacks a comprehensive and4

community-accepted model evaluation framework. We see at least four major issues5

impeding progress on the development of such a framework. First, current evalua-6

tion frameworks consist of benchmark forecasting tasks derived from often outdated7

datasets (e.g., M3), many of which lack clear metadata and overlap with the corpora8

used to pre-train TSFMs. Second, existing frameworks evaluate models along a9

narrowly defined set of benchmark forecasting tasks such as forecast horizon length10

or domain, but overlook core statistical properties such as non-stationarity and11

seasonality. Third, domain-specific models (e.g., XGBoost) are often compared12

unfairly, as existing frameworks neglect a systematic and consistent hyperparame-13

ter tuning convention for all models. Fourth, visualization tools for interpreting14

comparative performance are lacking. To address these issues, we introduce Tem-15

pusBench, an open-source evaluation framework. TempusBench consists of 1) new16

datasets which are not included in existing TSFM pretraining corpora, 2) a set of17

novel benchmark tasks that go beyond existing ones, and 3) a model evaluation18

pipeline with a standardized hyperparameter tuning protocol, and 4) a tensorboard-19

based visualization interface. We provide access to our code on GitHub: https:20

//anonymous.4open.science/r/benchmark-0634/README.md.21

1 Introduction22

The success of foundation models (i.e., models trained on large and diverse datasets that can be23

used to solve downstream tasks) in natural language processing (NLP) and computer vision has24

inspired an emerging literature on time-series foundation models. Time-series foundation models25

(TSFMs) are models that take past time-series data (and possibly covariate time-series data) as input26

and output future values (or distributions over them), typically formulated as neural networks trained27

via supervised learning. While about a dozen open-source TSFMs are now available, comparing their28

performance to one another and to traditional domain-specific models (e.g., ARIMA [1], SVR [2, 3])29

remains difficult. A handful of evaluation frameworks have been released, but the field still lacks30

comprehensive, community-accepted standards for model evaluation [4], creating an impediment for31

the replication of the success of foundation models in NLP and computer vision [5].32

We see four major challenges facing existing evaluation frameworks. First, the evaluation33

ecosystem relies on outdated datasets such as M3 [6] and M4 [7], many lacking metadata (e.g.,34

variable names). More importantly, the existing evaluation datasets overlap with the pretraining35

corpora of TSFMs, leading to inflated estimates of zero-shot generalization [8]. For example, except36

for Moirai2, all TSFMs assessed by GIFT-Eval include test data in their training corpus [9, 10].37

Second, current frameworks define benchmark forecasting tasks only along narrow axes (i.e., forecast38
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horizon, variate type, frequency, and domain). While useful, these miss key statistical properties39

long studied in time-series analysis such as (non-)stationarity, and seasonality. Without evaluation40

across such properties, it seems unlikely that frameworks can yield generalizable conclusions about41

model capabilities. Third, existing frameworks have not yet developed standardized hyperparameter42

tuning routines, leading to comparisons made between TSFMs and domain-specific models to be43

unfair as the performance of domain-specific models depend heavily on hyperparameter choice.144

Indeed, as noted by practitioners [11], simple statistical models with well-chosen hyperparameters45

can outperform more complex ones, highlighting the need for consistent tuning routines. Fourth,46

currently, evaluation typically reduces to numerical metrics such as mean squared error, which47

practitioners remark [12] provide limited interpretability. For instance, under GIFT-Eval, seasonal48

naive outperforms five open-source TSFMs, but this offers no insight into the strength and weaknesses49

of TSFMs, since seasonal naive fails when seasonality is weak. Beyond quantitative scores, qualitative50

analyses—especially forecast visualizations—are essential.51

To address these issues, we introduce TempusBench, an open-source evaluation framework. Tempus-52

Bench consists of 1) new datasets which are not included in existing TSFM pretraining corpora, 2) a53

set of novel benchmark tasks that goes beyond existing ones, , and 3) a model evaluation pipeline54

with a standardized hyperparameter tuning protocol, and 4) tensorboard-based visualization interface.55

1.1 Contributions56

TempusBench, going beyond TSFMs, includes 20 forecasting models , a number of which such57

as XGBoost, have previously not been considered by evaluation frameworks, and overcomes the58

aforementioned four issues by improving along the following dimensions. First, we introduce59

new time-series datasets which do not come from existing time-series evaluation datasets, and60

which are not contained in the training corpus of open-source TSFMs released to date. Second, we61

propose new benchmark task types that extend beyond horizon length, variate type, frequency, and62

domain. These include categories based on stationarity, seasonality, variable type (continuous, count,63

binary, categorical), sparsity (sparse vs. dense), dataset size (small vs. large), and quality (noisy64

vs. measurement error). Third, we introduce a model evaluation pipeline which runs a standardized65

and automated hyperparameter selection procedure for all forecasting models with hyperparameters,66

allowing a fair comparison of all forecasting methods. Fourth, TempusBench comes packages with67

a tensorboard-based visualization application which easily allows researchers and practitioners to68

visualize and interpret the performance of various models on different task types.69

Table 1: Property comparisons of various forecasting benchmarks.

Property Monash [13]TFB [14] LTSF [15]BasicTS+ [16] ProbTS [17] GIFT-Eval [9] TempusBench
Frequency
Range

Second
to Year

Minute
to Year

Minute
to Week

Minute
to Day

Minute
to Week

Second
to Year

Second
to Year

Num.
Domains 7 6 5 3 5 7 10

Train/Test
data leak ✓ ✓ ✓ ✓ ✓ ✓ ✗

Variate
Types Uni Uni/Multi Multi Multi Multi Uni/Multi Uni/Multi

Prediction
Length Short Short Long Short/Long Short/Long Short/Long Short/Long

Stat. Benchmarks ✗ ✗ ✗ ✗ ✗ ✗ ✓

Forecaster types Stat./DL Stat./DL Stat./DL Stat./DL Stat./DL/FM Stat./DL/FM Stat./ML/DL/FM
Hyperparam.
autotuning ✗ ✗ ✗ ✗ ✗ ✗ ✓

2 Background70

We refer the reader to Appendix A for the notational convention we adopt, as well as for additional71

mathematical preliminaries and evaluation metric definitions.72

1TSFMs require hyperparameter searches during pretraining, but not during evaluation.
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Forecasters A (time-series) forecasting task T .
= (l, h, n,m,X,Y,X ,Y ) consists of a context73

length l ∈ N, a forecast horizon h ∈ N, m ∈ N target time-series Y = (y1, . . . ,ym)T where for74

each variate i ∈ [m], entries of yi ∈ Y l
i take values from a set of target values Y ⊆ R, and n ∈ N75

covariate time-series X = (x1, . . . ,xn)
T where for each covariate j ∈ [n], xj ∈ X l+h takes values76

from a set of covariate values Xj ⊆ R. For convenience, we denote the joint set of target variate77

values by Y .
=×i∈[m]

Yi and the joint set of covariate values X .
=×j∈[n]

Xj . A forecasting task78

T is said to be univariate (resp. multivariate) iff m = 1 (m > 1). A forecasting task T is said to79

be unconditional (resp. conditional) iff n = 1 (resp. n > 1). A forecasting task T is said to be80

a continuous (resp. count | categorical | binary) forecasting task iff for all i ∈ [m] Yi ⊆ R is a81

continuous set (resp. Yi = N | Yi ⊊ N | Yi = {0, 1}).82

A (point) forecast for a forecasting task T is a matrix Ŷ
.
= (ŷ1, . . . , ŷm) s.t. for all target variates83

i ∈ [m], ŷi ∈ Yh
i corresponds to forecasted values of variate i for h steps. A (point) forecasting84

model (or, colloquially, a forecaster) is a mapping F : X l+h × Y l → Yh s.t. F (X ,Y )
.
=85

(f1(X ,Y ), . . . ,fm(X ,Y ))T is a forecast for T.2 A probabilistic forecasting model is a mapping86

π : X l+h × Y l → ∆(Yh) s.t. π(X ,Y )[Ŷ ] ≥ 0 denotes the probability of Ŷ ∈ Y l being realized.87

Forecasting Evaluation Frameworks In reality, many forecasters F θ : X l+h × Y l → Yh are88

dependent on some hyperparameters θ ∈ Θ, and it is more appropriate to talk about a family89

of forecasters FΘ .
= {F θ}θ∈Θ , and choose the forecaster with parameters which is the most90

appropriate for a forecasting task.391

A forecaster evaluation framework B .
= (p, q, E , {Θi}pi=1, {FΘi}pi=1, {Tj}j∈[q]) consists of p ∈ N92

familes of forecasters, with for each i ∈ [p], FΘi being defined by a set of hyperparameters Θi; q ∈ N93

forecasting tasks (or, colloquially, benchmarks, or benchmark tasks) {Tj}j∈[q] ; and a hyperparameter94

tuner E : X × Y → Θ, which takes as input a benchmark and outputs some hyperparameters.95

3 TempusBench96

In the workshop version of this paper, we release a restricted version of TempusBench, which is97

restricted to the evaluation of (point) forecasting models on unconditional time-series forecasting98

tasks. We describe in Section 4, additional extensions of TempusBench which will be released in the99

full-paper version.100

TempusBench, denoted BTB, is a forecasting evaluation framework where the hyperparameter tuner101

ETB is given by three-step procedure: given a benchmark, a (sub)set of hyperparameters, and a102

family of forecasters, 1) a validation dataset of subsets of the target and covariate time-series are103

created, 2) for each hyperparameter in the (sub)set of hyperparameters, the average MSE is computed104

across all samples in the validation dataset, 3) the hyperparameter with the lowest MSE is output. We105

summarize the set of families of forecasters, and the set of benchmarks included in TempusBench in106

Table 4 (Appendix B.1) and Table 6 (Appendix B.2) respectively.107

We include a summary of the results of TempusBench, in Table 3 and a visualization of the tensorboard108

interface.109

4 Next Directions and Conclusion110

We omit for the workshop version of TempusBench two directions in which we have been developing111

TempusBench, namely the inclusion of conditional forecasting problems, and the evaluation of112

probabilistic forecasting models. We plan to release this more general version of TempusBench in113

the coming months as part of the full-version of our paper.114

2While our definition is in line with the literatur [9], more generally, a forecaster can be defined as a mapping
from forecasting tasks to forecasts, i.e., T 7→ F (T) = Ŷ .

3For instance, the forecast of an ARIMA model is dependent on choices of hyperparameters given by the
order of number of time lags, the degree of differencing, and the order of the moving-average model, and it is
more appropriate to talk of the family of ARIMA models.
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Table 2: Taxonomy of all univariate and multivariate benchmark tasks included in TempusBench.

Category Benchmark Tasks

Movement Stationary, Non-Stationary
Data Quality Noisy data, Data with measurement error
Frequency Seconds, Minutes, Hours, Days, Weeks, Months, Quarterly, Years
Context Length 30, 100, 500, 1000
Forecast Horizon 1, 20, 100, 500, 1000
Seasonality Cyclical, Non-Stationary cyclical, Regressive, Irregular, Additive, Multiplicative
Domain Energy, Transport, Climate, Software, Web, Sales, Nature, Econ., Healthcare, Manufacturing
Dataset Coverage sparse, dense
Target Type continuous, count, binary, categorical

Model RMSE

Moirai MoE 15.4136
Timesfm 15.7026
LSTM 17.9253
Random Forest 18.5096
Moment 19.7116
Moirai 20.1223
Tabpfn 21.1180
SVR 22.4834
Tiny Time Mixer 23.6602
Seasonal Naive 25.6318
Arima 25.7544
Exponential Smoothing 26.3256
XGBoost 27.1328
Chronos 27.5313
Theta 32.7155
Lagllama 45.3234
Toto 49.1227
Prophet 63.9555

Table 3: Overall average performance of all models
across all tasks. The best result for each metric is
highlighted in bold.

Figure 1: TensorBoard visualization of
time-series forecasting experiments.

We expect that the datasets used to define our benchmarks will eventually get included in the pretaining115

corpus of TSFMs, as has been the case often with NLP benchmarks. To this end, we are developing116

dynamic benchmarks where test data is continuously refreshed. While dynamic benchmarks can117

easily be defined benchmarks making use of synthetic data (e.g., our seasonality benchmarks) by118

continuously generating new datasets, for other benchmarks (e.g., our domain benchmarks) we are119

building a rotating set of datasets which are pulled from live data APIs.120

Finally, for the workshop version of TempusBench, in line with existing forecasting evaluation121

frameworks, we consider benchmark categories such as target variate type, context length, forecast122

length as defining individual forecasting tasks. However, a more comprehensive way to see these123

benchmark categories would be as hyperparameters for other benchmark categories such as domains.124

That is, for instance, a more comprehensive list of benchmarks would test the performance of125

forecasting models for each domain (e.g., economics) for different choices of target variate types,126

context lengths, and forecast lengths) We are planning to release these more comprehensive benchmark127

types in the coming months as part of the full-version of our paper.128
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A Additional Mathematical Background361

A.1 Mathematical notation362

We adopt the following calligraphic conventions to insist on the nature of the mathematical object at363

hand: We use calligraphic uppercase letters to denote sets (e.g., X ), bold uppercase letters to denote364

matrices (e.g., X), bold lowercase letters to denote vectors (e.g., p), lowercase letters to denote scalar365

quantities (e.g., x), and uppercase letters to denote random variables (e.g., X). We denote the ith366

row vector of a matrix (e.g., X) by the corresponding bold lowercase letter with subscript i (e.g.,367

xi). Similarly, we denote the jth entry of a vector (e.g., p or xi) by the corresponding lowercase368

letter with subscript j (e.g., pj or xij). We denote functions by a letter determined by the value of369

the function, e.g., f if the mapping is scalar valued, f if the mapping is vector valued, and F if the370

mapping is set valued.371

We denote the set {1, . . . , n} by [n], the set {n, n+ 1, . . . ,m} by [n : m], the set of natural numbers372

by N, and the set of real numbers by R. We denote the positive and strictly positive elements of373

a set using a + or ++ subscript, respectively, e.g., R+ and R++. For any n ∈ N, we denote the374

n-dimensional vector of zeros and ones by 0n and 1n, respectively.375

A.2 Mathematical Definitions376

We let ∆n = {x ∈ Rn
+ |

∑n
i=1 xi = 1} denote the unit simplex in Rn, and ∆(A) denote the377

set of all probability measures over a given set A. We also define the support of a probability378

density function f ∈ ∆(X ) as supp(f) .
= {x ∈ X | f(x) > 0}. Finally, we denote the orthogonal379

projection operator onto a set C by ΠC , i.e., ΠC(x)
.
= argminy∈C ∥x− y∥2.380

A.3 Evaluation Metrics381

An evaluation metric ℓ : Yh × Yh → R+ is a positive-, scalar-valued function s.t. for any forecast382

Ŷ ∈ Yh and realized future target values Y ∗ ∈ Yh, ℓ(Ŷ ,Y ∗) ≥ 0 denotes the distance between the383

forecast and the realized values. We consider the following evaluation metrics at present. The mean384

absolute error (MAE) is defined as ℓMAE(Ŷ ,Y ∗)
.
= 1

mh

∑
i∈[m]

∑h
t=1|ŷit−y∗it|. The mean squared385

error (MSE) is defined as ℓMSE(Ŷ ,Y ∗)
.
= 1

mh

∑
i∈[m]

∑h
t=1(ŷit − y∗it)

2. The mean absolute scale386

error (MASE) is defined as ℓMASE(Ŷ ,Y ∗)
.
= 1

mh

∑
i∈[m]

∑h
t=1

|ŷit−y∗
it|

1
h−1

∑l−1
t=1|yit+1−yit|

.4387

4We note MAE is scale-dependent but less sensitive to outliers, MSE disproportionately penalizes large
forecast errors and is therefore more outlier-sensitive, while MASE normalizes errors w.r.t. the forecasts of naive
forecast method (i.e., setting the next time-step’s forecast to be the current time-step realized value), making it
scale-free and comparable across datasets or domains.
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B Additional Information on TempusBench388

B.1 Forecasting Models Included in TempusBench389

Table 4: Summary of forecasters included in TempusBench.
Category Included Models Core Characteristics
Foundation Models Moirai, Moirai-MoE,

TimesFM, TimesFM-2.0,
Chronos, Lag-Llama, Toto,
MOMENT, TTM,
TabPFN-TS

Paradigm: Universal, zero-
shot/few-shot forecasting. A sin-
gle large model is pre-trained on
massive, diverse datasets and gen-
eralizes to new tasks without re-
training.
Architecture: Primarily based on
Transformers or other deep learn-
ing structures like MLP-Mixers.
They process raw time series via
patching or novel tokenization
schemes.
I/O: Often produce probabilistic
forecasts and can natively handle
univariate, multivariate, and covari-
ate data.

Classic Machine Learning LSTM, Random Forest,
XGBoost, SVR

Paradigm: Supervised learning
models trained per-dataset. They
excel at capturing complex, non-
linear relationships but require
specific training for each task.
Architecture: Diverse, including
Recurrent Neural Networks (for se-
quence memory), Tree Ensembles
(for interaction effects), and Kernel
Methods.
I/O: Typically require explicit
feature engineering (e.g., lags, cal-
endar variables) to create a tabular
format. Most often produce point
forecasts.

Statistical & Decomposable ARIMA, Holt-Winters,
Prophet, Theta Method,
Croston’s Method, Seasonal
Naive

Paradigm: Assume the time se-
ries is generated by an underlying
statistical process or can be decom-
posed into simpler, interpretable
components like trend and season-
ality.
Architecture: An explicit mathe-
matical formula is fitted directly to
an individual time series.
I/O: Highly interpretable point
forecasts. Often specialized for
particular data patterns (e.g., inter-
mittency with Croston’s).

In this section, we summarize the forecasting models which have been included in TempusBench.390

We summarize all models in Table 4, and provide and comparison of TSFMs, machine learning391

forecasting models, and statistical forecasting models in Table 5.392
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B.1.1 Moirai393

Moirai is a universal time series forecasting model developed by Salesforce AI Research, built394

upon a masked encoder-only Transformer architecture. It is designed as a single, large pre-trained395

model capable of handling diverse forecasting tasks without dataset-specific retraining. The model is396

pre-trained on LOTSA, a large-scale archive of over 27 billion observations, enabling it to perform397

powerful zero-shot forecasting. [18]398

• Input: Accepts univariate or multivariate time series with an arbitrary number of variates and399

covariates.400

• Output: Produces a probabilistic forecast by predicting the parameters of a flexible mixture401

distribution (composed of Student’s t, Negative Binomial, Log-Normal, and low-variance Normal402

distributions).403

• Architecture: Employs a masked encoder-only Transformer. Its key innovations include:404

– Multi Patch Size Projection: Uses different patch sizes to effectively process time series of405

varying frequencies.406

– Any-variate Attention: Flattens multivariate series into a single sequence and uses binary407

attention biases to manage an arbitrary number of variates while maintaining permutation408

equivariance.409

• Forecasting Type: A universal, zero-shot, probabilistic forecaster. It can generate point forecasts410

by taking the median of the predicted distribution.411

B.1.2 Moirai-MoE412

Moirai-MoE is an advanced version of the Moirai foundation model that integrates a Sparse Mixture413

of Experts (MoE) architecture. Instead of relying on heuristic-based, frequency-specific projection414

layers, Moirai-MoE delegates the task of modeling diverse time series patterns to specialized "expert"415

networks within its Transformer layers. This allows for automatic, token-level specialization in416

a data-driven manner, leading to improved accuracy and greater efficiency in terms of activated417

parameters. [19]418

• Input: Accepts univariate or multivariate time series with an arbitrary number of variates and419

covariates.420

• Output: Produces a probabilistic forecast by predicting the parameters of a flexible mixture421

distribution for the next token in an autoregressive manner.422

• Architecture: Employs a decoder-only Transformer that replaces the standard Feed-Forward423

Network (FFN) layers with MoE layers. Key architectural changes from the original Moirai424

include:425

– Mixture of Experts (MoE): A gating function routes each time series token to a small subset426

of specialized expert networks, allowing the model to handle diverse patterns at a granular427

level.428

– Single Projection Layer: It uses a single input/output projection layer for all time series,429

removing the dependency on frequency-based heuristics.430

• Forecasting Type: A universal, zero-shot, probabilistic forecaster that is more accurate and431

efficient (in terms of activated parameters) than the original Moirai model. It can generate point432

forecasts by taking the median of the predicted distribution.433

B.1.3 TimesFM434

TimesFM is a time-series foundation model developed by Google Research, designed for zero-shot435

forecasting. It is based on a decoder-only Transformer architecture and is pretrained on a very436

large corpus of time series data, combining both real-world and synthetic sources. The model’s key437

objective is to provide accurate out-of-the-box point forecasts on unseen datasets without requiring438

any dataset-specific training. [20]439

• Input: Accepts a univariate time series context window.440

• Output: Produces a point forecast for a given prediction horizon.441
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• Architecture: Employs a decoder-only Transformer architecture that processes the time series in442

patches. Key architectural features include:443

– Decoder-Only Transformer: Utilizes a standard decoder-style attention mechanism to444

autoregressively predict future values patch by patch.445

– Input Patching: The input time series is segmented into non-overlapping patches, which are446

then embedded using a residual block of MLPs before being fed to the Transformer.447

• Forecasting Type: A universal, zero-shot, point forecaster designed primarily for long-horizon448

forecasting tasks.449

B.1.4 TimesFM-2.0450

TimesFM-2.0 is an improved version of the original foundation model from Google Research. While451

retaining the same decoder-only Transformer architecture, its key innovation lies in forecasting the452

residual component of a time series after performing a seasonal-trend decomposition. This approach453

makes the model significantly more accurate, particularly for time series that exhibit clear trends.454

[20]455

• Input: Accepts a univariate time series context window.456

• Output: Produces a point forecast for a given prediction horizon.457

• Architecture: Based on the original decoder-only Transformer with input patching. The primary458

architectural update is its residual forecasting methodology:459

– Seasonal-Trend Decomposition: The model first decomposes the input series to separate its460

trend and seasonal components.461

– Residual Forecasting: The core Transformer then forecasts the residual (the signal remaining462

after decomposition). This forecast is added back to the projected trend to produce the final463

prediction.464

• Forecasting Type: A universal, zero-shot, point forecaster with enhanced performance on trended465

time series compared to its predecessor.466

B.1.5 Chronos467

Chronos is a family of pretrained time series models developed by Amazon Science that frames468

forecasting as a language modeling task. The core idea is to "tokenize" time series values by scaling469

and quantizing them into a fixed vocabulary. By doing so, standard Transformer-based language470

model architectures can be trained on sequences of these tokens using a cross-entropy loss, effectively471

learning the "language" of time series. [21]472

• Input: Accepts a univariate time series context window.473

• Output: Produces a probabilistic forecast by generating multiple sample future trajectories. A474

point forecast can be derived from the median of these samples.475

• Architecture: Based on standard language model architectures (specifically the T5 encoder-decoder476

family). Its defining characteristic is its unique data preprocessing pipeline:477

– Tokenization via Quantization: The model first applies mean scaling to the input time478

series. It then quantizes these scaled values into a finite set of discrete tokens, converting the479

continuous series into a sequence of categorical variables.480

– Language Model Training: The model is trained to predict the next token in a sequence481

using a standard cross-entropy loss, analogous to how a language model predicts the next482

word.483

• Forecasting Type: A universal, zero-shot, probabilistic forecaster.484

B.1.6 TabPFN485

TabFPN is a forecasting framework that adapts feature pyramid networks (FPN), originally developed486

for computer vision tasks, to tabular time-series data. The approach builds hierarchical feature487

representations across multiple temporal resolutions, enabling the model to capture both short- and488

long-range dependencies. Unlike traditional time-series architectures, TabFPN treats forecasting as a489
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structured feature-learning problem on tabularized sequences, combining multiscale decomposition490

with probabilistic prediction.491

• Input: A univariate or multivariate time series, converted into tabular form with hierarchical492

features at multiple temporal resolutions.493

• Output: Produces probabilistic forecasts by estimating distributions over future values at494

each horizon; point forecasts can be obtained from the distribution mean or median.495

• Architecture:496

– Feature Pyramids: The series is decomposed into multiple temporal scales (e.g., short-497

term, medium-term, seasonal) using windowed transformations. Each scale yields a498

feature representation.499

– FPN Backbone: These features are passed into a feature pyramid network adapted for500

tabular regression, allowing cross-scale information flow and refinement.501

– Prediction Head: Aggregates multiscale features to generate forecasts, with uncertainty502

quantification via distributional outputs.503

• Forecasting Type: A universal, zero-shot, probabilistic forecaster with explicit multiscale504

feature integration.505

B.1.7 TabPFN-TS506

TabPFN-TS is a novel approach that adapts TabPFN-v2, a general-purpose tabular foundation model,507

for time series forecasting. The core methodology involves recasting the forecasting problem as508

a tabular regression task. This is achieved through lightweight feature engineering on the time509

index, without relying on lagged values. Notably, the underlying TabPFN-v2 model was pretrained510

exclusively on synthetic tabular data and has not seen any time series data. [22]511

• Input: A univariate time series, which is converted into a feature matrix based on timestamps.512

• Output: Produces a probabilistic forecast by approximating the posterior predictive distribution for513

each future time step. Point forecasts can be derived from the mean or median of this distribution.514

• Architecture: It does not use a time-series-specific architecture. Instead, it relies on:515

– Feature Engineering: The time series is transformed into a tabular dataset by creating516

features from timestamps. These include standard calendar features (e.g., hour of day, day of517

week), automatically detected seasonal features via a Fourier transform, and a simple running518

index.519

– TabPFN-v2 Model: The generated tabular data is fed into the pretrained TabPFN-v2 model,520

which performs the regression task to predict future values.521

• Forecasting Type: A universal, zero-shot, probabilistic forecaster.522

B.1.8 Tiny Time Mixers (TTM)523

Tiny Time Mixers (TTM) is a family of lightweight pre-trained models from IBM Research, based on524

the efficient TSMixer architecture. In contrast to large, LLM-based approaches, TTMs are designed525

to be extremely small (<1M parameters) and fast, while still providing strong zero-shot and few-shot526

forecasting performance. The models are pre-trained exclusively on a large corpus of public time527

series datasets, making them a highly efficient alternative for universal forecasting. [23]528

• Input: Accepts univariate or multivariate time series, with optional support for exogenous variables529

during the fine-tuning stage.530

• Output: Produces a point forecast for a given prediction horizon.531

• Architecture: Based on the MLP-Mixer architecture. The model is pre-trained in a channel-532

independent manner and uses a multi-level structure to handle diverse data and tasks.533

– TSMixer Backbone: The core of the model uses simple MLP blocks for temporal and feature534

mixing, avoiding the computational overhead of Transformer-based attention.535

– Multi-Resolution Pre-training: Employs several novel techniques to handle heterogeneous536

datasets, including adaptive patching (using different patch configurations at different layers)537

and data augmentation via downsampling.538
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– Multi-level Modeling: Uses a frozen pre-trained backbone and a smaller, fine-tunable decoder,539

which can incorporate channel-mixing and an exogenous mixer to fuse external signals for540

target-specific tasks.541

• Forecasting Type: A universal, zero-shot/few-shot, point forecaster, notable for its small size and542

computational efficiency.543

B.1.9 Lag-Llama544

Lag-Llama is a foundation model for univariate probabilistic time series forecasting. It is built upon545

a decoder-only Transformer architecture, similar to LLaMA, and is pretrained on a large, diverse546

corpus of open-source time series data. The model’s key innovation is its tokenization strategy, which547

uses lagged values of the time series as input features, allowing it to generalize across different548

frequencies and domains. [24]549

• Input: Accepts a univariate time series context window.550

• Output: Produces a probabilistic forecast by outputting the parameters of a Student’s t-distribution551

for the next time step. Future trajectories are generated autoregressively.552

• Architecture: Based on a decoder-only Transformer (LLaMA). Its defining characteristic is its553

input representation:554

– Tokenization via Lag Features: Instead of patching, the input token for each time step is a555

vector composed of lagged values from the time series history (e.g., values from 1, 7, and 14556

days prior). This is augmented with standard date-time features.557

– Value Scaling: Applies robust scaling (using median and IQR) to normalize the input values558

and includes the scaling parameters as additional features.559

• Forecasting Type: A universal, zero-shot/few-shot, probabilistic forecaster.560

B.1.10 Toto561

Toto (Time Series Optimized Transformer for Observability) is a foundation model from Datadog,562

specifically designed for multivariate time series forecasting with a focus on observability metrics.563

It is built on a decoder-only Transformer architecture and incorporates several novel components564

to handle the unique challenges of observability data, such as high non-stationarity and heavy-565

tailed distributions. The model is pretrained on a large and diverse corpus that includes real-world566

observability data, public datasets, and synthetic data. [25]567

• Input: Accepts multivariate time series.568

• Output: Produces a probabilistic forecast by predicting the parameters of a Student-T mixture569

model.570

• Architecture: A decoder-only Transformer with several key innovations tailored for observability571

data:572

– Patch-based Causal Normalization: A novel per-patch scaling method that computes573

normalization statistics from current and past data to handle highly nonstationary series.574

– Proportional Factorized Attention: An efficient attention mechanism that uses a mix of time-575

wise and variate-wise attention blocks to judiciously model interactions in high-dimensional576

multivariate data.577

– Student-T Mixture Model Head: An output layer that models the predictive distribution578

as a mixture of Student-T distributions to better capture the complex, heavy-tailed nature of579

observability metrics.580

– Composite Robust Loss: A hybrid loss function combining negative log-likelihood with a581

robust point-wise loss to stabilize training in the presence of outliers.582

• Forecasting Type: A universal, zero-shot, probabilistic forecaster for multivariate time series.583

B.1.11 MOMENT584

MOMENT (Multi-task, Open-source, Foundation Model for Time-series) is a family of open-source585

foundation models from Carnegie Mellon University designed for general-purpose time series analysis.586
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The models are built on a Transformer encoder architecture and are pretrained on a large, diverse587

collection of public time series called the "Time Series Pile." A key characteristic of MOMENT is its588

versatility; it is designed to serve as a building block for a wide range of downstream tasks, including589

forecasting, classification, anomaly detection, and imputation, often with minimal task-specific590

fine-tuning. [26]591

• Input: Accepts a univariate time series of a fixed length. Multivariate time series are handled by592

treating each channel independently.593

• Output: Produces a reconstructed version of the input time series. This output can be adapted594

for various downstream tasks, such as generating forecasts by masking future values or extracting595

embeddings for classification.596

• Architecture: A standard Transformer encoder that processes time series data in patches.597

– Masked Pre-training: The model is pretrained using a masked time series prediction task. It598

learns to reconstruct randomly masked patches of the input time series, enabling it to learn599

robust representations.600

– Patching: The input time series is segmented into non-overlapping patches, which are then601

linearly projected into embeddings for the Transformer.602

– Lightweight Prediction Head: A simple linear layer is used to reconstruct the time series603

from the Transformer’s output embeddings. This head can be easily replaced or adapted for604

different downstream tasks.605

• Forecasting Type: A universal foundation model for general time series analysis. It can be used for606

zero-shot or few-shot forecasting (point-based), classification, anomaly detection, and imputation.607

B.1.12 ARIMA608

The Autoregressive Integrated Moving Average (ARIMA) model is a class of statistical models609

for analyzing and forecasting time series data. It is a generalization of the simpler Autoregressive610

Moving Average (ARMA) model that can be applied to non-stationary time series. The model’s name611

reflects its three core components: Autoregression (AR), Integrated (I), and Moving Average (MA).612

These components capture the key temporal structures within the data, such as dependencies on past613

observations and past forecast errors. [27]614

• Input: A univariate time series.615

• Output: A point forecast for future time steps. While classical ARIMA produces point forecasts,616

probabilistic forecasts can be generated by assuming a distribution for the error term.617

• Mathematical Formulation: An ARIMA(p, d, q) model is defined by three parameters: the order618

of the autoregressive component (p), the degree of differencing (d), and the order of the moving619

average component (q). The model assumes that the differenced time series, ỹt = (1−B)dyt, is620

stationary, where B is the backshift operator. The formulation for the stationary series ỹt is:621

ỹt = c+

p∑
i=1

ϕiỹt−i +

q∑
j=1

θjϵt−j + ϵt (1)

where:622

– p is the autoregressive order, representing the number of lagged observations included in the623

model.624

– d is the degree of differencing, representing the number of times the raw observations are625

differenced to achieve stationarity.626

– q is the moving average order, representing the size of the moving average window applied to627

past forecast errors.628

– ϕ is the vector of autoregressive coefficients.629

– θ is the vector of moving average coefficients.630

– c is a constant term.631

– ϵt is the white noise error term at time t, typically assumed to be drawn from a Gaussian632

distribution with zero mean.633

• Forecasting Type: A statistical model that provides point forecasts. It is often used as a baseline634

in forecasting tasks. Seasonal variations can be included by using a Seasonal ARIMA (SARIMA)635

model.636
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B.1.13 Croston’s Method637

Croston’s method is a forecasting technique specifically designed for intermittent demand time series,638

which are characterized by sporadic, non-zero values interspersed with periods of zero demand. The639

method decomposes the original time series into two separate components: the magnitude of the640

non-zero demand and the time interval between consecutive demands. By forecasting these two641

components separately using Simple Exponential Smoothing and then combining them, the model642

provides a more accurate estimate of the mean demand per period compared to standard smoothing643

methods, which can be biased when applied to intermittent data. [28]644

• Input: A univariate time series with intermittent demand.645

• Output: A point forecast for the average demand per period.646

• Mathematical Formulation: The method maintains and updates two estimates: one for the non-647

zero demand size (ẑ) and one for the interval between demands (p̂). Let yt be the demand at time648

t, and let q be the time elapsed since the last demand. The updates occur only when a non-zero649

demand is observed (yt > 0):650

ẑt = ẑt−1 + α(yt − ẑt−1) (2)
p̂t = p̂t−1 + α(q − p̂t−1) (3)

If demand at time t is zero, the estimates are not updated (ẑt = ẑt−1, p̂t = p̂t−1) and the interval651

counter q is incremented. After a demand occurs, q is reset to 1. The final forecast for the mean652

demand per period, ŷt, is the ratio of the two smoothed components:653

ŷt =
ẑt
p̂t

(4)

where α is the smoothing parameter.654

• Forecasting Type: A statistical model for point forecasting, specialized for intermittent or "lumpy"655

demand patterns.656

B.1.14 Holt-Winters Exponential Smoothing657

Holt-Winters is an extension of exponential smoothing that explicitly models trend and seasonality. It658

is a widely used statistical method for forecasting time series data that exhibit these components. The659

method operates by applying exponential smoothing to three components: the level, the trend, and660

the seasonality. There are two primary variations of the model, additive and multiplicative, which661

differ in how they incorporate the seasonal component. [5]662

• Input: A univariate time series with trend and seasonality.663

• Output: A point forecast for future time steps.664

• Mathematical Formulation: The model provides separate updating equations for the level (l̂t),665

trend (̂bt), and seasonal (ŝt) components, using smoothing parameters α, β, and γ, respectively.666

Let L be the length of the seasonal period.667

Additive Method: Used when the seasonal variation is roughly constant throughout the series.668

Level: l̂t = α(yt − ŝt−L) + (1− α)(l̂t−1 + b̂t−1) (5)

Trend: b̂t = β(l̂t − l̂t−1) + (1− β)̂bt−1 (6)

Seasonality: ŝt = γ(yt − l̂t) + (1− γ)ŝt−L (7)
The forecast for h steps ahead is given by:669

ŷt+h|t = l̂t + hb̂t + ŝt−L+h+
L

where h+
L = ⌊(h− 1) (mod L)⌋+ 1 (8)

Multiplicative Method: Used when the seasonal variation changes in proportion to the level of the670

series.671

Level: l̂t = α

(
yt

ŝt−L

)
+ (1− α)(l̂t−1 + b̂t−1) (9)

Trend: b̂t = β(l̂t − l̂t−1) + (1− β)̂bt−1 (10)

Seasonality: ŝt = γ

(
yt

l̂t

)
+ (1− γ)ŝt−L (11)
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The forecast for h steps ahead is given by:672

ŷt+h|t = (l̂t + hb̂t)ŝt−L+h+
L

where h+
L = ⌊(h− 1) (mod L)⌋+ 1 (12)

• Forecasting Type: A statistical model for point forecasting that can handle various combinations673

of trend and seasonality.674

B.1.15 Long Short-Term Memory (LSTM)675

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) architecture676

specifically designed to address the vanishing gradient problem, allowing it to learn and remember677

long-term dependencies in sequential data. Unlike traditional neural networks, LSTMs have internal678

mechanisms called "gates" that regulate the flow of information. These gates enable the network to679

selectively remember or forget information over long periods, making it particularly well-suited for680

time series forecasting. [27]681

• Input: A sequence of historical time series observations.682

• Output: A point forecast for one or more future time steps.683

• Mathematical Formulation: The core of an LSTM unit is its cell state, ĉt, which acts as a memory.684

The flow of information into and out of the cell is controlled by three gates: the forget gate (ft),685

the input gate (it), and the output gate (ot). At each time step t, these gates update the cell state686

and produce a hidden state, ĥt.687

Forget Gate: ft = σ(wf · [ĥt−1,yt] + bf ) (13)

Input Gate: it = σ(wi · [ĥt−1,yt] + bi) (14)

Candidate State: c̃t = tanh(wc · [ĥt−1,yt] + bc) (15)
Cell State Update: ĉt = ft ⊙ ĉt−1 + it ⊙ c̃t (16)

Output Gate: ot = σ(wo · [ĥt−1,yt] + bo) (17)

Hidden State Update: ĥt = ot ⊙ tanh(ĉt) (18)
where W and b are the weight matrices and bias vectors for each gate, σ is the sigmoid function,688

and ⊙ denotes element-wise multiplication. The final prediction is typically generated by passing689

the hidden state ĥt through a dense output layer.690

• Forecasting Type: A neural network model for point forecasting that can capture complex non-691

linear patterns in time series data.692

B.1.16 Prophet693

Prophet is a forecasting procedure developed by Meta, based on a decomposable time series model.694

It is designed to be robust to missing data and shifts in the trend, and it typically handles holidays and695

seasonal effects well. The model fits an additive model with components for trend, seasonality, and696

holidays. [8]697

• Input: A univariate time series with timestamps.698

• Output: A point forecast, along with uncertainty intervals.699

• Mathematical Formulation: The Prophet model is specified as a sum of three components:700

yt = g(t) + s(t) + h(t) + ϵt (19)
where:701

– g(t) is the trend component, which is modeled as either a piecewise linear or logistic growth702

function. This allows the model to capture non-periodic changes in the time series.703

– s(t) is the seasonality component, which models periodic changes (e.g., yearly, weekly, daily).704

It is approximated by a Fourier series:705

s(t) =

N∑
n=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
(20)

where P is the period of the seasonality (e.g., 365.25 for yearly).706
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– h(t) is the holiday component, which represents the effects of holidays and special events. It707

is modeled as a sum of indicator functions for each holiday.708

– ϵt is the error term, assumed to be normally distributed white noise.709

• Forecasting Type: A decomposable statistical model for point and probabilistic forecasting,710

particularly effective for business time series with strong seasonal patterns and holiday effects.711

B.1.17 Random Forest712

Random Forest is an ensemble machine learning model that operates by constructing a multitude713

of decision trees at training time. For time series forecasting, it is applied as a regression model to714

a featurized dataset. By fitting numerous trees on various sub-samples of the data and employing715

randomness in feature selection, it improves predictive accuracy and controls over-fitting. The final716

prediction is an average of the outputs from all individual trees, making the model robust and capable717

of capturing complex, non-linear relationships. [29]718

• Input: A feature matrix X where rows are observations and columns are engineered features (e.g.,719

lags, calendar variables), and a corresponding target vector y.720

• Output: A point forecast for each input feature vector.721

• Architecture and Formulation: A Random Forest is an ensemble of B decision trees. Its722

predictive power comes from two sources of randomness introduced during training:723

– Bagging (Bootstrap Aggregating): Each individual tree, fb, is trained on a bootstrap sample724

(a random sample drawn with replacement) from the original training dataset.725

– Feature Randomness: When splitting a node in a tree, the algorithm considers only a random726

subset of the total features, which decorrelates the trees in the forest.727

For a new input feature vector x, the forecast is the average of the predictions from all B trees in728

the ensemble:729

ŷ(x) =
1

B

B∑
b=1

fb(x) (21)

• Forecasting Type: An ensemble machine learning model for point forecasting. It is non-parametric730

and highly effective at modeling non-linear relationships between features and the target variable.731

B.1.18 Seasonal Naive732

The Seasonal Naive model is a simple yet effective baseline method for forecasting time series with a733

strong seasonal component. Its core principle is that the forecast for a future period is equal to the734

last observed value from the same season. For example, the forecast for this Monday would be the735

value from last Monday. Despite its simplicity, it serves as a crucial benchmark for more complex736

models. [30]737

• Input: A univariate time series with a known seasonal period.738

• Output: A point forecast for future time steps.739

• Mathematical Formulation: The forecast for h steps ahead from time t, denoted ŷt+h|t, is the740

last observed value from the corresponding season. Let L be the seasonal period (e.g., L = 7 for741

daily data with weekly seasonality). The forecast is given by:742

ŷt+h|t = yt+h−L·k (22)

where k = ⌈h/L⌉ is an integer that ensures the lagged time index refers to the most recent743

observation from the target season. For a one-season-ahead forecast (h = L), this simplifies to744

ŷt+L|t = yt.745

• Forecasting Type: A simple statistical baseline for seasonal point forecasting.746
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B.1.19 Support Vector Regression (SVR)747

Support Vector Regression (SVR) is a supervised learning algorithm that extends the principles748

of Support Vector Machines (SVMs) to regression problems. Instead of finding a hyperplane that749

separates classes, SVR aims to find a function that deviates from the target values by a value no750

greater than a specified margin, ϵ, for as many of the training points as possible. It is particularly751

effective in high-dimensional spaces and is robust to some outliers due to its use of an ϵ-insensitive752

loss function, which ignores errors within this margin. [31]753

• Input: A feature matrix X and a corresponding target vector y.754

• Output: A point forecast for each input feature vector.755

• Mathematical Formulation: The goal of SVR is to find a function f(x) = wTx + b that is756

as "flat" as possible. This is achieved by minimizing the norm of the weight vector, ||w||2. The757

optimization problem is formulated to tolerate errors up to a margin ϵ while penalizing points that758

fall outside this margin using slack variables ξi and ξ∗i . The primal optimization problem is:759

min
w,b,ξ

1

2
||w||2+C

n∑
i=1

(ξi + ξ∗i ) (23)

subject to the constraints:760

yi − (wTxi + b) ≤ ϵ+ ξi (24)

(wTxi + b)− yi ≤ ϵ+ ξ∗i (25)
ξi, ξ

∗
i ≥ 0 (26)

where C is a regularization parameter that controls the trade-off between the flatness of the model761

and the amount up to which deviations larger than ϵ are tolerated. Non-linear relationships are762

handled by mapping the data to a higher-dimensional space using a kernel function.763

• Forecasting Type: A machine learning model for point forecasting that is robust to some outliers764

and effective in high-dimensional feature spaces.765

B.1.20 Theta Method766

The Theta method is a statistical forecasting technique based on the concept of decomposition.767

It models a time series by breaking it down into two components, or "theta lines." The first line768

represents the long-term trend of the data, while the second line is constructed to capture the short-769

term dynamics by modifying the curvature of the original series. These two lines are forecasted770

independently and then combined to produce the final forecast. The standard Theta model has been771

shown to be equivalent to Simple Exponential Smoothing with a drift term. [32]772

• Input: A univariate time series.773

• Output: A point forecast for future time steps.774

• Mathematical Formulation: The method decomposes the original time series, yt, into two theta775

lines.776

– Line 1 (Trend Component): This line is the simple linear trend fitted to the data, which is777

found by ordinary least squares regression:778

ỹ
(1)
t = â+ b̂t (27)

This line is extrapolated linearly to produce its forecast.779

– Line 2 (Short-term Component): This line is constructed by modifying the original series780

with a coefficient θ. A common and effective choice is θ = 2, which doubles the local781

curvatures of the series. This modified series, ỹ(2)
t , is then forecasted using Simple Exponential782

Smoothing (SES).783

The final forecast, ŷt+h, is a simple average of the forecasts from the two lines:784

ŷt+h =
1

2

(
ŷ
(1)
t+h + ŷ

(2)
t+h

)
(28)

• Forecasting Type: A statistical decomposition model for point forecasting, often used as a strong785

baseline for its simplicity and performance.786
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B.1.21 XGBoost787

XGBoost (Extreme Gradient Boosting) is a powerful and efficient implementation of the gradient788

boosting framework. It is an ensemble model that builds decision trees sequentially, where each new789

tree is trained to correct the errors made by the previous ones. For time series forecasting, XGBoost790

is used as a regression model on a featurized dataset, making it highly effective at capturing complex,791

non-linear relationships between the engineered features (e.g., lags, calendar variables) and the target.792

[30]793

• Input: A feature matrix X and a corresponding target vector y.794

• Output: A point forecast for each input feature vector.795

• Architecture and Formulation: XGBoost builds an additive model where the final prediction is796

the sum of the predictions from K decision trees:797

ŷi =

K∑
k=1

fk(xi) (29)

The trees are added one at a time in a greedy fashion. The k-th tree, fk, is chosen to minimize a798

regularized objective function:799

L(k) =

n∑
i=1

l(yi, ŷ
(k−1)
i + fk(xi)) + Ω(fk) (30)

where l is a differentiable loss function, ŷ(k−1)
i is the prediction from the first k − 1 trees, and Ω is800

a regularization term that penalizes the complexity of the tree:801

Ω(f) = γT +
1

2
λ

T∑
j=1

w2
j (31)

Here, T is the number of leaves in the tree, w is the vector of scores on the leaves, and γ and λ are802

regularization parameters.803

• Forecasting Type: An ensemble machine learning model for point forecasting, known for its high804

performance, speed, and regularization capabilities.805
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B.2 Benchmark Tasks Included in TempusBench806

In this section, we describe the datasets that have been used for each benchmark task. We summarize807

the dataset used for each benchmark task in Table 2.808

Table 6: Summary of datasets used for benchmark tasks, separated into univariate and multivariate
tasks.

Benchmark Univariate task Multivariate task

Trend
Non-stationary Software Development Job Postings [33] Electricity Consumption [34]

Decomposition
Additive Synthetically Generated Additive (Appendix B.3 ) –
Multiplicative Synthetically Generated Multiplicative (Appendix B.4) –

Frequency
Seconds – Utah Drilling [35]
Minutes – Historical Stock Data (2003-2024) [36]
Hours – Madrid Transport Pollution [37]
Days Coinbase Litecoin [38] Gold Price in India [39]
Weeks Federal Funds Effective Rate [40] –
Months Inventories to Sales Ratio [41] Airlines Baggage Complains [42]
Quarters German House Prices [43] –
Years Personal Consumption Expenditures [44] –

Seasonality
Periodic
Quasiperiodic

Domain
Energy Room SplitSmart [45] Room SplitSmart [45]
Transport Madrid BEN pollution [46] Madrid BEN pollution [46]
Climate Delhi Climate [47] Delhi Climate [47]

Software Software Development Job Postings [33] Cyber Attacks on
Water Distribution Networks [48]

Web Web Traffic [49] –
Sales German House Prices [43] Airlines Baggage Complains [42]
Nature Soil Monitoring [50] Soil Monitoring [50]
Economics/Finance Coinbase Litecoin [38] Gold Price in India [39]
Healthcare Employees Health Care [51] NYC Covid Cases [52]
Manufacturing Inventories to Sales Ratio [41] Utah Drilling [35]

Data sparsity
Sparse Patient Chart [53] –
Dense Chicken Pox [54] Gold Price in India [39]

Value type
Continuous Forest Fires [55] Gold Price in India [39]
Count Occupancy [56] Madrid BEN pollution [46]
Binary Absenteeism at Work [57] –
Categorical Online Retail [58] –

B.3 Synthetic Data: Cyclic Seasonality with Additive Trends809

B.3.1 Description810

This category of synthetic data models a time series that exhibits both a complex seasonal pattern811

and a persistent, long-term trend. The data is generated using two related methods. Both methods812

start with a foundational signal that combines multi-frequency sinusoids with a linear trend. The813

second, more complex method builds upon this foundation by introducing an additional, randomized814

sinusoidal component to the signal.815
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In both cases, non-negative noise from an exponential distribution is added to the deterministic signal.816

These datasets are ideal for testing a model’s ability to identify and separate periodicities from an817

underlying linear trend, with the second method providing a more complex seasonal structure.818

B.3.2 Mathematical Formulation819

The generation process for both methods is based on a primary signal, ybase(t), which includes820

seasonal, trend, and offset components:821

ybase(t) = 2 sin(t) + 2 cos

(
t

2

)
︸ ︷︷ ︸

Seasonality

+
1

4
t︸︷︷︸

Trend

+ 4︸︷︷︸
Offset

(32)

Method 1: Fixed Additive Trend In the first method, the true signal, y1(t), is simply the base function.822

The final observed value, Yt, is this signal plus an additive noise term, ϵt.823

Yt = y1(t) + ϵt = ybase(t) + ϵt (33)

Method 2: Randomized Additive Trend The second method introduces additional complexity. For824

each generated time series, a random frequency parameter, α, is sampled once from a continuous825

uniform distribution:826

α ∼ U(a, b) (34)
In the provided code, this range is fixed from a = 0 to b = 5. This parameter is used to create an827

additional sinusoidal component that is added to the base signal. The true signal, y2(t), is therefore:828

y2(t) = ybase(t) + sin(αt) (35)

The final observed value, Yt, is this enhanced signal plus the noise term:829

Yt = y2(t) + ϵt (36)

Noise Model For both methods, the noise term, ϵt, is drawn from an exponential distribution with a830

scale parameter β:831

ϵt ∼ Exponential(β) (37)

B.3.3 Adjustable Parameters832

The data generation process is controlled by the following parameters.833

• Number of Points (num_points, N ): This integer parameter sets the total number of834

data points, defining the length of the time series.835

• Start Time (start_time, t0): This parameter defines the initial time value for the series.836

• Noise Scale (noise_std, β): This parameter represents the scale (and mean) of the837

exponential noise distribution. A larger value for β increases the average magnitude of the838

positive noise added to the base signal.839

• Random Frequency (alpha, α): (Method 2 only) This parameter is not set by the user840

but is sampled internally from a uniform distribution U(0, 5) for each generated series. It841

introduces variability in the seasonal component across different datasets created by the842

second method.843

B.4 Synthetic Data: Cyclic Seasonality with Multiplicative and Additive Trends844

B.4.1 Description845

This category of synthetic data models a time series characterized by a complex interaction of seasonal846

components and trends. A key feature is a multiplicative trend, where the amplitude of one of the847

seasonal components grows exponentially over time. This is combined with another stable seasonal848

component and a linear additive trend.849
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The data is generated using two related methods. The first method uses a fixed, deterministic signal.850

The second method introduces additional complexity by adding another sinusoidal component with851

a randomized frequency to the base signal. In both cases, non-negative noise from an exponential852

distribution is added. These datasets are particularly useful for testing a model’s ability to handle853

heteroscedasticity, where the variance of the series changes over time, in the presence of other854

seasonalities and trends.855

B.4.2 Mathematical Formulation856

Both methods are built upon a primary signal, ybase(t), which is a composite of several functions:857

ybase(t) = et/100 sin(t)︸ ︷︷ ︸
Multiplicative Seasonality

+ 3 cos

(
t

2

)
︸ ︷︷ ︸

Additive Seasonality

+
1

2
t︸︷︷︸

Linear Trend

(38)

Method 1: Fixed Multiplicative Trend In the first method, the true signal, y1(t), is simply the base858

function. The final observed value, Yt, is this signal plus an additive noise term, ϵt.859

Yt = y1(t) + ϵt = ybase(t) + ϵt (39)

Method 2: Randomized Additive Component The second method adds another layer of seasonality.860

For each generated time series, a random frequency parameter, α, is sampled once from a continuous861

uniform distribution:862

α ∼ U(a, b) (40)
In the provided code, this range is fixed from a = 5 to b = 10. The true signal, y2(t), is the base863

signal plus this new randomized sinusoidal component:864

y2(t) = ybase(t) + sin(αt) (41)

The final observed value, Yt, is this enhanced signal plus the noise term:865

Yt = y2(t) + ϵt (42)

Noise Model For both methods, the noise term, ϵt, is drawn from an exponential distribution with a866

scale parameter β:867

ϵt ∼ Exponential(β) (43)

B.4.3 Adjustable Parameters868

The data generation process is controlled by the following parameters.869

• Number of Points (num_points, N ): This integer parameter sets the total number of870

data points, defining the length of the time series.871

• Start Time (start_time, t0): This parameter defines the initial time value for the series.872

• Noise Scale (noise_std, β): This parameter represents the scale (and mean) of the873

exponential noise distribution. A larger value for β increases the average magnitude of the874

positive noise added to the base signal.875

• Random Frequency (alpha, α): (Method 2 only) This parameter is not set by the user876

but is sampled internally from a uniform distribution U(5, 10) for each generated series. It877

introduces variability in the seasonal component across different datasets created by the878

second method.879
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C Additional Related Works880

Classical time-series forecasting began with statistical models that exploit stochastic structure and881

domain priors, including ARIMA and its Box–Jenkins methodology [59], exponential-smoothing882

state-space ETS [60], the Theta method [61], and multivariate VAR models [62]. Deep learning883

methods later advanced accuracy and scale by learning nonlinear temporal dependencies from large884

corpora: DeepAR [63], N-BEATS [64], DLinear [15], TiDE [65], TFT [66], PatchTST [67], and885

iTransformer [68]. Probabilistic forecasters further model predictive distributions, e.g., diffusion-886

based TimeGrad [69], score-based CSDI for imputation and forecasting [70], and conditional-flow887

GRU-NVP [71].888

TSFMs. Inspired by NLP/vision pretraining, TSFMs train on heterogeneous corpora and evaluate889

in zero/few-shot settings across domains and horizons. Representative models include Moirai [72],890

Chronos [21], TimesFM [73], Lag-Llama [74], Timer [75], UniTS [76], TTM (Tiny Time Mixers)891

[77], Moment [26], and multimodal VisionTS [78]. Collectively, they demonstrate strong zero-shot892

point and probabilistic accuracy on diverse benchmarks while revealing open challenges at long893

horizons (error accumulation) and at very high frequencies.894

Public datasets and repositories. Public corpora have underpinned progress from statistical to895

foundation-model eras. The M-competitions (M3 and M4) provided broad univariate benchmarks896

across domains and frequencies [6, 7], followed by the retail-demand M5 competition [79]. The897

Monash Time-Series Forecasting Archive curates a large, standardized repository spanning many898

domains and sampling granularities [13]. Large-scale pretraining/evaluation collections include899

LOTSA (released with Moirai) [72], the Chronos corpus with in-domain/zero-shot splits [21], and the900

diverse univariate corpus aggregated in Lag-Llama [74]. Task-focused collections such as the LTSF901

suite [15] (e.g., ETT datasets) and broader benchmarks like TFB [14] and ProbTS [80] assemble902

datasets emphasizing horizon length, covariates, and probabilistic outputs.903

Evaluation frameworks and benchmarks. Tooling and standardized evaluation have evolved in904

parallel. Practitioner libraries such as Prophet [81] and sktime [82] offer classical and ML baselines905

with unified interfaces, while GluonTS [83] and PyTorchTS [84] provide probabilistic deep-learning906

pipelines. Benchmarking efforts including LTSF [15], BasicTS+ [? ], TFB [14], and ProbTS [80]907

compare statistical, deep, and (in some cases) foundation models, but differ in task taxonomies, splits,908

and leakage controls. Standardized metrics such as MASE [85] and CRPS [86] enable cross-dataset909

aggregation of point and probabilistic performance, yet consistent pretraining/evaluation protocols910

and leakage-free large-scale corpora remain key needs for fair TSFM assessment.911

The collective consequence of these issues is a research environment where it is difficult to distinguish912

genuine methodological advances from circumstantial performance on a narrow, and potentially913

contaminated, set of tasks. This is particularly damaging for the development of TSFMs. The914

significant computational and financial resources required to pre-train these models demand a915

rigorous, fair, and comprehensive evaluation framework to justify their development and guide future916

research [32]. The current state of affairs falls short of this standard. Indeed, studies have shown that917

existing TSFMs, often pre-trained on general-purpose academic datasets, can struggle to generalize918

to the unique and challenging characteristics of specialized domains like observability data [87].919

The field has thus reached an inflection point. Progress is no longer primarily limited by our ability to920

design novel model architectures, but by our inability to reliably and fairly measure their performance.921

Recognizing this crisis, recent efforts have focused on creating the next generation of evaluation922

infrastructure. The development of large-scale, standardized benchmarks such as GIFT-Eval and923

the domain-specific Benchmark of Observability Metrics (BOOM) represent a direct and necessary924

response [27]. These initiatives introduce carefully curated and decontaminated pre-training and925

evaluation sets, standardized protocols, and data that reflects the complexity of real-world applications.926

They treat the benchmark not as a mere dataset, but as a carefully designed scientific instrument927

[8]. This establishes a clear and urgent research gap: the critical need for a new, large-scale, and928

meticulously curated public benchmark that can serve as a gold standard for evaluating the next929

generation of time-series models. Such a contribution is not merely a prerequisite for future research;930

it is a foundational scientific contribution in its own right, providing the essential infrastructure931

required to move the field from an era of fragmented claims to one of robust, reproducible, and932

generalizable progress [26].933
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Contemporary time-series data seldom conform to the idealized assumptions of stationarity and934

linearity that underpin classical models. Instead, real-world data streams are characterized by a935

confluence of complex, interacting properties that present formidable modeling challenges [30].936

• Non-Linearity: Perhaps the most fundamental challenge is the prevalence of non-linear937

relationships. Economic systems, biological processes, and energy grids are governed938

by complex feedback loops and interactions that cannot be adequately captured by linear939

models [27]. Traditional methods like Autoregressive Integrated Moving Average (ARIMA)940

are, by their construction, limited in their ability to model such non-linear dynamics, which941

is a primary reason for their performance ceiling on complex, real-world problems [30].942

• Multi-Regime Behavior: Many time series exhibit structural breaks or distinct operational943

regimes, where the underlying data-generating process changes over time [5]. Examples944

include the shift between bull and bear markets in financial data or the different performance945

characteristics of an industrial machine under varying loads and environmental conditions. A946

single, global model often fails to capture this complex inner structure, leading to significant947

predictive errors when the system transitions between regimes [88].948

• Intermittency: As noted previously, intermittent demand patterns are characterized by a949

high proportion of zero-valued observations, with non-zero demands occurring sporadically.950

This dual source of randomness—in both the timing and the magnitude of events—violates951

the assumptions of continuity and regular sampling inherent in many classical smoothing952

and regression-based techniques [5].953

• Heightened Volatility and Novel Data Sources: The modern data ecosystem is character-954

ized by the emergence of new data sources that introduce unprecedented levels of volatility955

and complexity [5]. The integration of renewable energy sources into power grids is a prime956

example, creating load patterns with high-frequency noise and non-stationary behavior that957

challenge traditional forecasting approaches. A parallel development is the explosion of958

"observability data" generated by large-scale distributed software and cloud computing sys-959

tems. This data, which includes metrics on CPU load, network latency, and application error960

rates, is often characterized by extreme non-stationarity, high dimensionality (thousands of961

correlated variables), heavy-tailed distributions, and sparsity, posing a unique and difficult962

set of modeling challenges [5].963

C.0.1 An Arms Race of Methodological Innovation964

The progression of forecasting methodologies can be understood as a direct response to this escalating965

data complexity. Each new paradigm has sought to overcome the limitations of its predecessors,966

leading to the current diverse and powerful toolkit available to researchers and practitioners [5].967

• The Classical Foundation: The field was built upon a foundation of statistical methods968

developed primarily in the mid-20th century. Models such as ARIMA and its variants969

[8], Holt-Winters Exponential Smoothing [5], and the Theta method [32] became the970

workhorses of the discipline. These models excel at capturing and extrapolating clear971

patterns of trend and seasonality from univariate time series. Their enduring appeal lies in972

their statistical rigor, interpretability, and computational efficiency. However, their reliance973

on strong assumptions about the underlying data-generating process, particularly linearity974

and stationarity, fundamentally limits their applicability to the more complex data common975

today [8].976

• The Machine Learning Advance: The rise of machine learning in the late 20th and977

early 21st centuries provided a new set of tools capable of addressing the challenge of978

non-linearity. Non-parametric models like Support Vector Regression (SVR) [31] offered a979

principled approach, grounded in statistical learning theory, to model non-linear relationships980

in high-dimensional spaces via the "kernel trick" [27]. Concurrently, ensemble methods,981

particularly those based on decision trees like Random Forest and Gradient Boosting982

(e.g., XGBoost), proved to be exceptionally powerful and robust [30]. By combining983

the predictions of many weak learners, these models can capture complex, non-linear984

interactions and have consistently demonstrated state-of-the-art performance in a wide array985

of forecasting competitions and applications.986

• The Deep Learning Revolution: While machine learning ensembles excelled at capturing987

complex feature interactions, they were not explicitly designed to model the long-range988
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temporal dependencies inherent in sequential data. This limitation was addressed by the989

deep learning revolution. Recurrent Neural Networks (RNNs) , and more specifically archi-990

tectures like Long Short-Term Memory (LSTM) networks, were developed with internal991

memory mechanisms (gates) that allow them to capture and retain information over long992

sequences [27]. Empirical studies have shown that on complex financial and economic993

data, LSTMs can significantly outperform classical models like ARIMA by better modeling994

non-linear temporal dynamics [5]. Following the success of LSTMs, Transformer-based995

architectures, with their self-attention mechanism, have emerged as the next frontier, offer-996

ing a powerful alternative for capturing dependencies across time without the sequential997

processing limitations of RNNs [27].998

This co-evolution of data challenges and modeling paradigms, summarized in Table 7, illustrates a999

clear trajectory towards models of increasing complexity and representational power.1000

Table 7: The Co-evolution of Time-Series Challenges and Modeling Paradigms [5] [32] [8] [27] [30].
Era Primary Data Chal-

lenge(s)
Dominant Model
Paradigm

Key Models Inherent Limita-
tions

Statistical Trends, Seasonality,
Stationarity

Time-Domain Sta-
tistical Models

ARIMA, Holt-
Winters, Theta

Struggle with non-
linearity and com-
plex dependencies

Machine
Learning

Non-Linearity, Com-
plex Interactions

Non-parametric Ensemble Models
(SVR, Random
Forest, XGBoost)

Limited handling of
long-range temporal
dependencies

Deep
Learning

Long-Range Depen-
dencies, Sequential
Patterns

Recurrent,
Attention-based
Networks

LSTMs, Trans-
formers

Data-hungry, com-
putationally inten-
sive, task-specific

Foundation
Models

Heterogeneity, Scale,
Task Generalization

Large Pre-trained
Models

MOMENT,
TOTO, Chronos

Reliance on mas-
sive, curated
datasets; evaluation
bottleneck

However, this progression is not a simple linear march where newer, more complex models invariably1001

render older ones obsolete. Empirical evidence reveals a more nuanced reality, one that aligns with1002

the well-known "No Free Lunch" theorem in machine learning. While deep learning models like1003

LSTMs have been shown to decisively outperform ARIMA on certain complex datasets, recent1004

large-scale studies have also found that in zero-shot or limited-supervision settings, simpler statistical1005

methods often outperform sophisticated deep learning models [27]. Furthermore, in production1006

environments like large-scale observability systems, classical models remain prevalent due to the1007

operational infeasibility of training and maintaining millions of distinct, complex neural network1008

models [5]. This apparent contradiction is not a flaw in the research, but rather a reflection of a1009

fundamental truth: the performance of any given forecasting model is highly contingent on the1010

specific characteristics of the data, the length of the forecast horizon, the availability of computational1011

resources, and the degree of supervision. This recognition implies that the central problem in the1012

field is not merely the invention of more powerful algorithms, but the development of a deeper, more1013

systematic understanding of the complex performance landscape that governs the interaction between1014

data characteristics and model architectures [27].1015

C.1 The New Frontier: Pre-trained Foundation Models for Time Series1016

In response to the challenges of data heterogeneity and the high cost of developing task-specific1017

models, the field is currently undergoing another paradigm shift, mirroring recent transformations1018

in natural language processing and computer vision: the move towards large, pre-trained Time-1019

Series Foundation Models (TSFMs). This new frontier aims to leverage the power of large-scale,1020

self-supervised learning to create general-purpose models that can be adapted to a wide range of1021

downstream tasks with minimal fine-tuning [27].1022
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The core premise of the foundation model paradigm is to pre-train a single, high-capacity model1023

(typically a Transformer) on a massive and diverse corpus of unlabeled data. This process allows1024

the model to learn a rich, generalizable representation of temporal patterns. Subsequently, this1025

pre-trained model can serve as a powerful building block for various downstream applications,1026

including long- and short-horizon forecasting, time-series classification, anomaly detection, and1027

missing value imputation. Models such as MOMENT, Chronos, and TOTO are at the vanguard of1028

this movement. They are designed to be effective "out-of-the-box," providing strong zero-shot or1029

few-shot performance without the need for extensive task-specific training [26] [25]. This approach1030

holds particular promise for domains like observability, where the sheer scale and diversity of time1031

series—often numbering in the millions or billions—make the traditional approach of training one1032

model per series operationally intractable [30].1033

The primary enabler of this paradigm, and simultaneously its greatest bottleneck, is the availability of1034

data. The success of foundation models in other domains was built on the existence of vast, cohesive,1035

and publicly accessible datasets like The Pile for text and ImageNet for vision [26]. The time-1036

series domain, by contrast, has historically been characterized by a fragmented landscape of smaller,1037

scattered, and task-specific public datasets [5]. This data scarcity has been a major impediment to1038

large-scale pre-training. To overcome this, pioneering research efforts have begun the monumental1039

task of data curation. The creators of MOMENT compiled The Time Series Pile, a large collection1040

of public repositories, while the TOTO model was pre-trained on a corpus containing a mixture of1041

public, synthetic, and large-scale proprietary observability data, resulting in a dataset 4 to 10 times1042

larger than those used for other leading TSFMs [25].1043

This focus on data curation signals a significant maturation of the field. In earlier eras, the primary1044

axis of innovation was model architecture—for example, the design of the gating mechanisms in1045

an LSTM or a novel attention variant in a Transformer [27]. The advent of the TSFM paradigm,1046

however, shifts the research bottleneck. While architectural innovation remains important, the most1047

critical and scientifically challenging work is now increasingly centered on the curation of massive,1048

diverse, and clean datasets, and on the development of robust frameworks for evaluating the models1049

trained on them. The value proposition of a new TSFM is now as much about the data it was trained1050

on and the benchmark it was tested against as it is about its internal architecture. This implies that1051

the most impactful contributions in this new era may not be designing a marginally better model,1052

but rather creating the foundational data and evaluation infrastructure that enables the entire field to1053

advance [8].1054
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