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Abstract

Foundation models have transformed natural language processing and computer
vision, and a rapidly growing literature on time-series foundation models (TSFMs)
seeks to replicate this success in forecasting. While recent open-source mod-
els demonstrate the promise of TSFMs, the field lacks a comprehensive and
community-accepted model evaluation framework. We see at least four major issues
impeding progress on the development of such a framework. First, current evalua-
tion frameworks consist of benchmark forecasting tasks derived from often outdated
datasets (e.g., M3), many of which lack clear metadata and overlap with the corpora
used to pre-train TSFMs. Second, existing frameworks evaluate models along a
narrowly defined set of benchmark forecasting tasks such as forecast horizon length
or domain, but overlook core statistical properties such as non-stationarity and
seasonality. Third, domain-specific models (e.g., XGBoost) are often compared
unfairly, as existing frameworks neglect a systematic and consistent hyperparame-
ter tuning convention for all models. Fourth, visualization tools for interpreting
comparative performance are lacking. To address these issues, we introduce Tem-
pusBench, an open-source evaluation framework. TempusBench consists of 1) new
datasets which are not included in existing TSFM pretraining corpora, 2) a set of
novel benchmark tasks that go beyond existing ones, and 3) a model evaluation
pipeline with a standardized hyperparameter tuning protocol, and 4) a tensorboard-
based visualization interface. We provide access to our code on GitHub: https:
//anonymous.4open.science/r/benchmark-0634/README .md.

1 Introduction

The success of foundation models (i.e., models trained on large and diverse datasets that can be
used to solve downstream tasks) in natural language processing (NLP) and computer vision has
inspired an emerging literature on time-series foundation models. Time-series foundation models
(TSFMs) are models that take past time-series data (and possibly covariate time-series data) as input
and output future values (or distributions over them), typically formulated as neural networks trained
via supervised learning. While about a dozen open-source TSFMs are now available, comparing their
performance to one another and to traditional domain-specific models (e.g., ARIMA [1], SVR [2, 3])
remains difficult. A handful of evaluation frameworks have been released, but the field still lacks
comprehensive, community-accepted standards for model evaluation [4], creating an impediment for
the replication of the success of foundation models in NLP and computer vision [5].

We see four major challenges facing existing evaluation frameworks. First, the evaluation
ecosystem relies on outdated datasets such as M3 [6] and M4 [7], many lacking metadata (e.g.,
variable names). More importantly, the existing evaluation datasets overlap with the pretraining
corpora of TSFMs, leading to inflated estimates of zero-shot generalization [8]. For example, except
for Moirai2, all TSFMs assessed by GIFT-Eval include test data in their training corpus [9, 10].
Second, current frameworks define benchmark forecasting tasks only along narrow axes (i.e., forecast
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horizon, variate type, frequency, and domain). While useful, these miss key statistical properties
long studied in time-series analysis such as (non-)stationarity, and seasonality. Without evaluation
across such properties, it seems unlikely that frameworks can yield generalizable conclusions about
model capabilities. Third, existing frameworks have not yet developed standardized hyperparameter
tuning routines, leading to comparisons made between TSFMs and domain-specific models to be
unfair as the performance of domain-specific models depend heavily on hyperparameter choice.'
Indeed, as noted by practitioners [11], simple statistical models with well-chosen hyperparameters
can outperform more complex ones, highlighting the need for consistent tuning routines. Fourth,
currently, evaluation typically reduces to numerical metrics such as mean squared error, which
practitioners remark [12] provide limited interpretability. For instance, under GIFT-Eval, seasonal
naive outperforms five open-source TSFMs, but this offers no insight into the strength and weaknesses
of TSFMs, since seasonal naive fails when seasonality is weak. Beyond quantitative scores, qualitative
analyses—especially forecast visualizations—are essential.

To address these issues, we introduce TempusBench, an open-source evaluation framework. Tempus-
Bench consists of 1) new datasets which are not included in existing TSFM pretraining corpora, 2) a
set of novel benchmark tasks that goes beyond existing ones, , and 3) a model evaluation pipeline
with a standardized hyperparameter tuning protocol, and 4) tensorboard-based visualization interface.

1.1 Contributions

TempusBench, going beyond TSFMs, includes 20 forecasting models , a number of which such
as XGBoost, have previously not been considered by evaluation frameworks, and overcomes the
aforementioned four issues by improving along the following dimensions. First, we introduce
new time-series datasets which do not come from existing time-series evaluation datasets, and
which are not contained in the training corpus of open-source TSFMs released to date. Second, we
propose new benchmark task types that extend beyond horizon length, variate type, frequency, and
domain. These include categories based on stationarity, seasonality, variable type (continuous, count,
binary, categorical), sparsity (sparse vs. dense), dataset size (small vs. large), and quality (noisy
vs. measurement error). Third, we introduce a model evaluation pipeline which runs a standardized
and automated hyperparameter selection procedure for all forecasting models with hyperparameters,
allowing a fair comparison of all forecasting methods. Fourth, TempusBench comes packages with
a tensorboard-based visualization application which easily allows researchers and practitioners to
visualize and interpret the performance of various models on different task types.

Table 1: Property comparisons of various forecasting benchmarks.

Property Monash [13] TFB [14] LTSF [15]BasicTS+ [16] ProbTS [17] GIFT-Eval [9] TempusBench
Frequency Second  Minute Minute Minute Minute Second Second
Range to Year to Year to Week to Day to Week to Year to Year
Num. 7 6 5 3 5 7 10
Domains

Train/Test

data leak v v v v v v

¥;g§:e Uni  Uni/Multi  Multi Multi Multi  Uni/Multi  Uni/Multi
EZ?;&?OH Short Short Long Short/Long  Short/Long Short/Long Short/Long
Stat. Benchmarks X X X X X X

Forecaster types ~ Stat/DL  Stat/DL Stat/DL  Stat/DL  Stat/DL/FM Stat./DL/FM Stat./ML/DL/FM
Hyperparam.

autotuning X X X X X X

2 Background

We refer the reader to Appendix A for the notational convention we adopt, as well as for additional
mathematical preliminaries and evaluation metric definitions.

'TSEMs require hyperparameter searches during pretraining, but not during evaluation.
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Forecasters A (time-series) forecasting task T = (I, h,n,m,X,), X,Y ) consists of a context
length | € N, a forecast horizon h € N, m € N target time-series Y = (yy,...,y,,)’ where for
each variate ¢ € [m], entries of y, € y; take values from a set of target values Y C R, and n € N
covariate time-series X = (x1,...,x, )T where for each covariate j € [n], x ,E€X I+h takes values
from a set of covariate values X; C R. For convenience, we denote the joint set of target variate
values by Y = Xi €m] Y; and the joint set of covariate values X = Xj cin X;. A forecasting task

T is said to be univariate (resp. multivariate) iff m = 1 (m > 1). A forecasting task 7 is said to
be unconditional (resp. conditional) iff n = 1 (resp. n > 1). A forecasting task 7 is said to be
a continuous (resp. count | categorical | binary) forecasting task iff for all i € [m] ); C Ris a
continuous set (resp. V; = N1Y; S NI1Y;, ={0,1}).

=

A (point) forecast for a forecasting task T'is a matrix Y = (Y1,- -+ Y,,) s.t. for all target variates
i € [m], y, € VI corresponds to forecasted values of variate i for h steps. A (point) forecasting
model (or, colloquially, a forecaster) is a mapping F : X!Th x Y — V' st F(X,Y) =
(f1(X,Y),..., f,.(X,Y))7T is a forecast for 7. A probabilistic forecasting model is a mapping
7 X Y A(YP) st (X, Y)[Y] > 0 denotes the probability of ¥ € )! being realized.

Forecasting Evaluation Frameworks In reality, many forecasters F¢ : X!+ x ! — Y are
dependent on some hyperparameters & € ©, and it is more appropriate to talk about a family
of forecasters F© = {F%}gco, and choose the forecaster with parameters which is the most
appropriate for a forecasting task.’

A forecaster evaluation framework B = (p, q,&,{0;}1_,, {F® }_, {T;},eq) consists of p € N
familes of forecasters, with for each i € [p], 7 being defined by a set of hyperparameters ©;; ¢ € N
forecasting tasks (or, colloquially, benchmarks, or benchmark tasks) {T;} jc|q : and a hyperparameter
tuner £ : X x ) — O, which takes as input a benchmark and outputs some hyperparameters.

3 TempusBench

In the workshop version of this paper, we release a restricted version of TempusBench, which is
restricted to the evaluation of (point) forecasting models on unconditional time-series forecasting
tasks. We describe in Section 4, additional extensions of TempusBench which will be released in the
full-paper version.

TempusBench, denoted BTB, is a forecasting evaluation framework where the hyperparameter tuner
ETB is given by three-step procedure: given a benchmark, a (sub)set of hyperparameters, and a
family of forecasters, 1) a validation dataset of subsets of the target and covariate time-series are
created, 2) for each hyperparameter in the (sub)set of hyperparameters, the average MSE is computed
across all samples in the validation dataset, 3) the hyperparameter with the lowest MSE is output. We
summarize the set of families of forecasters, and the set of benchmarks included in TempusBench in
Table 4 (Appendix B.1) and Table 6 (Appendix B.2) respectively.

We include a summary of the results of TempusBench, in Table 3 and a visualization of the tensorboard
interface.

4 Next Directions and Conclusion

We omit for the workshop version of TempusBench two directions in which we have been developing
TempusBench, namely the inclusion of conditional forecasting problems, and the evaluation of
probabilistic forecasting models. We plan to release this more general version of TempusBench in
the coming months as part of the full-version of our paper.

*While our definition is in line with the literatur [9], more generally, a forecaster can be defined as a mapping
from forecasting tasks to forecasts, i.c., T F(T) =Y.

3For instance, the forecast of an ARIMA model is dependent on choices of hyperparameters given by the
order of number of time lags, the degree of differencing, and the order of the moving-average model, and it is
more appropriate to talk of the family of ARIMA models.



Table 2: Taxonomy of all univariate and multivariate benchmark tasks included in TempusBench.

Category Benchmark Tasks

Movement Stationary, Non-Stationary

Data Quality Noisy data, Data with measurement error

Frequency Seconds, Minutes, Hours, Days, Weeks, Months, Quarterly, Years

Context Length 30, 100, 500, 1000
Forecast Horizon 1, 20, 100, 500, 1000

Seasonality Cyclical, Non-Stationary cyclical, Regressive, Irregular, Additive, Multiplicative
Domain Energy, Transport, Climate, Software, Web, Sales, Nature, Econ., Healthcare, Manufacturing
Dataset Coverage  sparse, dense
Target Type continuous, count, binary, categorical

Model RMSE

Moirai MoE 15.4136

Timesfm 15.7026

LSTM 17.9253

Random Forest 18.5096

Moment 19.7116

Moirai 20.1223

Tabpfn 21.1180

SVR 22.4834

Tiny Time Mixer 23.6602

Seasonal Naive 25.6318

Arima 25.7544

Exponential Smoothing 26.3256

XGBoost 27.1328 m— = & = @o:

Chronos 27.5313 Figure 1: TensorBoard visualization of

Theta 32.7155 time-series forecasting experiments.

Lagllama 45.3234

Toto 49.1227

Prophet 63.9555

Table 3: Overall average performance of all models
across all tasks. The best result for each metric is
highlighted in bold.

115 We expect that the datasets used to define our benchmarks will eventually get included in the pretaining
116 corpus of TSFMs, as has been the case often with NLP benchmarks. To this end, we are developing
117 dynamic benchmarks where test data is continuously refreshed. While dynamic benchmarks can
118 easily be defined benchmarks making use of synthetic data (e.g., our seasonality benchmarks) by
119 continuously generating new datasets, for other benchmarks (e.g., our domain benchmarks) we are
120 building a rotating set of datasets which are pulled from live data APIs.

121 Finally, for the workshop version of TempusBench, in line with existing forecasting evaluation
122 frameworks, we consider benchmark categories such as target variate type, context length, forecast
123 length as defining individual forecasting tasks. However, a more comprehensive way to see these
124 benchmark categories would be as hyperparameters for other benchmark categories such as domains.
125 That is, for instance, a more comprehensive list of benchmarks would test the performance of
126 forecasting models for each domain (e.g., economics) for different choices of target variate types,
127 context lengths, and forecast lengths) We are planning to release these more comprehensive benchmark
128 types in the coming months as part of the full-version of our paper.
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A Additional Mathematical Background

A.1 Mathematical notation

We adopt the following calligraphic conventions to insist on the nature of the mathematical object at
hand: We use calligraphic uppercase letters to denote sets (e.g., X'), bold uppercase letters to denote
matrices (e.g., X), bold lowercase letters to denote vectors (e.g., p), lowercase letters to denote scalar
quantities (e.g., ), and uppercase letters to denote random variables (e.g., X). We denote the ith
row vector of a matrix (e.g., X) by the corresponding bold lowercase letter with subscript ¢ (e.g.,
x;). Similarly, we denote the jth entry of a vector (e.g., p or x;) by the corresponding lowercase
letter with subscript j (e.g., p; or ;;). We denote functions by a letter determined by the value of
the function, e.g., f if the mapping is scalar valued, f if the mapping is vector valued, and F if the
mapping is set valued.

We denote the set {1,...,n} by [n], theset {n,n+ 1,...,m} by [n : m], the set of natural numbers
by N, and the set of real numbers by R. We denote the positive and strictly positive elements of
a set using a + or ++ subscript, respectively, e.g., R and Ry ;. For any n € N, we denote the
n-dimensional vector of zeros and ones by 0,, and 1,,, respectively.

A.2 Mathematical Definitions

We let A, = {& € R} | Y./ | ; = 1} denote the unit simplex in R", and A(A) denote the
set of all probability measures over a given set A. We also define the support of a probability
density function f € A(X) as supp(f) = {x € X | f(x) > 0}. Finally, we denote the orthogonal

projection operator onto a set C' by Ilc, i.e., lIo(z) = argmin, ¢ ||z — yl.

A.3 Evaluation Metrics

An evaluation metric £ : Y x Y — R is a positive-, scalar-valued function s.t. for any forecast
Y € V" and realized future target values Y* € yh, ¢ (i}, Y*) > 0 denotes the distance between the
forecast and the realized values. We consider the following evaluation metrics at present. The mean
absolute error (MAE) is defined as (MAR(Y Y*) = L. 2 icim] S G — 5| The mean squared

error (MSE) is defined as /MSE(Y | Y*) = L 2 icim] S (W — u,)2. The mean absolute scale

error (MASE) is defined as EMASE(?, Y+ =L Zz’e[m] Z?:l o !

T T—1 .
-1 Et:l‘yit+1_yit|

“We note MAE is scale-dependent but less sensitive to outliers, MSE disproportionately penalizes large
forecast errors and is therefore more outlier-sensitive, while MASE normalizes errors w.r.t. the forecasts of naive
forecast method (i.e., setting the next time-step’s forecast to be the current time-step realized value), making it
scale-free and comparable across datasets or domains.
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s B Additional Information on TempusBench

ss9 B.1 Forecasting Models Included in TempusBench

Table 4: Summary of forecasters included in TempusBench.

Category

Included Models

Core Characteristics

Foundation Models

Classic Machine Learning

Statistical & Decomposable

Moirai, Moirai-MoE,
TimesFM, TimesFM-2.0,
Chronos, Lag-Llama, Toto,
MOMENT, TTM,
TabPFN-TS

LSTM, Random Forest,
XGBoost, SVR

ARIMA, Holt-Winters,
Prophet, Theta Method,
Croston’s Method, Seasonal
Naive

Paradigm: Universal, zero-
shot/few-shot forecasting. A sin-
gle large model is pre-trained on
massive, diverse datasets and gen-
eralizes to new tasks without re-
training.

Architecture: Primarily based on
Transformers or other deep learn-
ing structures like MLP-Mixers.
They process raw time series via
patching or novel tokenization
schemes.

I/0: Often produce probabilistic
forecasts and can natively handle
univariate, multivariate, and covari-
ate data.

Paradigm: Supervised learning
models trained per-dataset. They
excel at capturing complex, non-
linear relationships but require
specific training for each task.
Architecture: Diverse, including
Recurrent Neural Networks (for se-
quence memory), Tree Ensembles
(for interaction effects), and Kernel
Methods.

I/0: Typically require explicit
feature engineering (e.g., lags, cal-
endar variables) to create a tabular
format. Most often produce point
forecasts.

Paradigm: Assume the time se-
ries is generated by an underlying
statistical process or can be decom-
posed into simpler, interpretable
components like trend and season-
ality.

Architecture: An explicit mathe-
matical formula is fitted directly to
an individual time series.

I/0: Highly interpretable point
forecasts. Often specialized for
particular data patterns (e.g., inter-
mittency with Croston’s).

390 In this section, we summarize the forecasting models which have been included in TempusBench.
391 We summarize all models in Table 4, and provide and comparison of TSFMs, machine learning
392 forecasting models, and statistical forecasting models in Table 5.
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B.1.1 Moirai

Moirai is a universal time series forecasting model developed by Salesforce Al Research, built
upon a masked encoder-only Transformer architecture. It is designed as a single, large pre-trained
model capable of handling diverse forecasting tasks without dataset-specific retraining. The model is
pre-trained on LOTSA, a large-scale archive of over 27 billion observations, enabling it to perform
powerful zero-shot forecasting. [18]

* Input: Accepts univariate or multivariate time series with an arbitrary number of variates and
covariates.

* Output: Produces a probabilistic forecast by predicting the parameters of a flexible mixture
distribution (composed of Student’s t, Negative Binomial, Log-Normal, and low-variance Normal
distributions).

* Architecture: Employs a masked encoder-only Transformer. Its key innovations include:

— Multi Patch Size Projection: Uses different patch sizes to effectively process time series of
varying frequencies.

— Any-variate Attention: Flattens multivariate series into a single sequence and uses binary
attention biases to manage an arbitrary number of variates while maintaining permutation
equivariance.

* Forecasting Type: A universal, zero-shot, probabilistic forecaster. It can generate point forecasts
by taking the median of the predicted distribution.

B.1.2 Moirai-MoE

Moirai-MoE is an advanced version of the Moirai foundation model that integrates a Sparse Mixture
of Experts (MoE) architecture. Instead of relying on heuristic-based, frequency-specific projection
layers, Moirai-MoE delegates the task of modeling diverse time series patterns to specialized "expert"
networks within its Transformer layers. This allows for automatic, token-level specialization in
a data-driven manner, leading to improved accuracy and greater efficiency in terms of activated
parameters. [19]

* Input: Accepts univariate or multivariate time series with an arbitrary number of variates and
covariates.

* Output: Produces a probabilistic forecast by predicting the parameters of a flexible mixture
distribution for the next token in an autoregressive manner.

* Architecture: Employs a decoder-only Transformer that replaces the standard Feed-Forward
Network (FFN) layers with MoE layers. Key architectural changes from the original Moirai
include:

— Mixture of Experts (MoE): A gating function routes each time series token to a small subset
of specialized expert networks, allowing the model to handle diverse patterns at a granular
level.

— Single Projection Layer: It uses a single input/output projection layer for all time series,
removing the dependency on frequency-based heuristics.

* Forecasting Type: A universal, zero-shot, probabilistic forecaster that is more accurate and
efficient (in terms of activated parameters) than the original Moirai model. It can generate point
forecasts by taking the median of the predicted distribution.

B.1.3 TimesFM

TimesFM is a time-series foundation model developed by Google Research, designed for zero-shot
forecasting. It is based on a decoder-only Transformer architecture and is pretrained on a very
large corpus of time series data, combining both real-world and synthetic sources. The model’s key
objective is to provide accurate out-of-the-box point forecasts on unseen datasets without requiring
any dataset-specific training. [20]

 Input: Accepts a univariate time series context window.

* Output: Produces a point forecast for a given prediction horizon.
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* Architecture: Employs a decoder-only Transformer architecture that processes the time series in
patches. Key architectural features include:

— Decoder-Only Transformer: Utilizes a standard decoder-style attention mechanism to
autoregressively predict future values patch by patch.

— Input Patching: The input time series is segmented into non-overlapping patches, which are
then embedded using a residual block of MLPs before being fed to the Transformer.

» Forecasting Type: A universal, zero-shot, point forecaster designed primarily for long-horizon
forecasting tasks.

B.1.4 TimesFM-2.0

TimesFM-2.0 is an improved version of the original foundation model from Google Research. While
retaining the same decoder-only Transformer architecture, its key innovation lies in forecasting the
residual component of a time series after performing a seasonal-trend decomposition. This approach
makes the model significantly more accurate, particularly for time series that exhibit clear trends.
[20]

* Input: Accepts a univariate time series context window.
* Output: Produces a point forecast for a given prediction horizon.

* Architecture: Based on the original decoder-only Transformer with input patching. The primary
architectural update is its residual forecasting methodology:

— Seasonal-Trend Decomposition: The model first decomposes the input series to separate its
trend and seasonal components.

— Residual Forecasting: The core Transformer then forecasts the residual (the signal remaining
after decomposition). This forecast is added back to the projected trend to produce the final
prediction.

*» Forecasting Type: A universal, zero-shot, point forecaster with enhanced performance on trended
time series compared to its predecessor.

B.1.5 Chronos

Chronos is a family of pretrained time series models developed by Amazon Science that frames
forecasting as a language modeling task. The core idea is to "tokenize" time series values by scaling
and quantizing them into a fixed vocabulary. By doing so, standard Transformer-based language
model architectures can be trained on sequences of these tokens using a cross-entropy loss, effectively
learning the "language" of time series. [21]

* Input: Accepts a univariate time series context window.

* Output: Produces a probabilistic forecast by generating multiple sample future trajectories. A
point forecast can be derived from the median of these samples.

* Architecture: Based on standard language model architectures (specifically the T5 encoder-decoder
family). Its defining characteristic is its unique data preprocessing pipeline:

— Tokenization via Quantization: The model first applies mean scaling to the input time
series. It then quantizes these scaled values into a finite set of discrete tokens, converting the
continuous series into a sequence of categorical variables.

— Language Model Training: The model is trained to predict the next token in a sequence
using a standard cross-entropy loss, analogous to how a language model predicts the next
word.

* Forecasting Type: A universal, zero-shot, probabilistic forecaster.

B.1.6 TabPFN

TabFPN is a forecasting framework that adapts feature pyramid networks (FPN), originally developed
for computer vision tasks, to tabular time-series data. The approach builds hierarchical feature
representations across multiple temporal resolutions, enabling the model to capture both short- and
long-range dependencies. Unlike traditional time-series architectures, TabFPN treats forecasting as a

14



490
491

492
493

494
495

496

497
498
499
500
501
502
503

504
505

506

508
509
510
511

512

513
514

515

516
517
518
519
520
521

522

523

524
525
526
527
528

529
530

531

532
533

534
535
536
537
538

structured feature-learning problem on tabularized sequences, combining multiscale decomposition
with probabilistic prediction.

* Input: A univariate or multivariate time series, converted into tabular form with hierarchical
features at multiple temporal resolutions.

e Output: Produces probabilistic forecasts by estimating distributions over future values at
each horizon; point forecasts can be obtained from the distribution mean or median.

¢ Architecture:

— Feature Pyramids: The series is decomposed into multiple temporal scales (e.g., short-
term, medium-term, seasonal) using windowed transformations. Each scale yields a
feature representation.

— FPN Backbone: These features are passed into a feature pyramid network adapted for
tabular regression, allowing cross-scale information flow and refinement.

— Prediction Head: Aggregates multiscale features to generate forecasts, with uncertainty
quantification via distributional outputs.

 Forecasting Type: A universal, zero-shot, probabilistic forecaster with explicit multiscale
feature integration.

B.1.7 TabPFN-TS

TabPEN-TS is a novel approach that adapts TabPFN-v2, a general-purpose tabular foundation model,
for time series forecasting. The core methodology involves recasting the forecasting problem as
a tabular regression task. This is achieved through lightweight feature engineering on the time
index, without relying on lagged values. Notably, the underlying TabPFN-v2 model was pretrained
exclusively on synthetic tabular data and has not seen any time series data. [22]

* Input: A univariate time series, which is converted into a feature matrix based on timestamps.

* Qutput: Produces a probabilistic forecast by approximating the posterior predictive distribution for
each future time step. Point forecasts can be derived from the mean or median of this distribution.

* Architecture: It does not use a time-series-specific architecture. Instead, it relies on:

— Feature Engineering: The time series is transformed into a tabular dataset by creating
features from timestamps. These include standard calendar features (e.g., hour of day, day of
week), automatically detected seasonal features via a Fourier transform, and a simple running
index.

— TabPFN-v2 Model: The generated tabular data is fed into the pretrained TabPFN-v2 model,
which performs the regression task to predict future values.

* Forecasting Type: A universal, zero-shot, probabilistic forecaster.

B.1.8 Tiny Time Mixers (TTM)

Tiny Time Mixers (TTM) is a family of lightweight pre-trained models from IBM Research, based on
the efficient TSMixer architecture. In contrast to large, LLM-based approaches, TTMs are designed
to be extremely small (<1M parameters) and fast, while still providing strong zero-shot and few-shot
forecasting performance. The models are pre-trained exclusively on a large corpus of public time
series datasets, making them a highly efficient alternative for universal forecasting. [23]

 Input: Accepts univariate or multivariate time series, with optional support for exogenous variables
during the fine-tuning stage.

* Output: Produces a point forecast for a given prediction horizon.

* Architecture: Based on the MLP-Mixer architecture. The model is pre-trained in a channel-
independent manner and uses a multi-level structure to handle diverse data and tasks.
— TSMixer Backbone: The core of the model uses simple MLP blocks for temporal and feature
mixing, avoiding the computational overhead of Transformer-based attention.
— Multi-Resolution Pre-training: Employs several novel techniques to handle heterogeneous
datasets, including adaptive patching (using different patch configurations at different layers)
and data augmentation via downsampling.
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— Multi-level Modeling: Uses a frozen pre-trained backbone and a smaller, fine-tunable decoder,
which can incorporate channel-mixing and an exogenous mixer to fuse external signals for
target-specific tasks.

* Forecasting Type: A universal, zero-shot/few-shot, point forecaster, notable for its small size and
computational efficiency.

B.1.9 Lag-Llama

Lag-Llama is a foundation model for univariate probabilistic time series forecasting. It is built upon
a decoder-only Transformer architecture, similar to LLaMA, and is pretrained on a large, diverse
corpus of open-source time series data. The model’s key innovation is its tokenization strategy, which
uses lagged values of the time series as input features, allowing it to generalize across different
frequencies and domains. [24]

* Input: Accepts a univariate time series context window.

* Qutput: Produces a probabilistic forecast by outputting the parameters of a Student’s t-distribution
for the next time step. Future trajectories are generated autoregressively.

* Architecture: Based on a decoder-only Transformer (LLaMA). Its defining characteristic is its
input representation:

— Tokenization via Lag Features: Instead of patching, the input token for each time step is a
vector composed of lagged values from the time series history (e.g., values from 1, 7, and 14
days prior). This is augmented with standard date-time features.

— Value Scaling: Applies robust scaling (using median and IQR) to normalize the input values
and includes the scaling parameters as additional features.

* Forecasting Type: A universal, zero-shot/few-shot, probabilistic forecaster.

B.1.10 Toto

Toto (Time Series Optimized Transformer for Observability) is a foundation model from Datadog,
specifically designed for multivariate time series forecasting with a focus on observability metrics.
It is built on a decoder-only Transformer architecture and incorporates several novel components
to handle the unique challenges of observability data, such as high non-stationarity and heavy-
tailed distributions. The model is pretrained on a large and diverse corpus that includes real-world
observability data, public datasets, and synthetic data. [25]

* Input: Accepts multivariate time series.

* Output: Produces a probabilistic forecast by predicting the parameters of a Student-T mixture
model.

* Architecture: A decoder-only Transformer with several key innovations tailored for observability
data:

Patch-based Causal Normalization: A novel per-patch scaling method that computes
normalization statistics from current and past data to handle highly nonstationary series.

— Proportional Factorized Attention: An efficient attention mechanism that uses a mix of time-
wise and variate-wise attention blocks to judiciously model interactions in high-dimensional
multivariate data.

— Student-T Mixture Model Head: An output layer that models the predictive distribution
as a mixture of Student-T distributions to better capture the complex, heavy-tailed nature of
observability metrics.

— Composite Robust Loss: A hybrid loss function combining negative log-likelihood with a
robust point-wise loss to stabilize training in the presence of outliers.

* Forecasting Type: A universal, zero-shot, probabilistic forecaster for multivariate time series.

B.1.11 MOMENT

MOMENT (Multi-task, Open-source, Foundation Model for Time-series) is a family of open-source
foundation models from Carnegie Mellon University designed for general-purpose time series analysis.
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The models are built on a Transformer encoder architecture and are pretrained on a large, diverse
collection of public time series called the "Time Series Pile." A key characteristic of MOMENT is its
versatility; it is designed to serve as a building block for a wide range of downstream tasks, including
forecasting, classification, anomaly detection, and imputation, often with minimal task-specific
fine-tuning. [26]

* Input: Accepts a univariate time series of a fixed length. Multivariate time series are handled by
treating each channel independently.

* Output: Produces a reconstructed version of the input time series. This output can be adapted
for various downstream tasks, such as generating forecasts by masking future values or extracting
embeddings for classification.

* Architecture: A standard Transformer encoder that processes time series data in patches.

— Masked Pre-training: The model is pretrained using a masked time series prediction task. It
learns to reconstruct randomly masked patches of the input time series, enabling it to learn
robust representations.

— Patching: The input time series is segmented into non-overlapping patches, which are then
linearly projected into embeddings for the Transformer.

— Lightweight Prediction Head: A simple linear layer is used to reconstruct the time series
from the Transformer’s output embeddings. This head can be easily replaced or adapted for
different downstream tasks.

* Forecasting Type: A universal foundation model for general time series analysis. It can be used for
zero-shot or few-shot forecasting (point-based), classification, anomaly detection, and imputation.

B.1.12 ARIMA

The Autoregressive Integrated Moving Average (ARIMA) model is a class of statistical models
for analyzing and forecasting time series data. It is a generalization of the simpler Autoregressive
Moving Average (ARMA) model that can be applied to non-stationary time series. The model’s name
reflects its three core components: Autoregression (AR), Integrated (I), and Moving Average (MA).
These components capture the key temporal structures within the data, such as dependencies on past
observations and past forecast errors. [27]

e Input: A univariate time series.

* Output: A point forecast for future time steps. While classical ARIMA produces point forecasts,
probabilistic forecasts can be generated by assuming a distribution for the error term.

* Mathematical Formulation: An ARIMA(p, d, q) model is defined by three parameters: the order
of the autoregressive component (p), the degree of differencing (d), and the order of the moving
average component (q). The model assumes that the differenced time series, gy, = (1 — B)dyt, is

stationary, where B is the backshift operator. The formulation for the stationary series y; is:

P q
Yt :C+Z¢igt7i+zej€tfj + € (D
i=1 j=1

where:

— pis the autoregressive order, representing the number of lagged observations included in the
model.
d is the degree of differencing, representing the number of times the raw observations are
differenced to achieve stationarity.
q is the moving average order, representing the size of the moving average window applied to
past forecast errors.
¢ is the vector of autoregressive coefficients.
0 is the vector of moving average coefficients.
c is a constant term.
€; is the white noise error term at time ¢, typically assumed to be drawn from a Gaussian
distribution with zero mean.

» Forecasting Type: A statistical model that provides point forecasts. It is often used as a baseline
in forecasting tasks. Seasonal variations can be included by using a Seasonal ARIMA (SARIMA)
model.
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B.1.13 Croston’s Method

Croston’s method is a forecasting technique specifically designed for intermittent demand time series,
which are characterized by sporadic, non-zero values interspersed with periods of zero demand. The
method decomposes the original time series into two separate components: the magnitude of the
non-zero demand and the time interval between consecutive demands. By forecasting these two
components separately using Simple Exponential Smoothing and then combining them, the model
provides a more accurate estimate of the mean demand per period compared to standard smoothing
methods, which can be biased when applied to intermittent data. [28]

* Input: A univariate time series with intermittent demand.

* Output: A point forecast for the average demand per period.

* Mathematical Formulation: The method maintains and updates two estimates: one for the non-
zero demand size () and one for the interval between demands (p). Let y, be the demand at time
t, and let g be the time elapsed since the last demand. The updates occur only when a non-zero
demand is observed (y, > 0):

Zy =21 +a(y, — zi1) 2
Pt =Pi—1 +alqg—pi-1) 3
If demand at time ¢ is zero, the estimates are not updated (2; = 2;_1, P = Py_1) and the interval

counter ¢ is incremented. After a demand occurs, g is reset to 1. The final forecast for the mean

demand per period, ¥, is the ratio of the two smoothed components:
~Z
Y= = “
4

where « is the smoothing parameter.

* Forecasting Type: A statistical model for point forecasting, specialized for intermittent or "lumpy"
demand patterns.

B.1.14 Holt-Winters Exponential Smoothing

Holt-Winters is an extension of exponential smoothing that explicitly models trend and seasonality. It
is a widely used statistical method for forecasting time series data that exhibit these components. The
method operates by applying exponential smoothing to three components: the level, the trend, and
the seasonality. There are two primary variations of the model, additive and multiplicative, which
differ in how they incorporate the seasonal component. [5]

 Input: A univariate time series with trend and seasonality.
* Output: A point forecast for future time steps.

* Mathematical Formulation: The model provides separate updating equations for the level (lAt),

trend (Bt), and seasonal (S;) components, using smoothing parameters «, /3, and -, respectively.
Let L be the length of the seasonal period.

Additive Method: Used when the seasonal variation is roughly constant throughout the series.

Level: [, = a(y, — Se—p) + (1 — a)(l:,l —l—gt,l) )
Trend: by = Bl — ;1) + (1 — B)by s (6)
Seasonality: 5, = y(y; — ) + (1 — )51 @)
The forecast for h steps ahead is given by:
Yirh)t = 1y + hb, + §t7L+hz where h = [(h—1) (mod L)] +1 (8)

Multiplicative Method: Used when the seasonal variation changes in proportion to the level of the
series.

Level: [, = <§yt ) + (1= @)1 +bs-1) 9)
t—L
Trend: b, = B(l; — li—1) + (1 — B)by_1 (10)
Seasonality: 5, =~ <:’lit> +(1—9)S-1 (11)
t
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The forecast for h steps ahead is given by:
Gone = (o +hb)3,_p e where hf = [(h—1) (mod L)] +1 (12)

* Forecasting Type: A statistical model for point forecasting that can handle various combinations
of trend and seasonality.

B.1.15 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) architecture
specifically designed to address the vanishing gradient problem, allowing it to learn and remember
long-term dependencies in sequential data. Unlike traditional neural networks, LSTMs have internal
mechanisms called "gates" that regulate the flow of information. These gates enable the network to
selectively remember or forget information over long periods, making it particularly well-suited for
time series forecasting. [27]

* Input: A sequence of historical time series observations.
* Qutput: A point forecast for one or more future time steps.

* Mathematical Formulation: The core of an LSTM unit is its cell state, ¢;, which acts as a memory.
The flow of information into and out of the cell is controlled by three gates: the forget gate (f;),
the input gate (¢;), and the output gate (0;). At each time step ¢, these gates update the cell state

and produce a hidden state, h;.

Forget Gate: f; = o(wy - [i\lt—lvyt] +by) (13)

Input Gate: iy = o(w; - [hs—1,y,] + bi) (14)
Candidate State: ¢ = tanh(w, - [hy_1,y,] + be) (15)

Cell State Update: ¢; = f; ©® Ct—1 + 1 © & (16)
Output Gate: 0y = o (w, - [he_1, ;] + bo) (17)

Hidden State Update: ;\lt = 0; © tanh(¢;) (18)

where W and b are the weight matrices and bias vectors for each gate, o is the sigmoid function,
and ©® denotes element-wise multiplication. The final prediction is typically generated by passing

the hidden state h; through a dense output layer.

* Forecasting Type: A neural network model for point forecasting that can capture complex non-
linear patterns in time series data.

B.1.16 Prophet

Prophet is a forecasting procedure developed by Meta, based on a decomposable time series model.
It is designed to be robust to missing data and shifts in the trend, and it typically handles holidays and
seasonal effects well. The model fits an additive model with components for trend, seasonality, and
holidays. [8]
* Input: A univariate time series with timestamps.
* Output: A point forecast, along with uncertainty intervals.
* Mathematical Formulation: The Prophet model is specified as a sum of three components:

Y, = g(t) +s(t) + h(t) + & (19)

where:

— g(t) is the trend component, which is modeled as either a piecewise linear or logistic growth
function. This allows the model to capture non-periodic changes in the time series.

— s(t) is the seasonality component, which models periodic changes (e.g., yearly, weekly, daily).
It is approximated by a Fourier series:

N
s(t) = Z <an cos (T) + by, sin (T)) (20)

n=1

where P is the period of the seasonality (e.g., 365.25 for yearly).
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— h(t) is the holiday component, which represents the effects of holidays and special events. It
is modeled as a sum of indicator functions for each holiday.

— ¢ is the error term, assumed to be normally distributed white noise.

* Forecasting Type: A decomposable statistical model for point and probabilistic forecasting,
particularly effective for business time series with strong seasonal patterns and holiday effects.

B.1.17 Random Forest

Random Forest is an ensemble machine learning model that operates by constructing a multitude
of decision trees at training time. For time series forecasting, it is applied as a regression model to
a featurized dataset. By fitting numerous trees on various sub-samples of the data and employing
randomness in feature selection, it improves predictive accuracy and controls over-fitting. The final
prediction is an average of the outputs from all individual trees, making the model robust and capable
of capturing complex, non-linear relationships. [29]

* Input: A feature matrix X where rows are observations and columns are engineered features (e.g.,
lags, calendar variables), and a corresponding target vector y.
* Qutput: A point forecast for each input feature vector.

* Architecture and Formulation: A Random Forest is an ensemble of B decision trees. Its
predictive power comes from two sources of randomness introduced during training:

— Bagging (Bootstrap Aggregating): Each individual tree, fj, is trained on a bootstrap sample
(a random sample drawn with replacement) from the original training dataset.

— Feature Randomness: When splitting a node in a tree, the algorithm considers only a random
subset of the total features, which decorrelates the trees in the forest.

For a new input feature vector x, the forecast is the average of the predictions from all B trees in
the ensemble:

21
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* Forecasting Type: An ensemble machine learning model for point forecasting. It is non-parametric
and highly effective at modeling non-linear relationships between features and the target variable.

B.1.18 Seasonal Naive

The Seasonal Naive model is a simple yet effective baseline method for forecasting time series with a
strong seasonal component. Its core principle is that the forecast for a future period is equal to the
last observed value from the same season. For example, the forecast for this Monday would be the
value from last Monday. Despite its simplicity, it serves as a crucial benchmark for more complex
models. [30]

* Input: A univariate time series with a known seasonal period.
* Output: A point forecast for future time steps.

* Mathematical Formulation: The forecast for / steps ahead from time ¢, denoted ¥, p,|;. is the
last observed value from the corresponding season. Let L be the seasonal period (e.g., L = 7 for
daily data with weekly seasonality). The forecast is given by:

Yirhlt = Yt+h—Lk (22)

where k& = [h/L] is an integer that ensures the lagged time index refers to the most recent
observation from the target season. For a one-season-ahead forecast (b = L), this simplifies to

Yi+Lit = Y-

*» Forecasting Type: A simple statistical baseline for seasonal point forecasting.
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B.1.19 Support Vector Regression (SVR)

Support Vector Regression (SVR) is a supervised learning algorithm that extends the principles
of Support Vector Machines (SVMs) to regression problems. Instead of finding a hyperplane that
separates classes, SVR aims to find a function that deviates from the target values by a value no
greater than a specified margin, e, for as many of the training points as possible. It is particularly
effective in high-dimensional spaces and is robust to some outliers due to its use of an e-insensitive
loss function, which ignores errors within this margin. [31]

* Input: A feature matrix X and a corresponding target vector y.
* QOutput: A point forecast for each input feature vector.

+ Mathematical Formulation: The goal of SVR is to find a function f(z) = w”x + b that is
as "flat" as possible. This is achieved by minimizing the norm of the weight vector, ||w||?. The
optimization problem is formulated to tolerate errors up to a margin e while penalizing points that
fall outside this margin using slack variables &; and £;. The primal optimization problem is:

ﬂgélwll2+C;(&+§Z) (23)
subject to the constraints:
yi— (wia;+b) <e+§ (24)
(wha; +b) —y; <e+ & (25)
&, & =0 (26)

where C' is a regularization parameter that controls the trade-off between the flatness of the model
and the amount up to which deviations larger than € are tolerated. Non-linear relationships are
handled by mapping the data to a higher-dimensional space using a kernel function.

* Forecasting Type: A machine learning model for point forecasting that is robust to some outliers
and effective in high-dimensional feature spaces.

B.1.20 Theta Method

The Theta method is a statistical forecasting technique based on the concept of decomposition.
It models a time series by breaking it down into two components, or "theta lines." The first line
represents the long-term trend of the data, while the second line is constructed to capture the short-
term dynamics by modifying the curvature of the original series. These two lines are forecasted
independently and then combined to produce the final forecast. The standard Theta model has been
shown to be equivalent to Simple Exponential Smoothing with a drift term. [32]

e Input: A univariate time series.
* Output: A point forecast for future time steps.

* Mathematical Formulation: The method decomposes the original time series, y,, into two theta
lines.

— Line 1 (Trend Component): This line is the simple linear trend fitted to the data, which is
found by ordinary least squares regression:

g =a+ 0t 27)
This line is extrapolated linearly to produce its forecast.

— Line 2 (Short-term Component): This line is constructed by modifying the original series
with a coefficient . A common and effective choice is § = 2, which doubles the local

curvatures of the series. This modified series, §§2), is then forecasted using Simple Exponential

Smoothing (SES).
The final forecast, Y,y , is a simple average of the forecasts from the two lines:
. 1/ ~(2
Gien = 5 (915 +9550) 28)

* Forecasting Type: A statistical decomposition model for point forecasting, often used as a strong
baseline for its simplicity and performance.
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B.1.21 XGBoost

XGBoost (Extreme Gradient Boosting) is a powerful and efficient implementation of the gradient
boosting framework. It is an ensemble model that builds decision trees sequentially, where each new
tree is trained to correct the errors made by the previous ones. For time series forecasting, XGBoost
is used as a regression model on a featurized dataset, making it highly effective at capturing complex,
non-linear relationships between the engineered features (e.g., lags, calendar variables) and the target.
[30]

* Input: A feature matrix X and a corresponding target vector y.
* Qutput: A point forecast for each input feature vector.

* Architecture and Formulation: XGBoost builds an additive model where the final prediction is
the sum of the predictions from K decision trees:

K
Y=Y frlx) (29)
k=1

The trees are added one at a time in a greedy fashion. The k-th tree, fy, is chosen to minimize a
regularized objective function:

L9 =31y 5" + ful@i) + Q) (30)
i=1
where [ is a differentiable loss function, §§’H) is the prediction from the first k£ — 1 trees, and €2 is
a regularization term that penalizes the complexity of the tree:
1 I
Q(f):wT+§)\Zw? (31)
j=1

Here, T is the number of leaves in the tree, w is the vector of scores on the leaves, and v and A are
regularization parameters.

*» Forecasting Type: An ensemble machine learning model for point forecasting, known for its high
performance, speed, and regularization capabilities.
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B.2 Benchmark Tasks Included in TempusBench

In this section, we describe the datasets that have been used for each benchmark task. We summarize
the dataset used for each benchmark task in Table 2.

Table 6: Summary of datasets used for benchmark tasks, separated into univariate and multivariate

tasks.
Benchmark Univariate task Multivariate task
Trend
Non-stationary Software Development Job Postings [33] Electricity Consumption [34]
Decomposition

Additive Synthetically Generated Additive (Appendix B.3) -
Multiplicative Synthetically Generated Multiplicative (Appendix B.4) —

Frequency
Seconds - Utah Drilling [35]
Minutes - Historical Stock Data (2003-2024) [36]
Hours - Madrid Transport Pollution [37]
Days Coinbase Litecoin [38] Gold Price in India [39]
Weeks Federal Funds Effective Rate [40] -
Months Inventories to Sales Ratio [41] Airlines Baggage Complains [42]
Quarters German House Prices [43] -
Years Personal Consumption Expenditures [44] -

Seasonality
Periodic
Quasiperiodic

Domain
Energy Room SplitSmart [45] Room SplitSmart [45]
Transport Madrid BEN pollution [46] Madrid BEN pollution [46]
Climate Delhi Climate [47] Delhi Climate [47]
Software Software Development Job Postings [33] Watercgil:tt}rril/;t ttii)cri(;f(:tlworks [48]
Web Web Traffic [49] -
Sales German House Prices [43] Airlines Baggage Complains [42]
Nature Soil Monitoring [50] Soil Monitoring [50]
Economics/Finance Coinbase Litecoin [38] Gold Price in India [39]
Healthcare Employees Health Care [51] NYC Covid Cases [52]
Manufacturing Inventories to Sales Ratio [41] Utah Drilling [35]
Data sparsity

Sparse Patient Chart [53] -
Dense Chicken Pox [54] Gold Price in India [39]

Value type
Continuous Forest Fires [55] Gold Price in India [39]
Count Occupancy [56] Madrid BEN pollution [46]
Binary Absenteeism at Work [57] -
Categorical Online Retail [58] -

B.3 Synthetic Data: Cyclic Seasonality with Additive Trends

B.3.1 Description

This category of synthetic data models a time series that exhibits both a complex seasonal pattern
and a persistent, long-term trend. The data is generated using two related methods. Both methods
start with a foundational signal that combines multi-frequency sinusoids with a linear trend. The
second, more complex method builds upon this foundation by introducing an additional, randomized
sinusoidal component to the signal.
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In both cases, non-negative noise from an exponential distribution is added to the deterministic signal.
These datasets are ideal for testing a model’s ability to identify and separate periodicities from an
underlying linear trend, with the second method providing a more complex seasonal structure.

B.3.2 Mathematical Formulation

The generation process for both methods is based on a primary signal, yu,se(t), which includes
seasonal, trend, and offset components:

. t 1
Ypase (t) = 2sin(t) + 2 cos (2> + Zt +. 4 (32)
\/: Offset
Tren

Seasonality

Method 1: Fixed Additive Trend In the first method, the true signal, y; (¢), is simply the base function.
The final observed value, Y%, is this signal plus an additive noise term, ;.

Y;S =M (t) + e = ybase(t) + € (33)

Method 2: Randomized Additive Trend The second method introduces additional complexity. For
each generated time series, a random frequency parameter, «, is sampled once from a continuous
uniform distribution:

a~Ula,b) (34)

In the provided code, this range is fixed from ¢ = 0 to b = 5. This parameter is used to create an
additional sinusoidal component that is added to the base signal. The true signal, yo(t), is therefore:

Y2(t) = Ypase (t) + sin(at) (35)
The final observed value, Y%, is this enhanced signal plus the noise term:
Yi=y(t) + & (36)

Noise Model For both methods, the noise term, €, is drawn from an exponential distribution with a
scale parameter 3:
€; ~ Exponential(3) 37

B.3.3 Adjustable Parameters

The data generation process is controlled by the following parameters.

* Number of Points (num_points, N): This integer parameter sets the total number of
data points, defining the length of the time series.

» Start Time (start_time, t(): This parameter defines the initial time value for the series.

* Noise Scale (noise_std, (): This parameter represents the scale (and mean) of the
exponential noise distribution. A larger value for § increases the average magnitude of the
positive noise added to the base signal.

* Random Frequency (alpha, a): (Method 2 only) This parameter is not set by the user
but is sampled internally from a uniform distribution U (0, 5) for each generated series. It
introduces variability in the seasonal component across different datasets created by the
second method.

B.4 Synthetic Data: Cyclic Seasonality with Multiplicative and Additive Trends
B.4.1 Description

This category of synthetic data models a time series characterized by a complex interaction of seasonal
components and trends. A key feature is a multiplicative trend, where the amplitude of one of the
seasonal components grows exponentially over time. This is combined with another stable seasonal
component and a linear additive trend.
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The data is generated using two related methods. The first method uses a fixed, deterministic signal.
The second method introduces additional complexity by adding another sinusoidal component with
a randomized frequency to the base signal. In both cases, non-negative noise from an exponential
distribution is added. These datasets are particularly useful for testing a model’s ability to handle
heteroscedasticity, where the variance of the series changes over time, in the presence of other
seasonalities and trends.

B.4.2 Mathematical Formulation

Both methods are built upon a primary signal, ypase (t), which is a composite of several functions:

t 1
Yoase(t) = €/1%0gin(t) 4+ 3cos (2> + 5t (38)
~~

Multiplicative Seasonality .
Additive Seasonality Linear Trend

Method 1: Fixed Multiplicative Trend In the first method, the true signal, y; (¢), is simply the base
function. The final observed value, Y3, is this signal plus an additive noise term, €;.

Y, = Y1 (t) + € = ybase(t> + € (39)

Method 2: Randomized Additive Component The second method adds another layer of seasonality.
For each generated time series, a random frequency parameter, v, is sampled once from a continuous
uniform distribution:

a~Ula,b) (40)

In the provided code, this range is fixed from a = 5 to b = 10. The true signal, y»(¢), is the base
signal plus this new randomized sinusoidal component:

Y2 (t) = ybase(t) + Sin(at) (41)
The final observed value, Y3, is this enhanced signal plus the noise term:
}/;5 == yQ(t) + € (42)

Noise Model For both methods, the noise term, ¢, is drawn from an exponential distribution with a
scale parameter 3:
€; ~ Exponential(3) (43)

B.4.3 Adjustable Parameters

The data generation process is controlled by the following parameters.

* Number of Points (num_points, N): This integer parameter sets the total number of
data points, defining the length of the time series.

 Start Time (start_time, ty): This parameter defines the initial time value for the series.

* Noise Scale (noise_std, (§): This parameter represents the scale (and mean) of the
exponential noise distribution. A larger value for 8 increases the average magnitude of the
positive noise added to the base signal.

* Random Frequency (alpha, a): (Method 2 only) This parameter is not set by the user
but is sampled internally from a uniform distribution U (5, 10) for each generated series. It
introduces variability in the seasonal component across different datasets created by the
second method.
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C Additional Related Works

Classical time-series forecasting began with statistical models that exploit stochastic structure and
domain priors, including ARIMA and its Box—Jenkins methodology [59], exponential-smoothing
state-space ETS [60], the Theta method [61], and multivariate VAR models [62]. Deep learning
methods later advanced accuracy and scale by learning nonlinear temporal dependencies from large
corpora: DeepAR [63], N-BEATS [64], DLinear [15], TiDE [65], TFT [66], PatchTST [67], and
iTransformer [68]. Probabilistic forecasters further model predictive distributions, e.g., diffusion-
based TimeGrad [69], score-based CSDI for imputation and forecasting [70], and conditional-flow
GRU-NVP [71].

TSFMs. Inspired by NLP/vision pretraining, TSFMs train on heterogeneous corpora and evaluate
in zero/few-shot settings across domains and horizons. Representative models include Moirai [72],
Chronos [21], TimesFM [73], Lag-Llama [74], Timer [75], UniTS [76], TTM (Tiny Time Mixers)
[77], Moment [26], and multimodal VisionTS [78]. Collectively, they demonstrate strong zero-shot
point and probabilistic accuracy on diverse benchmarks while revealing open challenges at long
horizons (error accumulation) and at very high frequencies.

Public datasets and repositories. Public corpora have underpinned progress from statistical to
foundation-model eras. The M-competitions (M3 and M4) provided broad univariate benchmarks
across domains and frequencies [6, 7], followed by the retail-demand M5 competition [79]. The
Monash Time-Series Forecasting Archive curates a large, standardized repository spanning many
domains and sampling granularities [13]. Large-scale pretraining/evaluation collections include
LOTSA (released with Moirai) [72], the Chronos corpus with in-domain/zero-shot splits [21], and the
diverse univariate corpus aggregated in Lag-Llama [74]. Task-focused collections such as the LTSF
suite [15] (e.g., ETT datasets) and broader benchmarks like TFB [14] and ProbTS [80] assemble
datasets emphasizing horizon length, covariates, and probabilistic outputs.

Evaluation frameworks and benchmarks. Tooling and standardized evaluation have evolved in
parallel. Practitioner libraries such as Prophet [81] and sktime [82] offer classical and ML baselines
with unified interfaces, while GluonTS [83] and PyTorchTS [84] provide probabilistic deep-learning
pipelines. Benchmarking efforts including LTSF [15], BasicTS+ [? ], TFB [14], and ProbTS [80]
compare statistical, deep, and (in some cases) foundation models, but differ in task taxonomies, splits,
and leakage controls. Standardized metrics such as MASE [85] and CRPS [86] enable cross-dataset
aggregation of point and probabilistic performance, yet consistent pretraining/evaluation protocols
and leakage-free large-scale corpora remain key needs for fair TSFM assessment.

The collective consequence of these issues is a research environment where it is difficult to distinguish
genuine methodological advances from circumstantial performance on a narrow, and potentially
contaminated, set of tasks. This is particularly damaging for the development of TSFMs. The
significant computational and financial resources required to pre-train these models demand a
rigorous, fair, and comprehensive evaluation framework to justify their development and guide future
research [32]. The current state of affairs falls short of this standard. Indeed, studies have shown that
existing TSFMs, often pre-trained on general-purpose academic datasets, can struggle to generalize
to the unique and challenging characteristics of specialized domains like observability data [87].

The field has thus reached an inflection point. Progress is no longer primarily limited by our ability to
design novel model architectures, but by our inability to reliably and fairly measure their performance.
Recognizing this crisis, recent efforts have focused on creating the next generation of evaluation
infrastructure. The development of large-scale, standardized benchmarks such as GIFT-Eval and
the domain-specific Benchmark of Observability Metrics (BOOM) represent a direct and necessary
response [27]. These initiatives introduce carefully curated and decontaminated pre-training and
evaluation sets, standardized protocols, and data that reflects the complexity of real-world applications.
They treat the benchmark not as a mere dataset, but as a carefully designed scientific instrument
[8]. This establishes a clear and urgent research gap: the critical need for a new, large-scale, and
meticulously curated public benchmark that can serve as a gold standard for evaluating the next
generation of time-series models. Such a contribution is not merely a prerequisite for future research;
it is a foundational scientific contribution in its own right, providing the essential infrastructure
required to move the field from an era of fragmented claims to one of robust, reproducible, and
generalizable progress [26].

26



934
935
936

937
938
939
940
941
942

943
944
945
946
947
948

949
950
951
952
953

955
956
957
958
959
960
961
962
963

964

965
966
967

968
969
970
971
972
973
974

976

977
978
979
980
981
982
983
984
985
986

987
988

Contemporary time-series data seldom conform to the idealized assumptions of stationarity and
linearity that underpin classical models. Instead, real-world data streams are characterized by a
confluence of complex, interacting properties that present formidable modeling challenges [30].

* Non-Linearity: Perhaps the most fundamental challenge is the prevalence of non-linear
relationships. Economic systems, biological processes, and energy grids are governed
by complex feedback loops and interactions that cannot be adequately captured by linear
models [27]. Traditional methods like Autoregressive Integrated Moving Average (ARIMA)
are, by their construction, limited in their ability to model such non-linear dynamics, which
is a primary reason for their performance ceiling on complex, real-world problems [30].

* Multi-Regime Behavior: Many time series exhibit structural breaks or distinct operational
regimes, where the underlying data-generating process changes over time [5]. Examples
include the shift between bull and bear markets in financial data or the different performance
characteristics of an industrial machine under varying loads and environmental conditions. A
single, global model often fails to capture this complex inner structure, leading to significant
predictive errors when the system transitions between regimes [88].

e Intermittency: As noted previously, intermittent demand patterns are characterized by a
high proportion of zero-valued observations, with non-zero demands occurring sporadically.
This dual source of randomness—in both the timing and the magnitude of events—violates
the assumptions of continuity and regular sampling inherent in many classical smoothing
and regression-based techniques [5].

» Heightened Volatility and Novel Data Sources: The modern data ecosystem is character-
ized by the emergence of new data sources that introduce unprecedented levels of volatility
and complexity [5]. The integration of renewable energy sources into power grids is a prime
example, creating load patterns with high-frequency noise and non-stationary behavior that
challenge traditional forecasting approaches. A parallel development is the explosion of
"observability data" generated by large-scale distributed software and cloud computing sys-
tems. This data, which includes metrics on CPU load, network latency, and application error
rates, is often characterized by extreme non-stationarity, high dimensionality (thousands of
correlated variables), heavy-tailed distributions, and sparsity, posing a unique and difficult
set of modeling challenges [5].

C.0.1 An Arms Race of Methodological Innovation

The progression of forecasting methodologies can be understood as a direct response to this escalating
data complexity. Each new paradigm has sought to overcome the limitations of its predecessors,
leading to the current diverse and powerful toolkit available to researchers and practitioners [5].

* The Classical Foundation: The field was built upon a foundation of statistical methods
developed primarily in the mid-20th century. Models such as ARIMA and its variants
[8], Holt-Winters Exponential Smoothing [5], and the Theta method [32] became the
workhorses of the discipline. These models excel at capturing and extrapolating clear
patterns of trend and seasonality from univariate time series. Their enduring appeal lies in
their statistical rigor, interpretability, and computational efficiency. However, their reliance
on strong assumptions about the underlying data-generating process, particularly linearity
and stationarity, fundamentally limits their applicability to the more complex data common
today [8].

* The Machine Learning Advance: The rise of machine learning in the late 20th and
early 21st centuries provided a new set of tools capable of addressing the challenge of
non-linearity. Non-parametric models like Support Vector Regression (SVR) [31] offered a
principled approach, grounded in statistical learning theory, to model non-linear relationships
in high-dimensional spaces via the "kernel trick" [27]. Concurrently, ensemble methods,
particularly those based on decision trees like Random Forest and Gradient Boosting
(e.g., XGBoost), proved to be exceptionally powerful and robust [30]. By combining
the predictions of many weak learners, these models can capture complex, non-linear
interactions and have consistently demonstrated state-of-the-art performance in a wide array
of forecasting competitions and applications.

* The Deep Learning Revolution: While machine learning ensembles excelled at capturing
complex feature interactions, they were not explicitly designed to model the long-range
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temporal dependencies inherent in sequential data. This limitation was addressed by the
deep learning revolution. Recurrent Neural Networks (RNNs) , and more specifically archi-
tectures like Long Short-Term Memory (LSTM) networks, were developed with internal
memory mechanisms (gates) that allow them to capture and retain information over long
sequences [27]. Empirical studies have shown that on complex financial and economic
data, LSTMs can significantly outperform classical models like ARIMA by better modeling
non-linear temporal dynamics [5]. Following the success of LSTMs, Transformer-based
architectures, with their self-attention mechanism, have emerged as the next frontier, offer-
ing a powerful alternative for capturing dependencies across time without the sequential
processing limitations of RNNs [27].

This co-evolution of data challenges and modeling paradigms, summarized in Table 7, illustrates a
clear trajectory towards models of increasing complexity and representational power.

Table 7: The Co-evolution of Time-Series Challenges and Modeling Paradigms [5] [32] [8] [27] [30].

Era Primary Data Chal- Dominant Model Key Models Inherent Limita-
lenge(s) Paradigm tions
Statistical Trends, Seasonality, Time-Domain Sta- ARIMA, Holt- Struggle with non-
Stationarity tistical Models Winters, Theta linearity and com-
plex dependencies
Machine Non-Linearity, Com- Non-parametric Ensemble Models Limited handling of
Learning plex Interactions (SVR, Random long-range temporal
Forest, XGBoost) dependencies
Deep Long-Range Depen- Recurrent, LSTMs, Trans- Data-hungry, com-
Learning dencies, Sequential Attention-based formers putationally inten-
Patterns Networks sive, task-specific
Foundation Heterogeneity, Scale, Large Pre-trained MOMENT, Reliance on mas-
Models Task Generalization Models TOTO, Chronos sive, curated
datasets; evaluation
bottleneck

However, this progression is not a simple linear march where newer, more complex models invariably
render older ones obsolete. Empirical evidence reveals a more nuanced reality, one that aligns with
the well-known "No Free Lunch" theorem in machine learning. While deep learning models like
LSTMs have been shown to decisively outperform ARIMA on certain complex datasets, recent
large-scale studies have also found that in zero-shot or limited-supervision settings, simpler statistical
methods often outperform sophisticated deep learning models [27]. Furthermore, in production
environments like large-scale observability systems, classical models remain prevalent due to the
operational infeasibility of training and maintaining millions of distinct, complex neural network
models [5]. This apparent contradiction is not a flaw in the research, but rather a reflection of a
fundamental truth: the performance of any given forecasting model is highly contingent on the
specific characteristics of the data, the length of the forecast horizon, the availability of computational
resources, and the degree of supervision. This recognition implies that the central problem in the
field is not merely the invention of more powerful algorithms, but the development of a deeper, more
systematic understanding of the complex performance landscape that governs the interaction between
data characteristics and model architectures [27].

C.1 The New Frontier: Pre-trained Foundation Models for Time Series

In response to the challenges of data heterogeneity and the high cost of developing task-specific
models, the field is currently undergoing another paradigm shift, mirroring recent transformations
in natural language processing and computer vision: the move towards large, pre-trained Time-
Series Foundation Models (TSFMs). This new frontier aims to leverage the power of large-scale,
self-supervised learning to create general-purpose models that can be adapted to a wide range of
downstream tasks with minimal fine-tuning [27].
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The core premise of the foundation model paradigm is to pre-train a single, high-capacity model
(typically a Transformer) on a massive and diverse corpus of unlabeled data. This process allows
the model to learn a rich, generalizable representation of temporal patterns. Subsequently, this
pre-trained model can serve as a powerful building block for various downstream applications,
including long- and short-horizon forecasting, time-series classification, anomaly detection, and
missing value imputation. Models such as MOMENT, Chronos, and TOTO are at the vanguard of
this movement. They are designed to be effective "out-of-the-box," providing strong zero-shot or
few-shot performance without the need for extensive task-specific training [26] [25]. This approach
holds particular promise for domains like observability, where the sheer scale and diversity of time
series—often numbering in the millions or billions—make the traditional approach of training one
model per series operationally intractable [30].

The primary enabler of this paradigm, and simultaneously its greatest bottleneck, is the availability of
data. The success of foundation models in other domains was built on the existence of vast, cohesive,
and publicly accessible datasets like The Pile for text and ImageNet for vision [26]. The time-
series domain, by contrast, has historically been characterized by a fragmented landscape of smaller,
scattered, and task-specific public datasets [5]. This data scarcity has been a major impediment to
large-scale pre-training. To overcome this, pioneering research efforts have begun the monumental
task of data curation. The creators of MOMENT compiled The Time Series Pile, a large collection
of public repositories, while the TOTO model was pre-trained on a corpus containing a mixture of
public, synthetic, and large-scale proprietary observability data, resulting in a dataset 4 to 10 times
larger than those used for other leading TSFMs [25].

This focus on data curation signals a significant maturation of the field. In earlier eras, the primary
axis of innovation was model architecture—for example, the design of the gating mechanisms in
an LSTM or a novel attention variant in a Transformer [27]. The advent of the TSFM paradigm,
however, shifts the research bottleneck. While architectural innovation remains important, the most
critical and scientifically challenging work is now increasingly centered on the curation of massive,
diverse, and clean datasets, and on the development of robust frameworks for evaluating the models
trained on them. The value proposition of a new TSFM is now as much about the data it was trained
on and the benchmark it was tested against as it is about its internal architecture. This implies that
the most impactful contributions in this new era may not be designing a marginally better model,
but rather creating the foundational data and evaluation infrastructure that enables the entire field to
advance [8].
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