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Abstract
Accurate probabilistic predictions are essential
for optimal decision making. While neural net-
work miscalibration has been studied primarily
in classification, we investigate this in the less-
explored domain of regression. We conduct the
largest empirical study to date to assess the prob-
abilistic calibration of neural networks. We also
analyze the performance of recalibration, confor-
mal, and regularization methods to enhance prob-
abilistic calibration. Additionally, we introduce
novel differentiable recalibration and regulariza-
tion methods, uncovering new insights into their
effectiveness. Our findings reveal that regulariza-
tion methods offer a favorable tradeoff between
calibration and sharpness. Post-hoc methods ex-
hibit superior probabilistic calibration, which we
attribute to the finite-sample coverage guarantee
of conformal prediction. Furthermore, we demon-
strate that quantile recalibration can be considered
as a specific case of conformal prediction. Our
study is fully reproducible and implemented in a
common code base for fair comparisons.

1. Introduction
Neural network predictions affect critical decisions in many
applications, including medical diagnostics and autonomous
driving (Gulshan et al., 2016; Guizilini et al., 2020). How-
ever, effective decision making often requires accurate prob-
abilistic predictions (Gawlikowski et al., 2021; Abdar et
al., 2021). For example, consider a probabilistic regression
model that produces 90% prediction intervals. An important
property would be that 90% of these prediction intervals
contain the realizations.

For models that output a predictive distribution, probabilis-
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tic calibration is an important property that states that all
quantiles must be calibrated, i.e., the frequency of realiza-
tions below these quantiles must match the corresponding
quantile level. Additionally, predictive distributions should
be sufficiently sharp (i.e., concentrated around the realiza-
tions) and leverage the information in the inputs.

In the classification setting, Guo et al. (2017) found that
common neural architectures trained on image and text data
were miscalibrated, sparking increased interest in neural
network calibration. In a follow-up study, Minderer et al.
(2021) showed that more recent neural architectures demon-
strate improved calibration. However, there has been less
research on calibration for neural probabilistic regression
models compared to classification. Therefore, it remains
uncertain whether the same results apply to the regression
setting. This paper addresses this gap by conducting a com-
prehensive study on probabilistic calibration for regression
using tabular data. We explore various calibration meth-
ods, including quantile recalibration (Kuleshov, Fenner, et
al., 2018) and conformalized quantile regression (Romano,
Patterson, et al., 2019). We also consider regularization
methods, which have been shown to perform well in the
classification setting (Karandikar et al., 2021; Popordanoska
et al., 2022; Yoon et al., 2023).

We make the following main contributions:

1. We conduct the largest empirical study to date on prob-
abilistic calibration of neural regression models using
57 tabular datasets (Sections 4 and 6). We consider
multiple state-of-the-art calibration methods (Section
5), including post-hoc recalibration, conformal predic-
tion, and regularization methods, with various scoring
rules and predictive models.

2. Building on quantile recalibration, we propose a new
differentiable calibration map using kernel density
estimation, which provides improved negative log-
likelihood compared to baselines. We also introduce
two new regularization objectives based on the proba-
bilistic calibration error (Section 5).

3. We show that quantile recalibration is a special case
of conformal prediction, providing an explanation for

1



Probabilistic Calibration in Neural Network Regression

their superior performance in terms of probabilistic
calibration (Section 6).

2. Background
We consider a univariate regression problem where the target
variable Y ∈ Y depends on an input variable X ∈ X , with
Y = R representing the target space and X representing the
input space. Our objective is to approximate the conditional
distribution PY |X using training data D = { (Xi, Yi) }Ni=1

where (Xi, Yi)
i.i.d.∼ P ≡ PX × PY |X .

A probabilistic predictor Fθ : X → F is a function
parametrized by θ ∈ Θ that maps an input x ∈ X to a
predictive cumulative distribution function (CDF) Fθ(· | x)
in the space F of distributions over R. Additionally, given
x ∈ X , we denote the predictive quantile function (QF)
by Qθ(· | x), and probability density function (PDF) by
fθ(· | x). Similarly, the marginal CDF, QF, or PDF of a ran-
dom variable R is denoted by FR, QR, or fR, respectively.

Probabilistic calibration. Given an input x ∈ X , the
model Fθ is ideal if it precisely matches the conditional
distribution PY |X . However, learning the ideal model based
on finite data is not possible without additional (strong) as-
sumptions (Foygel Barber et al., 2021). To avoid additional
assumptions, we can instead enforce certain desirable prop-
erties that are attainable in practice and that a good or ideal
forecaster should exhibit. One such property is probabilistic
calibration.

Let Z = Fθ(Y | X) ∈ [0, 1] denote the probability integral
transform (PIT) of Y conditional on X . The model Fθ is
probabilistically calibrated (also known as PIT-calibrated)
if ∀α ∈ [0, 1],

FZ(α)
.
= Pr(Z ≤ α) = α. (1)

Let U ∈ [0, 1] be a uniform random variable independent
of Z. The left and right hand sides of (1) can be interpreted
as the CDF of Z and U , respectively, as a function of α.
This shows that the uniformity of the PIT is equivalent to
probabilistic calibration (Dawid, 1984).

Since the ideal forecaster is probabilistically calibrated, we
can require this property from any competent forecaster.
However, probabilistic calibration, though necessary, is not
sufficient for making accurate probabilistic predictions. Ad-
ditionally, as discussed by Gneiting and Resin (2021), proba-
bilistic calibration primarily addresses unconditional aspects
of predictive performance and is implied by more robust
conditional notions of calibration, such as auto-calibration.

Probabilistic calibration error. The most common ap-
proach for evaluating probabilistic calibration is to consider
distances of the form

∫ 1

0
|FZ(α)−FU (α)|pdα where p > 0.

The particular cases of p = 1 and p = 2 are known as the
1-Wasserstein distance and Cramér-von Mises distance, re-
spectively. We denote the empirical CDF of the PIT as
F̂Z(α) =

1
N

∑N
i=1 1(Zi ≤ α) where Zi = Fθ(Yi | Xi) are

PIT realizations. A common approach to assess probabilis-
tic calibration using Monte Carlo estimation is to evaluate it
at equidistant values α1 < · · · < αM as follows:

PCEp(Fθ,D) =
1

M

M∑
j=1

∣∣∣αj − F̂Z(αj)
∣∣∣p . (2)

This metric has been previously employed in literature such
as Zhao et al. (2020) and Zhou et al. (2021) with p = 1,
and Kuleshov, Fenner, et al. (2018) and Utpala and Rai
(2020) with p = 2. It is important to note that, unlike the
classical definition of the p-norm, we do not exponentiate 1

p
in (2) to maintain consistency with prior literature. In the
subsequent sections, we focus our analysis on PCE1 and use
the abbreviation PCE for brevity.

One limitation of scalar metrics like PCE is their inability
to provide detailed information regarding calibration errors
at individual quantile levels, α1, . . . , αM . Instead, PIT reli-
ability diagrams offer a visual assessment of probabilistic
calibration across all quantile levels by plotting the empiri-
cal CDF of the PIT Z. These diagrams display the right side
of (1) against its left side, with a perfectly calibrated model
represented by a diagonal line (in the asymptotic case). Fig-
ure 2 provides examples of such reliability diagrams, which
have been employed in studies by Pinson and Hagedorn
(2012) and Kuleshov, Fenner, et al. (2018).

3. Related Work
Post-hoc calibration approaches involve adjusting the pre-
dictions of a trained model using a mapping learned from
a separate calibration dataset. In the context of classifica-
tion, temperature scaling (Guo et al., 2017) is a simple and
effective method that adjusts predictive confidence while
maintaining accuracy. For regression tasks, quantile recal-
ibration (Kuleshov, Fenner, et al., 2018) aims to achieve
probabilistic calibration. Conformal prediction (Vovk et al.,
2020) is a general approach that provides prediction sets
with a finite-sample coverage guarantee. Notable methods
applied with deep learning include Conformal Quantile Re-
gression (Romano, Patterson, et al., 2019) and Distributional
Conformal Prediction (Izbicki et al., 2020; Chernozhukov
et al., 2021). Furthermore, post-hoc approaches have also
been proposed for conditional notions of calibration (Song
et al., 2019; Kuleshov and Deshpande, 2022).

Regularization approaches aim to improve calibration
during training by incorporating regularization techniques.
Some methods, proposed by Zhao et al. (2020) and Feld-
man et al. (2021), utilize regularization to target different
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Figure 1: Multiple regression benchmark datasets with references. Datasets inside parentheses have not been considered in
this study. Full dataset names are available in Table 1.

conditional notions of calibration based on the inputs. Zhou
et al. (2021) introduced an alternative loss function involv-
ing the simultaneous training of two neural networks, while
Pearce et al. (2018), Chung et al. (2021), and Thiagarajan
et al. (2020) proposed objectives that allow control over the
tradeoff between coverage and sharpness of prediction in-
tervals. To our knowledge, the only regularization objective
specifically targeting probabilistic calibration is quantile
regularization (Utpala and Rai, 2020). Other types of uncer-
tainty quantification methods include ensembling (Laksh-
minarayanan, Pritzel, et al., 2017) and Bayesian methods
(Jospin et al., 2022)

4. Are Neural Regression Models
Probabilistically Calibrated?

We conduct an extensive empirical study to evaluate the
probabilistic calibration of neural regression models. To this
end, we calculate the probabilistic calibration error defined
in (2) for various state-of-the-art models across multiple
benchmark datasets.

Benchmark datasets. We analyze a total of 57 datasets,
including 27 from the OpenML curated benchmark (Grinsz-
tajn et al., 2022), 18 from the AutoML Repository (Gijsbers
et al., 2019), and 12 from the UCI Machine Learning Repos-
itory (Dua and Graff, 2017).

These datasets are widely used in the evaluation of deep
probabilistic models and uncertainty quantification, as ev-
idenced by previous studies such as Fakoor et al. (2021),
Chung et al. (2021), Zhou et al. (2021), Utpala and Rai
(2020), and Gal and Ghahramani (2016).

Figure 1 provides an overview of the utilization of these
datasets in previous studies. To the best of our knowledge,
our study represents the most comprehensive assessment
of probabilistic calibration for neural regression models
published to date.

Neural probabilistic regression models. We consider three
state-of-the-art neural probabilistic regression models. The

first model predicts a parametric distribution, where the pa-
rameters are obtained as outputs of a hypernetwork. Previ-
ous studies have often focused on the Gaussian distribution
(Lakshminarayanan, Pritzel, et al., 2017; Utpala and Rai,
2020; Zhao et al., 2020). To introduce more flexibility, we
consider a mixture of K Gaussian distributions. Given an
input x ∈ X , the hypernetwork parametrizes the means
µk(x), standard deviations σk(x), and weights wk(x) for
each component k = 1, ...,K. To ensure positive standard
deviations and that the mixture weights form a discrete
probability distribution, we use the Softplus and Softmax
activations, respectively. We have two variants of this model
depending on the scoring rule used for training: the negative
log-likelihood (NLL) or the continuous ranked probability
score (CRPS). These models are denoted as MIX-NLL and
MIX-CRPS, respectively. It is worth noting that the CRPS
of a mixture of Gaussians has a closed-form expression
(Grimit et al., 2006).

The second model predicts quantiles of the distribution
(Tagasovska and Lopez-Paz, 2019; Chung et al., 2021; Feld-
man et al., 2021). Specifically, given an input x ∈ X and
a quantile level α ∈ [0, 1], the model outputs a quantile
Qθ(α | x). The full quantile function can be obtained by
evaluating the model at multiple quantile levels. The model
is trained by minimizing the quantile score at multiple lev-
els, which is asymptotically equivalent to minimizing the
CRPS (Bracher et al., 2021). We denote this model as
SQR-CRPS, where SQR stands for simultaneous quantile
regression (Tagasovska and Lopez-Paz, 2019).

Experimental setup. We adopt the large-sized regime intro-
duced by Grinsztajn et al. (2022), which involves truncating
the datasets to a maximum of 50,000 examples. Among
the 57 datasets, the number of examples ranges from 135
to 50,000, and the number of features ranges from 3 to
3,6111. Each of the 57 datasets is divided into four sets:
training (65%), validation (10%), calibration (15%), and
test (10%). We normalize the input X and target Y using

1Please refer to Appendix D, specifically Table 1, for a detailed
summary of each dataset.
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Figure 2: The top row shows the PCE for different datasets with one standard error (error bar). The bottom row gives
examples of PIT reliability diagrams for five datasets.

the mean and standard deviation from the training split. The
final predictions are then transformed back to the original
scale. For our neural network models, we employ the same
fully-connected architecture as previous studies conducted
by Kuleshov, Fenner, et al. (2018), Chung et al. (2021), and
Fakoor et al. (2021). Further details regarding the model
hyperparameters can be found in Appendix C.

Results. In Figure 2, the first row displays the PCE (aver-
aged over five random train-validation-test splits) for MIX-
NLL in blue on each of the 57 datasets. For comparison,
the PCE of a perfectly calibrated model, i.e. with uniformly
distributed PITs, computed using 5× 104 simulated values
is shown in orange. The second row presents reliability
diagrams for five datasets, with 90% consistency bands as
in Gneiting, Wolffram, et al. (2023). Similar information
is provided for MIX-CRPS and SQR-CRPS in Figures 12
and 13 in Appendix B.4, respectively. Additionally, relia-
bility diagrams for all datasets can be found in Figure 15 in
Appendix B.6.

The analysis reveals that the (average) PCE is generally
high across many datasets, although there are significant
variations between datasets. To test the statistical signifi-
cance of these results, 104 samples were generated from the
sampling distribution of the average PCE under the null hy-
pothesis of probabilistic calibration. The resulting sampling
distribution for all datasets is presented in Appendix B.5.

By computing the p-value associated with a one-sided test
in the upper tail of the distribution (as illustrated in Ap-
pendix B.5), it was observed that most datasets have a p-
value of zero. This indicates that the average PCE obtained

for the considered model is higher than all the simulated
average PCEs of the probabilistically calibrated model. Ap-
plying a threshold of 0.01 and a Holm correction for the
57 hypothesis tests, the null hypothesis is rejected for 11
datasets out of the 57.

Overall, the results indicate that the neural models con-
sidered in this study are generally probabilistically mis-
calibrated on a significant number of benchmark tabular
datasets. In Section 6, we will further explore how calibra-
tion methods can substantially improve the PCE of neural
models.

5. Calibration Methods
We begin by discussing the three main approaches to cali-
bration: quantile recalibration, conformal prediction, and
regularization-based calibration. Following that, we intro-
duce two novel variants of regularization-based calibration.

Quantile recalibration and conformal prediction are post-
hoc methods, meaning they are applied after model train-
ing. These approaches utilize a separate calibration dataset
D′ = { (X ′

i, Y
′
i ) }

N ′

i=1, where (X ′
i, Y

′
i )

i.i.d.∼ PX,Y . On
the other hand, regularization-based calibration operates
directly during training and relies solely on the training data
D.

5.1. Quantile Recalibration

Quantile recalibration aims to transform a potentially mis-
calibrated CDF Fθ into a probabilistically calibrated CDF
F ′
θ = FZ ◦ Fθ, using the calibration map FZ which repre-
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sents the CDF of the PITs for Fθ. For a given quantile level
α ∈ [0, 1], the recalibrated CDF F ′

θ satisfies:

Pr(F ′
θ(Y | X) ≤ α) = Pr(Fθ(Y | X) ≤ QZ(α)) (3)

= FZ(QZ(α)) (4)
= α. (5)

In practice, FZ is not directly available and needs to be
estimated from data. Kuleshov, Fenner, et al. (2018) pro-
posed estimating it using isotonic regression, while Utpala
and Rai (2020) showed that computing the empirical CDF
is an equivalent and simpler method. Specifically, given a
set of PIT values Z ′

i = Fθ(Y
′
i | X ′

i), i = 1, . . . , N ′, the
calibration map ϕEMP is computed as:

ϕEMP(α; { Z ′
i }

N ′

i=1) =
1

N ′

N ′∑
i=1

1(Z ′
i ≤ α), (6)

where α ∈ [0, 1].

Similarly to Utpala and Rai (2020), we also consider a
linear calibration map ϕLIN, which is continuous, and
corresponds to a linear interpolation between the points{
(0, 0), (Z ′

(1),
1/N ′+1), . . . , (Z ′

(N ′),
N ′
/N ′+1), (1, 1)

}
,

where Z ′
(k) is the kth order statistic of Z ′

1, . . . , Z
′
N ′ .

In addition, we propose a calibration map based on kernel
density estimation (KDE), denoted as ϕKDE. This calibra-
tion map offers the advantage of being differentiable and
can lead to improved NLL performance. The key idea is
to use a relaxed approximation of the indicator function,
which allows us to make the PIT CDF (6) differentiable.
Specifically, we compute

1τ (a ≤ b) = σ(τ(b− a)) ≈ 1(a ≤ b),

where τ > 0 is an hyperparameter and σ(x) = 1
1+e−x

denotes the sigmoid function. The resulting smoothed em-
pirical CDF is given by

ϕKDE(α; { Z ′
i }

N ′

i=1) =
1

N ′

N ′∑
i=1

1τ (Z
′
i ≤ α). (7)

This corresponds to estimating the CDF FZ using KDE
based on N ′ realizations of Z ({ Z ′

i }
N ′

i=1). Since σ is the
CDF of the logistic distribution, we use the PDF of the
logistic distribution as the kernel in the KDE. Algorithm 1
summarises this method.

Algorithm 1 Quantile recalibration

Input: Predictive CDF Fθ and D′ = { (X ′
i, Y

′
i ) }

N ′

i=1.
Compute Z ′

i = Fθ(Y
′
i | X ′

i) (i = 1, . . . , N ′)
Compute the calibration map ϕ, either ϕEMP, ϕLIN, or
ϕKDE

Return: Recalibrated CDF F ′
θ = ϕ ◦ Fθ.

5.2. Conformal Prediction

Let us assume the realizations of our calibration dataset D′

are drawn exchangeably from PX,Y
2. Given a predictive

model Mθ and a coverage level α ∈ [0, 1], (inductive) con-
formal prediction allows us to construct a prediction set
Cα(X) ⊆ Y for any input X , satisfying the property:

Pr(Y ∈ Cα(X)) =
⌈(N ′ + 1)α⌉

N ′ + 1
(8)

≈ α. (9)

Conformal prediction achieves this by utilizing a conformity
score sθ(Y | X), which intuitively quantifies the similarity
between new samples and previously observed samples.
When the conformity score increases with Y , an interval
Cα(X) = (−∞, s−1

θ (α | X)] can be constructed, ensuring
the conformal guarantee (8) at level α.

Let Q′
θ(α | X) = s−1

θ (α | X) represent the (revised) model
obtained through conformal prediction from Qθ(α | X).
Under the assumption that Q′

θ is continuous and strictly
increasing, the conformal guarantee implies that Pr(Y ≤
Q′

θ(α | X)) ≈ α, which indicates approximate probabilistic
calibration at level α.

Conformalized Quantile Regression (Romano, Patterson, et
al., 2019) is an example of a conformal procedure, where the
conformity score is defined as sθ(Y | X) = Y −Qθ(α | X),
representing the quantile residual. Another example is Dis-
tributional Conformal Prediction (Izbicki et al., 2020; Cher-
nozhukov et al., 2021), which employs the conformity score
sθ(Y | X) = Fθ(Y | X), referring to the PIT. Algorithm 2
provides a summary of how to compute calibrated quantiles
using inductive conformal prediction.

Algorithm 2 Calibrated quantiles with conformal prediction

Input: Trained model Mθ, D′ = { (X ′
i, Y

′
i ) }

N ′

i=1,
strictly increasing conformity score s, quantile level
α ∈ [0, 1], input X .
Compute Si = sθ(Y

′
i | X ′

i) (i = 1, . . . , N ′)
Compute q̂ = S(⌈(N ′+1)α⌉) where S(k) denote the kth
smallest value among { S1, . . . , SN ′ ,+∞}
Return: Calibrated quantile Q′

θ(α | X) = s−1
θ (q̂ | X)

5.3. Regularization-based Calibration

Regularization-based calibration methods aim to enhance
model calibration by incorporating a regularization term into
the training objective. Although widely used in classifica-
tion, there are relatively fewer methods specifically designed
for regression problems. In this section, we discuss two ap-
proaches: quantile regularization (Utpala and Rai, 2020)

2This is implied by the common i.i.d. assumption.
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and the truncation method (Chung et al., 2021). The main
steps of regularization-based calibration are summarized in
Algorithm 3.

Algorithm 3 Regularization-based calibration

Input: Model Mθ, calibration regularizer R(θ) and tun-
ing parameter λ ≥ 0.
Compute θ∗ = argminθ∈Θ L′

(θ;D) where
L′

(θ;D) = 1/N
∑N

i=1 L(Mθ(· | Xi), Yi) + λR(θ;D)
Return: Regularized model Mθ∗

5.3.1. QUANTILE REGULARIZATION

The regularizer proposed by Utpala and Rai (2020) aims to
measure the deviation of the PIT variable Z from a uniform
distribution, which is characteristic of a probabilistically
calibrated model. This regularization penalty encourages
the selection of calibrated models during training.

The authors observed that the KL divergence between Z
and a uniform random variable is equivalent to the negative
differential entropy of Z, denoted as H(Z). To approximate
H(Z), they employed sample-spacing entropy estimation
(Vasicek, 1976), resulting in the following regularizer:

RQR(θ;D) (10)

=
1

N − k

N−k∑
i=1

log

[
N + 1

k
(Z(i+k) − Z(i))

]
(11)

≈ H(Z), (12)

where k is a hyperparameter satisfying 1 ≤ k ≤ N , and
Z(i) represents the ith order statistic of Z.

To ensure differentiability during optimization, the au-
thors employed a differentiable relaxation technique called
NeuralSort (Grover et al., 2019), as sorting is a non-
differentiable operation.

5.3.2. TRUNCATION-BASED CALIBRATION

The regularization approach introduced by Chung et al.
(2021), that we denote Trunc, involves truncating the pre-
dictive distribution based on the current level of calibration.

Given a quantile model Qθ, let F̂Z(α) =
1
N

∑N
i=1 1(Yi ≤

Qθ(α | Xi)) be the estimated PIT CDF evaluated at α and
ρ(x, y) = (y − x)1(x < y). The regularization objective
for level α is defined as follows:

RTrunc(θ;D, α) (13)

=

{
1
N

∑N
i=1 ρ(Qθ(α | Xi), Yi) if F̂Z(α) < α

1
N

∑N
i=1 ρ(Yi, Qθ(α | Xi)) otherwise

(14)

This regularization objective adjusts F̂Z(α) to match α
by increasing it when F̂Z(α) < α, and vice versa. The

final regularization objective is computed by averaging
RTrunc(θ;D, α) over multiple quantile levels { αj }Mj=1:

RTrunc(θ;D) =
1

M

M∑
j=1

Rtrunc(θ;D, αj). (15)

It is worth noting that Chung et al. (2021) combine the
previous regularization objective with a sharpness objective
that penalizes the width between the quantile predictions,
given by 1

M

∑M
j=1

1
N

∑N
i=1 |Qθ(αj | Xi) − Qθ(1 − αj |

Xi)|. Instead, we combine it with a strictly proper scoring
rule.

5.4. New Regularization-based Calibration Methods

Building upon the quantile calibration method discussed
in Section 5.3.1, we propose two new regularization objec-
tives which compute a differentiable PCEp using alternative
statistical distances.

The first approach, named PCE-KDE, leverages the differ-
entiable calibration map ϕKDE (7) based on KDE. Given a
set of quantile levels { αj }Mj=1, the regularization objective
is given by

RPCE-KDE(θ;D) =
1

M

M∑
j=1

∣∣∣αj − ϕKDE(αj ; { Zi }Ni=1)
∣∣∣p ,
(16)

where p > 0. Note that RPCE-KDE reduces to PCEp in (2)
when τ in (7) goes to ∞.

The second approach considers distances of the form∫ 1

0
|QZ(α) − QU (α)|pdα, where QZ and QU denote the

quantile functions of the true and uniform distributions,
respectively. When p = 1, this distance reduces to the 1-
Wasserstein distance, equivalent to

∫ 1

0
|FZ(α)−FU (α)|dα,

which aligns with PCE (see Proposition 1 in Appendix A.1).

By exploiting the fact that E
[
FZ(Z(i))

]
= i/N+1, we ap-

proximate QZ(i/N+1) using the i-th order statistic Z(i). The
regularization objective is given by

RPCE-Sort(θ;D) =
1

N

N∑
i=1

∣∣∣∣Z(i) −
i

N + 1

∣∣∣∣p , (17)

where p > 0. Differentiable relaxations to sorting, such as
those proposed by Blondel et al. (2020) and Cuturi et al.
(2019), can be employed to obtain the order statistics.

6. A Comparative Study of Probabilistic
Calibration Methods

In continuation of the empirical study described in Section 4,
we now proceed to evaluate the performance of the proba-
bilistic calibration methods outlined in the previous section.
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Specifically, we apply eight distinct calibration methods to
the three neural regression models introduced in Section 4.
These methods are evenly divided into two categories: post-
hoc methods and regularization-based methods.

To assess the effectiveness of these calibration methods, we
employ four different evaluation metrics. The evaluation
is conducted on a set of 57 datasets, utilizing the same ex-
perimental setup detailed in Section 4. To ensure a fair and
consistent comparison, all the methods have been imple-
mented within a unified codebase3.

6.1. Experimental Setup

Base probabilistic models and calibration methods. We
consider the three probabilistic models presented in Sec-
tion 4, namely MIX-NLL, MIX-CRPS, and SQR-CRPS.
For the MIX models, when applying quantile recalibration,
we transform the CDF using the empirical CDF estima-
tor (Rec-EMP), the linear estimator (Rec-LIN), or the
KDE estimator (Rec-KDE). For SQR-CRPS, we transform
multiple quantiles using conformalized quantile regression
(CQR). For the three models, we consider the four regular-
ization objectives presented in Sections 5.3 and 5.4 (with
p = 1), namely RPCE-KDE (PCE-KDE), RPCE-Sort (PCE-
Sort), RQR (QR), and RTrunc (Trunc). PCE-Sort is
only shown in the Appendix because it performs similarly
to PCE-KDE.

Metrics. We measure the accuracy of the probabilistic
predictions using NLL and CRPS. For the SQR model, we
estimate CRPS by averaging the quantile score at 64 equidis-
tant quantile levels. Probabilistic calibration is measured
using PCE, defined in (1). Finally, we measure sharpness
using the mean standard deviation of the predictive distribu-
tions, denoted by STD.

Hyperparameters. In our experiments, MIX-NLL and
MIX-CRPS output a mixture of 3 Gaussians, and SQR-
CRPS outputs 64 quantiles. We justify the choice of these
hyperparameters in Appendix C. The hyperparameter τ of
Rec-KDE and PCE-KDE is fixed at 100, which was found
to perform well empirically. For regularization methods,
an important hyperparameter is the regularization factor λ.
As previously observed in classification (Karandikar et al.,
2021), we found that higher values of λ tend to improve
calibration but worsen NLL, CRPS, and STD. Karandikar
et al. (2021) proposed to limit the loss in accuracy by a
maximum of 1%. We adopt a similar strategy by selecting
λ which minimizes PCE with a maximum increase in CRPS
of 10% in the validation set. For each dataset, we select

3The code can be accessed at the following GitHub
repository: https://github.com/Vekteur/
probabilistic-calibration-study

λ in the set {0, 0.01, 0.05, 0.2, 1, 5}, which corresponds to
various degrees of calibration regularization.

Comparison of multiple models over many datasets. As
in Karandikar et al. (2021), and since NLL, CRPS and STD
have different scales across datasets, we report Cohen’s d,
which is a standardized effect size comparing the mean of
one method (over 5 runs, in our case) against a baseline.
Values of −0.8 and −2 are considered large and huge, re-
spectively. Due to the heterogeneity of the datasets that we
consider, the performance of our models can vary widely
across datasets. To visualize the results, we show the dis-
tribution of Cohen’s d using letter-value plots (Hofmann
et al., 2011), which indicate the quantiles at levels 1/8, 1/4,
1/2, 3/4 and 7/8, as well as outliers. A median value below
zero indicates that the model improved the metric on more
than half the datasets.

In order to assess whether significant differences exist be-
tween different methods, we follow the recommendations
of Ismail Fawaz et al. (2019), which are based on (Demšar,
2006). First, we test for a significant difference among
model performances using the Friedman test (Friedman,
1940). Then, we use the pairwise post-hoc analysis recom-
mended by Benavoli et al. (2016) using a Wilcoxon signed-
rank test (Wilcoxon, 1945) with Holm’s alpha correction
(Holm, 1979). The results of this procedure are shown using
a critical difference diagram (Demšar, 2006). The lower the
rank (further to the right), the better performance of a model.
A thick horizontal line shows a group of models whose per-
formance is not significantly different, with a significance
level of 0.05.

6.2. Results

Figure 3 shows the letter-values plots for the Cohen’s d of
PCE (top panel) as well as the associated critical diagram
(bottom panel), for all methods and datasets. The reference
model is MIX-NLL. The results with other models as ref-
erence are available in Appendix B.1. Blue, green, and red
colors are used for the post-hoc methods, the regularization-
based methods, and the base models, respectively. The same
information is given in Figures 4 and 5 for the CRPS and
the NLL, respectively.

Comparison of PCE. As expected, Figure 3 shows that
the PCE of calibration methods is improved compared to the
base models. Furthermore, independently of the base model,
we can see that post-hoc methods achieve significantly better
PCE than regularization methods. When comparing PCE-
KDE with QR, we can see that there is a significantly larger
decrease in PCE with the MIX-CRPS base model compared
to MIX-NLL. Finally, both PCE-KDE and Trunc decrease
PCE for SQR-CRPS, without a significant difference be-
tween them.
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Figure 3: Comparison of PCE with multiple base losses and
calibration methods.

Comparison of CRPS. While post-hoc methods outper-
form regularization methods in terms of PCE, Figure 4
shows they have a higher CRPS (except for the SQR base
model). This can be explained by the fact that regularization
methods prevent the CRPS from increasing exceedingly due
to the selection criterion for λ.

Comparison of NLL. Figure 5 shows the importance of
the calibration map. In fact, quantile recalibration with a
linear map significantly increases the NLL, while smooth
interpolation decreases PCE without a large increase in NLL.
Note that we only consider MIX models since we cannot
compute the NLL for SQR.

On the choice of a calibration method. If probabilistic
calibration is critical to the application, our experiments
suggest that post-hoc methods such as quantile recalibration
and conformal prediction should be preferred. However,
when we also want to control the CRPS or the NLL, regu-
larization methods can offer a better trade-off in terms of
calibration and sharpness. In fact, as shown in Figure 6
in Appendix B.1, when the base model is MIX-NLL, all
regularization methods provide a significant improvement
in probabilistic calibration without deteriorating the CRPS,
NLL or STD. For the MIX-CRPS model, Figure 7 shows
that QR has limited impact on CRPS and NLL, while pro-
viding better calibration. For the SQR-CRPS base model,
Figure 8 shows that the SQR-CRPS + CQR conformal
method significantly outperforms the Trunc and PCE-
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(b) Critical difference diagram

Figure 4: Comparison of CRPS with multiple base losses
and calibration methods.

KDE regularization methods both in terms of PCE and
CRPS. Overall, Appendix B.1 suggests that MIX-NLL +
PCE-KDE, MIX-CRPS + QR and SQR-CRPS + CQR
are good choices for practitioners aiming to improve PCE
without significantly impacting other aspects of the condi-
tional distribution. Finally, since both regularization and
post-hoc methods are able to improve calibration, we in-
vestigate whether a combination of these two methods can
lead to better performance. Figure 9 in Appendix B.2 shows
that such a combination does not significantly improve prob-
abilistic calibration, with an increase in CRPS and NLL.
This indicates that practitioners should exercise caution
when applying regularization to a model that is already
well-calibrated.

6.3. Link between Quantile Recalibration and
Conformal Prediction

Conformal prediction methods are well-known for their
finite-sample coverage guarantee. Interestingly, a specific
implementation of quantile recalibration can be considered
a special case of conformal prediction. This implies that
quantile recalibration can also provide a finite-sample cov-
erage guarantee. This observation could potentially explain
why both methods, conformal prediction and quantile recal-
ibration, are effective in improving probabilistic calibration.

Theorem 1. Quantile recalibration is equivalent to Distri-
butional Conformal Prediction (DCP) of left intervals at
each coverage level α ∈ [0, 1]. The equivalence is obtained
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Figure 5: Comparison of NLL with multiple base losses and
calibration methods.

when the estimator of the calibration map is defined by a
slightly different estimator than the conventional one in (6),
namely ϕDCP(α) =

1
N ′+1

∑N ′

i=1 1(Z
′
i ≤ α).

Proof. Given a predictive distribution Fθ learned from a
training dataset D = { (Xi, Yi) }Ni=1 where (Xi, Yi)

i.i.d.∼
PX,Y , let Z ′

i = Fθ(Y
′
i | X ′

i) represent the PIT val-
ues computed on a separate calibration dataset D′ =

{ (X ′
i, Y

′
i ) }

N ′

i=1, where (X ′
i, Y

′
i )

i.i.d.∼ PX,Y .

In the DCP approach, as outlined in Algorithm 2, the
conformal scores are given by the PIT values Z ′

i. DCP
first computes the α empirical quantile of the scores as
q̂ = Z ′

(⌈(N ′+1)α⌉), where Z ′
(k) represents the kth smallest

value among { Z ′
1, . . . , Z

′
N ′ ,+∞}. Then, the conformal-

ized quantile is computed as Q′
θ(α | X) = Qθ(q̂ | X),

which corresponds to conformal prediction with coverage α
for the left interval (−∞, Q′

θ(α | X)].

Let us consider quantile recalibration with the cali-
bration map ϕ in Algorithm 1 given by ϕDCP(α) =

1
N ′+1

∑N ′

i=1 1(Z
′
i ≤ α). It computes a recalibrated CDF

F ′
θ by composing the original CDF Fθ with ϕDCP, yielding

F ′
θ(y | X) = ϕDCP(Fθ(y | X)).

We observe that ϕDCP is the CDF of a discrete random
variable, with ϕ−1

DCP(α) = Z ′
(⌈(N ′+1)α⌉) representing its

empirical quantile function. Furthermore, the composi-
tion ϕDCP ◦ Fθ(· | X) acts as the inverse function of
Qθ(· | X) ◦ ϕ−1

DCP. As a result, both the DCP approach
and quantile recalibration yield QFs and CDFs that corre-
spond to the same underlying distribution.

Quantile recalibration with other recalibration maps (e.g.,
ϕEMP, ϕLIN, or ϕKDE) would correspond to DCP where the
empirical quantile q̂ is selected using other strategies which
does not provide the exact conformal guarantee (8).

7. Conclusion
The observation that neural network classifiers tend to be
miscalibrated (Guo et al., 2017) has prompted the develop-
ment of various approaches for calibrating these models. In
this paper, we present the largest empirical study conducted
to date on the probabilistic calibration of neural regression
models. Our study provides valuable insights into their per-
formance and the selection of calibration methods. Notably,
we introduce a novel differentiable calibration map based
on kernel density estimation for quantile recalibration, as
well as two novel regularization objectives derived from the
PCE.

Our study reveals that regularization methods can provide a
favorable tradeoff between calibration and sharpness. How-
ever, post-hoc methods demonstrate superior performance in
terms of PCE. We attribute this finding to the finite-sample
coverage guarantee offered by conformal prediction and
demonstrate that quantile recalibration can be viewed as a
specific case of conformal prediction.

Future investigations may extend the study of probabilis-
tic calibration to other models, such as tree-based models,
and explore alternative notions of calibration (Gneiting and
Resin, 2021). Notably, distribution calibration represents
a promising direction, as it has inspired the development
of calibration methods (Song et al., 2019; Kuleshov and
Deshpande, 2022).
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A. Proofs
A.1. Integral of the Absolute Difference between CDFs or QFs

Proposition 1. Let FA, FB : [0, 1] → [0, 1] denote two strictly increasing CDFs of random variables defined on [0, 1] with
corresponding QFs QA and QB . Then,∫ 1

0

|FA(q)− FB(q)| dq =

∫ 1

0

|QA(p)−QB(p)| dp. (18)

Proof. We define two functions r, s : [0, 1]× [0, 1] → { 0, 1 } where

r(q, p) =

{
1 if FA(q) ≤ p ≤ FB(q) or FB(q) ≤ p ≤ FA(q)

0 otherwise,
(19)

and s(q, p) =

{
1 if QA(p) ≤ q ≤ QB(p) or QB(p) ≤ q ≤ QA(p)

0 otherwise.
(20)

Let us show that r and s are equal. Considering q ∈ [0, 1] and p ∈ [0, 1], we can write

FA(q) ≤ p ≤ FB(q) (21)
⇐⇒ (FA(q) ≤ p) ∧ (p ≤ FB(q)) (22)
⇐⇒ (q ≤ QA(p)) ∧ (QB(p) ≤ q) (23)
⇐⇒ QB(p) ≤ q ≤ QA(p), (24)

where (23) holds since both FA and FB are strictly increasing.

Similarly, FB(q) ≤ p ≤ FA(q) ⇐⇒ QA(p) ≤ q ≤ QB(p). Hence r(q, p) = 1 ⇐⇒ s(q, p) = 1 and r and s are equal.

By Fubini’s theorem, we have ∫ 1

0

∫ 1

0

r(q, p) dp dq =

∫ 1

0

∫ 1

0

s(q, p) dq dp. (25)

Furthermore, upon evaluating the inner integrals, we obtain

∫ 1

0

r(q, p) dp =


∫ FB(q)

FA(q)

1 dp if FA(q) ≤ FB(q)∫ FA(q)

FB(q)

1 dp otherwise
(26)

= |FA(q)− FB(q)|. (27)

Similarly, we have
∫ 1

0

s(q, p) dq = |QA(p)−QB(p)|. Finally, by substituting these results in (25), we prove (18).

B. Detailed Results
This section presents additional experimental results.

B.1. Comparison between Recalibration, Conformal Prediction and Regularization Approaches per Base Model

First, we present the results of our experiments comparing recalibration, conformal prediction, and regularization approaches.
Our objective is to determine which metrics are improved by these methods compared to a vanilla model. We divide our
comparisons based on the three base models considered: MIX-NLL (Figure 6), MIX-CRPS (Figure 7) and SQR-CRPS
(Figure 8).
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Since NLL, CRPS, and standard deviation cannot be directly compared across different datasets, we utilize Cohen’s d as
an effect size measure, with the baseline being a vanilla model of the same base model. For instance, the baseline for
MIX-CRPS + Rec-EMP is MIX-CRPS. Additionally, we provide critical difference diagrams to assess the significance
of differences.

Overall, recalibration and conformal prediction demonstrate significantly improved PCE compared to the baseline, although
there is a trade-off with other metrics. For both MIX-NLL and MIX-CRPS, Rec-EMP yields infinite NLL, Rec-LIN
substantially increases NLL, while Rec-KDE has a lesser impact on NLL. However, Rec-KDE results in a significant
degradation of CRPS compared to other recalibration methods when the base model is MIX-CRPS. In the case of quantile
predictions, CQR significantly improves PCE.

While regularization methods generally lead to improved PCE, they are still outperformed by recalibration and conformal
prediction in this regard. However, we observe that with the MIX-NLL base model, regularization methods (PCE-KDE,
PCE-Sort and QR) have minimal impact on CRPS, NLL, and STD compared to recalibration methods. With the MIX-
CRPS base model, the difference in CRPS between recalibration and regularization is less pronounced. Nevertheless, it
is evident that regularization methods PCE-KDE and PCE-Sort, which rely on PCE, result in less sharp predictions
compared to recalibration methods, which produce sharper predictions.

Regarding quantile predictions, the case is reversed: conformal prediction (SQR-CRPS + CQR) yields less sharp predic-
tions, while regularization with SQR-CRPS + Trunc leads to sharper predictions.
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Figure 6: Comparison of different metrics where the base model is MIX-NLL.
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Figure 7: Comparison of different metrics where the base model is MIX-CRPS.
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Figure 8: Comparison of different metrics where the base model is SQR-CRPS.
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B.2. Combining Regularization and Post-hoc Methods

In this paper, we have established that post-hoc methods are generally more favorable than regularization methods when the
primary objective is to enhance probabilistic calibration. Since regularization methods operate during training and do not
alter the form of predictions (e.g., Gaussian mixture predictions), they can be easily combined with post-hoc methods. In
this section, we address the question: "Which metrics do regularization methods improve when combined with a post-hoc
method compared to the same model without regularization?"

To ensure clarity, we focus our presentation on a selection of paired regularization and post-hoc methods. Figure 9 illustrates
the impact of regularization on various metrics for these pairs. In Figure 9(a), the baseline corresponds to the same post-hoc
method without regularization, enabling a direct measurement of the effect of adding regularization to a post-hoc method. It
is important to note that the boxplots in this figure cannot be directly compared due to the different baselines.

The critical difference diagrams provide a comparison of all methods, with and without regularization. Overall, when
combined with post-hoc methods, regularization has a negative impact: no regularization method significantly improves
probabilistic calibration, and they tend to negatively affect CRPS, NLL, and STD metrics.
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Figure 9: Comparison of different metrics showing the effect of regularization when combined with a post-hoc method,
compared to the same model without regularization.

B.3. Post-hoc Calibration based on the Training Dataset

In this paper, the calibration map or conformity scores have been computed on a separate calibration dataset, following
common practice in the literature. However, holding out data for post-hoc calibration reduces the quantity of training data.
For the sake of clarity, we focus our analysis on the MIX-NLL and SQR-CRPS base losses

In this section, we compare post-hoc calibration based on the training dataset to post-hoc calibration based on the calibration
dataset. We aim to answer the question: "Can it be beneficial to use post-hoc calibration based on the training dataset,
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and should it be preferred over regularization methods when there is no calibration dataset available?" One advantage of
regularization methods and post-hoc calibration methods based on the training dataset is that the base model can be trained
on more data (80% in our experiments, compared to 65% when holding out the calibration dataset).

Figure 10 presents a comparison of different methods, with post-hoc methods trained on the calibration dataset indicated by
(calib) and those trained on the training dataset indicated by (train). We observe that post-hoc methods based on the
calibration dataset tend to significantly outperform their counterparts based on the training dataset in terms of probabilistic
calibration. Specifically, MIX-NLL + Rec-LIN and MIX-NLL + Rec-KDE achieve significantly better calibration
when the calibration map is learned on the calibration dataset. Similarly, SQR-CRPS + CQR tends to improve calibration
when conformal prediction is based on the calibration dataset. It is worth noting that even without a calibration dataset,
post-hoc methods tend to be better calibrated than regularization methods.

Finally, we observe that post-hoc methods based on the training dataset tend to achieve better CRPS and NLL scores,
although not significantly. Additionally, they are also significantly sharper. This may be attributed to the larger training
dataset available to the base model when there is no held-out dataset.
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Figure 10: Comparison of different metrics.

B.4. Calibration of Vanilla Models

Figure 12 and Figure 13 provide additional results from our empirical study in Section 4, specifically focusing on the
PCE obtained with MIX-CRPS and SQR-CRPS. The datasets are ordered in the same manner as shown in Figure 2 for
comparison. We observe that SQR-CRPS is less calibrated compared to MIX-NLL.
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Figure 11: PCE obtained on different datasets, with examples of reliability diagrams. The height of each bar is the mean
PCE of 5 runs with different dataset splits while the error bar represents the standard error of the mean. For 5 datasets, the
PIT reliability diagrams of 5 runs are displayed in the bottom row.

Figure 12: PCE of SQR-CRPS, on all datasets.
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Figure 13: PCE of MIX-CRPS, on all datasets.
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B.5. Distribution of the Test Statistic

Figure 14 shows the distribution of the test statistic, as described in Section 4. We observe that, in a lot of cases, the average
PCE of the compared models is larger than all the 104 samples of the average PCE from a probabilistically calibrated model.
Among the different calibration methods, post-hoc calibration with MIX-NLL + Rec-EMP achieves the highest level of
calibration performance in the majority of cases.
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Figure 14: Distribution of the test statistic on all datasets for different models.

B.6. Reliability Diagrams

Figure 15 and Figure 16 compare reliability diagrams obtained on models with and without post-hoc calibration, respectively.
With only a few exceptions, the post-hoc calibrated models exhibit a visual proximity to the diagonal line.
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Figure 15: Reliability diagrams on all datasets for different models.

20



Probabilistic Calibration in Neural Network Regression

0.0

0.2

0.4

0.6

0.8

1.0
O

bs
er

ve
d 

fre
qu

en
cy

Ailerons Airfoil Airlines_DepDelay_10M Allstate_Claims_Severity Bike_Sharing_Demand Brazilian_houses Buzzinsocialmedia_Twitter

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d 
fre

qu
en

cy

CPU Concrete Crime Energy Fish Kin8nm MIP-2016-regression

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d 
fre

qu
en

cy

MPG Mercedes_Benz_Greener_ManufacturingMiamiHousing2016 Moneyball Naval OnlineNewsPopularity Power

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d 
fre

qu
en

cy

Protein SAT11-HAND-runtime-regressionSGEMM_GPU_kernel_performanceSantander_transaction_value Yacht Yolanda abalone

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d 
fre

qu
en

cy

analcatdata_supreme black_friday boston california colleges cpu_act diamonds

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d 
fre

qu
en

cy

elevators fifa house_16H house_prices_nominal house_sales isolet medical_charges

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d 
fre

qu
en

cy

nyc-taxi-green-dec-2016particulate-matter-ukair-2017 pol quake socmob space_ga sulfur

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d 
fre

qu
en

cy

superconduct tecator topo_2_1 us_crime visualizing_soil wine_quality year

0.0 0.2 0.4 0.6 0.8 1.0

Forecasted probability

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d 
fre

qu
en

cy

yprop_4_1

Models
MIX-CRPS + Rec-EMP MIX-NLL + Rec-EMP SQR-CRPS + CQR

Figure 16: Reliability diagrams on all datasets for different models with post-hoc calibration.
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C. Hyperparameters
In our experiments, we adopt a specific architecture consisting of 3 hidden layers with 100 units per layer, ReLU non-
linearities, and a dropout rate of 0.2 on the last hidden layer. Early stopping with a patience of 30 is applied to select the
epoch with the lowest base loss on the validation dataset.

In this section, we delve into the performance of different model parameters, including the number of components in
Gaussian mixture predictions, the number of quantiles in quantile predictions, and the number of hidden layers in the
underlying models.

Figure 17 compares models that predict mixtures with varying numbers of components compared to the reference of 3
components. Notably, when there is only 1 component (yielding a single Gaussian prediction), the model’s performance
significantly deteriorates in terms of CRPS, NLL, and sharpness. However, as the number of components increases beyond
3, the differences become less pronounced.

Figure 18 compares models with different numbers of quantiles compared to a reference of 64 quantiles. The results reveal a
consistent pattern: predicting more quantiles consistently enhances performance in terms of probabilistic calibration, CRPS,
and sharpness.

Figure 19 compares models with different numbers of layers relative to a 3-layer model. It highlights that models with 2, 3,
or 5 layers tend to yield superior performance in terms of CRPS and NLL.
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Figure 17: Comparison of models whose predictions are Gaussian mixtures with different numbers of components. All
models are trained with NLL loss, without regularization or post-hoc method. The box plots show Cohen’s d of different
metrics on all datasets. Cohen’s d is computed with respect to a model whose predictions are Gaussian mixtures with 3
components.
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Figure 18: Comparison of models whose predictions are different numbers of quantiles. All models are trained with CRPS
loss, without regularization or post-hoc method. The box plots show Cohen’s d of different metrics on all datasets. Cohen’s
d is computed with respect to a model whose predictions are 64 quantiles.
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Figure 19: Comparison of models with different number of layers. All models predict Gaussian mixtures and are trained
with NLL loss, without regularization or post-hoc method. The box plots show Cohen’s d of different metrics on all datasets.
Cohen’s d is computed with respect to a model with 3 hidden layers.

D. Tabular Regression Datasets
Table 1 presents the datasets considered in our experiments. To ensure consistency, when datasets are available from multiple
sources, we select one specific source per dataset, as indicated in Figure 1. Our selection prioritizes the suites 297, 299, and
269 of OpenML, followed by UCI datasets.

In the OpenML suite 297, we discovered that the datasets houses and california are identical, and thus, we only
included the california dataset in our analysis. Moreover, the UCI archive for the dataset wine_quality contains
two separate datasets for red and white wine. As there was no indication regarding the specific dataset(s) used in previous
studies, we followed the approach of Grinsztajn et al. (2022) and solely considered the dataset related to white wine. In
Figure 1, other studies may have employed the alternative dataset or a combination of both datasets.
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Table 1: Datasets

Nb of
training instances

Nb of
features

Group Dataset Abbrev.

UCI CPU CP1 135 7
Yacht YAC 200 6
MPG MPG 254 7
Energy ENE 499 9
Crime CRI 531 104
Fish FIS 590 6
Concrete CON 669 8
Airfoil AI1 976 5
Kin8nm KIN 5324 8
Power POW 6219 4
Naval NAV 7757 17
Protein PRO 29724 9

OpenML 297 wine_quality WIN 4223 11
isolet ISO 5068 613
cpu_act CP2 5324 21
sulfur SUL 6552 6
Brazilian_houses BRA 6949 8
Ailerons AIL 8937 33
MiamiHousing2016 MIA 9055 13
pol POL 9750 26
elevators ELE 10789 16
Bike_Sharing_Demand BIK 11296 6
fifa FIF 11740 5
california CAL 13416 8
superconduct SUP 13820 79
house_sales HO3 14048 15
house_16H HO1 14809 16
diamonds DIA 35061 6
medical_charges MED 50000 3
year YEA 50000 90
nyc-taxi-green-dec-2016 NYC 50000 9

OpenML 299 analcatdata_supreme ANA 2633 12
Mercedes_Benz
_Greener_Manufacturing

MER 2735 735

visualizing_soil VIS 5616 5
yprop_4_1 YPR 5775 82
OnlineNewsPopularity ONL 25768 73
black_friday BLA 50000 23
SGEMM_GPU
_kernel_performance

SGE 50000 15

particulate-matter
-ukair-2017

PAR 50000 26

OpenML 269 tecator TEC 156 124
boston BOS 328 22
MIP-2016-regression MIP 708 111
socmob SOC 751 39
Moneyball MON 800 18
house_prices_nominal HO2 711 234
us_crime US_ 1295 101
quake QUA 1415 3
space_ga SPA 2019 6
abalone ABA 2715 10
SAT11-HAND-
runtime-regression

SAT 2886 118

Santander_transaction
_value

SAN 2898 3611

colleges COL 4351 34
topo_2_1 TOP 5775 252
Allstate_Claims_Severity ALL 50000 477
Yolanda YOL 50000 100
Buzzinsocialmedia_Twitter BUZ 50000 70
Airlines_DepDelay_10M AI2 50000 5
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