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Fig. 1. We introduce Light-SQ, a superquadrics-based shape abstraction method tailored for generated 3D meshes and well-suited for UGC scenarios.

In user-generated-content (UGC) applications, non-expert users often rely
on image-to-3D generative models to create 3D assets. In this context,
primitive-based shape abstraction offers a promising solution for UGC
scenarios by compressing high-resolution meshes into compact, editable
representations. Towards this end, effective shape abstraction must there-
fore be structure-aware, characterized by low overlap between primitives,
part-aware alignment, and primitive compactness. We present Light-SQ, a
novel superquadric-based optimization framework that explicitly empha-
sizes structure-awareness from three aspects. (a) We introduce SDF carving
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to iteratively udpate the target signed distance field, discouraging overlap
between primitives. (b) We propose a block-regrow-fill strategy guided by
structure-aware volumetric decomposition, enabling structural partitioning
to drive primitive placement. (c) We implement adaptive residual pruning
based on SDF update history to surpress over-segmentation and ensure
compact results. In addition, Light-SQ supports multiscale fitting, enabling
localized refinement to preserve fine geometric details. To evaluate our
method, we introduce 3DGen-Prim, a benchmark extending 3DGen-Bench
with new metrics for both reconstruction quality and primitive-level ed-
itability. Extensive experiments demonstrate that Light-SQ enables efficient,
high-fidelity, and editable shape abstraction with superquadrics for complex
generated geometry, advancing the feasibility of 3D UGC creation. Project
Page: https://johann.wang/Light-SQ/.
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1 Introduction
Customizable 3D asset creation is a fundamental requirement in
user-generated-content (UGC) platforms, yet remains largely inac-
cessible to non-expert creators. Recent advances in image-to-3D
generation [Chen et al. 2025; Lai et al. 2025; Li et al. 2025b; Yang et al.
2024b; Zhang et al. 2024; Zhao et al. 2025] have significantly low-
ered the entry barrier, allowing users to generate high-quality 3D
meshes from simple image prompts. However, the resulting meshes
are typically over-tessellated, structurally unorganized, and difficult
to edit, posing critical challenges in downstream applications such
as animation, rigging, and interactive content creation.
To address these limitations, primitive-based shape abstraction

has emerged as a promising solution. By converting bulky triangle
meshes into a compact set of analytic primitives, this approach offers
two key benefits: 1) substantial storage reduction, from megabytes
to kilobytes; and 2) improved editability, as each primitive serves as
an intuitive manipulation handle. Our objective is to extend these
benefits to generated 3D assets, transforming coarse, unstructured
meshes into compact, editable primitive representations, for a robust
image-to-primitives pipeline.
For UGC scenarios, an ideal primitive abstraction should satisfy

two high-level goals: fidelity and editability. While “fidelity" refers
to the preservation of salient shape structures, “editability" relies
on satisfying three structure-aware criteria: (a) Low overlap. Each
primitive should occupy a distinct, low-overlapping spatial region;
(b) Structure awareness. Primitives should conform to coherent volu-
metric partitions, avoiding cross-structure primitive placement; (c)
Compactness. Excessive segments would hinder downstream tasks
such as collision detection, rigging, and editing. Fig. 2 shows results
that do not meet these criteria, along with an ideal abstraction.

Despite extensive research, existing abstraction techniques strug-
gle with the irregularities and noise characteristic of generative
geometry. Learning-based approaches [Li et al. 2024a; Paschalidou
et al. 2020; Smirnov et al. 2020; Yang and Chen 2021; Ye et al. 2025]
directly regress primitive parameters from the inputs, but typically
generalize poorly outside the training domain, which is often limited
to clean, curated datasets such as ShapeNet. Rule-based pipelines [Li
et al. 2025a, 2024b; Lin et al. 2020] first segment the shape and then
fit primitives to each segment. However, segmentation derived from
generative meshes tend to be noisy – either due to being trained
on artist-annotated assets with clean boundaries or adapted from
2D image priors lacking 3D awareness. Furthermore, even semanti-
cally meaningful segments may exhibit geometric irregularities that
prevent accurate approximation by a single primitive, ultimately re-
sulting in inconsistent or fragmented decomposition. Optimization-
based techniques [Fedele et al. 2025; Liu et al. 2022, 2023; Monnier
et al. 2023; Wu et al. 2022] avoid these pitfalls by iteratively fitting
superquadrics to the geometry. While expressive, they often pro-
duce highly overlapped primitives, which compromises editability
by eliminating clear ownership over spatial regions.

(a) Generated 
Mesh   

(b) Over- 
lapping

(c) Not 
Structure-aware

(d) Not 
Compact

(e) Ideal
Abstraction

Fig. 2. Given the input mesh, (b), (c), and (d) exhibit, respectively, excessive
primitive overlap, structural inconsistency, and excessive fragmentation. In
(c), the centric primitive spans the head and the body.

To address these issues, we present Light-SQ, a structure-aware
superquadrics decomposition framework tailored for generated ge-
ometry in UGC settings. We leverage superquadric for their compact
representation and closed-form expressiveness over novel objects.
Inspired byMarching Primitives [Liu et al. 2023], we adopt truncated
signed distance fields (TSDFs) as the fitting target to exploit rich
geometric information. To ensure structure awareness, we introduce
three key components. First, we propose SDF carving, a volumetric
exclusion mechanism that imposes explicit penalty over overlap-
ping primitives to encourage spatial separation. Second, we present
a structure-aware alignment framework that leverages geometric-
feature-driven volumetric partitioning and a block–regrow–fill strat-
egy to guide superquadric fitting to conform to structural boundaries.
Third, to improve compactness, we track the SDF update history to
classify residual primitives based on their geometric significance.
Primitives below category-specific thresholds are discarded, pre-
serving salient details while minimizing redundancy.
In addition, Light-SQ supports multiscale fitting, allowing recur-

sive refinement of coarse primitives to capture fine-grained geome-
try. This allows flexible balancing between abstraction detail and
reconstruction quality, which prior methods lack. Apart from the
Light-SQ framework, we present 3DGen-Prim, a benchmarking suite
for evaluating primitive decomposition on generated 3D geometry.
Unlike existing protocols based on ShapeNet [Chang et al. 2015],
which features clean, curated meshes, 3DGen-Prim extends 3DGen-
Bench [Zhang et al. 2025] with outputs from recent image-to-3D
methods [Li et al. 2025b; Zhao et al. 2025], and introduces metrics
that assess both reconstruction fidelity and structural editability.

To summarize, our main contributions are as follows:
• We present Light-SQ, a superquadric decomposition algo-
rithm that achieves high fidelity and structural awareness on
generated geometry for the UGC scenarios.
• We introduce key algorithmic components, including SDF
carving, structure-aware alignment, and adaptive residual
pruning, which collectively promote structure-aware align-
ment and representation compactness.
• Extensive experiments on 3DGen-Prim dataset demonstrate
our significant advantages in fitting fidelity and editability.

2 Related Work
Optimization-based Shape Abstraction. Optimization-based ap-
proaches reconstruct 3D shapes by optimizing primitive parameters,
typically superquadrics. State-of-the-art efforts [Liu et al. 2022; Wu
et al. 2022] began by fitting primitives to point clouds. They treat the

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://doi.org/10.1145/3757377.3763835


Light-SQ: Structure-aware Shape Abstraction with Superquadrics for Generated Meshes • 3

point cloud as an observation sampled from a probabilistic model
upon superquadrics, and apply Maximum Likelihood Estimation
(MLE) [Liu et al. 2022] and Non-parametric Bayesian Inference [Wu
et al. 2022] respectively to solve their parameters. Subsequent works
explored fitting on other modalities. Marching-Primitives [Liu et al.
2023] adopts the truncated signed distance field (TSDF) to avoid
geometric ambiguities [Yang and Chen 2021]. Monnier et al. [2023]
incorporates superquadrics into a NeRF-like [Mildenhall et al. 2020]
reconstruction pipeline to fit multiview images.
Although existing methods have made significant progress in

the accuracy of fitting, they lacked efforts to meet “structure-aware
requirements", as also noted in the concurrent work [Ye et al. 2025].
Light-SQ is the first superquadrics optimization algorithm that for-
mally defines and explicitly emphasizes structural awareness.
Learning-based Shape Abstraction. Learning-based approaches
aim to employ a single neural network to predict the correspond-
ing primitive representation from 2D or 3D inputs. Tulsiani et al.
[2017] pioneered using a convolutional neural network for cuboid
representation prediction with volume input. 3D-PRNN [Zou et al.
2017] takes a depthmap as input and uses recurrent neural networks.
Paschalidou et al. [2019] extends the primitive type to superquadrics,
and introduces point cloud reconstruction as the supervision. Sub-
sequent works investigated the abstraction of other inputs such as
distance fields [Smirnov et al. 2020] and the single-view image [Niu
et al. 2018; Paschalidou et al. 2020], and explored the integration
of frontier techniques, including unsupervised point cloud segmen-
tation [Yang and Chen 2021] and autoregressive transformers [Li
et al. 2024a]. Despite promising results in their data, the training
source of these methods is typically confined to ShapeNet [Chang
et al. 2015] (in some cases, only to a single subclass), resulting in
poor generalization of the generated geometry.
Recently, SuperDec [Fedele et al. 2025] improved feed-forward

predictions with an optimization refinement step. In parallel, Primi-
tiveAnything [Ye et al. 2025] constructed an unprecedented 120K-
scale shape abstraction dataset and trained an autoregressive net-
work on point cloud inputs, achieving remarkable generalization on
generated geometry. However, it falls short of the UGC standards
outlined in Sec. 1 and does not support multiscale decomposition.
Rule-based Shape Abstraction. Rule-based methods typically
bind each primitive with a segmentation part. SEG-MAT [Lin et al.
2020] uses the medial axis transform to partition a mesh into skeletal
regions and represent each with a cuboid. LMP [Li et al. 2024b] intro-
duces Shared Latent Membership, where deformable superquadrics
serve as both segmentation priors and abstraction targets. More
recently, AISSR [Li et al. 2025a] aligns instance and semantic sparse
representations to derive repeatable primitive templates. However,
when applied to generated geometry, these segmentation schemes
often fail to achieve high-fidelity shape fitting.
Approximate Convex Decomposition. Approximate convex de-
composition (ACD) splits 3D geometry into a minimal set of pseudo-
convex parts. CoACD [Wei et al. 2022] introduces a split-and-merge
decomposition scheme. Andrews [2024] proposed navigation-driven
ACD, which allows more flexible decomposition requirements. In
this paper, we developed an adaptive ACD algorithm tailored for
structure-aware shape abstraction.

3 Method
In this section, we first introduce how to fit a signed distance
field with superquadrics (Sec. 3.1). Next, we describe how Light-SQ
achieves structure-aware superquadric fitting from three perspec-
tives: low-overlap (Sec. 3.2), structure-aware alignment (Sec. 3.3),
and compactness (Sec. 3.4). Fig. 3-(a) shows our fitting pipeline. Fi-
nally, we demonstrate the multiscale fitting capability enabled by
our structure-aware framework (Sec. 3.5).

3.1 Preliminaries: Superquadrics Fitting on TSDF
A signed distance function (SDF) returns the distance from a given
point to the closest surface, which is negative when it is inside:

𝜙 (𝒙) = 𝑆𝐷𝐹 (𝒙) = 𝑠 : 𝑥 ∈ R3, 𝑠 ∈ R (1)

Existing optimization-based approaches [Liu et al. 2023] use the
truncated SDF (TSDF) 𝜙𝜏 (𝒙) as the fitting target:

𝜙𝜏 (𝒙) =𝑇𝑆𝐷𝐹 (𝒙 ;𝜏) = clamp(𝑆𝐷𝐹 (𝒙),−𝜏,+𝜏) (2)

The truncation parameter 𝜏 is typically set to the voxel edge length.
Consequently, this field behaves almost like an occupancy grid,
only providing local curvature information in regions adjacent to the
surface. We find this setting reasonable, as it prevents overpenalty
in the boundary region. We visualize it in Fig. 3-(b).
An axis-aligned superquadric can be represented by shape pa-

rameters 𝜖1, 𝜖2 ∈ [0, 2] and scale parameters 𝑎𝑥 , 𝑎𝑦, 𝑎𝑧 ∈ R+ as

𝑓 (𝒙) =
((
𝑥

𝑎𝑥

) 2
𝜖2
+

(
𝑦

𝑎𝑦

) 2
𝜖2

) 𝜖2
𝜖1

+
(
𝑧

𝑎𝑧

) 2
𝜖1

= 1, (3)

where an arbitrarily positioned superquadric requires another three
euler angles 𝒆 ∈ R3 and a translation vector 𝒕 ∈ R3 to describe the
Euclidean transformation 𝑔. Given a superquadric parameterized
by 𝜽 = [𝜖1, 𝜖2, 𝑎𝑥 , 𝑎𝑦, 𝑎𝑧, 𝑔(𝒆, 𝒕)] ∈ R11 and a 3D point 𝒙 , we can use
the signed radial distance function to approximate its SDF:

𝜙𝜽 (𝒙) =
(
1 − 𝑓 −

𝜖1
2 (𝑔−1 ◦ 𝒙)

)
∥𝑔−1 ◦ 𝒙 ∥2 (4)

Superquadric fitting is performed on each SDF connected compo-
nent. After a new superquadric is fitted, the connected component
is usually subdivided into several smaller segments. To fit this new
superquadric, existing methods start from an initial superquadric 𝜽 ,
and, at each iteration, optimize its parameters by fitting to the TSDF
field within its local neighborhood 𝑽𝑎 (𝜽 ), then repeat this process
with the updated superquadric parameter:

𝜽 = arg min
𝜽

∑︁
𝒙∈𝑽𝑎 (𝜽 )

𝜆𝒙 ∥𝜙𝜽 ,𝜏 (𝒙) − 𝜙𝜏 (𝒙)∥
2
2 (5)

Here 𝜆𝒙 controls the penalty weight applied to each voxel.

3.2 Low-overlapping Superquadrics Fitting
In previous works [Liu et al. 2023], after a superquadric is fitted, the
voxels inside it will no longer be penalized during the subsequent
fitting. This allows superquadrics to overlap with each other, provid-
ing more flexibility for filling the remained regions. However, when
applied to generated geometry, the complex curvature distribution
causes this strategy to produce a large number of highly overlapping
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Fig. 3. Overview. (a) Light-SQ pipeline. Our method first employs block and regrow operations to satisfy the structural guidance of convex partitions, and
then iteratively fills the SDF connected components until convergence, yielding a high-fidelity shape abstraction. (b) Visualization of SDF and TSDF difference.
If a closed shape (𝑝) is abstracted in the form of two primitives (𝑞), around the boundary between them, the SDF values deviate significantly from the ground
truth, incurring an over-penalty that hinders the necessary decomposition. This issue is mitigated in the TSDF field.

superquadrics, which not only violates structural compactness but
also hinders downstream editing and interaction in UGC scenarios.
We revisited the optimization process of a single superquadric.

Previous works derive the penalty weights through maximum like-
lihood estimation. We find that the computational framework of 𝜆𝒙
can be relaxed to the following form:

𝜆𝒙 =
𝑃 (𝜙𝜏 (𝒙) |𝜙𝜽 ,𝜏 (𝒙))

(𝜙𝜏 (𝒙) < 0) ·𝐶 · (1 −𝑤)/𝑤︸                              ︷︷                              ︸
inside-voxel decay term

+ 𝑃 (𝜙𝜏 (𝒙) |𝜙𝜽 ,𝜏 (𝒙))︸                ︷︷                ︸
TSDF matching term

(6)

Here 𝑤 denotes the prior probability of any voxel covered by the
current superquadric, which can be approximated as 1/𝑁̃ where
𝑁̃ is the expected number of superquadrics. 𝐶 is a weighting con-
stant, and 𝑃 (𝜙𝜏 (𝒙) |𝜙𝜽 ,𝜏 (𝒙)) follows a normal distribution. The TSDF
matching term ranges between 0 and 1, while the inside-voxel decay
term is much larger. The motivation of this framework is to assign a
much higher penalty to exterior voxels than to interior ones, thereby
preventing a superquadric from expanding beyond the surface while
still accommodating partial fitting within the interior regions.
Based on this property, we found that we can fulfill the low

overlap requirement by iteratively updating the target SDF field. We
convert the interior region of each fitted superquadric into the target
shape’s exterior, thereby preventing subsequent superquadrics from
encroaching on previously fitted regions. We call this operation SDF
carving, denoted by 𝜙 \ 𝜙𝜽 . Specifically, 𝜙 \ 𝜙𝜽 updates the original
SDF field of the target shape as:

𝜙 (𝒙) =

−𝜙𝜽 (𝒙), 𝜙 (𝒙) < 0 ∧ 𝜙𝜽 (𝒙) < 0,
max(−𝜙𝜽 (𝒙), 𝜙 (𝒙)), 𝜙 (𝒙) < 0 ∧ 𝜙𝜽 (𝒙) > 0,
𝜙 (𝒙), 𝜙 (𝒙) > 0

(7)

SDF carving does not alter the SDF values of voxels outside the
surface. The SDF field within the superquadric can be directly re-
placed, while those still inside the surface after carving requires a
comparison and update. After this, we re-clamp 𝜙 (𝒙) as Eq. (2) to
obtain the updated TSDF field 𝜙𝜏 (𝒙).

3.3 Structure-Aware Alignment
Compared to low overlap, achieving structure–aware alignment
is substantially more challenging due to two primary issues. First,

“structure awareness” lacks a precise and consistent definition. A
natural approach is to define semantics through segmentation; how-
ever, most existing methods only produce surface-level labels from
rendered images [Liu et al. 2025; Tang et al. 2024; Yang et al. 2024a],
which do not translate meaningfully to voxels within the volume. In
contrast, direct volumetric segmentation approaches [Liu et al. 2025;
Yang et al. 2025] are much less common and often suffer from unsta-
ble results. Second, even with a plausible structural segmentation,
how to effectively leverage it for shape abstraction remains unclear.
Semantic regions identified by 3D segmentation models may not
align well with the geometric assumptions of primitive fitting – it
is not guaranteed that each semantic part can be faithfully approxi-
mated by a single superquadric. This fundamental misalignment is
also a key limitation for many rule-based abstraction pipelines.
Instead of relying on semantic learning, we adopt geometrical

analysis to provide structural guidance. Our approach first intro-
duces a structure-aware volumetric decomposition, followed by a
three-phase convex segment-guided fitting strategy.

3.3.1 Structure-Aware Convex Decomposition. To enable structure-
aware volumetric decomposition, we build upon CoACD [Wei et al.
2022], which formulates decomposition as a sequential decision pro-
cess via MCTS. While effective, CoACD lacks structural guidance in
plane sampling and relies on heuristic merging, often resulting in
misaligned cuts and inconsistent part grouping. We address these is-
sues by introducing structure-aware splitting and adaptive merging
strategies to enhance structure alignment and geometric fidelity.

Input Geometry Slice Plane Generation CoACD Adaptive Merging

Fig. 4. Structure-aware convex decomposition pipeline.

Structure-Aware Slice Plane Generation. Instead of randomly
sampling splitting planes, we precompute a fixed set of geometrically
meaningful candidate planes using SDF-based volumetric analysis.
Our method analyzes cross-sectional area variation and surface
connectivity to select axis-aligned planes that are more likely to
align with intrinsic geometric structures. In particular, we evaluate
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each axis-aligned slice 𝑖 based on two geometric cues: (1) the second-
order difference of the cross-sectional area 𝐴𝑖 , and (2) the variation
in the number of connected components 𝑁𝑖 on the slice.
The per-slice area 𝐴𝑖 =

∑
𝑗,𝑘 1 [SDF(𝑖, 𝑗, 𝑘) < 0] , where 1 [·] re-

turns 1 if the condition holds, and 0 otherwise. We define its second-
order difference (window size 3) to capture abrupt area transitions:

𝑀𝑖 =

3∑︁
𝑗=1

(
𝐴𝑖− 𝑗 +𝐴𝑖+𝑗

)
− 2 (𝐴𝑖−1 +𝐴𝑖 +𝐴𝑖+1) (8)

Let 𝑁𝑖 denote the number of connected components formed by
interior voxels on slice 𝑖 . We compute the discrete component vari-
ation Δ𝑁𝑖 = |𝑁𝑖 − 𝑁𝑖−1 |. The final structural saliency score is:

𝑆𝑖 = 𝛼 · 𝑀̃𝑖 + (1 − 𝛼) · ˜Δ𝑁 𝑖 , (9)

where 𝑀̃𝑖 and ˜Δ𝑁 𝑖 are normalized scores, and 𝛼 ∈ [0, 1] balances
area change and connectivity jumps. We then select the top-𝐾 scor-
ing slice indices as candidate planes, with a minimum spacing con-
straint 𝛿 to ensure diversity.
Adaptive Merging based on Geometric Continuity. To ensure
meaningful part decomposition and avoid over-segmentation and
erroneous merging, we propose an adaptive merging strategy based
on geometric continuity. This strategy jointly considers curvature
similarity and volumetric alignment between adjacent convex parts.
To compute curvature continuity, we denote Γ as the shared

interface between two convex parts𝐶1 and𝐶2. For each point 𝑝 ∈ Γ,
let 𝐻1 (𝑝) and 𝐻2 (𝑝) represent the mean curvature evaluated on the
respective sides. The curvature continuity score is defined as:

𝑆curv (𝐶1,𝐶2) = 1 − 1
|Γ |

∑︁
𝑝∈Γ

|𝐻1 (𝑝) − 𝐻2 (𝑝) |
𝐻max

, (10)

where 𝐻max is a normalization constant representing the maximum
expected curvature difference. For volumetric alignment, we quan-
tify volumetric overlap via a volumetric IoU score:

𝑆vol (𝐶1,𝐶2) =
Vol(𝐶1) + Vol(𝐶2)
Vol(CH(𝐶1 ∪𝐶2))

, (11)

where CH(𝐶1 ∪𝐶2) denotes the convex hull of the merged region.
A higher 𝑆vol indicates better volumetric consistency between the
parts. The merging score is computed as a weighted combination:

𝑆 (𝐶1,𝐶2) = 𝛽 · 𝑆curv (𝐶1,𝐶2) + 𝛾 · 𝑆vol (𝐶1,𝐶2), (12)

where 𝛽 and 𝛾 control the relative importance of curvature and
volume. Two parts are merged if 𝑆 (𝐶1,𝐶2) > 𝜏𝑚 , 𝜏𝑚 is a threshold.

3.3.2 Block-Regrow-Fill. Our structurally guided shape abstraction
starts with a key observation that each volumetric partition is an
occupancy grid – the voxels with one label as interior and all others
as exterior. This yields the 3D shape for that label, and we can
compute its corresponding SDF field.

(a) Fitting in Segments

Block (K=1) Regrow Fill

(b) Segments Guided 3-phase Fitting

boundary boundary

fragments

Fig. 5. A 2D illustration of direct fitting in segments and “block-regrow-fill”.
The gaps around the boundary are filled through the regrow-stage.

Fig. 6. A 2D illustration of superquadric classification used in adaptive
residual pruning. SQ 1–2 are fitted during the ’block’ and ’regrow’ stages,
while SQ 3–5 are fitted during the ’fill’ stage.

After extracting the shape for each region, a straightforward strat-
egy is to fit superquadrics independently to each partition. Although
this achieves structure-aware alignment, the axis-aligned cutting
planes may form unnatural boundaries for superquadrics. More
specifically, the algorithm will generate cluttered and meaningless
superquadrics fragments along these boundaries to fill the shape,
as shown in Fig. 5-(a), undermining the goal of shape abstraction.
Therefore, we proposed a three-stage fitting strategy to provide
greater flexibility at structural boundaries:
1. Block. Fit at most 𝐾 superquadrics to each segment.
2. Regrow. Insert all fitted superquadrics 𝜽1, · · · , 𝜽𝑁 into the origi-
nal shape. For each superquadric 𝜽𝑖 , use it as the initialization and
run a second optimization, to obtain the final state 𝜽𝑖 . The target
SDF field is computed from a series of SDF carving:

𝜙target = 𝜙 \ 𝜙𝜽1
\ · · · \ 𝜙𝜽𝑖−1

\ 𝜙𝜽𝑖+1 \ · · · \ 𝜙𝜽𝑁 (13)

Ideally, superquadrics in other regions can form flexible boundaries
and allow “regrow” to fill the gaps around them.
3. Fill. Fill under-fitted regions with additional superquadrics.

The effectiveness of this algorithm depends on the proper choice
of 𝐾 , and whether the placeholder superquadrics can reliably guard
the boundaries. Since the structural partitions from Sec. 3.3.1 exhibit
strong convexity, we found that 𝐾 = 1 already yields ideal results.

3.4 Adaptive Residual Pruning
To enable more effective editing of primitive-based models after
generation, a compact representation is essential. For instance, in
a humanoid model, editing the "head" becomes much easier if it is
represented by a single superquadric rather than multiple.

Achieving such compactness hinges on deciding when to stop fit-
ting superquadrics on the TSDF. In other words, we must determine
whether to fit a new superquadric on each connected component.
This is particularly important for generated meshes, which often
lack the clean structural organization of artist-designed models.
To preserve key geometric features while minimizing redundancy,
small but meaningful components (e.g., the propeller of a plane, as
shown in Fig. 1) should be retained, while large but structurally
insignificant artifacts (e.g., residuals from fitting a superquadric to
a slightly tilted sphere) should be discarded.
The challenge then turns to how we can classify these compo-

nents. An intuitive idea is that the superquadrics fitted during the
“block” and “regrow” stages should be retained, since they each cor-
respond to a distinct and meaningful structural partition. Therefore,
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𝒈−𝟏

𝒂𝒙 + 𝜹

𝒂𝒚 + 𝜹

෩𝝓

y-split
boundary

x-split    boundary
𝒈

Fig. 7. A 2D illustration of multiscale fitting. The region originally covered
by a single superquadric is irregular. By splitting the retrieved 𝜙 for one
time along the x-axis and y-axis, we obtain four partitions and fit a total of
six superquadrics, which better capture the shape.

we primarily focus on the connected components captured during
the fill stage. For each remaining TSDF component, we initialize
the superquadric as the maximal inscribed sphere, then classify the
connected component into one of the following categories (see Fig.
6 for a 2D illustration):
Main SQ. The majority of SDF values (over 𝑃𝑀%) covered by the
superquadric remain untouched, indicating an unfitted region.
Connector SQ. Most SDF values (over 𝑃𝐶%) covered by this init
superquadric are updated, and the updates are from more than one
Main SQs. It represents a bridging part between Main SQs.
Offcut SQ.Most SDF values (over 𝑃𝑂%) covered by this initial su-
perquadric are updated by one and only oneMain SQ, corresponding
to leftover regions.

We then apply ascending pruning thresholds𝑇𝑀 ,𝑇𝐶 , and𝑇𝑂 to the
Main, Connector, andOffcut categories, respectively. If theminimum
scale𝑚𝑖𝑛(𝑎𝑥 , 𝑎𝑦, 𝑎𝑧) of the initial superquadric is below the corre-
sponding threshold, the superquadric is discarded, and the TSDF
component is skipped. Detailed setting in supplementary Sec. A.

3.5 Multiscale Fitting
Sometimes superquadric fitting over-abstracts a local region, and
when we seek to improve the surface fitting precision there, existing
methods have largely been ineffective. In contrast, our method can
upsample the region represented by a given superquadric. Assume
the superquadric is parameterized by 𝜽 = [𝜖1, 𝜖2, 𝑎𝑥 , 𝑎𝑦, 𝑎𝑧, 𝑔(𝒆, 𝒕)],
we first obtain its “axis-aligned dilated version” as

𝜽 = [𝜖1, 𝜖2, 𝑎𝑥 + 𝛿, 𝑎𝑦 + 𝛿, 𝑎𝑧 + 𝛿, 𝑔(0, 0)] (14)

Here 𝛿 ensures that nearby pruned regions can also be covered by
𝜽 . Next, we can use grid sampling to capture the actual shape of the
region represented by this superquadric. Specifically, for any point
𝒙 within the axis-aligned 𝜽 , we apply the transformation 𝑔 to map
it back to the original shape and sample the associated SDF value:

𝜙 (𝒙) ← 𝜙 (𝑔(𝒙)) (15)

The orientation of the shape in 𝜙 is now better aligned with the
coordinate axes. We then subdivide the field evenly along each
axis to form volumetric partitions and fit superquadrics to each
one. This partitioning provides higher-resolution sampling of the
space, enabling the capture of finer local structure, which is further
illustrated in Fig. 7.

4 3DGen-Prim Dataset
Since our algorithm targets an image-to-primitives pipeline in UGC
scenarios, we evaluate it on image-to-3D generation outputs. We
use the 510 image prompts provided by 3DGen-Bench [Zhang et al.
2025] and generate test meshes with two state-of-the-art image-to-
3D methods, Hunyuan3D-2.0 [Zhao et al. 2025] and TripoSG [Li
et al. 2025b]. The outputs of both methods are extracted from SDF
or occupancy fields, yielding excellent watertightness, well-suited
for testing our approach.
In our evaluation, we first measure how well the abstraction

fits the input shape using three metrics: Chamfer Distance (CD),
Earth Mover’s Distance (EMD), and Voxel-IoU. CD and EMD are
computed on surface point clouds. Since primitive decomposition
can introduce self-occlusion between parts, we sample points via a
rasterized scanning procedure. For Voxel-IoU, we extract the “inside
voxels” of the input and output and compute their intersection over
union. Notably, PrimitiveAnything [Ye et al. 2025] also reports Voxel-
IoU, but only extracts shape surface voxels, which admits ambiguity.
In contrast, our method can distinguish “fake shape abstraction”
which merely lines the surface with thin primitives.

We also evaluate editability against the UGC standards outlined in
Sec. 1. For low overlap, we compute the Overlap Rate (OR) based on
the extracted inside voxels. Given a primitive 𝜽 ,𝑀𝜽 is the mask that
indicates whether each voxel is inside this primitive. We compute
the average number of primitives that each voxel is covered by as:

OR =

∑
𝒙 (

∑
𝜽 𝑀𝜽 )∑

𝒙 (
⋃

𝜽 𝑀𝜽 )
(16)

For compactness, when the fitting accuracy is comparable, the av-
erage number of primitives 𝑁 serves as an indicator of how well
surface fragments are cleaned up.

5 Experiments

5.1 Generated Shape Abstraction
ComparisonMethods.We compare our approach to EMS [Liu et al.
2022] and Marching-Primitives [Liu et al. 2023] among optimization-
based methods, which both use superquadrics as the primitive rep-
resentation. Since Marching-Primitives also uses TSDF as its fitting
target, we set the input SDF field resolution for both methods to 1003

for a fair comparison. Furthermore, among rule-based and learning-
based methods, we compare against the current state-of-the-art,
AISSR [Li et al. 2025a] and PrimitiveAnything [Ye et al. 2025], re-
spectively. AISSR produces three versions of shape abstraction per
run. We select the instance-level output (AISSR-I), which does not
impose semantic-level constraints on the fitting of deformable su-
perquadrics, thereby granting maximal freedom and yielding the
best performance in metrics and visual quality.
Quantitative Results.We show the quantitative comparison on
our 3DGen-Prim dataset in Tab. 1. EMS significantly underperforms
on fitting metrics because, at its core, it is still an algorithm for fit-
ting a single primary superquadric and is not well suited to handling
complex geometric structures. Marching-Primitives achieves state-
of-the-art performance across all fitting metrics, as it always strives
to completely fill a shape’s interior. However, its fitted primitives
overlap excessively that, on both datasets, each voxel is covered by
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Table 1. Quantitative Comparison.We highlight the best value in blue , and the second-best value in green . “Optim.”, “Learn.”, and “Rule” stand for

optimization-based, learning-based, and rule-based approaches, respectively. We do not highlight the best 𝑁̄ because its comparison only makes sense when
two methods achieve similar fitting performance; otherwise, a small 𝑁̄ simply indicates underfitting to the input geometry.

Method Type
Hunyuan3D-2.0 TripoSG

CD ↓ EMD ↓ Voxel-IoU ↑ OR ↓ 𝑁̄ CD ↓ EMD ↓ Voxel-IoU ↑ OR ↓ 𝑁̄

EMS [Liu et al. 2022] Optim. 0.2345 0.2036 0.466 1.524 3.44 0.2472 0.2168 0.436 1.540 3.63
Marching-Primitives [Liu et al. 2023] Optim. 0.0396 0.0544 0.868 4.201 67.7 0.0403 0.0537 0.860 3.778 62.5
AISSR [Li et al. 2025a] Rule 0.1128 0.0918 0.403 1.051 7.94 0.1132 0.0915 0.394 1.056 7.81
PrimitiveAnything [Ye et al. 2025] Learn. 0.1366 0.0986 0.442 1.845 82.7 0.1299 0.0936 0.457 1.870 79.9

Light-SQ (Ours) Optim. 0.0388 0.0531 0.861 1.015 61.0 0.0385 0.0538 0.864 1.016 62.1

Generated
Mesh

EMS

AISSR

Marching
Primitives

Primitive
Anything

Ours

Fig. 8. Qualitative Comparison. Our method is the only one that simultaneously achieves faithful fitting to the original shape and strong editability.

an average of four superquadrics, predictably making the results
difficult to edit. AISSR produces highly editable results, but it consis-
tently fits only a small number of primitives, limiting its ability to
represent complex shapes, which is a common shortcoming of rule-
based methods. PrimitiveAnything, despite being trained on a 120K-
sample dataset, still shows clear generalization issues on our gener-
ative data, offering no advantage in fitting quality or editability. Our
method achieves fitting quality on par with Marching-Primitives,
significantly outperforms other approaches, and simultaneously
attains the lowest overlap—ensuring superior editability.
Qualitative Results. Fig. 8 presents the qualitative comparison.
The generated mesh is randomly sampled from our 3DGen-Prim
dataset. EMS and AISSR exhibit significant generalization challenges
in fitting quality. Marching-Primitives achieves high reconstruction
fidelity to the input shape, but the primitives overlap excessively
and fail to reflect the underlying structure, resulting in poor editabil-
ity. As a learning-based method, PrimitiveAnything demonstrates

Table 2. Editability User Study. We show the average ranking of each
method in every metric. “PrimAny” stands for PrimitiveAnything [Ye et al.
2025]. “MPS” stands for Marching-Primitives [Liu et al. 2023].

Metric PrimAny MPS Ours

Geometry Editability 2.43 2.50 1.07
Geometry Editing Efficiency 2.46 2.51 1.03

Texture Editability 2.32 2.61 1.06
Texture Editing Efficiency 2.32 2.62 1.06

Animation Friendliness 2.34 2.61 1.04

remarkable generalization, but its fitting quality is unstable, and
on more complex generated shapes, it tends to do crude stacking,
which harms editability. Our method achieves stable, high-precision
fitting to the input geometry, while effectively ensuring low overlap
and structure-aware alignment for editability.
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Table 3. Ablation on Low-overlapping. Results are shown in OR (N).
Here OR and N stand for overlap rate and average number of primitives,
respectively. 𝜏 is the TSDF truncation.

𝑤 = 0.50 𝑤 = 0.10 𝒘 = 0.02 𝑤 = 0.01

𝐶 = 0.1 1.019 (45.2) 1.018 (50.1) 1.016 (51.4) 1.016 (55.8)
𝑪 = 1 1.025 (51.1) 1.016 (59.5) 1.014 (61.7) 1.010 (79.4)
𝐶 = 1/𝜏 = 50 1.012 (75.2) 1.011 (91.0) 1.012 (113.8) 1.012 (117.8)

Table 4. User study results comparing our method with the ablated version
and PrimitiveAnything, in terms of structure-aware alignment.

Method Rank-1 Rank-2 Rank-3 Avg. Rank

PrimitiveAnything 6% 12% 82% 2.76
w/o. structure-aware 15% 74% 10% 1.96
Ours 75% 16% 9% 1.35

Table 5. Block-Regrow-Fill Ablation. Ablating the necessity of our 3-
phase fitting strategy. “CH” stands for convex hull.

Method CD ↓ EMD ↓ Voxel-IoU ↑ OR ↓ 𝑁̄

One-per-CH 0.0613 0.0634 0.735 1.018 20.9
Ours 0.0388 0.0531 0.861 1.015 61.0

User Study on Editability. We conducted an extended user study
for two baselines, Marching-Primitives and PrimitiveAnything, and
our method on five metrics: Geometry Editability, Geometry Editing
Efficiency, Texture Editability, Texture Editing Efficiency, and Ani-
mation Friendliness. In our user study, 25 participants received eight
sets of uncurated shape abstraction results and were instructed to
rank each set according to the five aforementioned criteria. The
backgrounds of the participants included game development en-
gineers and asset creation artists. They were provided with clear
explanations and examples of each metric before evaluation, en-
suring a consistent interpretation across raters. The explanations
are detailed in supplementary Sec. B. Their ratings showed good
agreement, suggesting that the metrics are interpretable and mean-
ingful from a user’s perspective. Tab. 2 reports the average ranking
of different methods on each metric. Our method exhibits a compre-
hensive, across-the-board advantage.
Efficiency Comparison.We benchmarked the speed of all meth-
ods on a single-GPU (14592 CUDA cores, 96GB VRAM) workstation
with AMD EPYC 9K84 96-core CPU. Our method completes in 25.98
seconds per shape, including preprocessing, which is over 10× faster
than Marching-Primitives (339.59s) and even slightly faster than
PrimitiveAnything (29.10s), when accounting for its point-cloud
scanning overhead. AISSR is very fast (0.06s), but its fitting fidelity
is clearly insufficient (see Fig. 8 and Fig. 12). EMS provides no ad-
vantage in either speed (19.05s) or fitting quality.

5.2 Ablation Study and Discussions
Low overlapping. While our method does not guarantee zero
overlap, it significantly reduces it via SDF carving and the penalty.
Here, we provide an ablation on𝑤 and𝐶 in Eq. (6). We conducted a
grid test for these two parameters on 51 uncurated Hunyuan3D-2.0
[Zhao et al. 2025] samples in our 3DGen-Prim dataset, comparing

Table 6. Residual Pruning Ablation. Pruning has almost no impact on
fitting accuracy, yet it significantly reduces the number of primitives.

Hunyuan3D-2.0 CD ↓ EMD ↓ Voxel-IoU ↑ OR ↓ 𝑁̄

w/o. pruning 0.0367 0.0533 0.874 1.018 95.4
Ours 0.0388 0.0531 0.861 1.015 61.0

TripoSG CD ↓ EMD ↓ Voxel-IoU ↑ OR ↓ 𝑁̄

w/o. pruning 0.0371 0.0526 0.872 1.018 92.2
Ours 0.0385 0.0538 0.864 1.016 62.1

the overlap rate and the average number of primitives. Tab. 3 shows
that lower 𝑤 and higher 𝐶 reduce overlap rate (OR) but increase
fragmentation. The paper setting is highlighted.
Structure-aware Alignment. We compare our method with an
ablated version without structure-aware convex decomposition and
“block-regrow-fill” strategy. Fig. 10 demonstrates how these two
modules help our algorithm perceive and align with the input struc-
ture. Since this objective is difficult to quantify, we conducted a
user study in which 28 participants were asked to rank 11 sets of
randomly selected shape abstraction results. Results from Primi-
tiveAnything are also included. The participants were instructed
to pick the best and worst primitive-decomposition results based
on whether the structural partitioning was clear and reasonable.
The comparisons are anonymized, and the order is randomized. The
results shown in Tab. 4 further demonstrate the significant impact of
our convex decomposition method and fitting strategy on enhancing
structure-aware performance.
Block-Regrow-Fill.Asmentioned in Sec. 3.3.2, given the structural
guidance of a set of pseudo convex hulls, a straightforward approach
is to fit superquadrics independently to each partition. To show the
necessity of our three-phase fitting strategy, we compare our results
with fitting a single superquadric to each pseudoconvex hull. As
is showin in Tab. 5, since not all convex components can be well
represented by a single superquadric, the ablated variant exhibits a
pronounced drop in the fitting metrics.
Residual Pruning. Fig. 11 ablates the effect of adaptive residual
pruning. The quantitative comparison in Tab. 6 further shows that,
while the other metrics remain identical, pruning reduces the primi-
tive count by an average of 30, thus reducing surface fragmentation.
Multiscale Fitting. Qualitative results are shown in Fig. 9. Mul-
tiscale fitting supports spatial upsampling and shape refinement,
enabling the capture of finer local structure.

6 Conclusion
We introduce Light-SQ, a structure-aware superquadric decomposi-
tion framework for generated 3D geometry in UGC scenarios. Using
SDF carving, structure-aware alignment, and adaptive residual prun-
ing, Light-SQ yields abstractions that are simultaneously compact,
editable, and faithful to the original geometry. We perform extensive
experiments using our constructed 3DGen-Prim dataset to bench-
mark against prior methods, demonstrating consistent advantages
in both fidelity and structural usability.
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Generated
Mesh

Shape
Abstraction

Multiscale
Fitting

Fig. 9. Multiscale Fitting. Based on the results of shape abstraction, multiscale fitting can upsample certain spatial regions and capture finer local curvature
features in a block-stacking fashion. Users can refine the fitting of a specific region by selecting the corresponding superquadric.

Generated
Mesh

w/o. Structure-
aware Alignment

with Structure-
aware Alignment

Fig. 10. Ablation on Structure-aware Alignment.Without structure-
aware alignment, superquadrics fitted in early stages may span multiple
structural partitions, resulting in degraded visual quality and editability.

Generated
Mesh

w/o. Residual
Pruning

with Residual
Pruning

Fig. 11. Ablation on Residual Pruning. Since optimization-based fitting algo-
rithms always try to fully occupy the interior of the input geometry, they tend to
generate many fragmented superquadrics around the surface. Adaptive residual
pruning effectively removes these fragments.
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(a) Gen Mesh         (b) EMS           (c)  AISSR      (d) MPS         (e) PrimAny           (f) Ours

Fig. 12. Additional results on our 3DGen-Prim dataset, comparing (b) EMS [Liu et al. 2022], (c) AISSR [Li et al. 2025a], (d) Marching-Primitives [Liu et al. 2023],
(e) PrimitiveAnything [Ye et al. 2025], and (f) Our Light-SQ.
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A Implementation Details
In this section, we summarize the implementation details of our structure-
aware superquadrics fitting algorithm.
Non-overlapping Fitting. The TSDF matching term follows a normal
distribution as:

𝑃
(
𝜙𝜏 (𝒙 ) |𝜙𝜽 ,𝜏 (𝒙 )

)
= N

(
𝜙𝜏 (𝒙 ) |𝜙𝜽 ,𝜏 (𝒙 ), 𝜎2) (17)

The𝜎2 parameter is updated in closed form through the EM optimization pro-
cess of the superquadric fitting. We further apply a truncation for numerical
stability:

𝜎2 = max

(∑
𝒙∈𝑽𝑎 (𝜽 ) 𝜆𝒙 ∥𝜙𝜽 ,𝜏 (𝒙 ) − 𝜙𝜏 (𝒙 ) ∥22∑

𝒙∈𝑽𝑎 (𝜽 ) 𝜆𝒙
, 𝜏2

)
(18)

For the 𝜆𝒙 computation scheme, we set the primitive number prior 𝑁̃ =

50, which yields 𝑤 = 1/𝑁̃ = 0.02. The weighting constant 𝐶 is set to 1.
Compared to previous methods [Liu et al. 2023], our inside-voxel decay
term is much smaller (yet still much larger than the TSDF matching term),
allowing more flexible fitting around the generated shape surface, since the
generated surface is not as clean as the artist-made ones.
Structure-aware Convex Decomposition. For the slice-plane generation,
we operate on the axis-aligned setting, thus given a 1003 grid, there are
300 potential cutting planes in total. We set 𝛼 = 0.7 for the structural
saliency score, 𝐾 = 6 and 𝛿 = 0.1 to finalize the candidates. This setting
also generalizes to other grid resolutions, given that the input geometry is
normalized to [−1, 1]3.

For adaptive merging, we set 𝛽 = 0.4 and 𝛾 = 0.6 to balance between
curvature and volumetric score. The merging threshold 𝜏𝑚 is set to 0.7.

Block-Regrow-Fill. During “block” stage, we set 𝐾 = 1. The optimization
parameters remain the same through all three stages as the setting above.
Adaptive Residual Pruning. In practice, we find that simply setting the
classification percentages 𝑃𝑀% = 𝑃𝐶% = 𝑃𝑂% = 50% yields robust classi-
fication. For the pruning threshold, we normalize all generated geometry
into [−1, 1]3 and set thresholds 𝑇𝑀 = 𝑉 = 0.02, 𝑇𝐶 = 1.5𝑉 = 0.03, and
𝑇𝑂 = 2.5𝑉 = 0.05, where𝑉 = 2/100 = 0.02 is the TSDF voxel size.

B User Study Settings
Here we detail the explanation of the five metrics in main paper Table 2,
which are also provided to the participants.

(1) Geometry Editability. Whether the structural components of the
model are clearly distinguishable and can be locally modified without
unintended influence on other parts.

(2) Geometry Editing Efficiency.Whether the structure facilitates rapid
editing and ensures that geometric modifications accurately reflect
the intended target shape.

(3) Texture Editability.Whether texture regions are clearly defined and
can be modified independently without affecting unrelated areas.

(4) Texture Editing Efficiency. Whether target texture regions can be
quickly identified and edited in a manner consistent with the user’s
intention and alignment.

(5) Animation Friendliness. Whether the model can be easily rigged with
a skeleton while maintaining natural and plausible deformations
during local transformations.
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