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Abstract

Recent years have witnessed a significant in-001
crease in the performance of Vision and Lan-002
guage tasks. Foundational Vision-Language003
Models (VLMs), such as CLIP, have been lever-004
aged in multiple settings and demonstrated005
remarkable performance across several tasks.006
Such models excel at object-centric recogni-007
tion yet learn text representations that seem008
invariant to word order, failing to compose009
known concepts in novel ways. However, no010
evidence exists that any VLM, including large-011
scale single-stream models such as GPT-4V,012
identifies compositions successfully. In this013
paper, we introduce a method to significantly014
improve the ability of existing models to en-015
code compositional language, with over 10%016
absolute improvement on standard benchmarks,017
while maintaining the performance on more018
standard benchmarks. In this paper, we present019
a method to considerably improve the composi-020
tionality of CLIP-like pre-trained models while021
preserving its performance on other tasks. We022
will provide model weights that can be used023
to swap existing CLIP-like weights and have a024
noticeable boost in compositional performance.025

1 Introduction026

There has been a significant increase in the per-027

formance of Vision and Language tasks over the028

last few years (Radford et al., 2021; Jia et al.,029

2021; Rombach et al., 2022; Alayrac et al., 2022;030

Laurençon et al., 2023). Vision-Language Mod-031

els (VLMs), such as CLIP (Radford et al., 2021),032

have been leveraged in multiple settings, either di-033

rectly or indirectly as foundational models, and034

demonstrated remarkable performance across sev-035

eral tasks (Bommasani et al., 2021; Ramesh et al.,036

2021, 2022; Rombach et al., 2022; Castro and Caba,037

2022; Li et al., 2023).038

Such models excel at object-centric recognition039

yet learn text representations that seem invariant040

to word order (Thrush et al., 2022; Yuksekgonul041
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Figure 1: Our proposed method CLOVE significantly
improves the compositionality performance (as mea-
sured by an average of SugarCrepe’s seven fine-grained
tasks) of pre-trained CLIP-like models while preserv-
ing their performance on other downstream tasks (as
measured by ImageNet). Comparisons with more bench-
marks are presented in Tables 3 and 4. Baselines: RE-
PLACE (Hsieh et al., 2023) and NegCLIP (Yuksekgonul
et al., 2023).

et al., 2023; Castro et al., 2023), failing to compose 042

known concepts in novel ways (Ma et al., 2023; 043

Hsieh et al., 2023). For example, as shown in Fig- 044

ure 1, CLIP has top performance on ImageNet tasks 045

but falls behind on compositionality benchmarks. 046

Language compositionality is essential to recog- 047

nizing more complex concepts in images or making 048

text-to-image models successfully generate a novel 049

scene with specific constraints (Hafri et al., 2023). 050

For instance, in an image depicting “the woman 051

shouts at the man,” it is important to recognize 052

who is shouting at whom to understand the scene 053

correctly. 054

Yet, no evidence exists that any VLM, includ- 055
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ing large-scale single-stream models such as GPT-056

4V (OpenAI, 2023), identifies compositions suc-057

cessfully. This assertion is supported by the fact058

that existing benchmarks that test compositionality059

continue to be an open challenge (Thrush et al.,060

2022; Yuksekgonul et al., 2023; Ma et al., 2023;061

Hsieh et al., 2023).1062

To address these limitations, previous work063

has introduced methods to increase the compo-064

sitional capabilities of pre-trained VLMs, such065

as NegCLIP (Yuksekgonul et al., 2023) and RE-066

PLACE (Hsieh et al., 2023). However, such meth-067

ods come at a significant cost: they sacrifice the per-068

formance on more common object-centric recog-069

nition, as measured by ImageNet (Deng et al.,070

2009), EuroSAT (Helber et al., 2019, 2018), and071

CIFAR100 (Krizhevsky, 2009). For instance, as072

shown in Figure 1, NegCLIP showed an increase073

(compared to the pre-trained model) in its ability to074

address SugarCrepe (Hsieh et al., 2023) composi-075

tionality benchmark from 72.9% to 82.5% while, at076

the same time, its performance on ImageNet (Deng077

et al., 2009) top-1 accuracy dropped from 63.4%078

to 55.8%. Similarly, Hsieh et al. (2023) applied079

REPLACE to reach a high score of 84.7% on Sug-080

arCrepe, but at the cost of a significant drop to081

52.9% on its ImageNet accuracy.082

In this paper, we introduce a method to signif-083

icantly improve the ability of existing two-tower084

models to encode compositional language while085

keeping the performance on more standard bench-086

marks, as shown in Figure 1. Specifically, our con-087

tributions are as follows. First, we show that data088

curation can significantly impact how a model can089

handle compositional knowledge. Second, we con-090

firm that training along with hard negatives can091

bring additional improvements. Third, we show ex-092

perimentally that model patching can be employed093

to preserve model performance on previous tasks.094

Finally, we combine these ideas into a new model095

called CLOVE and show that it can significantly096

improve compositionality over a contrastively097

pre-trained VLM such as CLIP while maintaining098

the performance on other tasks. Upon publication,099

we will provide checkpoints that others can use to100

substitute their CLIP-like model weights for a ver-101

sion with significantly better language composition102

abilities.103

1See Section 2 for details.

2 Related Work 104

Benchmarking Compositionality. Several 105

frameworks have been proposed to measure 106

model performance on language compositionality. 107

Shekhar et al. (2017) crafted a benchmark of foil 108

image captions generated by changing a single 109

word from the correct captions. Models must iden- 110

tify if the image-caption pair correspond to each 111

other, among other tasks. Winoground (Thrush 112

et al., 2022) carefully built a high-quality dataset 113

of 400 examples, each consisting of two images 114

and two captions. These two captions contain the 115

exact word but in a different order following one 116

of several strategies (e.g. swapping the subject and 117

the object). Each image must match the correct 118

caption for the models to pass this test. Models 119

cannot simply rely on their ability to recognize 120

concepts in images, as the elements repeat but are 121

composed differently. 122

Diwan et al. (2022) found that passing the 123

Winoground benchmark successfully requires com- 124

position skills along with many others, such as 125

commonsense reasoning and locating tiny objects. 126

Yuksekgonul et al. (2023) argued that Winoground 127

is too small to draw statistically significant con- 128

clusions and built a benchmark called ARO con- 129

sisting of examples with a single image, a correct 130

caption, and multiple automatically-generated in- 131

correct captions. CREPE (Ma et al., 2023) crafted 132

a benchmark to measure compositionality in terms 133

of systematicity and productivity. It considers both 134

seen and unseen compounds, among other phenom- 135

ena. SugarCrepe (Hsieh et al., 2023) is a recent 136

benchmark that avoids ungrammatical and nonsen- 137

sical negative captions while being large. They 138

showed it cannot be easily solved by computing 139

the probability of the text captions without looking 140

at the image. Other benchmarks have also been 141

created that consider compositionality as well as 142

other phenomena, such as VALSE (Parcalabescu 143

et al., 2022), RareAct (Miech et al., 2020), VL- 144

Checklist (Zhao et al., 2022), Cola (Ray et al., 145

2023), SVO-Probes (Hendricks and Nematzadeh, 146

2021), and CLEVR (Johnson et al., 2017). 147

Methods to Improve Compositionality. Sev- 148

eral works have shown that VLMs cannot rec- 149

ognize compositions successfully (Shekhar et al., 150

2017; Miech et al., 2020; Parcalabescu et al., 2022; 151

Thrush et al., 2022; Hendricks and Nematzadeh, 152

2021; Yuksekgonul et al., 2023; Castro et al., 2023; 153

Ma et al., 2023). For this reason, NegCLIP (Yuk- 154
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sekgonul et al., 2023) was proposed to improve155

how CLIP (Radford et al., 2021) composes con-156

cepts. It consists of adding hard negative texts157

by taking the captions from the training batch and158

automatically generating sentences with the exact159

words but in a different order. This approach makes160

the model distinguish between an image and the161

caption in the correct order compared to the exact162

words in an arbitrary order (as well as the other163

negative captions within the batch). Hsieh et al.164

(2023) build upon NegCLIP and CREPE (Ma et al.,165

2023) and propose three ways to generate random166

negatives: REPLACE, SWAP, and NEGATE. All167

these methods start from a Scene Graph representa-168

tion of the sentence and operate over it. REPLACE,169

which had the best overall results, performs single-170

atom replacements. SWAP exchanges two atoms171

within the scene graph. Finally, NEGATE intro-172

duces negation words (i.e., no or not). We build173

upon NegCLIP (Yuksekgonul et al., 2023) and RE-174

PLACE (Hsieh et al., 2023) while we propose to175

use synthetically-generated captions to scale them176

up, as well as applying model patching (Ilharco177

et al., 2022) to avoid catastrophic forgetting. As178

far as we know, we introduce the first method that179

significantly improves the composition skills of180

contrastively-trained models while preserving their181

zero-shot performance on other downstream tasks.182

Cap and CapPa (Tschannen et al., 2023) are two183

recently introduced methods that employ caption-184

ing instead of contrastive learning (as in CLIP) to185

train VLMs. Tschannen et al. (2023) showed that186

these methods present an excellent performance187

on compositionality as measured by ARO (Yuksek-188

gonul et al., 2023) and SugarCrepe (Hsieh et al.,189

2023). As these methods rely on captioning and190

thus on computing the probability of the text given191

an image, they are inefficient for retrieval and clas-192

sification. For ARO, they showed that they can193

achieve high performance without looking at the194

image (they call it a “blind decoder”). For Sugar-195

Crepe, the authors did not compute this specific196

baseline. Hence, we cannot infer the extent to197

which these models handle compositions success-198

fully. Our method is different from them as it builds199

on top of CLIP-like two-tower models, which are200

efficient for retrieval and classification, and it does201

not rely on computing the probability of text, which202

is generally unimportant for such settings as all203

texts are equally likely (unlike in image caption-204

ing).205

3 Increasing Compositionality in 206

Contrastive VLMs 207

To address the compositionality limitations ob- 208

served in previous models, we propose strategies 209

to address the three main aspects of developing a 210

contrastive VLM: data curation, contrastive learn- 211

ing, and model tuning. We introduce CLOVE, a 212

model that leverages the strengths of an existing 213

pre-trained contrastive VLM and enhances it with 214

language composition skills. Figure 2 shows an 215

overview. 216

CLOVE includes the following steps, presented 217

in more detail below: 218

3.0 Pre-trained Model. Our goal is to improve 219

the compositionality of an existing pre-trained 220

VLM. We select a pre-trained CLIP model or 221

pre-train one as an initial step. 222

3.1 Synthetic Captions. Synthetic data genera- 223

tion can be effectively used to enlarge the 224

training data. We use a large dataset with 225

synthetic captions. 226

3.2 Hard Negatives. Contrastive VLMs rely on 227

the availability of negative training data. We 228

add randomly generated hard text negatives to 229

the dataset and train a fine-tuned model with 230

increased compositionality capabilities. 231

3.3 Model Patching. The pre-trained model and 232

the fine-tuned model are combined through 233

model patching. Patching allows us to keep 234

the compositionality obtained with the fine- 235

tuned model while recovering the pre-trained 236

model performance on previously supported 237

tasks. 238

3.0 Pre-trained Model 239

Rather than starting from scratch, we aim to en- 240

hance the composition capabilities of an exist- 241

ing contrastive VLM. This work uses CLIP (Con- 242

trastive Language-Image Pre-training; Radford 243

et al., 2021), a pre-training method demonstrating 244

impressive zero-shot performance on classification 245

and retrieval tasks involving vision or language. It 246

involves learning image and text representations 247

in a joint space by leveraging large-scale weakly- 248

supervised datasets. These datasets contain image- 249

text pairs with varying degrees of correspondence. 250

For each image, the model must learn the corre- 251

sponding positive text from a set that includes this 252

text and a random sample of N − 1 other texts 253

(negative samples) by employing the InfoNCE ob- 254

jective (Oord et al., 2018). Similarly, the model 255
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Original: Children shoes 141 patent 
black.
Synthetic: Black leather shoes with a 
bow detail.

Original: Eat at a new Harlem restaurant 
on a small aircraft carrier.
Synthetic: People sitting at tables on the 
deck of a boat.

⋮

I1

T1

⋮

Black leather 
shoes with a 
bow detail.

Black leather 
boots with a 
bow detail.

… …T1
– Original
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(1- α)

+           α

=

2. Fine-tune with negatives1. Obtain synthetic captions 3. Patch the original model

Figure 2: Our CLOVE method consists of three steps. First, obtain synthetic captions for a large image dataset.
Second, fine-tune a pre-trained CLIP-like model on it along with hard negative texts. Third, patch the original model
with the fine-tuned one.

must identify which image corresponds to a given256

text. CLIP is trained with mini-batch gradient de-257

scent, where this objective is applied to each pair in258

the N -sized batch, and the negatives are typically259

sourced from the rest of the batch.260

3.1 Synthetic Captions261

Synthetic captions provide a great hybrid between262

the training dataset size and the quality of the cap-263

tions. We leverage LAION-COCO (Schuhmann264

et al., 2022b), a 600-million dataset with images265

from the 2-billion-sized English subset of LAION-266

5B (Schuhmann et al., 2022a) that were captioned267

with BLIP ViT-L/14 (Li et al., 2022), which was268

fine-tuned on COCO and filtered with two versions269

of OpenAI-pre-trained CLIP (Radford et al., 2021;270

ViT-L/14 and RN50x64). Even though the captions271

are limited in style (typically following the style272

of COCO captions), the LAION-COCO authors273

found that the synthetically generated captions have274

a similar quality to those written by humans. We275

believe these captions focus more on describing276

visual information than the captions from its origi-277

nal dataset (LAION), based on multiple examples278

from this dataset. See Section 4.1 for an ablation279

of the training dataset.280

3.2 Hard Negatives281

Yuksekgonul et al. (2023) proposed NegCLIP, an282

extension of CLIP’s training procedure that gen-283

erates a hard negative text for each example in284

the batch by rearranging the image caption words.285

These generated negatives are included within the286

negative test sets of the learning objective. Hsieh287

et al. (2023) proposed an alternative called RE-288

PLACE and showed that the model can achieve289

better compositionality skills if such negatives are 290

generated from carefully selected single-word re- 291

placements. These replacements are performed 292

on one of the entities, relations, or attributes ob- 293

tained from first parsing the sentence as a scene 294

graph, then selecting an alternative word from its 295

antonyms or co-hyponyms by leveraging Word- 296

Net (Fellbaum, 2010)2. These methods rely on 297

high-quality captions. Otherwise, the generated 298

negatives will have changes that cannot be visually 299

appreciated or will mostly be ungrammatical or 300

nonsensical, and the model’s downstream perfor- 301

mance will be severely affected. Take the following 302

example from LAION that accompanies an image 303

of a cardholder: “5x Orange Ball Wedding Party 304

PLACE CARD HOLDER Table Name Memo Pa- 305

per Note Clip.” If we apply REPLACE, supposing 306

we can parse the sentence correctly, the word “ta- 307

ble” could be replaced with “bed”. However, this 308

would not make it a negative since the table is addi- 309

tional contextual information the caption included 310

that cannot be visually appreciated. Such a change 311

will introduce more noise to the model’s training 312

process. 313

For this reason, these works have employed the 314

COCO captions (Lin et al., 2014; Chen et al., 2015) 315

dataset. COCO consists of images along with 316

high-quality human-annotated captions that de- 317

scribe them. Nevertheless, with 600,000 image-text 318

pairs, COCO is at least three orders of magnitude 319

smaller than the typically used image-text train- 320

ing datasets. This issue limits learning and makes 321

models overfit. Additionally, COCO presents a 322

limited number of objects and actions. 700 out 323

2More precisely, the method proposes to look for words
that share a grand-co-hypernym.
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of the 1000 object classes in ImageNet-1k are not324

present in COCO (Venugopalan et al., 2017). We325

propose combining these hard-negative techniques326

with a synthetic-caption dataset, such as LAION-327

COCO (Schuhmann et al., 2022b) (introduced in328

the previous subsection).329

3.3 Model Patching330

NegCLIP (Yuksekgonul et al., 2023) and RE-331

PLACE (Hsieh et al., 2023) make models im-332

prove significantly on language compositional333

skills. However, in exchange, they sacrifice the334

performance on general object recognition, as mea-335

sured by their ImageNet performance. For this rea-336

son, we propose applying one of such methods and337

subsequently employing a method called “model338

patching” (Ilharco et al., 2022). Model patching339

makes a fine-tuned model recover the performance340

on previously supported tasks. This procedure con-341

sists of performing a weight-space average between342

the pre-trained and the fine-tuned models. Con-343

cretely, for each pre-trained model weight wPT
i and344

fine-tuned model weight wFT
i , we compute their345

weighted average to obtain a new model weight wi:346

wi = (1− α)wPT
i + αwFT

i (1)347

In Section 4.3, we show that this method helps348

the model gain compositionality properties while349

maintaining its object-recognition performance.350

3.4 Implementation Details351

Unless otherwise noted, the implementation details352

are the following.353

We write our code on Python 3.10 using Py-354

Torch (Paszke et al., 2019) v2.1, starting from355

open_clip’s (Ilharco et al., 2021; Cherti et al.,356

2023) codebase. We run the experiments using357

the AdamW optimizer (Loshchilov and Hutter,358

2019), with a linear learning rate warmup for 2000359

steps to 1e-6, later decayed with a cosine sched-360

ule (Loshchilov and Hutter, 2017). We use a weight361

decay of 0.1. Our initial pre-trained model is ViT-362

B-32 from OpenAI (Radford et al., 2021). We363

train the models through one billion examples by364

randomly sampling with replacement from shards365

of up to 10 000 samples, where the final size of366

each depends on the image availability at down-367

load time. We successfully downloaded about 80%368

of LAION-400M (Schuhmann et al., 2021), 80%369

of LAION-COCO (Schuhmann et al., 2022b), and370

60% of COYO-700M (Byeon et al., 2022) images.371

The text captions are in English. We employ one 372

node with 8x A100 Nvidia GPUs and 96 CPU cores 373

(p4d.24xlarge from AWS) for four days and a 374

half. The batch size is 256 per GPU. 375

The choice of learning rate was based on mul- 376

tiple preliminary experiments to make sure it was 377

not learning too slowly or that it was making the 378

training loss go up. The training steps and samples 379

were selected to ensure we gave enough time for 380

the method to learn and converge. The choice of to- 381

tal batch size and compute budget was determined 382

based on our availability compute and consider- 383

ing that CLIP-like methods need a large batch size. 384

All reported experiments are based on a single run 385

since they are computationally expensive. 386

We re-implemented REPLACE (Hsieh et al., 387

2023) with the following changes and decisions, 388

primarily because the code for this part is unavail- 389

able. We skip employing BERT (Devlin et al., 390

2019) to filter the generated negatives and instead 391

proceeded to replace words based on the frequency 392

of the new words, which is a first-order approxi- 393

mation of computing probabilities with a contex- 394

tualized model. For the replacements, given that 395

the authors do not mention prepositions but we 396

find them replaced in the provided data, we pro- 397

ceeded to replace prepositions. For the replace- 398

ment words, we try to respect the rest of the sen- 399

tence by conjugating them (e.g., the person for the 400

verbs, and the number for the nouns) and using 401

a similar casing to the replaced word. We used 402

spaCy (Honnibal et al., 2020) v3.7.2 (the model 403

en_core_web_sm) and pyinflect v0.5.1. We em- 404

ployed a different Scene Graph Parsing implemen- 405

tation, SceneGraphParser v0.1.0. We avoid re- 406

placing a word with a potential synonym by look- 407

ing at the synsets in common of their lemmas from 408

WordNet (Fellbaum, 2010), leveraging NLTK (Bird 409

et al., 2009) v3.8.1. We managed to reproduce the 410

same numbers the original authors reported. We 411

will make our code publicly available to make it 412

easy for anybody to reproduce and build on top of 413

our results. 414

We set α = 0.6 for the model patching based on 415

the ablation from Section 4.3. 416

4 Experiments 417

We conduct three ablations studies and a compari- 418

son with related work on multiple benchmarks. In 419

Section 4.2, we evaluate if employing hard negative 420

texts during training improves the recognition per- 421
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formance of compositions. We compare different422

training datasets in Section 4.1. In Section 4.3, we423

test the importance of patching the original model424

after training with hard negative texts. Finally, in425

Section 4.4, we compare our method to previous426

ones. Unless otherwise noted, all evaluations are427

zero-shot, meaning we performed no in-domain428

fine-tuning on a benchmark-specific training split.429

4.1 The Importance of Synthetic Captions430

We hypothesize that training dataset quality is es-431

sential to model compositionality performance. For432

example, in LAION (Schuhmann et al., 2021), a433

dataset commonly used to train CLIP-like models,434

you can find examples that present excessive infor-435

mation that cannot be easily mapped to visual con-436

cepts depicted in any image, such as: “Platinum437

Dance Academy T-shirt. Orders must be placed by438

Friday, September 26th. Delivery approximately 2439

weeks or less.”440

Datasets with high-quality annotations such as441

COCO (Lin et al., 2014; Chen et al., 2015) can be442

used. However, such datasets are typically small443

(less than a million samples). A hybrid approach,444

with high-quality data and a large dataset, can be445

obtained using synthetic captions, as described in446

Section 3.1. We are interested in comparing this447

dataset with LAION-400M or COCO directly, as448

well as two ways to combine the datasets: a) con-449

catenation and b) sampling with equal probabil-450

ity.3 Note that these ways of combining LAION451

and COCO differ from LAION-COCO, a different452

dataset (see Section 3.1). In addition, we consider453

COYO-700M (Byeon et al., 2022), a large-scale454

dataset that was constructed similarly to LAION-455

400M.456

Table 1 compares the performance of fine-tuning457

a pre-trained CLIP model on different datasets with-458

out employing negatives. LAION-COCO (Schuh-459

mann et al., 2022b) presents the best results overall,460

with a large margin on ARO. For this benchmark,461

it is the only presented dataset that significantly462

outperforms the pre-trained model. In the case463

of the SugarCrepe benchmark, we observe that464

all datasets provide improvements over the pre-465

trained model. Interestingly, Betker et al. (2023)466

also found synthetic captions helpful for text-to-467

image generation models. They show synthetic468

captions help such models generate images that469

align better with the input text.470

3Note LAION-400M is about 700 times larger than COCO.

Fine-tuning dataset Attr. Rel. C-Ord. F-Ord.

pre-trained 63.5 59.8 47.7 59.9

Without hard negative texts

COYO 63.6 55.4 34.8 43.4
LAION (L) 64.9 64.0 40.2 47.0
COCO (C) 62.5 61.6 73.8 39.8

concat. L & C 65.9 59.0 43.7 50.3
sample unif. L & C 64.6 55.7 59.8 29.7

LAION-COCO 65.4 66.0 70.5 76.9

With hard negative texts

COYO 69.5 75.6 71.7 79.7
LAION (L) 67.9 72.6 78.3 85.4
COCO (C) 70.2 67.6 90.9 74.5

concat. L & C 70.1 76.2 83.4 88.6
sample unif. L & C 69.9 71.6 82.7 60.8

LAION-COCO 69.0 77.4 91.7 93.6

Table 1: The zero-shot performance of fine-tuning CLIP
with different datasets, with and without hard negative
texts. The best results are in bold. An underline indi-
cates results within 1% of best.

Attr. Rel. C-Ord. F-Ord.

pre-trained 63.5 59.8 47.7 59.9

fine-tuned 65.4 66.0 70.5 76.9
+ negatives 69.0 77.4 91.7 93.6

+ negatives* 69.4 75.4 77.5 86.1

Table 2: The importance of employing negatives to
improve the zero-shot performance on recognizing com-
positions. The best results are in bold. An underline
indicates results within 1% of best. *The last row shows
the results of using half the batch size – there are gains
even when the total device memory is the same, given
that employing negatives effectively doubles the batch
size.

4.2 The Importance of Hard Negatives 471

Yuksekgonul et al. (2023); Hsieh et al. (2023) 472

showed that employing randomly generated text 473

negatives as part of the training process can sig- 474

nificantly improve the language compositional- 475

ity skills of pre-trained models. We apply RE- 476

PLACE (Hsieh et al., 2023) to obtain randomly 477

generated hard negative text along with the LAION- 478

COCO dataset (Schuhmann et al., 2022b) and com- 479

pare it to fine-tuning without negatives. We present 480

the results in Table 2. In this setting, we can 481

observe that employing negatives improves per- 482

formance over not using them, as measured by 483

the ARO benchmark (Yuksekgonul et al., 2023) 484

(its tasks are, in the order that we show them: 485

VG-Attribution, VG-Relation, COCO-Order, and 486

Flickr30k-Order). 487
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Figure 3: The effect of applying model patching to
both an object-centric benchmark (ImageNet, Deng
et al., 2009; x-axis) and a compositionality benchmark
(ARO, Yuksekgonul et al., 2023; the four y-axes rep-
resent its four tasks), when varying the value of the
weight in the average, α. The value of α varies from
0 (the pre-trained model) to 1 (the fine-tuned model)
in 0.05 increments, and the lines connect such points.
We can obtain models with good zero-shot performance
in ImageNet and compositionality when α is around
0.4–0.7. Note the four y-axes were adjusted to make the
pre-trained and fine-tuned model points match to focus
on how the lines vary between them.

4.3 The importance of Model Patching488

Existing methods to improve CLIP’s composition-489

ality by employing negatives used by Yuksekgonul490

et al. (2023); Hsieh et al. (2023) do so by consid-491

erably hurting the model’s performance on more492

standard object-centric benchmarks such as Ima-493

geNet (Deng et al., 2009).494

Figure 3 presents the effect of varying this value495

for both a compositionality benchmark and an496

object-centric one. When α is around 0.4–0.7, the497

model performs well on both.498

4.4 CLOVE: Bringing Compositionality into499

CLIP500

We compare our method to other baselines in Fig-501

ure 1. Our method presents an average 10% ab-502

solute improvement on SugarCrepe (Hsieh et al.,503

2023) (over its seven fine-grained tasks), a chal-504

lenging benchmark on compositionality, over a pre-505

trained CLIP model while having an ImageNet per-506

formance within 1%. Our method presents results507

comparable to other existing methods without los-508

ing ImageNet performance. Additionally, we show509

that our method performs better than others on510

compositionality when we do not apply the model511

patching step.512

In Table 3, we show a comparison of our513

method with others in three compositionality514

benchmarks: ARO (Yuksekgonul et al., 2023), Sug- 515

arCrepe (Hsieh et al., 2023) (over its three coarse- 516

grained tasks), and SVO-Probes (Hendricks and 517

Nematzadeh, 2021). Note that, for SugarCrepe, we 518

employ the macro-average to compute the coarse- 519

grained task results like in (Tschannen et al., 2023) 520

and unlike the original paper, since we are inter- 521

ested in measuring the global phenomena instead 522

of giving importance to the task sample sizes. See 523

Appendix A for the performance on SugarCrepe 524

for each fine-grained task. In Table 4, we compare 525

the same methods in other types of benchmarks. 526

These are: ImageNet (Deng et al., 2009), Stanford 527

Cars (Krause et al., 2013), CIFAR10 (Krizhevsky, 528

2009), CIFAR100 (Krizhevsky, 2009), MNIST (Le- 529

Cun et al., 1994), EuroSAT (Helber et al., 2019, 530

2018), Oxford Flowers 102 (Nilsback and Zisser- 531

man, 2008), and Describable Textures (DTD) (Cim- 532

poi et al., 2014). Following Radford et al. (2021), 533

we employ the top-1 accuracy metric for them, ex- 534

cept for Oxford Flowers 102, where we use the 535

mean per class. 536

Our method presents a high compositionality 537

recognition performance overall while having com- 538

parable performance to the pre-trained model in the 539

rest of the benchmarks. Existing methods achieve 540

high numbers on compositionality at the cost of a 541

significant drop in other tasks. 542

5 Conclusions 543

In this paper, we introduced CLOVE – a method 544

to considerably improve the compositionality of 545

CLIP-like pre-trained models while preserving 546

their performance on other tasks. The method con- 547

sists of fine-tuning contrastive VLMs with hard neg- 548

ative texts by leveraging synthetically captioned im- 549

ages, as they can provide a great trade-off between 550

quality and quantity. Subsequently, our method 551

patches the original model with the fine-tuned one 552

to convey the best of two worlds – compositional 553

skills while maintaining the performance on other 554

tasks. 555

We showed experimentally that CLOVE im- 556

proves the performance of such models on mul- 557

tiple tasks, both compositionality-related and non- 558

compositionality-related. We ablated the different 559

components of our method and showed their im- 560

portance: the data quality, the use of hard negatives 561

in training, and the model patching. 562

Our code and pre-trained models are publicly 563

available at http://anonymous.edu. Our code 564
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ARO SugarCrepe SVO-Probes
Attr. Rel. C-Ord. F-Ord. Repl. Swap Add. Subj. Verbs Obj. Avg.

pre-trained 63.5 59.8 47.7 59.9 80.1 62.3 72.8 84.0 79.3 87.8 69.7

NegCLIP 70.5 80.1 87.0 90.1 85.1 75.3 85.9 90.9 84.7 92.3 84.2
REPLACE 71.2 72.9 80.1 86.7 88.2 74.8 89.5 92.0 84.6 93.0 83.3

Ours w/o patching 69.0 77.4 91.7 93.6 88.6 76.1 90.5 88.2 83.7 91.6 85.0
Ours (α = .6) 69.7 72.7 86.6 92.1 87.0 74.6 85.8 90.5 86.4 93.3 83.9

Table 3: Zero-shot results on three compositional benchmarks. The best results are in bold. An underline indicates
results within 1% of best.

IN Cars CIFAR10 CIFAR100 MNIST EuroSAT Flowers DTD Avg.

pre-trained 63.4 59.7 89.8 64.2 48.9 50.5 66.6 44.4 60.9

NegCLIP 55.8 45.6 85.9 60.9 45.3 32.9 55.9 39.0 52.7
REPLACE 52.9 42.7 84.6 60.2 36.6 34.3 51.9 34.5 49.7

Our w/o patching 53.1 48.7 88.5 62.0 40.4 46.9 43.2 36.3 52.4
Ours (α = .6) 62.8 56.8 91.4 68.1 48.7 57.4 61.1 41.2 60.9

Table 4: Zero-shot results on eight image classification tasks. The best results are in bold. An underline indicates
results within 1% of best.

will allow for an easy replacement of CLIP-like565

weights with the ones we provide, considerably566

boosting the language composition performance.567

Limitations568

Our work is limited in the following ways.569

Our method does not solve the compositional-570

ity problem completely. The performance of our571

method on the compositionality benchmarks still572

presents a gap regarding the human performance573

reported by the papers associated with each of the574

employed benchmarks.575

Employing synthetic captions can introduce un-576

desired noise. Image captioners may sometimes577

hallucinate, introducing incorrect concepts or in-578

accurate descriptions of such objects. This is es-579

pecially true for quantities, such as when there are580

four horses in the scene, but the synthetic caption581

mentions three. Future work can focus on methods582

to improve the synthetic caption quality.583

We did not study the effect of the performance584

of the patched models on different demographics.585

It could be the case that some demographics are586

misrepresented in some task performance (compo-587

sitional or not) after the model has been patched.588

Users should be careful about this aspect.589

In this work, we focus on two-tower models590

because of their efficiency for classification and re-591

trieval. We leave the study of single-tower models592

for future work.593
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Replacement Swap Addition
Obj. Att. Rel. Avg. Obj. Att. Avg. Obj. Att. Avg. Task Avg. Avg.

pre-trained 90.8 80.2 69.1 80.1 61.0 63.8 62.3 77.1 68.5 72.8 71.7 72.9

NegCLIP 92.6 85.9 76.8 85.1 75.6 75.1 75.3 88.8 83.0 85.9 82.1 82.5
REPLACE 93.5 90.2 80.9 88.2 74.0 75.5 74.8 90.9 88.0 89.5 84.2 84.7

Ours w/o patching 93.0 91.0 81.6 88.6 74.4 77.9 76.1 86.2 94.7 90.5 85.1 85.5
Ours (α = .6) 93.8 89.1 78.2 87.0 74.4 74.8 74.6 84.4 87.3 85.8 82.5 83.1

Table 5: Results on SugarCrepe. The best results are in bold. An underline indicates results within 1% of best.
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