
Under review as a conference paper at ICLR 2024

EFFICIENT REDUNDANCY-FREE GRAPH NETWORKS:
HIGHER EXPRESSIVENESS AND LESS OVER-SQUASHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Message Passing Neural Networks (MPNNs) are effective at learning graph struc-
tures. However, their message passing mechanism introduces redundancy, which
limits expressiveness and leads to over-squashing. Previous studies have ad-
dressed the redundancy problem, but often at the cost of increased complexity.
Improving expressiveness and addressing over-squashing remain major concerns
in MPNN research. This study explores the nature of message passing redun-
dancy and presents efficient solutions using two surrogate structures: Directed
Line Graph (DLG) and Directed Acyclic Line Graph (DALG). Subsequently, we
propose a family of models: 1) Directed Line Graph Network (DLGN), using
DLG, achieves redundancy-free message passing for graphs with a minimum cy-
cle size of L when composed of L layers. 2) Efficient Redundancy-Free Graph
Network (ERFGN), using DALG, achieves perfectly redundancy-free message
passing and, under certain conditions, the expressiveness of arbitrary subtrees.
3) Extending ERFGN with cycle modeling, ERFGN˝ expresses each subgraph
with a cycle. 4) Performing Global Attention of Nodes and Cycles(GloAttNC),
ERFGN˝+GloAttNC achieves a high expressiveness of subgraphs consisting of
subtrees and subcycles. The efficiency and effectiveness of these models in im-
proving expressiveness and mitigating over-squashing are analyzed theoretically.
Empirical results on realistic datasets validate the proposed methods.

1 INTRODUCTION

Message Passing Neural Networks (MPNNs), the cornerstone branch of Graph Neural Networks
(GNNs), have shown strong performance in graph learning (Waikhom & Patgiri, 2021; Xia et al.,
2021; Khoshraftar & An, 2022; Yang et al., 2023; Dwivedi et al., 2023). In typical MPNNs (Gilmer
et al., 2017; Kipf & Welling, 2017; Hamilton et al., 2017; Velickovic et al., 2018; Xu et al., 2019),
a node representation is computed by aggregating messages from the node itself and its neighbors,
where the input graph is transformed into a surrogate graph consisting of bi-directed edges and
self-loops, as shown in Fig. 1 (a). Typical MPNNs implicitly build a message passing graph, as
depicted in Fig. 1 (b), to pass messages and compute node representations. The expressiveness of
GNNs quantifies their ability to identify various non-isomorphic (i.e., topologically mismatched)
(sub)graphs (Xu et al., 2019; Morris et al., 2019). To effectively measure graph similarity and
accurately predict graph properties, it is crucial to express a wide range of non-isomorphic sub-
graphs (Tsitsulin et al., 2018). Conversely, an approach that effectively separates non-isomorphic
graphs but fails to express isomorphic subgraphs within them may encounter the overfitting issue.
However, MPNNs face challenges in generating identifiable representations for non-isomorphic sub-
graphs. These challenges arise from two main issues: message confusion and over-squashing (Alon
& Yahav, 2021; Topping et al., 2022; Di Giovanni et al., 2023). Additionally, Chen et al. (2022)
revealed that MPNNs also suffer from the message passing redundancy issue, which causes the
message confusion issue and contributes significantly to the over-squashing issue.

The phenomenon of message passing redundancy can be characterised from two aspects: (i) the
existence of redundant subpaths within a message passing path, and (ii) the existence of multiple
message passing paths generated from one source path. For instance, a path bÑa can generate
multiple message passing paths, e.g., aÑbÑa, bÑbÑa and bÑaÑa as shown in Fig. 1(b), because
the self-loops (e.g., aÑa and bÑb) and backtracking edges (e.g., aÑb) always generate redundant

1

Under review as a conference paper at ICLR 2024

(a) surrogate graph (b) message passing graph (c) non-isomorphic graphs (d) aggregated messages

a

b c

a b c

a b c

a b c

a c

a

a b c a b c a b c

a

b

b

a c b

b c a

a c b

b c a

graph 1

graph 2

a c b

b c a

a c b

b c a

graph 1

graph 2

generated by a

2-layer MPNN

massive nodes are

omitted for clarity... omitted

generated by a
4-layer MPNN

Figure 1: Features of typical message passing paradigm.

subpaths. In addition, a closed path bÑaÑcÑb in graph 1 or a path bÑaÑcÑbÑa in graph 2
shown in Fig.1(c) both can generate the message passing path bÑaÑcÑbÑa shown in blue in
Fig.1(d). These examples imply that message passing redundancy causes challenges in determining
the source path of a given message passing path, known as the message confusion problem. As a
result, typical MPNNs face challenges in solving tasks involving inter-node distances. Moreover,
they can generate identical message passing graphs for non-isomorphic subgraphs, as exemplified
by the message passing graph in Fig. 1(d), which is generated for the two non-isomorphic graphs
depicted in Fig.1(c). This issue leads to indistinguishable representations being generated for non-
isomorphic (sub)graphs, further limiting the expressiveness of typical MPNNs. The over-squashing
phenomenon describes the distortion of messages that occurs when a node’s exponentially expanding
neighborhood information is compressed or ‘squashed’ into vectors of limited size (Alon & Yahav,
2021; Topping et al., 2022). For instance, any node labeled as a in Fig. 1(c) receives messages from
its exponentially growing neighborhoods shown in Fig. 1(d). Chen et al. (2022) showed that a source
path can be transformed into its derived message passing paths by adding redundant subpaths. This
suggests that typical MPNNs always generate many more equal-length message passing paths from
short paths than from long paths, because short paths can be extended with more redundant subpaths.
Consequently, typical MPNNs may lose sensitivity in capturing long paths and large subgraphs.
Hence, message passing redundancy significantly contributes to the over-squashing issue.

Redundancy-free message passing is undoubtedly crucial. However, previous studies in this area
have failed to achieve this goal efficiently and perfectly. A pioneering study, RFGNN (Chen et al.,
2022), conducts message passing on a surrogate structure called TPTs, which consist of extended
paths (epaths) extracted from source graphs, where an epath can represent a cycle. The use of TPTs
ensures that only one message passing path captures an epath, making RFGNN redundancy free.
Another study, PathNNs (Michel et al., 2023), also extracts path trees to achieve redundancy-free
computation. However, both RFGNN and PathNNs suffer from computational and memory com-
plexity due to the exponential growth in the size of the path trees. This limits their scalability and
applicability in practical scenarios. In addition, SPAGAN (Yang et al., 2019) introduces shortest-
path-based attention, which improves efficiency but sacrifices subtree topological information. Fur-
thermore, there are other studies that focus on eliminating backtracking, such as (Mahé et al., 2004;
Chen et al., 2018). However, these methods still suffer from redundancy caused by subcycles.

We carefully study the causes of message passing redundancy. Surrogate structures generated by
typical MPNNs contain massive subcycles, including self-loops, backtrackings, and native cycles,
as shown in Fig. 1(a). We find that when messages repeatedly traverse subcycles within surrogate
graphs, MPNNs generate redundant message passing. Therefore, to achieve efficient redundancy-
free message passing, we propose solutions based on surrogate structures that eliminate cycles. First,
we utilize a surrogate structure called Directed Line Graph (DLG). A DLG excludes self-loops and
backtracking edges by representing directed edges 1 of a source graph as nodes and limiting node
connections to non-backtracking pairs. Our DLG structure not only provides efficiency and re-
versibility but also enables the representation of source subtrees using DLGs, which makes our
DLG structure being different to the directed line graphs used in previous work (Mahé et al., 2004)
and (Chen et al., 2018) (detailed in Appendix A). However, it retains native cycles. Therefore, we
propose a method to convert source graphs into cycle-free DLGs, a.k.a Directed Acyclic Line Graphs
(DALGs). To ensure efficiency, this method extracts path trees from a cyclic subgraph rather than
the entire graph. It achieves this by decomposing the source graph into two subgraphs: cyclic and

1Undirected edges are treated as bi-directed in this study.

2

Under review as a conference paper at ICLR 2024

acyclic. A sub-DALG is then constructed by extracting path trees from the cyclic subgraph, while
another sub-DALG is created from the acyclic subgraph using the DLG conversion. Finally, the two
sub-DALGs are merged together. The DALG conversion provides reversibility, and efficiency over
than path tree extraction. The DLG and DALG introduce two corresponding models: Directed Line
Graph Network (DLGN) and Efficient Redundancy-Free Graph Network (ERFGN). DLGN with L
layers achieves efficient redundancy-free message passing by avoiding message repetition within
subcycles of size L or greater. ERFGN achieves both efficiency and perfection in redundancy-free
message passing due to the limited size and cycle-free nature of DALGs. As well as improving
efficiency, we are also improving expressiveness. ERFGN effectively express subtrees. By extend-
ing ERFGN with cycle modeling, we introduce ERFGN˝ to express any connected subgraph with
a subcycle. We also propose a Global Attention module to model Node and Cycle interactions
(called GloAttNC). It allows ERFGN˝+GloAttNC to express subgraphs consisting of subcycles and
subtrees, and to generate identifiable representations for nodes and cycles.

Our contributions of this work could be summarized as follows:

• Our investigation reveals that the message passing redundancy arises from the repetitive traversal
of messages along cyclic structures within surrogate graphs.

• To achieve efficient redundancy-free message passing, we propose two solutions using surro-
gate structures that eliminate cycles. First, we propose DLGN, which utilizes DLG, a surrogate
structure that excludes self-loops and backtrackings. When DLGN is composed of L layers, it
achieves redundancy-free message passing for graphs with a minimum cycle size of L. Second,
we introduce ERFGN, which employs cycle-free surrogate graphs, known as DALGs. We also
present a method for efficiently converting cyclic graphs into DALGs, which extracts path trees
from cyclic subgraphs rather than from entire graphs. ERFGN achieves perfect redundancy-free
message passing and, under certain conditions, enables the expressiveness of arbitrary subtrees.

• To extend ERFGN’s ability to capture higher-order graph structures, we introduce ERFGN˝,
which includes a cycle modeling module to express any subgraph with a cycle. Additionally,
we propose GloAttNC, a methodology that models global attentions between nodes and cycles.
By incorporating GloAttNC, ERFGN˝+GloAttNC can effectively generate identifiable represen-
tations for nodes and cycles.

• Empirical results strongly support the efficiency and high performance of our models.

2 METHODOLOGY

In this section, we clarify the research problem, present the DLG conversion and DALG conversion,
introduce our proposed models, and conduct a comprehensive evaluation of their expressiveness and
complexity. The detailed proofs can be found in Appendix C.

2.1 PROBLEM DEFINITION

Let G “ pV,E,Cq be a graph. A directed edge e “ pu, vq P E connects node u to node v, where
u, v P V . c P C is a chordless cycle (in which no edge outside the cycle connects two nodes of
the cycle (Uno & Satoh, 2014)). Each node u and each edge e could have attributes, denoted as Xu

and Xe, respectively. This study focuses on graph-level learning tasks: First, a model learns a node
representation Z ‚

u for each node u P V . Then, the model learns a graph representation Z˚
G based on

the node representations of graph G, which is used to predict the properties of graph G. 2

2.2 DLG CONVERSION

Definition 1 (Directed Line Graph (DLG)). The DLG D of a graph G is a graph such that (i) each
node of D represents a directed edge of G; and (ii) two nodes in D are adjacent if and only if their
source edges connect but do not form a backtracking.3 Particularly, an acyclic DLG is called a
Directed Acyclic Line Graph (DALG). A DLG node is denoted as vÑu with the source edge pv, uq.

2Representations and functions of nodes are indicated with a superscript ‚, cycles with ˝, and graphs with ˚.
3The concept of ‘Directed Line Graph’ is developed based on the ‘Line Graph’.

3

https://en.wikipedia.org/wiki/Line_graph

Under review as a conference paper at ICLR 2024

(a) original graph (b) edge to node
conversion (d) DLG (c) non-backtracking

Figure 2: Eliminating self-loops and backtrackings with DLGs.

The DLG conversion is illustrated in Fig. 2: First, the original directed edges are represented as DLG
nodes, as shown in Fig. 2(b). Second, DLG node connections are limited to non-backtracking node
pairs. A non-backtracking node pair is shown in Fig. 2(c). The resulting DLG is shown in Fig. 2(d).
At last, for each node u P G, a set Dpuq “ tvÑu | pv, uq P Gu is created, which contains all the DLG
nodes generated from incoming edges of node u, making these DLG nodes virtually connected to
node u. It is essential to highlight that this method transforms acyclic graphs into DALGs.

2.3 DALG CONVERSION

(a) cycle search (b) graph split (c) DLG conversion (d) path trees extraction

(e) trees to DALG conversion (f) connection to form DALG

omitted

omitted

Figure 3: Steps of DALG Conversion

The steps of DALG conversion is shown in Fig. 3 and summarized as follows:

(a) Chordless cycles present in the input graph are extracted. If no cycles are found, the input graph
is converted directly into a DALG using the DLG conversion method.

(b) If cycles are detected, the input graph is divided into two subgraphs, i.e., the cyclic subgraph
consisting of all subcycles, denoted as G˝, and the complementary acyclic subgraph, denoted as
Gτ . The two subgraphs may have joint nodes, e.g., the node a shown in Fig. 3(b).

(c) Gτ is converted into a sub-DALG, denoted as Dτ , using the DLG conversion.
(d) Path trees are extracted from each node in G˝. Path trees connect a node to its parent node if and

only if the two nodes are adjacent in G˝. And each path within path trees contains unique nodes.
(e) Path trees are converted into a sub-DALG, called G˝, by representing their edges as DALG nodes.

And, a set E is created including all DALG node generated from the root edges of path trees.
(f) The sub-DALGs Dτ and D˝ are merged to construct a complete DALG. If the cyclic and acyclic

subgraphs have joint nodes, edges are placed between these two sub-DALGs:
(i) An edge (colored green) is added from a node in D˝ to a node in Dτ if and only if the source

edges of these nodes are adjacent and the D˝ node originates from a root edge of a path tree.
By adding such edges, every path from G˝ to Gτ is present in the DALG. Note that nodes in
D˝ whose source edges are non-root edges are not connected to nodes in Dτ because paths
ending at non-root edges are duplicated in paths ending at root edges.

(ii) An edge (colored blue) is placed from a Dτ node to a D˝ node if and only if the source edges
of these DALG nodes are adjacent, so that all paths from Gτ to G˝ present in the DALG.

(g) In addition, for each node u, a set Dpuq “ tvÑu | pv, uq P Gτ
Y pv, uq P Eu is created, which

contains all DALG nodes whose source edges pointing to node u and generated from Gτ or the
root edges of path trees, making DALG nodes in Dpuq virtually connected to node u. And, for
each cycle c, a set Cpcq “ tvÑu | pv, uq P c X pv, uq P Eu is created, which contains all DALG

4

Under review as a conference paper at ICLR 2024

nodes whose source edges belong to cycle c and are from root edges of trees, making DALG
nodes in Cpcq virtually connected to cycle c. DALG nodes that are generated from non-root
edges of path trees are excluded in both Dpuq and Cpuq to avoid duplicate messages.

2.4 DLGN AND ERFGN

The DLG and DALG introduce two corresponding models: DLGN and ERFGN. Both first perform
message passing on surrogate graphs to update the node representations of surrogate graphs, then
update the source node representations, and finally update the graph representations. Since DALGs
are special DLGs, the message passing schemes applied to DLGs and DALGs are the same. For a
given graph G “ pV,E,Cq and its derived DLG D, an initial representation H

p0q
u is encoded for

each DLG node u P D using an update function Ψ as follows:

Hp0q
u “ Ψ pXu, Xu,v, Xvq , (1)

where node u is generated from the directed edge pu, vq P G, node or edge attributes could be empty.
Then, with H

plq
u denoting the representation of node u in layer l, Hplq

u is updated as follows:

Hplq
u “ Ψplq

´

Hp0q
u ,

ďplq
´!!

Hpl´1q
v

ˇ

ˇ

ˇ
v P Ninpuq

))¯¯

, (2)

where Ninpuq is the set of incoming DLG nodes of node u, and
Ťplq is a message aggregator. The

update function Φplq takes Hp0q
u , not Hpl´1q

u as in typical MPNNs, in order to avoid self-loops.

Subsequently, DLGN and ERFGN employ a similar scheme to update the source node representa-
tions. The representation Z ‚

u of node u is computed using an update function Ψ‚ and a message
aggregator

Ť

‚ in the following manner:

Z
‚

u “ Ψ
‚

´

ď‚
´!!

H
‚

u

ˇ

ˇ

ˇ
u P Dpuq

))¯¯

, (3)

where H ‚

u could be H
pLq
u or

”

H
p1q
u ∥ H

p2q
u ∥ ¨ ¨ ¨ ∥ H

pLq
u

ı

. The concatenation of the node representa-
tions across layers, a.k.a Jump Knowledge (Xu et al., 2018), could help to incorporate graph features
at different scales. DLGN and ERFGN differ in the definition of Dpuq: DLGN uses a Dpuq includ-
ing all DLG nodes whose source edges point to node u, while ERFGN uses a Dpuq that excludes
DALG nodes generated from non-root edges of path trees to avoid message passing redundancy.

Lastly, our models use a graph readout
Ť˚ to collect the representations of all nodes of graph G, and

use an update function Ψ˚ to compute the representation Z˚
G of graph G as follows:

Z˚
G “ Ψ˚

´

ď˚
´!!

Z
‚

u

ˇ

ˇ

ˇ
u P V

))¯¯

. (4)

All update functions are trainable functions. Additionally, the message aggregators
Ťplq and

Ť

‚,
and the graph readout

Ť˚ must be permutation-invariant and injective functions on multisets, such
as summation, where a multiset is a set that allows repeated elements.

2.5 CYCLE MODELING AND GLOBAL ATTENTION

To achieve higher expressiveness, we propose ERFGN˝, which explicitly models cycle-based sub-
graphs by adding a cycle modeling module to ERFGN. Specifically, ERFGN˝ updates the represen-
tation of each cycle c P C using a message aggregator

Ť˝ and an update function Φ˝ as follows:

Z˝
c “ Φ˝

´

ď˝
´!!

HpLq
u

ˇ

ˇ

ˇ
u P Cpcq

))¯¯

. (5)

Subsequently, ERFGN˝ computes the graph representation Z˚
G as follows:

Z˚
G “ Φ˚

´

ď˚
´!!

Z
‚

u

ˇ

ˇ

ˇ
u P V

))¯

,
ď˚

´!!

Z˝
c

ˇ

ˇ

ˇ
c P C

))¯¯

. (6)

To further extend the capabilities of ERFGN˝, we introduce GloAttNC, a global attention module
which incorporates node-to-cycle, cycle-to-node, and cycle-to-cycle global interactions, in addition
to the existing node-to-node interactions found in graph transformers (Kreuzer et al., 2021). It

5

Under review as a conference paper at ICLR 2024

employs two schemes, a 1-to-N scheme and a 1-to-1 scheme, to cater to different priorities. The 1-
to-N scheme prioritizes efficiency but may sacrifice some details. It updates the global interactions
between a node u to all nodes (Z ‚‚

u,V), between a node u to all cycles (Z ‚˝
u,C), between a cycle c to all

nodes (Z˝‚

c,V), and between a cycle c to all cycles (Z˝˝
c,C) using Eq. 7. Conversely, the 1-to-1 scheme

preserves details to potentially enhance accuracy but comes with increased computational overhead.
It updates these global interactions using Eq. 8.

Z
‚‚

u,V “ Υ
‚‚

´

Z
‚

u,
Ť

´!!

Z
‚

v

ˇ

ˇ

ˇ
v P V

))¯¯

, Z
‚˝
u,C “ Υ

‚˝
´

Z
‚

u,
Ť

´!!

Z˝
c

ˇ

ˇ

ˇ
c P C

))¯¯

,

Z˝‚

c,V “ Υ˝‚

´

Z˝
c ,

Ť

´!!

Z
‚

v

ˇ

ˇ

ˇ
v P V

))¯¯

, Z˝˝
c,C “ Υ˝˝

´

Z˝
c ,

Ť

´!!

Z˝
c1

ˇ

ˇ

ˇ
c1

P C
))¯¯

.
(7)

Z
‚‚

u,V “
Ť

´!!

Υ
‚‚

pZ
‚

u, Z
‚

vq

ˇ

ˇ

ˇ
v P V

))¯

, Z
‚˝
u,C “

Ť

´!!

Υ
‚˝

pZ
‚

u, Z
˝
c q

ˇ

ˇ

ˇ
c P C

))¯

,

Z˝‚

c,V “
Ť

´!!

Υ˝‚

pZ˝
c , Z

‚

vq

ˇ

ˇ

ˇ
v P V

))¯

, Z˝˝
c,C “

Ť

´!!

Υ˝˝
pZ˝

c , Z
˝
c1 q

ˇ

ˇ

ˇ
c1

P C
))¯

.
(8)

Subsequently, the representations of nodes, cycles and graphs are computed sequentially:

Z
‚

u “ Υ
‚
`

Z
‚

u, Z
‚‚

u,V , Z
‚˝
u,C

˘

, Z˝
c “ Υ˝

`

Z˝
c , Z

˝‚

c,V , Z˝˝
c,C

˘

Z˚
G “ Υ˚

´

Ť

´!

Z
‚

u

ˇ

ˇ

ˇ
u P V

)¯

,
Ť

´!

Z˝
c

ˇ

ˇ

ˇ
c P C

)¯¯

.
(9)

Note that
Ť

is a message aggregator, and Υ‚‚, Υ‚˝, Υ˝‚, Υ˝˝, Υ‚, Υ˝, and Υ˚ are trainable functions.

2.6 HIGHER EXPRESSIVENESS

Lemma 1. All subtrees in a graph are represented as subtrees in the corresponding DLG. And the
conversion from graphs to DLGs is reversible.

Lemma 2. All subtrees in a graph are represented as subtrees in the corresponding DALG. And the
conversion from graphs to DALGs is reversible.

Lemma 1 and Lemmas 2 establish the necessary condition for the effectiveness of iterative message
passing on DLGs or DALGs in capturing subtrees of the original graphs. Moreover, these lemmas
guarantee that learning from DLGs or DALGs is equivalent to learning from the original graphs.

Lemma 3. DLGN with L layers can express all subtrees of non-isomorphic graphs if the minimum
cycle size S and the maximum component radius R of these graphs satisfy R ď L ă S.

Lemma 4. ERFGN with L layers can express all subtrees of non-isomorphic graphs if the maximum
component radius R of these graphs satisfies R ď L.

The graph radius determines the minimum number of message passing iterations required to trans-
fer information from all nodes in a connected graph to a certain node, and to express all subtrees
of the connected graph. Additionally, the effective representation of an unconnected graph requires
the ability to express the graph component with the largest radius. Lemma 3 and Lemma 4 provide
the necessary conditions to achieve the full potential expressiveness of DLGN and ERFGN, respec-
tively. Moreover, Lemma 4 shows that ERFGN can separate arbitrary non-isomorphic graphs for
two reasons: (1) Every graph has at least one path that is not part of any graph that is not isomorphic
to that graph. (2) The maximum component radius of a given graph set is finite.

Lemma 5. ERFGN˝ can express all connected subgraph with a cycle.

Lemma 6. ERFGN˝+GloAttNC can generate identifiable representations for nodes and cycles.

Lemma 7. Subgraph expressiveness can be ranked as follows: typical MPNNs “ DLGN ă

ERFGN» RFGNN (Chen et al., 2022) ă k-GNNs using 3-WL (Bodnar et al., 2021a) ă ERFGN˝ă

ERFGN˝+GloAttNC.

These lemmas show that cycle modeling and GloAttNC progressively enhance the expressiveness
of ERFGN. ERFGN and ERFGN˝ fail to achieve identifiable node or cycle representations because
nodes or cycles in non-isomorphic graphs may only connect isomorphic subtrees. To address this
limitation, ERFGN˝+GloAttNC considers all subtrees in updating, ensuring that the generated rep-
resentations capture the isomorphism information of source graphs. The isomorphism information
also allows ERFGN˝+GloAttNC to express subgraphs consisting of subcycles and subtrees.

6

Under review as a conference paper at ICLR 2024

Tree height and cycle size requirements. ERFGN with L layers only transmits messages between
DALG nodes with a maximum distance of L. Therefore, when using ERFGN with L layers, only
path trees with heights up to L need to be extracted. Additionally, the maximum size of chordless
cycles to be extracted should be larger than L.

2.7 LESS OVER-SQUASHING

To assess the impact of over-squashing, Topping et al. (2022) introduced the Jacobian of a MPNN-
output to measure the influence exerted by changes in the input features of each node on the output
representations of each node. This analysis shows that changes in the input features of certain
nodes may have only a slight impact on the output representations of specific nodes, leading to
information over-squashed. Subsequently, (Chen et al., 2022) extended the Jacobian of a MPNN-
output to quantify the sensitivity of a MPNN in capturing per-path information, and showed that
source paths leading to a smaller number of message passing paths are harder to capture than source
paths leading to a larger number of message passing paths. They have also showed that the number
of message passing paths generated from a source path is equal to the number of random walks
generated from its corresponding path in the surrogate graph. Therefore, typical MPNNs often
generate fewer message-passing paths for large subgraphs than for small subgraphs, leading to the
over-squashing issue. RFGNN (Chen et al., 2022) uses only one message passing path for capturing
an epath, thus addressing the imbalance in the number of message passing paths generated from
different source paths and mitigating the over-squashing issue.

ERFGN also performs redundancy-free message passing. As a result, ERFGN exhibits a similar
sensitivity to subtree capture as RFGNN. Nevertheless, RFGNN (Chen et al., 2022) faces difficul-
ties in modeling cycles because the information about a cycle’s epath can be over-squashed by the
extensive information contained in a path tree. By explicitly modeling cycles, ERFGN˝ avoids the
problem of over-squashing cycle information present in RFGNN.

2.8 COMPLEXITY ANALYSIS

Table 1: Message passing complexity analysed based on nodes and edges.
Typical MPNNs RFGNN with L layers DLGN ERFGN with L layers

redundancy yes free reduced free
nodes O p|V |q O p|V |!{p|V | ´ L ´ 1q!q O p|E|q O

`

|E| ` |V ˝
| ˆ dL

˘

edges O p|V | ` |E|q O p|V |!{p|V | ´ L ´ 1q!q O
`

|E|
2
{|V |

˘

O
`

|E|
2
{|V | ` |V ˝

| ˆ dL
˘

The complexity analysis is divided into two parts: graph conversions and message passing. The DLG
conversion, which involves constructing nodes and edges, has linear time and memory complexity.
The DALG conversion requires cycle detection, path tree extraction and sub-DALG construction.
The listing of N˝ chordless cycles can be done in Opp|E| ` |V |qpN˝ ` 1qq time (Dias et al., 2013).
Let V ˝ be the nodes of the cyclic subgraph, and d˝ be the maximum node degree. Then, |V ˝| path
trees are extracted, where each node at worst has d˝ child nodes. Therefore, the extracted path
trees consist of p|V ˝| ˆ dLq nodes and edges at worst. Thus, for ERFGN with L layers, the path
tree extraction, as well as the sub-DALG construction, has a complexity of O

`

|E| ` |V ˝| ˆ dL
˘

.
The message passing complexity of MPNNs grows linearly with the size of the surrogate structures.
Given that the real graphs we are interested in are sparse and the cyclic subgraphs are small, the
DALG conversion is efficient, and the constructed DALGs are small. The comparative complexity
analysis of different message passing schemes is given in Table 1. This analysis shows that our
models offer improved efficiency in addressing message passing redundancy. The cycle modeling
complexity is O pN˝q, while GloAttNC has a complexity of O

`

|V |2
˘

. ERFGN˝+GloAttNC is more
efficient than graph transformers because GloAttNC performs global attention only once.

3 EXPERIMENT

In this section, we conduct experiments on total 11 datasets, including synthetic and real-world
tasks, to verify the performance of our models. The statistical details of all datasets can be found in

7

Under review as a conference paper at ICLR 2024

the Appendix D. Additional experimental results and ablation studies are included in Appendix F.
The source code is provided in https://anonymous.4open.science/r/ERFGN-3863.

The baseline methods against which our models are compared are as follows: Popular MPNNs such
as GIN (Xu et al., 2019), GatedGCN (Dwivedi et al., 2023), PNA (Corso et al., 2020). Avanced
GNNs such as k-GNNs (Morris et al., 2019), PPGN (Maron et al., 2019a), CIN (Bodnar et al.,
2021a), CRaWL (Toenshoff et al., 2021), GIN-AK+ (Zhao et al., 2022), NGNN (Zhang & Li, 2021),
KP-GIN1 (Feng et al., 2022), I2GNN (Huang et al., 2022), PathNNs Michel et al. (2023). And graph
transformers such as SAN (Kreuzer et al., 2021), Graphormer (Ying et al., 2021), EGT (Hussain
et al., 2022), GPS (Rampášek et al., 2022).

Table 2: Test performance on MNIST and
CIFAR10. Bold ones are the best.

Model MNIST CIFAR10
Accuracy (Ò) Accuracy (Ò)

GIN 96.485 ˘ 0.252 55.255 ˘ 1.527
GatedGCN 97.340 ˘ 0.143 67.312 ˘ 0.311
PNA 97.94 ˘ 0.12 70.35 ˘ 0.63

CRaWl 97.944 ˘ 0.050 69.013 ˘ 0.259
GIN-AK+ - 72.19 ˘ 0.13

EGT 98.173 ˘ 0.087 68.702 ˘ 0.409
GPS 98.051 ˘ 0.126 72.298 ˘ 0.356

DLGN 98.640 ˘ 0.052 73.386 ˘ 0.312

Table 3: Test performance on Peptides-func
and Peptides-struct. Bold ones are the best.
Underlined ones are better than baselines.

Model Peptides-func (AP (Ò)) Peptides-struct (MAEÓ)

GINE 0.5498 ˘ 0.0079 0.3547 ˘ 0.0045
GatedGCN 0.5864 ˘ 0.0077 0.3420 ˘ 0.0013
PathNNs 0.6816 ˘ 0.0026 0.2540 ˘ 0.0046

Transformer+LapPE 0.6326 ˘ 0.0126 0.2529 ˘ 0.0016
SAN+LapPE 0.6384 ˘ 0.0121 0.2683 ˘ 0.0043
SAN+RWSE 0.6439 ˘ 0.0075 0.2545 ˘ 0.0012
GPS 0.6535 ˘ 0.0041 0.2500 ˘ 0.0005

DLGN 0.6764 ˘ 0.0055 0.2540 ˘ 0.0008
ERFGN 0.6790 ˘ 0.0055 0.2553 ˘ 0.0028
ERFGN˝ 0.6869 ˘ 0.0056 0.2563 ˘ 0.0011
ERFGN˝+GloAttNC 0.6912 ˘ 0.0049 0.2468 ˘ 0.0014

MNIST and CIFAR10 (Dwivedi et al., 2023) contain large-size graphs converted from images. Due
to the large and dense nature of these graphs, we only apply a 3-layer DLGN to these datasets. The
experimental setup follows that of GPS (Rampášek et al., 2022): „ 100K parameter budget. The
results are shown in Table 2; the mean ˘ s.d. of the results from 5 runs is reported. Although not
exceeding the expressiveness of typical MPNNs or higher-order MPNNs, DLGN benefits from the
mitigation of over-squashing, which helps DLGN to achieve the best performance on both datasets.
In addition, DLGN shows high efficiency on both datasets: The pre-computation times for convert-
ing the source graphs of MNIST and CIFAR10 into DLGs are 41.43s and 65.15s, respectively. And
the per-epoch/total training time is 40.0s/1.1h – showing that our models are efficient.

Peptides-func and Peptides-struct datasets from Long-Range Graph Benchmarks (Dwivedi et al.,
2022) are specifically designed to test the capability of models in performing tasks that require
reasoning with long-range interactions. The the experimental setup follows that of GPS (Rampášek
et al., 2022): „ 500K parameter budget. Results are shown in Table 3; Shown is the mean ˘ s.d.
of 5 runs. Our methods obtain the best performance on both datasets, outperforming SOAT graph
transformers – showing that our models are capable of learning long range interactions. In addition,
the pre-computation process of constructing surrogate graphs can be finished in 40s, and the per-
epoch/total training time of the specific method achieved the best result is 10s/10m. – showing that
our models are efficient for both tasks.

Table 4: MAE results on QM9 (smaller the better). Bold ones are the best.
Target µ α ϵHOMO ϵLUMO ∆ϵ xR2

y ZPVE U0 U H G Cv

DTNN 0.224 0.95 0.00388 0.00512 0.0112 17 0.00172 2.43 2.43 2.43 2.43 0.27
PPGN 0.231 0.382 0.00276 0.00287 0.00406 16.7 0.00064 0.234 0.234 0.229 0.238 0.184
NGNN 0.433 0.265 0.00279 0.00276 0.0039 20.1 0.00015 0.205 0.2 0.249 0.253 0.0811

KP-GIN1 0.358 0.233 0.0024 0.00236 0.00333 16.51 0.00017 0.0682 0.0696 0.0641 0.0484 0.0869
I2GNN 0.428 0.23 0.00261 0.00267 0.0038 18.64 0.00014 0.211 0.206 0.269 0.261 0.073

ERFGN˝
`

GloAttNC 0.1889 0.198 0.00218 0.00207 0.00316 5.366 0.00016 0.113 0.14 0.17 0.141 0.076

QM9 (Ramakrishnan et al., 2014; Wu et al., 2018) contains over 130K molecules with 12 different
regression task. The dataset is split into training, validation, and test sets with a ratio of 0.8{0.1{0.1.

8

https://anonymous.4open.science/r/ERFGN-3863

Under review as a conference paper at ICLR 2024

Table 5: Test performance on ZINC Subset and
OGBG-MOLHIV. Bold ones are the best.

Model ZINC Subset OGBG-MOLHIV
MAEÓ AUROC (Ò)

GIN 0.526 ˘ 0.051 -
GIN+virtual node - 0.7707 ˘ 0.0149
GatedGCN 0.282 ˘ 0.015 -
GSN 0.101 ˘ 0.010 -
GSN (directional) - 0.8039 ˘ 0.0090
GSN(GIN+VN base) - 0.7799 ˘ 0.0100
CIN 0.079 ˘ 0.006 0.8094 ˘ 0.0057
CRaW1 0.085 ˘ 0.004 -
GIN-AK+ 0.080 ˘ 0.001 0.7961 ˘ 0.0119
PathNNs 0.090 ˘ 0.004 0.7917 ˘ 0.0109

SAN 0.139 ˘ 0.006 0.7785 ˘ 0.2470
Graphormer 0.122 ˘ 0.006 -
EGT 0.108 ˘ 0.009 -
Graphormer-GD 0.081 ˘ 0.009 -
GPS 0.070 ˘ 0.004 0.7880 ˘ 0.0101

ERFGN˝+
GloAttNC 0.068 ˘ 0.002 0.7898 ˘ 0.0166

Table 6: Accuracy on TUDatasets. Bold ones
are the best. Underlined ones are better than
baselines. (Higher is better.)

ENZYMES PROTEINS full FRANKENSTEIN NCI1

GIN 72.5˘6.1 76.2˘2.8 64.6˘2.9 82.7˘1.7
k-GNN 54.7˘6.8 77.3˘4.2 68.3˘1.8 61.0˘5.3
PPGN 63.3˘11.8 77.2˘4.7 64.6˘2.9 83.2˘1.1
CIN 62.6˘8.1 77.0˘4.3 74.4˘1.3 83.6˘1.4

PathNNs 73.0˘5.2 75.2˘3.9 73.4˘1.5 82.3˘1.9
RFGNN 75.3˘5.0 77.5˘3.4 74.5˘1.3 83.6˘1.6

ERFGN˝ 73.5˘5.9 77.5˘2.0 77.2˘1.7 86.4˘1.7
ERFGN˝+
GloAttNC 74.8˘5.1 78.4˘3.9 78.4˘2.0 86.6˘1.7

TUDataset (Morris et al., 2020a) contain
small or medium molecular graph datasets. The
setting of the experiment follows that of (Xu
et al., 2019). The accuracy results are listed in
Table 6; the mean ˘ s.d. of results from 10 runs
is shown. The experimental results show the
high performance of our models.

We report the single-time test MAE in Table 4, which shows our model, ERFGN˝+GloAttNC using
the ‘1-N’ scheme, outperforms all baseline methods in several targets.

ZINC Subset and OGBG-MOLHIV are both molecular graphs. The training setup and the evalu-
ation procedure follow those of (Bodnar et al., 2021a). On the ZINC Subset, ERFGN˝+GloAttNC
outperforms the baselines, while on OGBG-MOLHIV ERFGN˝ achieves close to the best results.

4 CONCLUSION

In this study, we investigate the nature of the message passing redundancy problem and present
efficient solutions to the problem. First, we propose DLGN, which uses the DLG surrogate structure
to reduce redundancy caused by self-loops and backtrackings. Second, we propose ERFGN, which
uses the DALG surrogate structure to perfectly remove all redundancy. By removing all redundancy,
ERFGN addresses the message confusion problem and expresses arbitrary subtrees. To achieve
higher expressiveness and less over-squashing, we propose ERFGN˝, which provides improved
expressiveness of subgraphs with cycles by extending ERFGN with a module that explicitly models
cycles. And we propose GloAttNC to model Global Atttion of Nodes and Cycles, which allows
ERFGN˝+GloAttNC to generate identifiable representations for nodes and cycles, and to express a
wider range of subgraphs. Theoretical analysis shows that our ERFGN˝ and ERFGN˝+GloAttNC
models are more expressive than higher-order GNNs using the 3-WL test. And empirical results
support the high efficiency of our models on multiple graph datasets. Ablation studies on several
graph datasets confirm the theoretically improved expressiveness of our models.

Despite the success of ERFGN˝+GloAttNC on realistic datasets, there still be room for improve-
ment in the expressiveness due to the fact that ERFGN˝+GloAttNC ignores connectivity between
subtrees/subgraphs, such as distance, number of connections, etc., when modeling global attention.
In addition, some adaptations of our methods are needed in order to apply them to graphs with dense
connections or a high number of subrings. One possible solution could be to decompose the graph,
as ESAN (Bevilacqua et al., 2022) does, into several subtrees, which will be investigated in our
future work.

REFERENCES

Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and Its Practical Implica-
tions. International Conference on Learning Representations, ICLR, 2021.

Emily Alsentzer, Samuel G. Finlayson, Michelle M. Li, and Marinka Zitnik. Subgraph Neural
Networks. Advances in Neural Information Processing Systems, NeurIPS, 33:8017–8029, 2020.

9

Under review as a conference paper at ICLR 2024

Waı̈ss Azizian and Marc Lelarge. Expressive Power of Invariant and Equivariant Graph Neural
Networks. International Conference on Learning Representations, ICLR, 2021.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant Subgraph Aggregation
Networks. International Conference on Learning Representations, ICLR, 2022.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F. Montúfar, and
Michael M. Bronstein. Weisfeiler and Lehman Go Cellular: CW Networks. Advances in Neural
Information Processing Systems, NeurIPS, 34:2625–2640, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F. Montúfar, Pietro Lió, and
Michael M. Bronstein. Weisfeiler and Lehman Go Topological: Message Passing Simplicial
Networks. International Conference on Machine Learning, ICML, 139:1026–1037, 2021b.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein Function Prediction via Graph Kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving Graph
Neural Network Expressivity via Subgraph Isomorphism Counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, TPAMI, 45:657–668, 2020.

Rongqin Chen, Shenghui Zhang, Leong Hou U, and Ye Li. Redundancy-Free Message Passing
for Graph Neural Networks. Advances in Neural Information Processing Systems, NeurIPS, 35:
4316–4327, 2022.

Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised Community Detection with Line Graph
Neural Networks. International Conference on Learning Representations, ICLR, 2018.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can Graph Neural Networks Count
Substructures? Advances in Neural Information Processing Systems, NeurIPS, 33:10383–10395,
2020.

Michael Collins. Computational Graphs, and Backpropagation. Lecture Notes, Columbia University,
pp. 11–23, 2018.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
Neighbourhood Aggregation for Graph Nets. Advances in Neural Information Processing Sys-
tems, NeurIPS, 33:13260–13271, 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for Powerful Graph Repre-
sentations. Advances in Neural Information Processing Systems, NeurIPS, 34:1713–1726, 2021.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M.
Bronstein. On Over-Squashing in Message Passing Neural Networks: The Impact of Width,
Depth, and Topology. International Conference on Machine Learning, ICML, pp. 7865–7885,
2023.

Elisângela Silva Dias, Diane Castonguay, Humberto Longo, and Walid Abdala Rfaei Jradi. Efficient
enumeration of chordless cycles. arXiv preprint arXiv:1309.1051, 2013.

Paul D. Dobson and Andrew J. Doig. Distinguishing Enzyme Structures from Non-enzymes Without
Alignments. Journal of Molecular Biology, 330(4):771–783, 2003.

Vijay Prakash Dwivedi and Xavier Bresson. A Generalization of Transformer Networks to Graphs.
AAAI 2021 Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long Range Graph Benchmark. Advances in Neural Information
Processing Systems Datasets and Benchmarks Track, NeurIPS, 35:22326–22340, 2022.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking Graph Neural Networks. Journal of Machine Learning Research, JMLR, 24:43:1–
43:48, 2023.

10

Under review as a conference paper at ICLR 2024

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How Powerful Are K-hop
Message Passing Graph Neural Networks. Advances in Neural Information Processing Systems,
NeurIPS, 35:4776–4790, 2022.

Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric.
ArXiv, 2019. doi: abs/1903.02428.

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and
Extending Subgraph Gnns by Rethinking Their Symmetries. Advances in Neural Information
Processing Systems, NeurIPS, 35:31376–31390, 2022.

Floris Geerts and Juan L Reutter. Expressiveness and Approximation Properties of Graph Neural
Networks. International Conference on Learning Representations, ICLR, 2021.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
Message Passing for Quantum Chemistry. International Conference on Machine Learning, ICML,
70:1263–1272, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. Advances in Neural Information Processing Systems, NeurIPS, 2017.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borg-
wardt. Topological Graph Neural Networks. International Conference on Learning Representa-
tions, ICLR, 2021.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer Feedforward Networks Are
Universal Approximators. Neural networks, 2(5):359–366, 1989.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs. Ad-
vances in Neural Information Processing Systems, NeurIPS, 33:8017–8029, 2020.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the Cycle Counting Power of
Graph Neural Networks with I2-GNNs. International Conference on Learning Representations,
ICLR, 2022.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global Self-attention
as a Replacement for Graph Convolution. In ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD, pp. 655–665, 2022.

Nicolas Keriven and Gabriel Peyré. Universal Invariant and Equivariant Graph Neural Networks.
Advances in Neural Information Processing Systems, NeurIPS, 32, 2019.

Shima Khoshraftar and Aijun An. A Survey on Graph Representation Learning Methods. ArXiv,
abs/2204.01855, 2022.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. International Conference on Learning Representations, ICLR, 2017.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking Graph Transformers with Spectral Attention. Advances in Neural Information Process-
ing Systems, NeurIPS, 34:21618–21629, 2021.

Nils M. Kriege and Petra Mutzel. Subgraph Matching Kernels for Attributed Graphs. International
Conference on Machine Learning, ICML, 2012.

AA Leman and Boris Weisfeiler. A Reduction of a Graph to a Canonical Form and an Algebra
Arising During This Reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International Con-
ference on Learning Representations, ICLR, 2018.

Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert. Extensions
of Marginalized Graph Kernels. International Conference on Machine Learning, ICML, pp. 70,
2004.

11

Under review as a conference paper at ICLR 2024

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably Powerful Graph
Networks. Advances in Neural Information Processing Systems, NeurIPS, 32:2153–2164, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and Equivariant Graph
Networks. International Conference on Learning Representations, ICLR, 2019b.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the Universality of Invariant
Networks. International Conference on Machine Learning, ICML, pp. 4363–4371, 2019c.

Gaspard Michel, Giannis Nikolentzos, Johannes Lutzeyer, and Michalis Vazirgiannis. Path Neu-
ral Networks: Expressive and Accurate Graph Neural Networks. International Conference on
Machine Learning, ICML, 2023.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gau-
rav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural
Networks. AAAI Conference on Artificial Intelligence, AAAI, pp. 4602–4609, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. TUDataset: A Collection of Benchmark Datasets for Learning With Graphs. ArXiv,
abs/2007.08663, 2020a.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and Leman Go Sparse: Towards
Scalable Higher-order Graph Embeddings. Advances in Neural Information Processing Systems,
NeurIPS, 33:21824–21840, 2020b.

Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravanbakhsh. SpeqNets: Sparsity-
aware Permutation-equivariant Graph Networks. International Conference on Machine Learning,
ICML, pp. 16017–16042, 2022.

Kenta Oono and Taiji Suzuki. Graph Neural Networks Exponentially Lose Expressive Power for
Node Classification. International Conference on Learning Representations, ICLR, 2020.

Francesco Orsini, Paolo Frasconi, and Luc De Raedt. Graph Invariant Kernels. International Joint
Conference on Artificial Intelligence, IJCAI, 2015.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
Chemistry Structures and Properties of 134 Kilo Molecules. Scientific data, 1(1):1–7, 2014.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. Advances in Neural
Information Processing Systems, NeurIPS, 35:14501–14515, 2022.

Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn,
and Dietmar Schomburg. BRENDA, the enzyme database: Updates and major new developments.
Nucleic Acids Research, 32(suppl 1):D431–D433, 2004.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 12(9), 2011.

Sandeep Singh, Kumardeep Chaudhary, Sandeep Kumar Dhanda, Sherry Bhalla, Salman Sadullah
Usmani, Ankur Gautam, Abhishek Tuknait, Piyush Agrawal, Deepika Mathur, and Gajendra P.S.
Raghava. SATPdb: A Database of Structurally Annotated Therapeutic Peptides. Nucleic Acids
Research, 44(D1):D1119–D1126, 2016.

Erik Thiede, Wenda Zhou, and Risi Kondor. Autobahn: Automorphism-based graph neural nets.
Advances in Neural Information Processing Systems, NeurIPS, 34:29922–29934, 2021.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph learning with 1d convolu-
tions on random walks. arXiv preprint arXiv:2102.08786, 2021.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding Over-squashing and Bottlenecks on Graphs via Curvature. Interna-
tional Conference on Learning Representations, ICLR, 2022.

12

Under review as a conference paper at ICLR 2024

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander M. Bronstein, and Emmanuel Müller.
NetLSD: Hearing the shape of a graph. ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD, 2018.

Takeaki Uno and Hiroko Satoh. An efficient algorithm for enumerating chordless cycles and chord-
less paths. In International Conference on Discovery Science, pp. 313–324. Springer, 2014.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
ICLR, 2018.

Lilapati Waikhom and Ripon Patgiri. Graph Neural Networks: Methods, Applications, and Oppor-
tunities. ArXiv, abs/2108.10733, 2021.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of Descriptor Spaces for Chemical
Compound Retrieval and Classification. Knowledge and Information Systems, 14:347–375, 2008.

Hassler Whitney. Congruent Graphs and the Connectivity of Graphs. Hassler Whitney Collected
Papers, pp. 61–79, 1992.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: A Benchmark for Molecular Machine
Learning. Chemical Science, 9(2):513–530, 2018.

Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. Graph Learning:
A Survey. IEEE Transactions on Artificial Intelligence, 2:109–127, 2021.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation Learning on Graphs with Jumping Knowledge Networks. International
Conference on Machine Learning, ICML, 80:5449–5458, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? International Conference on Learning Representations, ICLR, 2019.

Yiding Yang, Xinchao Wang, Mingli Song, Junsong Yuan, and Dacheng Tao. SPAGAN: Shortest
Path Graph Attention Network. International Joint Conference on Artificial Intelligence, IJCAI,
pp. 4099–4105, 2019.

Zhenyu Yang, Ge Zhang, Jia Wu, Jian Yang, Quan.Z Sheng, Shan Xue, Chuan Zhou, Charu C.
Aggarwal, Hao Peng, Wenbin Hu, Edwin R. Hancock, and Pietro Lio’. State of the Art and
Potentialities of Graph-level Learning. ArXiv, 2023. doi: abs/2301.05860.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do Transformers Really Perform Badly for Graph Representation? Advances in
Neural Information Processing Systems, NeurIPS, 34:28877–28888, 2021.

Jiaxuan You, Jonathan Michael Gomes Selman, Rex Ying, and Jure Leskovec. Identity-aware Graph
Neural Networks. AAAI Conference on Artificial Intelligence, AAAI, pp. 10737–10745, 2021.

Raphael Yuster and Uri Zwick. Fast Sparse Matrix Multiplication. ACM Transactions On Algorithms
(TALG), 1(1):2–13, 2005.

Muhan Zhang and Pan Li. Nested Graph Neural Networks. Advances in Neural Information Pro-
cessing Systems, NeurIPS, 34:15734–15747, 2021.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From Stars to Subgraphs: Uplifting Any
GNN with Local Structure Awareness. International Conference on Learning Representations,
ICLR, 2022.

13

Under review as a conference paper at ICLR 2024

A RELATED WORK

Xu et al. (2019) and Morris et al. (2019) investigated the theoretical analysis on expressive power
of GNNs and claimed 1-Weisfeiler-Lehman (1-WL) test (Leman & Weisfeiler, 1968) as an upper
bound of typical aggregation-based GNNs in distinguishing graph isomorphism. To develop GNNs
with higher expressiveness, extensive methods have been proposed, which can be broadly classified
into the following categories:

k-WL Hierarchy. One straightforward strategy to design provably more powerful GNNs is to
take inspiration from the higher-order WL tests. Instead of updating node representations, these
higher-order GNNs compute a representation for each k-tuple of nodes (k ě 2) by aggregating
features from different node tuples (Morris et al., 2019; Maron et al., 2019a;b;c; Keriven & Peyré,
2019; Azizian & Lelarge, 2021; Geerts & Reutter, 2021). To overcome the huge computational cost
of higher-order message passing, several recent works considered improving efficiency by leverag-
ing the sparse and local nature of graphs (Morris et al., 2020b; 2022).

Substructure-based GNNs. Another way to design more expressive GNNs is to take inspiration
from the failed cases of 1-WL test. In particular, Chen et al. (2020) pointed out that standard MPNNs
cannot detect/count common substructures such as cycles, cliques, and paths. Following this finding,
Bouritsas et al. (2020) designed the Graph Substructure Network (GSN) by injecting substructure
counting into node features. Further, Bodnar et al. (2021b;a); Thiede et al. (2021); Horn et al.
(2021) developed novel WL update schemes that take into account these substructures (e.g., cycles
or cliques). Particularly, MPSNs (Bodnar et al., 2021b) and CWNs (Bodnar et al., 2021a) have been
shown to be no less powerful than the 3-WL test.

Subgraph-based GNNs It has been observed that graphs that are indistinguishable by the 1-
WL algorithm often exhibit a significant degree of symmetry (Kreuzer et al., 2021). Building upon
this observation, recent approaches have aimed to break this symmetry by feeding subgraphs into the
message passing process. To ensure equivariance, these subgraphs are generated symmetrically from
the original graph using predefined policies, and the final output is aggregated across all subgraphs.
Previous works have proposed various subgraph generation policies, including node deletion (Cotta
et al., 2021), edge deletion (Bevilacqua et al., 2022), and ego-networks (Zhao et al., 2022; Zhang
& Li, 2021; You et al., 2021). Bevilacqua et al. (2022); Frasca et al. (2022) developed unified
frameworks which includes per-layer aggregation across subgraphs.

Graph Transformers Graph Transformers, which have gained popularity recently, are also solu-
tions to over-smoothing (Oono & Suzuki, 2020) and over-squashing (Alon & Yahav, 2021; Topping
et al., 2022; Di Giovanni et al., 2023). Graph Transformers allow nodes to attend to all other nodes in
a graph by using global attention, but this requires nodes to be better identifiable within the graph and
its substructures (Dwivedi & Bresson, 2021). Dwivedi & Bresson (2021) proposed a Transformer
architecture involving a global attention for neighborhood interaction of each node with Laplacian
Positional Encoding (LapPE). Kreuzer et al. (2021) proposed a learned positional encoding (LPE)
and added the position information of each node to fully-connected Transformer that did not un-
dergo the over-squashing. Rampášek et al. (2022) summarized the different types of positional or
structural encodings. However, they found there is no one-size-fits-all solution for all datasets.

Reducing message redundancy has been investigated in several previous studies. Both Mahé et al.
(2004) and Chen et al. (2018) adopted directed line graphs to avoid backtracking. Specifically, Mahé
et al. (2004) proposed a kernel function that transformed the input graphs into directed ones and gen-
erated a new graph with node set consisting of original vertices and line nodes connect with directed
edges. The transformed graphs well captured the structural information and improved the ability to
graph classification. However, the generated node set combined with vertices and edges would in-
crease computational cost. And Chen et al. (2018) proposed to address node representation learning
on community detection by an efficient neural network that transformed the input graph to the line
graph avoiding back-trackings. The Line Graph Neural Networks (LGNN) iteratively aggregated to
learn the high-order interactions among nodes in the graph. Their idea is similar with our DLGN to
address the redundant message passing issue. However, LGNN and DLGN are not sufficient to well
address the native cycles and achieve superior performance on our tasks. RFGNN (Chen et al., 2022)
is a pioneering study that achieves redundancy-free message passing. RFGNN conducts message
passing on a surrogate structure called TPTs, which consist of extended paths (epaths) extracted from
source graphs, where an epath can represent a cycle. The use of TPTs ensures that only one mes-

14

Under review as a conference paper at ICLR 2024

sage passing path captures an epath, making RFGNN redundancy free. Yang et al. (2019) proposed a
path-based node representation learning (SPAGAN) as a generalized version of GAT to address node
classification tasks. The node representation learned the global interaction by aggregating shortest
paths to high-order neighbors under path length controlling. Alsentzer et al. (2020) proposed three
kinds of paths, i.e., Shortest Path(SP), all Shortest Path(SP`), and A Simple Path(AP) to build path
trees for each node. However, the extraction of path trees suffer from high computational cost.

B DETAILS OF THE GRAPH CONVERSIONS

B.1 DLG CONVERSION ALGORITHM

Algorithm 1: DLG Conversion
Input: a graph G“pV,Eq

1 DLG V ÐArangep|E|q Ź nodes of target DLG
2 DÐDestpEq Ź destination nodes of G’s edges
3 SÐSourcepEq Ź source nodes of G’s edges
4 NEÐSparseMatrixprow“S, col“Arangep|E|qq Ź node-edge incidence matrix
5 ENÐSparseMatrixpcol“S, row“Arangep|E|qq Ź edge-node incidence matrix
6 EEÐSparseMatMulpEN,NEq Ź edge-edge adjacency matrix
7 EE dstÐDestpEEq Ź destination edges of edge-edge connections
8 EE srcÐSourcepEEq Ź source edges of edge-edge connections
9 EE DÐDrEE dsts Ź destination nodes of destination of edge-edge connections

10 EE SÐDrEE srcs Ź source nodes of source of edge-edge connections
11 MaskÐEE D ‰ EE S Ź mask of non-backtracking edge-edge connections
12 DLG DÐEE DrMasks Ź destination nodes of target DLG’s edges
13 DLG SÐEE SrMasks Ź source nodes of target DLG’s edges
14 DLG EÐCreateAdjacencypDLG D,DLG Sq Ź adjacency matrix of target DLG
15 DLGÐCreateGraphpDLG V,DLG Eq Ź target DLG
16 for each node v in V do
17 Create a set Dpvq “ tu | EE dstrus ““ v,@uu

Output: DLG

The DLG conversion method constructs a DLG from an original graph. This is achieved by trans-
forming each directed edge of the original graph into a DLG node, and creating a DLG edge matrix
to represent the connections between pairs of nodes. The process is described in Algorithm 1, which
utilizes sparse matrix operations. Specifically, the SparseMatrix operation constructs a sparse ma-
trix, while the SparseMatMul operation performs sparse matrix multiplication. Both of these op-
erations are supported by the PyTorch Sparse Library 4. Additionally, the Arangepstopq operation
generates a vector with values ranging from 0 to stop ´ 1. SparseMatMulpEN,NEq is the most
time-consuming step in this algorithm, whose complexity is linear in the number of non-zero ele-
ments in sparse matrices EN and NE (Yuster & Zwick, 2005), i.e., O p|E|q. The most memory-
consuming data utilized in this algorithm is the edge size of the DLG, whose memory complexity is
O

`

|E|2{|V |
˘

. Consequently, the DLG conversion algorithm is efficient.

B.2 DALG CONVERSION ALGORITHM

Definition 2 (Path Tree). Given a graph G “ pV,Eq and a node u P V , the height-L path tree T
is constructed by searching all paths with length up to L, ending at node u. In the path tree T , the
root node is u, and a node is connected to its parent node if and only if there is an edge connecting
them in the original graph, and this node is not repeated in the path to the root node.

Our DALG conversion algorithm incorporates the path tree structure, which is designed to capture
all paths ending at a node, allowing the expression of all subtrees rooted at that node. To introduce
the DALG conversion algorithm, we first give the formal definition of the path tree structure in Def-
inition 2. And then we describe the algorithm for extracting path trees in Algorithm 2. Chen et al.

4https://github.com/rusty1s/pytorch sparse

15

https://github.com/rusty1s/pytorch_sparse

Under review as a conference paper at ICLR 2024

Algorithm 2: ExtractPathTrees (Notice that two different tree nodes are congruent (–) if and
only if they are derived from the same original node.)
Input: a graph G “ pV,Eq, the tree height L

1 Declare T s is a list
2 for v in V do
3 Declare T is a tree composed of the node v
4 while T ’s height ă L do
5 Declare U is the set of nodes at T ’s bottom level
6 for u in U do
7 Declare p be the path from v to u in T
8 for q in neighbors of u in G do
9 if p consists of no node – q then

10 Attach q to T with u as its parent

11 Append T to T s

Output: T s

Algorithm 3: DALG Conversion
Input: a graph G“pV,Eq, size bound

1 CÐFindChordlessCyclespE, size boundq

2 if lenpCq ““ 0 then
3 DALGÐDLG ConversionpGq Ź no cycles are found
4 else
5 CSgÐpV pcyclesq, Epcyclesqq Ź cyclic subgraph consisting of all cycles
6 ASgÐpV pE ´ Epcyclesqq, E ´ Epcyclesqq Ź complementary acyclic subgraph
7 JÐpV pCSgq X V pASgqq Ź joint nodes of CSg and ASg
8 DτÐDLG ConversionpASgq Ź sub-DALG extracted from ASg
9 T sÐExtractPathTreespCSg, size boundq Ź path trees extracted from CSg

10 EÐRootEdgespT sq Ź DALG nodes generated from root edges of path trees
11 D˝ÐTree2DALG ConversionpT sq Ź sub-DALG extracted from CSg
12 DALGÐConnectpDτ ,D˝q Ź connection of Dτ and D˝

13 for v in V do
14 Create a set Dpuq “ tvÑu | pv, uq P Gτ Y pv, uq P Eu.
15 for c in C do
16 Create a set Cpcq “ tvÑu | pv, uq P c X pv, uq P Eu.

Output: DALG

(2022) adopted a similar path tree structure for message passing, i.e., the TPT. However, it is im-
portant to highlight that the path tree structure used in this study is different from the TPT structure.
The TPT structure permits the two endpoints of a path within the trees to be identical (extracted
from the same original node), thus enabling the representation of a cycle using a path. However,
in this study, instead of representing a cycle by a path, we explicitly express cycle-based subgraph
using our proposed cycle modeling module. The DALG conversion is described in Algorithm 3.
In this algorithm, the function FindChordlessCyclespE, size boundq 5 lists cycles with size up to
size bound in the given graph. And, the function Tree2DALG conversionpT sq constructs a sub-
DALG from the given T s by following a two-step process: First, it converts each directed edge of
T s into a DALG node. Then, it adds edges between every pair of DALG nodes that correspond to
connected edges in the original T s. Additionally, the function ConnectpDτ ,D˝q connects Dτ and
D˝ to form the desired DALG through a process that has been introduced in step (f) in Section 2.3.
The DALG conversion algorithm is efficient for the following reasons: (1) The listing of N˝ chord-
less cycles can be done in Opp|E| ` |V |qpN˝ `1qq time (Dias et al., 2013). (2) The time complexity
and memory complexity of constructing sub-DALG Dτ are O p|E|q and O

`

|E|2{|V |
˘

, respectively.

5Supported by the NetworkX library

16

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.cycles.chordless_cycles.html

Under review as a conference paper at ICLR 2024

(3) The time complexity and memory complexity of the construction of sub-DALG D˝ are both
O p|E| ` |V ˝| ˆ d˝!q, where V ˝ be the nodes of the cyclic subgraph, and d˝ be the maximum node
degree. (4) Other steps is done in linear complexity.

C EXPRESSIVE POWER ANALYSIS

This section provides a comprehensive analysis of the theoretical expressiveness of our models,
namely DLGN, ERFGN, ERFGN˝ and ERFGN˝+GloAttNC. DLGN and ERFGN employ a two-
step process for generating representations of nodes and graphs. Initially, the input graphs undergo
a transformation into surrogate structures, specifically DLGs or DALGs. Subsequently, message
passing procedure is applied to these surrogate structures to produce node and graph representa-
tions. Furthermore, ERFGN˝ adds a cycle modeling module to ERFGN. And ERFGN˝+GloAttNC
augments ERFGN˝ with GloAttNC.

To establish the foundation for our analysis of expressiveness, we first provide a restatement of the
concept of ‘graph isomorphism’. Following it, we show that all subtrees in a graph are represented
as subtrees in the corresponding surrogate graph. This stablish the necessary condition for the
effectiveness of iterative message passing on DLGs or DALGs in capturing subtrees of the source
graphs. Moreover, we prove the invertibility of the conversion from graphs to DLGs or DALGs,
ensuring that learning from DLGs or DALGs is equivalent to learning from the original graphs.

We proceed to establish the necessary conditions under which our models can generate identifiable
representations for non-isomorphic subtrees, as well as for non-isomorphic graphs. The first essen-
tial condition is the injectiveness of our models, which guarantees that distinct inputs are mapped to
distinguishable outputs. The second crucial condition is the sufficient layers of our models, enabling
them to capture all subtrees effectively.

It is important to note that injectiveness alone may not be sufficient to differentiate all potential
non-isomorphic subtrees within surrogate structures. This limitation arises due to the message con-
fusion issue and the constrained receptive field of our models. In certain scenarios, our models may
encounter identical inputs from non-isomorphic surrogate structures, which hinders their ability to
discriminate between them effectively. To illustrate the impact of the limited receptive field, let us
consider a scenario where models consist of only one layer. In such cases, the receptive field is
confined solely to the node initial representations, resulting in the inability of models to distinguish
non-isomorphic surrogate structures that share the same set of node initial representations.

Therefore, it becomes crucial to analyze the conditions under which our models can possess a suffi-
cient receptive field. By satisfying all the aforementioned conditions, our models have the potential
to accurately differentiate all possible non-isomorphic surrogate structures and, consequently, non-
isomorphic original graphs.

C.1 DEFINITION OF GRAPH ISOMORPHISM

Definition 3 (Graph isomorphism). Two graphs G1 and G2 are isomorphic, if and only if there exists
at least one bijection (one-to-one correspondence) between their node sets, denoted as I : V pG1q Ñ

V pG2q. The bijection guarantees that any two nodes u and v in G1 are adjacent if and only if their
corresponding nodes I puq and I pvq are adjacent in G2. Moreover, for labeled graphs, this bijection
ensures that the labels of node u and node I puq are equal, and the labels of edge pu, vq and edge
pI puq , I pvqq are equal too.

C.2 LEARNING FROM DLGS OR DALGS EQUALS LEARNING FROM ORIGINAL GRAPHS

The accurate prediction of graph properties heavily relies on the ability of GNNs to effectively
capture a wide range of non-isomorphic subgraphs and generate distinguishable representations for
them. To accomplish this, the surrogate structures, the DLG and the DALG, are meticulously de-
signed with specific purposes in mind. These objectives include ensuring that all subtrees present in
a graph are accurately represented as subtrees in the corresponding DLG or DALG, so that iterative
message passing on DLGs or DALGs can capture all subtrees within the original graphs. Addition-
ally, it is crucial that the conversion process from graphs to DLGs or DALGs is reversible, meaning
that the modeling of the original graph can be precisely replaced by the modeling of its correspond-

17

Under review as a conference paper at ICLR 2024

ing DLG or DALG. The fulfillment of these goals is guaranteed by Lemma 1 and Lemma 2, which
are proven below.
Lemma 1. All subtrees in a graph are represented as subtrees in the corresponding DLG. And the
conversion from graphs to DLGs is reversible.

Proof. We first prove that all subtrees in a graph are represented as subtrees in the corresponding
DLG. Because a directed edge in an original graph only generates a DLG node, for each path a Ñ

b Ñ c Ñ ¨ ¨ ¨ Ñ y Ñ z in an original graph, there exists one corresponding path a Ñ b Ñ ¨ ¨ ¨ Ñ z
in the corresponding DLG, where a is generated from a Ñ b, b is generated from b Ñ c, ..., and z is
generated from y Ñ z. Therefore, all paths in a graph are represented as paths in the corresponding
DLG. A tree can be represented as organized paths. Then, each subtree in a graph is represented
as a subtree which consists of DLG paths and a root node to which all these DLG paths virtually
connect.

Moving forward, we prove that the conversion from graphs to DLGs is reversible. The invertibility
of this conversion is guaranteed with that two DLGs are isomorphic if and only if their corresponding
original graphs are isomorphic. Let G1 and G2 be two graphs, and D1 and D2 be their corresponding
DLGs.

If G1 and G2 are isomorphic, there exists at least one bijection I : V pG1q Ñ V pG2q. This bijection
guarantees that any path pa, b, cq in G1 corresponds to a path pIpaq, Ipbq, Ipcqq in G2, where a ‰ c
and Ipaq ‰ Ipcq. Therefore, there exists a bijection between the node sets of D1 and D2, denoted
as Iι : V pD1q Ñ V pD2q. This bijection ensures that each DLG node u generated from a directed
edge pa, bq in G1 corresponds to a DLG node Iιpuq generated from the directed edge pIpaq, Ipbqq

in G2. This bijection also guarantees that any two nodes u and v in D1 are connected if and only
if their corresponding nodes Iιpuq and Iιpvq are connected in D2. Consequently, D1 and D2 are
isomorphic.

Conversely, if D1 and D2 are isomorphic, there exists a bijection Iι : V pD1q Ñ V pD2q, which
ensures that each DLG node u in D1 corresponds to a DLG node Iιpuq in D2. This bijection also
guarantees that any two nodes u and v in D1 are connected if and only if their corresponding nodes
Iιpuq and Iιpvq are connected in D2. Adjacent DLG nodes must be generated from adjacent source
edges, because each source directed edge is converted into a unique DLG node. Consequently, there
exists bijection between the edge sets of G1 and G2. This bijection ensures that any two edges in
G1 are connected if and only if the corresponding edges in G2 are connected. Hence, this bijection
ensures that any two nodes in G1 are connected if and only if the corresponding nodes in G2 are
connected. Consequently, G1 and G2 are isomorphic.

Consequently, two DLGs are isomorphic if and only if their corresponding original graphs are iso-
morphic. Thus, the conversion from graphs to DLGs is reversible.

(a) original graphs (b) line graphs (c) DLGs

1→2

2→1

1→31→4

4→13→1

1→2

2→1

1→31→4

4→13→1

1→2

3→1 3→2

2→1 1→3

2→3

1→2

3→1 3→2

2→1 1→3

2→3

(1,2)

(1,3) (1,4)

(1,2)

(1,3) (1,4)

(1,2)

(2,3) (1,3)

(1,2)

(2,3) (1,3)

1

2 3 4

1

2 3 4

1

2 3

1

2 3

31，K

3K

Figure 4: DLGs of K3 and K1,3 are non-isomorphic.

By the way, DLGs are a more powerful surrogate than line graphs. This is because the conversion
of graphs into line graphs is not always reversible. According to the Whitney graph isomorphism

18

Under review as a conference paper at ICLR 2024

theorem (Whitney, 1992), two connected graphs are isomorphic if and only if their line graphs are
isomorphic, except for a single instance: K3, which refers to the complete graph on three vertices,
and the complete bipartite graph (a.k.a the claw graph) K1,3. These two graphs are not isomorphic,
yet they both have K3 as their line graph. However, the DLGs of K3 and K1,3 are non-isomorphic,
as illustrated in Fig. 4.

Lemma 2. All subtrees in a graph are represented as subtrees in the corresponding DALG. And the
conversion from graphs to DALGs is reversible.

Proof. We first demonstrate that every subtree in a graph is represented as a subtree in its corre-
sponding DALG. The proof is analogous to the proof offered in Lemma 1, where we showed that
every subtree in a graph is represented as a subtree in its corresponding DLG.

To establish the invertibility of the conversion from graphs to DALGs, we must show that two
DALGs are isomorphic if and only if their corresponding original graphs are isomorphic. Let G1

and G2 be two graphs, and D1 and D2 be their corresponding DALGs. Additionally, let G˝
i and Gτ

i
be the cyclic subgraph and acyclic subgraph of graph Gi, respectively, and let D˝

i and Dτ
i be the

sub-DALGs extracted from subgraph G˝
i and Gτ

i , respectively, where i “ 1, 2.

If G1 and G2 are isomorphic, then their cyclic subgraphs G˝
1 and G˝

2 are isomorphic, and their acyclic
subgraphs Gτ

1 and Gτ
2 are isomorphic too. Then, Dτ

1 and Dτ
2 are isomorphic due to Lemma 1.

Moreover, D˝
1 and D˝

2 are isomorphic since isomorphic graphs always yield isomorphic path trees.
Additionally, G˝

1 and Gτ
1 may share joint nodes. If this is the case, these shared nodes are bijectively

mapped to the joint nodes of G˝
2 and Gτ

2 , and the edges between D˝
1 and Dτ

1 are bijectively mapped
to the edges between D˝

2 and Dτ
2 . A DALG is constructed by connecting the sub-DALG extracted

from the cyclic subgraph and the acyclic subgraph via their joint nodes. Since any part of D1 can
be bijectively mapped onto a corresponding part of D2, there is a bijection between the node sets
of D1 and D2, denoted as Iι : V pD1q Ñ V pD2q. This bijection ensures that any two nodes u and
v in D1 are adjacent if and only if their corresponding nodes Iι puq and Iι pvq are adjacent in D2.
Therefore, D1 and D2 are isomorphic.

Conversely, if D1 and D2 are isomorphic, we need to show that G1 and G2 are also isomorphic.
Firstly, we prove that the DALG Di can be decomposed into two sub-DALGs, Dτ

i and G˝
i . For each

node u P Gi, there exists a set Dpuq containing all DALG nodes that point to node u and are from
Dτ

i or the root edges of path trees extracted from G˝
i . Similarly, for each cycle c P Gi, there exists

a set Cpcq containing all DALG nodes derived from the root edges of path trees extracted from G˝
i .

By subtracting the set family tCpcq | @c P Giu from the set family tCpcq | @c P Giu, we can get all
DALG nodes belonging to Dτ

i . Consequently, we can decompose Di into Dτ
i and D˝

i .

Secondly, we prove that D˝
1 and D˝

2 are isomorphic. Given that D1 and D2 are isomorphic, and let
Iι : V pD1q Ñ V pD2q be an isomorphism between them. Then, there exists a bijection between
the set family tDpuq | @u P G1u of D1 and the set family tDpuq | @u P G2u of D2. Therefore for
each cycle c in G1, there exists a set Cpc1q of D2, where c1 is a cycle from graph G2, such that
Cpc1q ” tIι puq |@u P Cpcqu. Hence, the node set that make up D˝

1 is bijective with the node set
that make up D˝

2 . Therefore, D˝
1 and D˝

2 are isomorphic. Consequently, Dτ
1 and Dτ

2 are isomorphic.

Since isomorphic graphs always yield isomorphic path trees, we have that G˝
1 and G˝

2 are isomor-
phic. Furthermore, Dτ

1 and Dτ
2 are generated using the DGL conversion algorithm, and the DLG

conversion is reversible. Therefore, Gτ
1 and Gτ

2 are isomorphic. If G˝
1 and Gτ

1 have joint nodes, then
G˝
2 and Gτ

2 have joint nodes too. Moreover, there exists a bijection between the two joint node sets.
Consequently, the combination graph of G˝

1 and Gτ
1 , regardless of whether they have joint nodes or

not, is isomorphic to the combination graph of G˝
2 and Gτ

2 . Hence, G1 and G2 are isomorphic.

Consequently, two DALGs are isomorphic if and only if their corresponding original graphs are
isomorphic. Thus, the conversion from graphs to DALGs is reversible.

C.3 OUR MODELS CAN BE INJECTIVE

We commence the analysis of the injectiveness of our models by reviewing their construction. All
of our models adhere to a consistent message passing scheme. Initially, they compute initial node
representations as follows:

Hp0q
u “ Ψ pXu, Xu,v, Xvq , (1)

19

Under review as a conference paper at ICLR 2024

Subsequently, our models iteratively update node representations on their surrogate structures, DLGs
or DALGs, where the l-th layer is described as follows:

Hplq
u “ Ψplq

´

Hp0q
u ,

ďplq
´!

Hpl´1q
v

ˇ

ˇ

ˇ
v P Ninpuq

)¯¯

, (2)

Afterwards, our models compute the representation of each node u in the original graphs, as follows:

Z
‚

u “ Ψ
‚

´

ď‚
´!!

H
‚

u

ˇ

ˇ

ˇ
u P Dpuq

))¯¯

, (3)

where H ‚

u could be HpLq
u or

”

H
p1q
u ∥ H

p2q
u ∥ ¨ ¨ ¨ ∥ H

pLq
u

ı

. The concatenation of the node representa-
tions across layers, a.k.a Jump Knowledge (Xu et al., 2018), could help to incorporate graph features
at different scales. To examine the expressiveness of our models, we focus on H ‚

u “ H
pLq
u for each

node u. This is because the H
pLq
u encodes a connected subgraph that is larger than the one encoded

by the Hplq
u , where 0 ď l ă L. DLGN and ERFGN compute the entire graph’s representation ZG as

follows:
Z˚

G “ Ψ˚
´

ď˚
´!!

Z
‚

u

ˇ

ˇ

ˇ
u P V

))¯¯

, (4)

To model higher-order subgraphs, ERFGN˝ adds a cycle modeling module to ERFGN, which is
described as below:

Z˝
c “ Ψ˝

´

ď˝
´!!

HpLq
u

ˇ

ˇ

ˇ
u P Cpcq

))¯¯

. (5)

Then, ERFGN˝ computes the graph representation Z˚
G as follows:

Z˚
G “ Ψ˚

´”

ď˚
´!!

Z
‚

u

ˇ

ˇ

ˇ
u P V

))¯
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď˚
´!!

Z˝
c

ˇ

ˇ

ˇ
c P C

))¯ı¯

. (6)

To further improve the expressiveness of our models, GloAttNC computes global interactions be-
tween a node u to all nodes (Z ‚‚

u,V), between a node u to all cycles (Z ‚˝
u,C), between a cycle c to

all nodes (Z˝‚

c,V), and between a cycle c to all cycle (Z˝˝
c,C). To cater to different priorities, either

efficiency or fine-grained learning, two learning schemes are adopted, i.e., a 1-to-N scheme and a 1-
to-1 scheme. The 1-to-N scheme updates these global interactions using Eq. 7, while 1-to-1 scheme
updates these global interactions using Eq. 8.

Z
‚‚

u,V “ Υ
‚‚

´

Z
‚

u,
Ť

´!!

Z
‚

v

ˇ

ˇ

ˇ
v P V

))¯¯

, Z
‚˝
u,C “ Υ

‚˝
´

Z
‚

u,
Ť

´!!

Z˝
c

ˇ

ˇ

ˇ
c P C

))¯¯

,

Z˝‚

c,V “ Υ˝‚

´

Z˝
c ,

Ť

´!!

Z
‚

v

ˇ

ˇ

ˇ
v P V

))¯¯

, Z˝˝
c,C “ Υ˝˝

´

Z˝
c ,

Ť

´!!

Z˝
c1

ˇ

ˇ

ˇ
c1

P C
))¯¯

.
(7)

Z
‚‚

u,V “
Ť

´!!

Υ
‚‚

pZ
‚

u, Z
‚

vq

ˇ

ˇ

ˇ
v P V

))¯

, Z
‚˝
u,C “

Ť

´!!

Υ
‚˝

pZ
‚

u, Z
˝
c q

ˇ

ˇ

ˇ
c P C

))¯

,

Z˝‚

c,V “
Ť

´!!

Υ˝‚

pZ˝
c , Z

‚

vq

ˇ

ˇ

ˇ
v P V

))¯

, Z˝˝
c,C “

Ť

´!!

Υ˝˝
pZ˝

c , Z
˝
c1 q

ˇ

ˇ

ˇ
c1

P C
))¯

.
(8)

Subsequently, by using global interactions, the node representations and cycle representations are
updated, and then the graph representation is updated as described below:

Z
‚

u “ Υ
‚
`

Z
‚

u, Z
‚‚

u,V , Z
‚˝
u,C

˘

Z˝
c “ Υ˝

`

Z˝
c , Z

˝‚

c,V , Z˝˝
c,C

˘

Z˚
G “ Υ˚

´

Ť

´!

Z
‚

u

ˇ

ˇ

ˇ
u P V

)¯

,
Ť

´!

Z˝
c

ˇ

ˇ

ˇ
c P C

)¯¯

,
(9)

The provided overview implies that our model incorporates a sequential integration of multiple
update functions and aggregators operating on multisets. Consequently, in order to establish the
injectiveness of our models, it is essential to demonstrate the injectiveness of each individual com-
ponent (i.e., an certain update function or a certain message aggregator) as well as the injectiveness
of the integration involving all the components. In the following discussion, node representations
are simplified to scalars for the sake of clarity, since the same results can be generalised to vector
representations.

We first prove that the integration of a simple updating function and a simple message aggregator,
i.e., the summation function, can be injective:
Corollary 1. There exists an injective function Θ that guarantees the existence of an injective mes-
sage aggregator

Ť

that operates on multisets of the outputs of Θ.

20

Under review as a conference paper at ICLR 2024

Proof. We first prove that there exists a mapping γ so that
ř

mPM

γpmq is unique for each multiset

M Ă M of bounded size, where M “

!

H
plq
u

ˇ

ˇ

ˇ
@u

)

is the complete multiset of representations,
0 ď l ď L and L is the number of layers of our models. Because M is countable, there exists a
mapping Γ : M ÞÑ N, where N is the natural number set. Because the cardinality of multisets M is
bounded, there exists a number N P N so that |M | ă N for all M . Then an example of such γ is
γpmq “ N´Γpmq. This γ can be viewed as a more compressed form of an one-hot vector or N -digit
presentation. As a result, the message aggregator

Ť

is an injective function of multisets if it is a
summation function such that

Ť

ptγpmq|m P Muq “
ř

mPM γpmq. Consequently, such function Θ
exists.

We then prove that an update function taking two inputs can be injective.

Corollary 2. There exists an injective function Ω : RˆR ÞÑ R, where R is the rational number set.

Proof. The function Ωpx1, x2q ” x1 ‚λ`x2 is injective for any rational number pair px1, x2q, where
λ is an irrational number. We can prove this by contradiction. Suppose there exists px1

1, x
1
2q such that

px1, x2q ‰ px1
1, x

1
2q but Ωpx1, x2q “ Ωpx1

1, x
1
2q holds. Let’s consider two cases: (1) x1 “ x1

1 but
x2 ‰ x1

2, and (2) x1 ‰ x1
1. In the first case, if x1 “ x1

1 and Ωpx1, x2q “ Ωpx1
1, x

1
2q, then it implies

that x2 “ x1
2. Thus, we reach a contradiction. In the case, we can rewrite Ωpx1, x2q “ Ωpx1

1, x
1
2q

as px1 ´ x1
1q ‚ λ “ x2 ´ x1

2. Since λ is an irrational number, the left-hand side of this equation is
a non-zero rational number. However, the right-hand side is a rational number. Hence, the equality
in this equation cannot hold, and we have reached a contradiction. Therefore, we can conclude that
there exists an injective function Ω : R ˆ R ÞÑ R.

Please note that the proofs for Corollary 1 and Corollary 2 are adapted from the proofs for Lemma
5 and Lemma 6 in Xu et al. (2019), respectively.

The injectiveness analysis of all components of our models follows:

Corollary 3. All components of each of our models, including all update functions and all message
aggregators, can be injective.

Proof. All update functions can be decomposed into a composition of multiple Θ functions and
multiple Ω functions. For instance, consider the update function for surrogate node initial rep-
resentation Ψ , which can be decomposed into a composition such that Ψ pXu, Xu,v, Xvq ”

Θ pΩ1 pΩ pXu, Xvq , Xu,vqq. Suppose that each update function can be decomposed into a com-
position of multiple Θ functions and/or multiple Ω functions, the summation function operating on
the outputs of that update function can be an injective message aggregator.

Lemma 8. Our models, including DLGN, ERFGN, ERFGN˝ and ERFGN˝+GloAttNC, can be in-
jective if all of its update functions can be decomposed into a composition of multiple Θ functions
and multiple Ω functions and all its message aggregators are summation operations.

Proof. The composition of injective functions are injective.

The analysis presented above established the conditions that guarantee the injectiveness of our mod-
els. It is important to emphasize that in order to meet these conditions, each trainable function should
be implemented as a Multilayer Perceptron (MLP) comprising at least two linear layers. This re-
quirement is necessary to achieve the universal approximation ability, as outlined in the Universal
Approximation Theorem (Hornik et al., 1989).

C.4 EXPRESSIVENESS OF DLGN, ERFGN, ERFGN˝ AND ERFGN˝+GLOATTNC

We commence the analysis of the expressiveness of our models by introducing some fundamental
definitions in graph theory that are crucial to our study.

21

Under review as a conference paper at ICLR 2024

Definition 4 (Eccentricity). For a connected graph, the eccentricity ϵpvq of a node v is the greatest
distance between v and any other node; in symbols,

ϵpvq “ max
uPV

δpv, uq,

where δpv, uq is the distance between nodes u and v, which is equal to the numbers of edges in a
shortest path connecting these nodes.

Definition 5 (Radius). The radius r of a connected graph G is the smallest maximum distance from
any node to any other node in the graph, or the minimum eccentricity of any node, in symbols,

r “ min
vPV

max
uPV

δpv, uq “ min
vPV

ϵpvq.

Definition 6. The diameter d of a connected graph G is the largest maximum distance from any node
to any other node in the graph, or the maximum eccentricity of any node in the graph, in symbols,

r “ max
vPV

max
uPV

δpv, uq “ max
vPV

ϵpvq.

We also introduce the concept of the message passing graph, which is also referred to as the com-
putational graph (Collins, 2018) generated by MPNNs. This concept serves as a framework for
understanding the receptive field of our models.

Message passing graph Our proposed model, DLGN or ERFGN, implicitly generates a message
passing graph from each surrogate structure (DLG or DALG). Assuming the model consists of L
layers, where the first L ´ 1 layers update surrogate node representations and the last layer updates
original node representations, the generated message passing graph consists of L layers too, where
the first L ´ 1 layers pass message between surrogate nodes, and the L-th layer pass message from
surrogate nodes to original nodes. Consequently, each path in the message passing graph, a.k.a
message passing path, which extends from an input node to an output node, corresponds to a walk
(sequence of connected nodes and edges) in the original graph with length up to L.

We proceed to analyze the requirements concerning the receptive field necessary for effectively
express non-isomorphic graphs.

Lemma 9. The representation of an original node encodes the information of the subtree with that
node as its root and a height of l, where l ď L.

Proof. The structure of the message passing graph ensures that an original node can receive infor-
mation from other nodes within a maximum distance of L in the original graph.

Corollary 4. For any connected graph G with a radius r and a diameter d, it holds that d ď 2r.

Proof. Take nodes u, v P G such that δpu, vq “ d and let o be a central node in G such that ϵpoq “ r.
Thus, δpo, tq ď r,@t P G. By triangle inequality, d “ δpu, vq ď δpu, oq ` δpo, vq ď 2r.

The lemma and corollary above suggest that if the largest radius of a set of non-isomorphic con-
nected graphs is R, then the minimum number of layers of our models DLG and ERFGN is R.

Corollary 5. For two non-isomorphic graphs G1 and G2 with respective diameters d1 and d2, where
d1 ě d2, which are both connected, there exists at least one path in G1 of length l ą d2 that is not
present in G2.

Proof. The length of each path in G2 does not exceed d2.

Corollary 6. For two non-isomorphic and connected graphs G1 and G2, with diameters d1 and d2
and radii r1 and r2 respectively, where r1 ě r2, there exists at least one subgraph of radius r1 ą r2
in G1 that is not present in G2.

Proof. Any path in G1 of length l, where l ą 2r2 ě d2, is not present in G2. The subgraph formed
by this path, which has a radius of rl{2s, where l{2 ą r2, is not present in G2.

22

Under review as a conference paper at ICLR 2024

The above lemma and corollaries suggest that DLGN or ERFGN can discriminate non-isomorphic
connected graphs if the number layer of DLGN or ERFGN is not less than the largest radius of these
connected graphs, and the model does not suffer from the message confusion problem.

Definition 7. A component of a graph is a connected subgraph that is not part of any larger con-
nected subgraph.

Corollary 7. For non-isomorphic graphs, no matter how connected or disconnected, let the largest
radius of the components included in these graphs is R, each graph contains at least one subgraph
of radius r ď R that does not present in others.

Proof. The proof of this corollary follows a similar approach to the proof of Corollary 6.

Corollary 8. Both DLGN and ERFGN, when composed of L layers, can effectively express a set
of non-isomorphic graphs if the maximum radius R of the components contained in the graph set
satisfies R ď L and if the models do not suffer from the message confusion problem.

Proof. When the maximum radius R of the components contained in the graph set satisfies R ď L,
DLGN and ERFGN with L layers can produce node representations for any graph, which together
encode all the paths in the graph. When the models do not suffer from the message confusion
problem, they can learn the information of all the paths in the graph and thus the information all
subgraphs. Therefore, they can produce identifiable graph representations for these non-isomorphic
graphs.

However, DLGN may suffer from the message confusion problem, when input graphs include cycles.
This is because DLGN may generate the identical message passing paths from cycles and paths
present in original graphs. To illustrate this, let’s consider the example of a cycle pa, b, c, dq and a
path a Ñ b Ñ c Ñ d Ñ a, where a, b, c, d represent node labels. In this scenario, DLGN can
produce the same message passing paths, denoted as a Ñ b Ñ c Ñ d, where a,b, c,d correspond
to DLG nodes derived from the edges a Ñ b, b Ñ c, c Ñ d, and d Ñ a, respectively.

Lemma 10. DLGN, when composed of L layers, successfully avoids the problem of message con-
fusion when confronted with input graphs that are cycle-free or contain only cycles larger than L.

Proof. When input graphs that are cycle-free or contain only cycles larger than L, the phenomenon
that cycles and paths in surrogate structures generate identical message passing paths cannot happen.

Lemma 3. DLGN with L layers can express all subtrees of non-isomorphic graphs if the minimum
cycle size S and the maximum component radius R of these graphs satisfy R ď L ă S.

Proof. When the given non-isomorphic graphs have a minimum cycle size S ě L, DLGN with L
layers does not suffer from the message confusion problem. Therefore, DLGN with L layers can
produce different node representations for non-isomorphic connected subgraphs with radius up to
L. When the largest component-maximum-radius among these graphs R satisfies R ď L, each
graph contains at least one connected subgraph with radius up to L that does not present in the
others. Therefore, DLGN with L layers can produce different graph representations for these non-
isomorphic graphs.

Lemma 4. ERFGN with L layers can express all subtrees of non-isomorphic graphs if the maximum
component radius R of these graphs satisfies R ď L.

Proof. When the largest component-maximum-radius among these graphs is up to L, each graph
contains at least one connected subgraph with radius up to L that does not present in the others.
ERFGN with L layers does not suffer from the problem of message confusion, thus it can produce
different node representations for non-isomorphic connected subgraphs with radius up to L. Conse-
quently, ERFGN with L layers can produce different graph representations for these non-isomorphic
graphs.

Lemma 5. ERFGN˝ can express all connected subgraph with a cycle.

23

Under review as a conference paper at ICLR 2024

Proof. ERFGN˝ updates the representation of each cycle by aggregating the representations of the
DALG nodes that belong to that cycle. Therefore, the representation of that cycle encodes not only
the cycle itself, but also all the subtrees connected to that cycle. Hence, the retention of topological
information within subtrees extracted from nodes in a cycle enables the representation of the cycle
itself. Graph readouts, which aggregate information from all extracted subtrees, have demonstrated
the ability to express non-isomorphic graphs effectively. Hence, a cycle aggregator can be consid-
ered equivalent to a graph readout, such as a summation function, to achieve the comprehensive
expressiveness of cycles. Moreover, the trainability of cycle aggregators can be established using
similar approaches as those employed for proving the trainability of graph readouts.

ERFGN lacks the ability to generate identifiable representations for nodes. This limitation is due to
the fact that ERFGN updates a representation for a node using only the representations of all paths
ending at that node, losing information about any cycles connected to that node. Consequently,
ERFGN would produce indistinguishable representations for nodes within non-isomorphic graphs.
Similarly, ERFGN˝ lacks the ability to produce identifiable representations for nodes and cycles.
This is because ERFGN˝ cannot model the connection between a subtree and multiple subcycles.
Lemma 6. ERFGN˝+GloAttNC can generate identifiable representations for nodes and cycles.

Proof. Every graph possesses at least one path that cannot be found in any non-isomorphic graph.
ERFGN has the ability to generate an identifiable representation for each node that encodes all
paths ending at that particular node. As a result, the aggregations of node representations for non-
isomorphic graphs can differ. ERFGN˝+GloAttNC updates a new representation for each node
using the aggregation of all node representations. Therefore, the updated representation can include
the isomorphism information of the graph containing the node. Consequently, ERFGN˝+GloAttNC
has the ability to generate identifiable node representations if ERFGN can express all subtrees and
ERFGN˝+GloAttNC is injective. Similarly, ERFGN˝+GloAttNC can generate identifiable cycle
representations under the same conditions.

C.5 MODEL RANKING OF SUBGRAPH EXPRESSIVITY

In this work, we consider that the subgraph expressivity of a model quantifies how many non-
isomorphic subgraphs this model can distinguish. Before the expressivity comparison, it is crucial to
review how other powerful MPNNs express subgraphs. Typical MPNNs, represented by the Graph
Isomorphism Network (GIN) (Xu et al., 2019), are the cornerstone of all robust MPNNs. Then, with
H

plq
u denoting the representation of node u in layer l, Hplq

u is updated as follows:

Hplq
u “ Ψ plq

´

Hpl´1q
u ,

ďplq
´!!

Hpl´1q
v

ˇ

ˇ

ˇ
v P N puq

))¯¯

, (10)

where N puq is the neighboring nodes of node u, and
Ťplq is a message aggregator. Xu et al. (2019)

have stated that GIN provably generalizes the 1-WL test (Leman & Weisfeiler, 1968) and the WL
Subtree kernel (Shervashidze et al., 2011). Both the 1-WL test (Leman & Weisfeiler, 1968) and
typical MPNNs adopt a iterative paradigm to update a node by aggregating the neighbors of the
node. The iterative paradigm defines a tree structure called a WL subtree, in which a node connects
to its parent node if they are adjacent in the source graph. Consequently, the 1-WL test (Leman &
Weisfeiler, 1968) and typical MPNNs can only express WL subtrees extracted from source graphs.
However, the message passing redundancy issue can lead to non-isomorphic cyclic graphs generate
isomorphic WL subtrees (Chen et al., 2022). As a result, typical MPNNs can not express arbitrary
subtrees. As our DLGN model can not address message passing redundancy which arises from
subcycles, DLGN can only express WL subtrees too.

RFGNN (Chen et al., 2022) extracts epath trees (a.k.a TPTs) from source graphs. An epath tree
extracted for a node from a graph consists of that node, 1-hop neighboring nodes, 2-hop neighboring
nodes and so on, where a plq-hop neighbor connects a pl ´ 1q-hop neighbor if they are adjacent in
the source graph. In addition, an epath in such tree allows its start and end nodes to be the same
source node, in order to represent a cycle. The utilizing of the epath tree structure avoid the message
passing redundancy problem. As a result, RFGNN (Chen et al., 2022) can express arbitrary subtrees.

For example, an epath extracted from a node in a cycle of size 3 can also be extracted from the
centre node of a path of length 6. As a result, RFGNN (Chen et al., 2022) does not perform well

24

Under review as a conference paper at ICLR 2024

at capturing cycles. Contrary, ERFGN˝ explicitly models cycles and achieves the expressivity of
subgraphs with a cycle.

k-GNNs (Bodnar et al., 2021a) is the representive models of higher-order MPNNs using k-WL.
Instead of updating node representations, k-GNNs consider a GNN that corresponds to a set version
of a k-WL algorithm. Specifically, for any set V Ď V with |V | “ k, let N kpV q “ tV 1 Ă V, |V 1| “

k and |V 1 X V |“ k ´ 1u. k-GNNs (Bodnar et al., 2021a) then updates as

H
plq
V “ Ψ plq

¨

˝H
pl´1q

V ,
ÿ

V 1PNkpV q

H
pl´1q

V 1

˛

‚ (11)

k-GNNs achieves a expressivity related to k-WL, which is strictly more powerful than 1-WL when
k ě 3. However, Bodnar et al. (2021a) have proven that 3-WL cannot count chordless cycles of size
strictly larger than 3. Consequently, ERFGN˝ is strictly more powerful than k-GNNs using 3-WL.

ERFGN updates a representation for a node using only the representations of all paths ending at
that node, losing information about any cycles connected to that node. ERFGN˝ cannot model
the connection between a subtree and multiple subcycles. ERFGN˝+GloAttNC can achieve higher
expressiveness than ERFGN and ERFGN˝ because ERFGN˝+GloAttNC can generate identifiable
node/cycle representations for nodes/cycles located on non-isomorphic subgraphs.

Lemma 7. Subgraph expressiveness can be ranked as follows: typical MPNNs “ DLGN ă

ERFGN» RFGNN (Chen et al., 2022) ă higher-order MPNNs using 3-WL (Bodnar et al., 2021a)
ă ERFGN˝ă ERFGN˝+GloAttNC.

Proof. Based on the discussion above, we can conclude this expressivity ranking.

D DETAILS OF DATASETS

Table 7: Details of Datasets

Dataset # Graphs Avg.
nodes

Avg.
edges Task type Metric

MNIST 70,000 70.6 564.5 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 10-class classif. Accuracy

Peptides-func 15,535 150.9 307.3 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 11-task regression Mean Abs. Error

ZINC subset 12,000 23.2 24.9 regression Mean Abs. Error
OGBG-MOLHIV 41,127 25.5 27.5 binary classif. AUROC

QM9 130,831 18.0 37.3 12-task regression Mean Abs. Error

ENZYMES 600 32.63 62.14 6-class classif. Accuracy
PROTEINS full 1113 39.01 72.82 binary classif. Accuracy
FRANKENSTEIN 4,337 16.90 17.88 binary classif. Accuracy
NCI1 4,100 29.87 32.30 binary classif. Accuracy

The datasets used in our experiments are described in detail in Table 7.

MNIST and CIFAR10 (Dwivedi et al., 2023) are derived from like-named image classification
datasets by constructing an 8 nearest-neighbor graph of SLIC superpixels for each image. The 10-
class classification tasks and standard dataset splits follow the original image classification datasets,
i.e., for MNIST 55K/5K/10K and for CIFAR10 45K/5K/10K train/validation/test graphs.

Peptides-func and Peptides-struct datasets from Long-Range Graph Benchmarks (Dwivedi et al.,
2022) are specifically designed to test the capability of models in performing tasks that require
reasoning with long-range interactions. Peptides-func and Peptides-struct (Dwivedi et al., 2022)
are both composed of atomic graphs of peptides retrieved from SATPdb (Singh et al., 2016). In
Peptides-func, the prediction task is multi-label graph classification into 10 nonexclusive peptide
functional classes. For Peptides-struct, the task is graph regression of 11 3D structural properties of

25

Under review as a conference paper at ICLR 2024

the peptides. Stratified splitting was applied to generate balanced train-valid-test dataset splits in the
ratio of 70%-15%-15% (Dwivedi et al., 2022).

QM9 (Ramakrishnan et al., 2014; Wu et al., 2018) is a graph dataset with 12 regression tasks.
It contains 130K small molecules, which are divided into train-valid-test sets at a ratio of 80%-
10%-10%. The task here is to separately perform regressions on 12 targets representing energetic,
electronic, geometric, and thermodynamic properties, based on the graph structure and node/edge
features. All evaluation metrics are mean absolute error (MAE).

ZINC Subset (Dwivedi et al., 2023) consists of 12K molecular graphs from the ZINC database
of commercially available chemical compounds. These molecular graphs are between 9 and 37
nodes large. Each node represents a heavy atom (28 possible atom types) and each edge represents
a bond (3 possible types). The task is to regress a molecular property known as the constrained
solubility which is the term logP-SA-cycle (octanol-water partition coefficients, logP, penalized by
the synthetic accessibility score, SA, and number of long cycles, cycle). The dataset comes with a
predefined 10K/1K/1K train/validation/test split.

OGBG-MOLHIV is a molecular property prediction dataset adopted by OGB (Hu et al., 2020)
from MoleculeNet (Wu et al., 2018). The dataset use a common node (atom) and edge (bond)
featurization that represent chemophysical properties. The prediction task is binary classification of
molecule’s fitness to inhibit HIV replication. We used the provided splits of OGB Hu et al. (2020).

TUDatasets is a collection of benchmark datasets commonly used for the evaluation of GNNs (Mor-
ris et al., 2020a). We evaluate our proposed models on six real-world datasets from this col-
lection. Specifically, ENZYMES (Borgwardt et al., 2005; Schomburg et al., 2004) and PRO-
TEINS full (Borgwardt et al., 2005; Dobson & Doig, 2003) are a medium-size bio-informatics
dataset, FRANKENSTEIN Orsini et al. (2015), NCI1 (Wale et al., 2008; Kriege & Mutzel, 2012)
and NCI109 (Wale et al., 2008; Kriege & Mutzel, 2012) are small-size molecular datasets.

E COMPUTING ENVIRONMENT AND USED RESOURCES

Our code implementation is based on PyG Fey & Lenssen (2019)6 and its modules torch-scatter
and torch-sparse. All experiments were run on a Linux platform with 4 ˆ NVidia GeForce RTX
3090 GPUs (24GB) and 1 ˆ AMD EPYC 75F3 32-Core Processor. The resource budget for each
experiment was 1 GPU and 6 process cores.

F DETAILS OF EXPERIMENTS

To validate our proposed cycle modeling module and GloAttNC, we propose an ablation module,
called GloAtt, which only learns the interactions between node-to-node pairs. It computes global
attention using Eq. 12:

Z
‚‚

u,V “

$

&

%

Υ
‚‚

´

Z
‚

u,
Ť

´!!

Z
‚

v

ˇ

ˇ

ˇ
v P V

))¯¯

, 1-to-N
Ť

´!!

Υ
‚‚

pZ
‚

u, Z
‚

vq

ˇ

ˇ

ˇ
v P V

))¯

, 1-to-1
(12)

Subsequently, the representations of nodes and graphs are computed sequentially:

Z
‚

u “ Υ
‚
`

Z
‚

u, Z
‚‚

u,V

˘

,

Z˚
G “

$

&

%

Υ˚
´

Ť

´!

Z
‚

u

ˇ

ˇ

ˇ
u P V

)¯¯

, without cycle modeling,

Υ˚
´

Ť

´!

Z
‚

u

ˇ

ˇ

ˇ
u P V

)¯

,
Ť

´!

Z˝
c

ˇ

ˇ

ˇ
c P C

)¯¯

, with cycle modeling.

(13)

F.1 MNIST AND CIFAR10

For both MNIST and CIFAR10 datasets (Dwivedi et al., 2023), we only utilize a 3-layer DLGN.
The pre-computation times for converting the source graphs of MNIST and CIFAR10 into DLGs

6https://pyg.org/

26

https://pyg.org/

Under review as a conference paper at ICLR 2024

Table 8: Ablation study and hyper-parameters tuning of DLGN on MNIST and CIFAR10.

Dataset Graph
Readout GloAtt Accuracy ((Ò)) # Parameters Training Time

(epoch/total)
best

epoch

MNIST mean no 98.630˘0.034 107,434 39.5s / 1.1h 89.0
MNIST mean 1N 98.608˘0.119 131,158 40.0s / 1.1h 96.2
MNIST sum no 98.640˘0.052 107,434 39.5s / 1.1h 92.6
MNIST sum 1N 98.606˘0.055 131,158 40.0s / 1.1h 89.6

CIFAR10 mean no 73.386˘0.312 107,578 48.2s / 1.3h 52.2
CIFAR10 mean 1N 73.194˘0.713 131,302 49.7s / 1.4h 46.8
CIFAR10 sum no 72.950˘0.595 107,578 48.2s / 1.3h 54.0
CIFAR10 sum 1N 73.268˘0.375 131,302 49.7s / 1.4h 47.8

are 41.43s and 65.15s, respectively. Furthermore, we utilize the CrossEntropyLoss function and the
AdamW (Loshchilov & Hutter, 2018) optimizer with weight decay of 10´5 to train our models.
Additionally, the batch size is 32, and the learning rate is 10´3, which is halved every 50 epochs
before falling below 10´5. The number of warm-up epochs is 5. The maximum number of epochs
is 150, but training will stop early after 100 epochs if performance on the validation set does not
improve for 50 epochs. We validate DLGN and DLGN+GloAtt with a sum or mean graph readout.
The results are shown in Table 8, where the ’GloAtt’ column indicates different global attention
modeling schemes, where ’no’ means turning off global attention modeling, ’1N’ means modeling
node-to-node global attention using the ’1-to-N’ scheme. Such notation is also used in other tables.

F.2 PEPTIDES-FUNC AND PEPTIDES-STRUCT

Table 9: Statistical data of Peptides graph conversions. (R: maximum cycle size. H: maximum tree
height.)

source DLG DALG
R6H4 R6H6 R10H10

Time - 3.17s 36.21s 38.38s 38.69s
Avg. # nodes 150.9 307.3 390.8 470.5 504.4
Avg. # edges 307.3 411.5 474.1 569.2 607.5
Avg. # cycles - - 3.5 3.5 3.5

We validate all our models on both Peptides-func and Peptides-struct datasets (Dwivedi et al., 2022).
We utilize the CrossEntropyLoss function for Peptides-func dataset, and the L1Loss function for
Peptides-struct dataset. Furthermore, we use the AdamW (Loshchilov & Hutter, 2018) optimizer
with weight decay of 10´5 to train our models. Additionally, the batch size is 32, and the learning
rate is 10´3, which is halved every 50 epochs before falling below 10´5. The number of warm-up
epochs is 5. The maximum number of epochs is 150, but training will stop early after 100 epochs if
performance on the validation set does not improve for 50 epochs.

We illustrate the pre-computation process of converting the source graphs into DLGs/DALGs. Since
both datasets consist of the same graphs, the pre-computation time and results are identical, as shown
in Table 9. The statistical data reveal the high efficiency of our methods in constructing surrogate
graphs. Even tasks such as extracting cycles and path trees of maximum 10 are completed quickly,
without generating DALGs of large size.

Subsequently, we conduct an ablation study and hyper-parameters tuning experiments for DLGN on
Peptides-struct and Peptides-func datasets (Dwivedi et al., 2022), separately. Additionally, we mea-
sure the training efficiency of our models. As shown in Table 10 and Table 11, DLGN demonstrates
high training efficiency.

Finally, we perform ablation studies and hyper-parameter tuning experiments for ERFGN on
Peptides-struct and Peptides-func datasets (Dwivedi et al., 2022). These experiments can serve
to validate the effectiveness of our proposed cycle modeling module and global attention module
(GloAttNC) to improve the performance of our ERFGN model. The experiments results are shown

27

Under review as a conference paper at ICLR 2024

Table 10: Ablation study and hyper-parameters tuning of DLGN on Peptides-func.

GloAtt # Layers Test AP ((Ò)) # Parameters Training time
(epoch/total) best epoch

no 4 0.6591 ˘ 0.0046 358,811 4.4s/7.4m 39.2
no 6 0.6680 ˘ 0.0078 389,995 4.5s/7.5m 44.6
no 8 0.6764 ˘ 0.0055 403,323 4.6s/7.6m 51.8

1N 4 0.6633 ˘ 0.0072 424,271 4.4s/7.4m 59.0
1N 6 0.6657 ˘ 0.0049 447,059 4.5s/7.5m 59.6

11 4 0.6473 ˘ 0.0044 402,731 4.4s/7.4m 54.2
11 6 0.6519 ˘ 0.0054 428,299 4.5s/7.5m 54.6

Table 11: Ablation study and hyper-parameters tuning of DLGN on Peptides-struct.

GloAtt # Layers Test MAE (Ó) # Parameters Training time
(epoch/total) best epoch

no 4 0.2568 ˘ 0.0015 358,811 3.7s/6.1m 39.2
no 6 0.2568 ˘ 0.0021 389,995 4.3s/7.2m 44.6
no 8 0.2540 ˘ 0.0008 403,323 4.9s/8.1m 51.8

1N 4 0.2483 ˘ 0.0011 424,271 4.1s/6.8m 59.0
1N 6 0.2485 ˘ 0.0022 447,059 4.5s/7.6m 59.6

11 4 0.2524 ˘ 0.0013 402,731 13.6s/22.6m 54.2
11 6 0.2525 ˘ 0.0019 428,299 13.8s/23.0m 54.6

Table 12: Ablation study and hyper-parameters tuning on Peptides-func. The best results of ERFGN,
ERFGN˝ and ERFGN˝+GloAttNC are colored in blue, green and red, respectively.

GloAttNC Model
Cycle

TreeHeight
/CycleSize Test AP (Ò) # Parameters Training Time

(epoch/total)
best
epoch

no no 4/6 0.6688 ˘ 0.0066 358,690 4.0s/6.6m 65
no no 6/6 0.6766 ˘ 0.0032 389,882 4.7s/7.9m 61
no no 10/10 0.6790 ˘ 0.0055 401,002 6.1s/10.1m 76.6

no yes 4/6 0.6609 ˘ 0.0062 209,592 4.5s/7.5m 69.6
no yes 6/6 0.6650 ˘ 0.0006 255,000 5.3s/8.9m 63.5
no yes 10/10 0.6869 ˘ 0.0056 345,816 6.5s/10.9m 63.2

1N no 4/6 0.6741 ˘ 0.0042 424,150 4.4s/7.4m 75.8
1N no 6/6 0.6810 ˘ 0.0077 446,946 4.9s/8.1m 72
1N no 10/10 0.6779 ˘ 0.0070 443,002 6.2s/10.3m 62.6

1NC yes 4/6 0.6882 ˘ 0.0098 299,634 5.4s/9.0m 74.4
1NC yes 6/6 0.6912 ˘ 0.0049 435,858 6.0s/9.9m 58.4
1NC yes 10/10 0.6814 ˘ 0.0037 435,858 7.2s/12.0m 75.6
11 no 4/6 0.6527 ˘ 0.0030 402,610 13.9s/23.2m 66.8
11 no 6/6 0.6576 ˘ 0.0088 428,186 14.6s/24.4m 68
11 no 10/10 0.6618 ˘ 0.0066 429,226 15.9s/26.5m 85.2

11C yes 4/6 0.6855 ˘ 0.0065 390,450 14.5s/24.2m 58.2
11C yes 6/6 0.6818 ˘ 0.0042 345,042 15.3s/25.4m 88
11C yes 10/10 0.6832 ˘ 0.0078 526,674 16.6s/27.7m 63.6

in Table 12 and Table 13, respectively, where the ‘GloAttNC’ column indicates different global at-
tention modeling schemes, where ‘no’ means the disable of global attention modeling, ‘1N’ means
the modeling of node-to-node global attention using the ‘1-to-N’ scheme, ‘11’ means the using of
the ‘1-to-1’ scheme, and ‘1NC’ and ‘11C’ means the modeling of global attention of nodes and
cycles. Such notation is used in the results of all ablation studies and hyper-parameter tuning. The
shown test AP/MAE is the mean ˘ s.d. of results from 5 runs. The model layers tested are 4, 6, and
10. From the results, the following conclusions can be drawn: Layers above 6 could not provide
better performance on Peptides-func, while layers above 4 could not provide better performance

28

Under review as a conference paper at ICLR 2024

Table 13: Ablation study and hyper-parameters tuning on Peptides-struct. The best results of ER-
FGN, ERFGN˝ and ERFGN˝+GloAttNC are colored in blue, green and red, respectively.

GloAttNC Model
Cycle

TreeHeight
/CycleSize Test MAE (Ó) # Parameters Training Time

(epoch/total)
best
epoch

no no 4/6 0.2553 ˘ 0.0028 358,690 4.0s/6.6m 65
no no 6/6 0.2568 ˘ 0.0021 389,882 4.7s/7.9m 61
no no 10/10 0.2562 ˘ 0.0015 401,002 6.1s/10.1m 76.6

no yes 4/6 0.2563 ˘ 0.0011 209,592 4.5s/7.5m 69.6
no yes 6/6 0.2582 ˘ 0.0020 255,000 5.3s/8.9m 63.5
no yes 10/10 0.2565 ˘ 0.0019 345,816 6.5s/10.9m 63.2

1N no 4/6 0.2483 ˘ 0.0013 424,150 4.4s/7.4m 75.8
1N no 6/6 0.2485 ˘ 0.0022 446,946 4.9s/8.1m 72
1N no 10/10 0.2473 ˘ 0.0011 443,002 6.2s/10.3m 62.6

1NC yes 4/6 0.2468 ˘ 0.0014 299,634 5.4s/9.0m 74.4
1NC yes 6/6 0.2476 ˘ 0.0010 435,858 6.0s/9.9m 58.4
1NC yes 10/10 0.2481 ˘ 0.0008 435,858 7.2s/12.0m 75.6

11 no 4/6 0.2537 ˘ 0.0031 402,610 13.9s/23.2m 66.8
11 no 6/6 0.2525 ˘ 0.0019 428,186 14.6s/24.4m 68
11 no 10/10 0.2527 ˘ 0.0024 429,226 15.9s/26.5m 85.2

11C yes 4/6 0.2477 ˘ 0.0014 390,450 14.5s/24.2m 58.2
11C yes 6/6 0.2480 ˘ 0.0021 345,042 15.3s/25.4m 88
11C yes 10/10 0.2480 ˘ 0.0022 526,674 16.6s/27.7m 63.6

on Peptides-struct. The inclusion of cycle modeling in GloAttNC gives the best performance, but
it appears that cycle modeling alone may not provide substantial improvements. In addition, the
statistical training times show that our models are efficient at solving tasks at Peptides-struct and
Peptides-func datasets (Dwivedi et al., 2022).

F.3 ZINC SUBSET

Table 14: Statistical data of ZINC Subset graph conversions.
Time Avg. # nodes Avg. # edges Avg. # cycles

source - 23.2 49.9 -
DLAG of R8H4 15.29s 118.6 126.5 31.3

Table 15: Ablation study on ZINC Subset dataset.
Scheme no 1NC 11C

Test MAE (Ó) 0.106˘0.004 0.0747˘0.004 0.0684˘0.002

Training Time
(epoch/total) 5.2s/2.9h 5.7s/3.2h 6.0s/3.3h

As the task of the ZINC Subset (Dwivedi et al., 2023) is to regress a molecular property related
to cycles, we only apply our models with cycle modeling, i.e., ERFGN˝ and ERFGN˝+GloAttNC.
We construct DALGs by extracting cycles with a maximum cycle size of 8 and path trees with a
maximum height 4. The pre-computation time and results are as shown in Table 14. Additionally,
the function is L1Loss, the optimizer is AdamW (Loshchilov & Hutter, 2018) with weight decay of
10´5, the batch size is 64, and the learning rate is 10´3, which is halved every 200 epochs before
falling below 10´5. Following with (Rampášek et al., 2022), the number of warm-up epochs is 50,
the number of epochs is 2000. The experiments results are shown in Table 15. The tow tables support
that our models can achieve high efficiency and high performance on graph set with abundant cycles.

29

Under review as a conference paper at ICLR 2024

F.4 QM9

Table 16: Statistical data of QM9 graph conversions.
Time Avg. # nodes Avg. # edges Avg. # cycles

source - 18.0 37.3 -
DLAG of R8H6 147.1s 110.4 211.1 1.9

As for QM9 (Ramakrishnan et al., 2014; Wu et al., 2018), we only apply our ERFGN˝+GloAttNC
model. We construct DALGs by extracting cycles with a maximum cycle size of 8 and path trees with
a maximum height 6. The pre-computation time and results are as shown in Table 16. Additionally,
the function is L1Loss, the optimizer is AdamW (Loshchilov & Hutter, 2018) with weight decay
of 10´5, the batch size is 256, and the learning rate is 10´3, halved every 50 epochs before falling
below 10´5. The maximum number of epochs is 350, but training will stop early after 200 epochs
if performance on the validation set does not improve.

F.5 TUDATASETS

Table 17: Ablation study and hyper-parameters tuning on TUDatasets.

Dataset TreeHeight
/CycleSize GloAtt Accuracy (Ò) # Parameters Best epoch

ENZYMES 3 / 6 no 73.500˘5.890 93,894 45.1
ENZYMES 4 / 6 no 71.500˘6.121 106,566 43.8

ENZYMES 3 / 6 1N 73.333˘6.455 112,678 38.7
ENZYMES 4 / 6 1N 74.500˘5.273 125,350 58.8
ENZYMES 3 / 6 1NC 74.833˘5.134 144,006 57.7
ENZYMES 4 / 6 1NC 72.167˘6.710 156,678 42.3

PROTEINS full 3 / 6 no 77.538˘3.295 93,921 20.7
PROTEINS full 4 / 6 no 77.539˘3.483 106,593 27.9

PROTEINS full 3 / 6 1N 77.267˘3.356 112,705 25.2
PROTEINS full 4 / 6 1N 77.087˘3.310 125,377 30.9
PROTEINS full 3 / 6 1NC 78.253˘3.360 144,033 55.5
PROTEINS full 4 / 6 1NC 78.432˘3.880 156,705 49.4

FRANKENSTEIN 3 / 6 no 76.965˘1.247 142,849 59.5
FRANKENSTEIN 4 / 6 no 77.196˘1.704 155,521 56.7
FRANKENSTEIN 5 / 6 no 76.989˘1.445 168,193 62.8
FRANKENSTEIN 6 / 6 no 76.250˘1.161 180,865 35.1

FRANKENSTEIN 3 / 6 1N 77.104˘1.735 161,633 29.9
FRANKENSTEIN 4 / 6 1N 77.496˘1.282 174,305 47.7
FRANKENSTEIN 5 / 6 1N 77.703˘1.604 186,977 29.5
FRANKENSTEIN 6 / 6 1N 77.772˘1.378 199,649 52.9
FRANKENSTEIN 3 / 6 1NC 77.957˘1.972 192,961 47.9
FRANKENSTEIN 4 / 6 1NC 77.426˘1.219 205,633 29.8
FRANKENSTEIN 5 / 6 1NC 78.418˘0.960 218,305 68.4
FRANKENSTEIN 6 / 6 1NC 77.311˘1.245 230,977 72.7

NCI1 3 / 6 no 86.083˘1.747 95,233 55.9
NCI1 4 / 6 no 86.010˘1.762 107,905 62.2
NCI1 5 / 6 no 86.107˘1.623 120,577 66.2
NCI1 6 / 6 no 85.961˘2.009 133,249 63.5

NCI1 3 / 6 1N 85.669˘1.677 114,017 53.2
NCI1 4 / 6 1N 86.326˘1.635 126,689 67.9
NCI1 5 / 6 1N 86.642˘1.739 139,361 78.2
NCI1 6 / 6 1N 86.375˘1.775 152,033 66.2
NCI1 3 / 6 1NC 85.401˘1.419 145,345 50.0
NCI1 4 / 6 1NC 86.010˘1.687 158,017 70.0
NCI1 5 / 6 1NC 86.375˘1.592 170,689 93.7
NCI1 6 / 6 1NC 86.204˘1.788 183,361 74.2

We conduct ablation study and hyper-parameters tuning experiments for ERFGN˝ and
ERFGN˝+GloAttNC on TUDatasets (Morris et al., 2020a), separately. The function is CrossEn-
tropyLoss, the optimizer is AdamW (Loshchilov & Hutter, 2018), the batch size is 64, and the
learning rate is 10´3, halved every 50 epochs before falling below 10´5. The maximum number of

30

Under review as a conference paper at ICLR 2024

epochs is 150, but training will stop early after 100 epochs if performance on the validation set does
not improve. Other experimental setup follows those of (Xu et al., 2019). The results are shown in
Table 17.

31

	Introduction
	Methodology
	Problem Definition
	DLG Conversion
	DALG Conversion
	DLGN and ERFGN
	Cycle modeling and global attention
	Higher Expressiveness
	Less Over-squashing
	Complexity Analysis

	Experiment
	Conclusion
	Related Work
	Details of the graph conversions
	DLG Conversion algorithm
	DALG Conversion algorithm

	Expressive Power Analysis
	Definition of graph isomorphism
	Learning from DLGs or DALGs equals learning from original graphs
	Our models can be injective
	Expressiveness of DLGN, ERFGN, ERFGN and ERFGN+GloAttNC
	Model ranking of subgraph expressivity

	Details of datasets
	Computing environment and used resources
	Details of experiments
	MNIST and CIFAR10
	Peptides-func and Peptides-struct
	ZINC Subset
	QM9
	TUDatasets

