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Abstract

Decision makers are increasingly relying on machine learning in sensitive situ-
ations. In such settings, algorithmic recourse aims to provide individuals with
actionable and minimally costly steps to reverse unfavorable Al-driven decisions.
While existing research predominantly focuses on single-individual (i.e., seeker)
and single-model (i.e., provider) scenarios, real-world applications often involve
multiple interacting stakeholders. Optimizing outcomes for seekers under an indi-
vidual welfare approach overlooks the inherently multi-agent nature of real-world
systems, where individuals interact and compete for limited resources. To address
this, we introduce a novel framework for multi-agent algorithmic recourse that
accounts for multiple recourse seekers and recourse providers. We model this
many-to-many interaction as a capacitated weighted bipartite matching problem,
where matches are guided by both recourse cost and provider capacity. We propose
a three-layer optimization framework: (1) basic capacitated matching, (2) optimal
capacity redistribution to minimize the welfare gap, and (3) cost-aware optimiza-
tion balancing welfare maximization with capacity adjustment costs. Experimental
validation demonstrates that our framework enables near-optimal welfare with
minimal system modifications.

1 Introduction

Al decision-making systems rapidly apply predictive models to support individuals in various contexts,
e.g., loan approvals, medical treatments, or bail decisions [9]. Driven by Al policy regulations and
the idea of a "right to explanation,” algorithmic recourse is an emerging field that aims to provide
individuals affected by negative, high-stakes algorithmic decisions with recommendations on how
to reverse those outcomes [2, [8]. Therefore, algorithmic recourse refers to the systematic process
of reversing unfavorable decisions made by algorithms across various counterfactual scenarios [10].
Existing studies on algorithmic recourse predominantly address how the individual would need to
change their attributes to achieve the desired outcome [4]]. Such settings generally assume a single
individual impacted by a single decision-making model as shown in Figure[Ta]

In real-world scenarios, however, Al decision-making systems (i.e., providers) often interact with
multiple individuals whose actions can influence outcomes and, consequently, recourse recommenda-
tions for others. Furthermore, individuals seeking recourse (i.e., seekers) may engage with multiple
providers (Figure|lc) to choose the most suitable among given recommendations. While these studies
have extended the literature to settings with multiple recourse seekers [6} [1]], they continue to assume
a single provider. There remains a gap regarding algorithmic recourse in situations involving multiple
recourse providers each potentially impacting outcomes with their own decision models. Existing
approaches typically overlook how providing recourse recommendations simultaneously to multiple
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Figure 1: Various algorithmic recourse setups: (a) the one-to-one setting, where an individual s seeks
recourse recommendations from a provider p with minimal cost required to reverse the output; (b)
The many-to-one setting, where multiple individuals are seeking recourse from a single recourse
provider. (c) our proposed many-to-many framework generalizes prior settings by simultaneously
optimizing for multiple recourse seekers and providers.

recourse seekers can benefit society and overall recourse actionability through interactions among
individuals.

We propose a framework that includes multiple recourse seekers and multiple recourse providers.
We formalize this interaction as a capacitated weighted bipartite matching problem and determine
optimal recourse outcomes using a linear-programming approach, thereby maximizing social welfare
under capacity constraints. Further, we identify a welfare gap between the socially optimal solution,
computed by a central planner, and the unrealistic individually optimal outcome, where each seeker
acts without consideration of providers’ capacity constraints. To minimize this gap, we introduce
a second optimization layer that finds the best distribution for a total fixed capacity over providers.
Finally, we add the third optimization layer that minimizes the welfare gap while penalizing deviations
from the initial capacity values.

Our framework shows how uncoordinated individual recourse decisions can lead to collective inef-
ficiencies. Also, our capacity redistribution approaches align with collective goals and strategies,
coordination challenges, and the design of mechanisms for socially beneficial outcomes.

2 Many-to-Many Recourse Optimization

We formalize the matching problem as a bipartite graph with set of seekers S: {s; | s; € S, Vi € [n]},
each characterized by a feature vector x; and set of providers P: {p; | p; € P, V j € [m]}, each
equipped with a classifier (w.l.o.g. binary model) h; to accept or reject the seekers and a matching
capacity k;. All seekers are initially rejected by all providers. Furthermore, it is assumed that a
central planner will coordinate matches between seekers and providers (i.e., eq. (I)) and potentially
redistribute existing capacity among providers (i.e., eq. (2) and eq. (3)).

Recourse cost computation As defined by Ustun et al. [7], given provider p;’s decision model h;
and an input feature vector ; corresponding to the characteristics of seeker s;, such that h;(x;) = —1
(assumed binary w.l.0.g.), the recourse cost for seeker s; to achieve approval from provider p; is the
solution to the optimization problem as below:

ci; = min cost(a;z;) st hj(zi+a)=+4+1 Vi, j
a€A(x;)

where a is an action vector representing feasible changes to the features of x;, and A(x;) is the set of
allowed actions based on domain constraints (e.g., mutability and bounds on feature changes). Our
proposed framework is agnostic to the choices of recourse method and providers’ model, operating
only on the minimum cost of change required for each pair of seeker s; and provider p;.
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Bipartite Graph Construction. We construct a weighted bipartite graph G = (V, W), where
nodes V = SUP and W := {w;; | w;; =e 7%, Vi, j}. where v > 0 is a scaling parameter
controlling the sensitivity of the transformation. This exponential transformation converts costs into
edge weights, enabling algorithms such as the maximum-weight bipartite matching [S] to prioritize
low-cost (i.e., efficient) recourse assignments while maximizing overall match coverage.

Optimization Model Next, capacitated weighted bipartite matching problem. If we denote the
maximum weight for seeker i accordingly as w; = max;(w;;), we can then measure the ideal
scenario in which each seeker attains its optimal outcome as:

n
Individual Welfare := Z wy
i=1

However, this ideal scenario assumes that providers have unbounded capacity (w.l.o.g., at least the
number of seekers for each provider), meaning that they can freely provide the resources, which is
not realistic. In practice, each provider has a limited capacity k;, meaning they can serve only a finite
number of seekers. Taking a systems-level view and aiming to minimize the overall cost of recourse
across all seekers and providersﬂ To obtain the optimal matching, we formulate a mixed-integer
linear program (MILP) and solve it with the Gurobi Optimizer [3]}|as follows:

n m
Social Welfare := max Z Wij Zij
B
n

sty oz <1 Vi, Y oz <k Vi, oz;€{0,1} Vi,j D
j=1

i=1

Matching Constraint Capacity Constraint Edge Constraint

where z;; are binary decision variables that indicate whether seeker i is assigned to provider j. The
capacity constraint may result in some seekers matching to a more costly match (lower weight w;;).
This discrepancy is quantified by the gap between the ideal individual welfare and the realized social

welfare:
n

Welfare Gap := zn:wf — Z iw“ Zij

i=1 i=1 j=1

This gap highlights a critical design challenge: given a fixed total amount of provider capacity,
how should these limited resources be distributed across providers to minimize the welfare gap? A
naive uniform distribution of provider capacities may lead to significant welfare losses. In contrast,
allocating more capacity to providers associated with lower recourse costs, can substantially reduce
the welfare gap, even when the total capacity remains fixed. In the next section, we present an
approach for optimizing capacity distribution to minimize this gap.

3 Minimize Welfare Gap

Under a fixed total provider capacity K = Zy;l k;, the welfare gap can vary depending on how
capacity is distributed among providers. In fact, for any given K, there is an optimal allocation of
provider capacities k; that minimizes this welfare gap. This observation leads to a new optimization
problem involving two sets of decision variables namely, the integer variables k; V j, representing
provider capacities in the optimal solution, and the matching variables z;;, as previously defined,
indicating the best matching under the system settings.

n m m
max E E wij Zij St E kj =K Vj Total Capacity Constraint )
Zij, kj X - ;
' 1=1 j=1 J=1

'This assumes that providers do not have ulterior preferences affecting the matching process.

?Although the presence of binary decision variables renders the problem NP-hard, Gurobi’s branch-and-
bound engine—augmented with presolve, cutting-plane generation, and heuristic warm-starts—guarantees global
optimality.
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The matching, capacity, and edge constraints remain the same as before in Equation (I, with the
additional constraint on the total capacity.

We propose a systematic method that assigns capacities based on each seeker’s top-ranked matching
weight, previously defined in Section[2]as w; . Since at most ' seekers can receive recourse, excluding
the top K highest-weight edges directly increases the achievable welfare. Thus, the welfare of any
feasible solution is bounded above by 3, s, Wi where Sk denotes the set of seekers corresponding
to the K highest-ranked edges. These insights lead to Algorithm[I} which offers a more direct and
efficient alternative to MILP.

Algorithm 1 Optimal Capacity Distribution

Input: seekers S, providers P, weights w;;, total capacity K
Output: provider capacities k& = (k1, ..., kip|)
Initialize empty list £
for each seeker i € S do
wj = maz;(wi;)
Ji ¢ argmaxjep wj {best provider for seeker i}
Append triple (¢, jF, w})to L
end for
Sort £ in descending order of weight
Select the first K triples of L {top-K matches}
: Initialize k; < O forall j € P
. for each selected triple (4, j, w) do
kj — k’j +1
: end for
. return capacity vector k

PRI AR

e
PRI -20

Capacity Redistribution with Penalizing Modifications In practice, recourse methods often
operate within established configurations determined by existing organizational structures, resource
availability, and operational constraints. Transitioning from the current provider capacity configu-

ration to an optimal setup typically involves real-world adjustment costs. Let kAj denote the initial
capacity of provider j, and k; represent the target capacity after configuration. The change in capacity

Akj =k; — k;j can penalize large changes. Integrating this penalty into our optimization leads to
a multi-objective problem, balancing social welfare maximization with minimization of capacity
adjustment penalties. The modified objective function is:

Welfare = max Z Z WijZij — Z 5j|Akj‘ &)
j=1

Zij, kj i=1 j=1

subject to all the same constraints previously defined in Equation @) and 3; > 0 controls the
penalty sensitivity for each of the providers accordingly. This enhanced formulation constitutes a
MILP problem, solvable by recent versions of solvers like Gurobi [3]]. Ultimately, this optimization
simultaneously identifies the z;; and k;, clearly indicating how capacities should be adjusted from
their initial configuration. The Equation (3) generalizes the previous two through the penalty
parameter 3;. When 3; = 0, the formulation reduces to Equation , and when 3; — o0, it enforces
fixed capacities(Equation ). Thus, 8; enables interpolation between these two extremes.

4 Conclusion and Future Work

We have introduced a many-to-many view of algorithmic recourse in which multiple seekers obtain
recommendations from multiple decision-making models whose resources are limited. Further, we
quantified the welfare gap between the socially optimal solution, computed by a central planner, and
the individually optimal outcome, where each seeker acts in isolation and selects the provider offering
the lowest recourse cost, without coordination. In future versions of this work, we will present
empirical evaluations to assess how well the proposed framework reduces welfare losses across
synthetic and real datasets. These results will help quantify the welfare achievable with minimal
capacity adjustments and demonstrate the framework’s practical relevance.
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