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Abstract

Decision makers are increasingly relying on machine learning in sensitive situ-1

ations. In such settings, algorithmic recourse aims to provide individuals with2

actionable and minimally costly steps to reverse unfavorable AI-driven decisions.3

While existing research predominantly focuses on single-individual (i.e., seeker)4

and single-model (i.e., provider) scenarios, real-world applications often involve5

multiple interacting stakeholders. Optimizing outcomes for seekers under an indi-6

vidual welfare approach overlooks the inherently multi-agent nature of real-world7

systems, where individuals interact and compete for limited resources. To address8

this, we introduce a novel framework for multi-agent algorithmic recourse that9

accounts for multiple recourse seekers and recourse providers. We model this10

many-to-many interaction as a capacitated weighted bipartite matching problem,11

where matches are guided by both recourse cost and provider capacity. We propose12

a three-layer optimization framework: (1) basic capacitated matching, (2) optimal13

capacity redistribution to minimize the welfare gap, and (3) cost-aware optimiza-14

tion balancing welfare maximization with capacity adjustment costs. Experimental15

validation demonstrates that our framework enables near-optimal welfare with16

minimal system modifications.17

1 Introduction18

AI decision-making systems rapidly apply predictive models to support individuals in various contexts,19

e.g., loan approvals, medical treatments, or bail decisions [9]. Driven by AI policy regulations and20

the idea of a "right to explanation," algorithmic recourse is an emerging field that aims to provide21

individuals affected by negative, high-stakes algorithmic decisions with recommendations on how22

to reverse those outcomes [2, 8]. Therefore, algorithmic recourse refers to the systematic process23

of reversing unfavorable decisions made by algorithms across various counterfactual scenarios [10].24

Existing studies on algorithmic recourse predominantly address how the individual would need to25

change their attributes to achieve the desired outcome [4]. Such settings generally assume a single26

individual impacted by a single decision-making model as shown in Figure 1a.27

In real-world scenarios, however, AI decision-making systems (i.e., providers) often interact with28

multiple individuals whose actions can influence outcomes and, consequently, recourse recommenda-29

tions for others. Furthermore, individuals seeking recourse (i.e., seekers) may engage with multiple30

providers (Figure 1c) to choose the most suitable among given recommendations. While these studies31

have extended the literature to settings with multiple recourse seekers [6, 1], they continue to assume32

a single provider. There remains a gap regarding algorithmic recourse in situations involving multiple33

recourse providers each potentially impacting outcomes with their own decision models. Existing34

approaches typically overlook how providing recourse recommendations simultaneously to multiple35
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(a) One-to-one Recourse Matching

(b) Many-to-one Setting (c) Many-to-many Recourse Match-
ing

Figure 1: Various algorithmic recourse setups: (a) the one-to-one setting, where an individual s seeks
recourse recommendations from a provider p with minimal cost required to reverse the output; (b)
The many-to-one setting, where multiple individuals are seeking recourse from a single recourse
provider. (c) our proposed many-to-many framework generalizes prior settings by simultaneously
optimizing for multiple recourse seekers and providers.

recourse seekers can benefit society and overall recourse actionability through interactions among36

individuals.37

We propose a framework that includes multiple recourse seekers and multiple recourse providers.38

We formalize this interaction as a capacitated weighted bipartite matching problem and determine39

optimal recourse outcomes using a linear-programming approach, thereby maximizing social welfare40

under capacity constraints. Further, we identify a welfare gap between the socially optimal solution,41

computed by a central planner, and the unrealistic individually optimal outcome, where each seeker42

acts without consideration of providers’ capacity constraints. To minimize this gap, we introduce43

a second optimization layer that finds the best distribution for a total fixed capacity over providers.44

Finally, we add the third optimization layer that minimizes the welfare gap while penalizing deviations45

from the initial capacity values.46

Our framework shows how uncoordinated individual recourse decisions can lead to collective inef-47

ficiencies. Also, our capacity redistribution approaches align with collective goals and strategies,48

coordination challenges, and the design of mechanisms for socially beneficial outcomes.49

2 Many-to-Many Recourse Optimization50

We formalize the matching problem as a bipartite graph with set of seekers S: {si | si ∈ S, ∀ i ∈ [n]},51

each characterized by a feature vector xi and set of providers P: {pj | pj ∈ P, ∀ j ∈ [m]}, each52

equipped with a classifier (w.l.o.g. binary model) hj to accept or reject the seekers and a matching53

capacity kj . All seekers are initially rejected by all providers. Furthermore, it is assumed that a54

central planner will coordinate matches between seekers and providers (i.e., eq. (1)) and potentially55

redistribute existing capacity among providers (i.e., eq. (2) and eq. (3)).56

Recourse cost computation As defined by Ustun et al. [7], given provider pj’s decision model hj57

and an input feature vector xi corresponding to the characteristics of seeker si, such that hj(xi) = −158

(assumed binary w.l.o.g.), the recourse cost for seeker si to achieve approval from provider pj is the59

solution to the optimization problem as below:60

cij = min
a∈A(xi)

cost(a;xi) s.t. hj(xi + a) = +1 ∀ i, j

where a is an action vector representing feasible changes to the features of xi, and A(xi) is the set of61

allowed actions based on domain constraints (e.g., mutability and bounds on feature changes). Our62

proposed framework is agnostic to the choices of recourse method and providers’ model, operating63

only on the minimum cost of change required for each pair of seeker si and provider pj .64

2



Bipartite Graph Construction. We construct a weighted bipartite graph G = (V,W), where65

nodes V = S ∪ P and W := {wij | wij = e−γ·cij , ∀ i, j} . where γ > 0 is a scaling parameter66

controlling the sensitivity of the transformation. This exponential transformation converts costs into67

edge weights, enabling algorithms such as the maximum-weight bipartite matching [5] to prioritize68

low-cost (i.e., efficient) recourse assignments while maximizing overall match coverage.69

Optimization Model Next, capacitated weighted bipartite matching problem. If we denote the70

maximum weight for seeker i accordingly as w∗
i = maxj(wij), we can then measure the ideal71

scenario in which each seeker attains its optimal outcome as:72

Individual Welfare :=

n∑
i=1

w∗
i

However, this ideal scenario assumes that providers have unbounded capacity (w.l.o.g., at least the73

number of seekers for each provider), meaning that they can freely provide the resources, which is74

not realistic. In practice, each provider has a limited capacity kj , meaning they can serve only a finite75

number of seekers. Taking a systems-level view and aiming to minimize the overall cost of recourse76

across all seekers and providers,1 To obtain the optimal matching, we formulate a mixed-integer77

linear program (MILP) and solve it with the Gurobi Optimizer [3]2 as follows:78

Social Welfare := max
zij

n∑
i=1

m∑
j=1

wij zij

s.t.
m∑
j=1

zij ≤ 1 ∀i,
n∑

i=1

zij ≤ kj ∀j, zij ∈ {0, 1} ∀i, j

︸ ︷︷ ︸
Matching Constraint

︸ ︷︷ ︸
Capacity Constraint

︸ ︷︷ ︸
Edge Constraint

(1)

where zij are binary decision variables that indicate whether seeker i is assigned to provider j. The79

capacity constraint may result in some seekers matching to a more costly match (lower weight wij).80

This discrepancy is quantified by the gap between the ideal individual welfare and the realized social81

welfare:82

Welfare Gap :=

(
n∑

i=1

w∗
i

)
−

 n∑
i=1

m∑
j=1

wij zij

 .

This gap highlights a critical design challenge: given a fixed total amount of provider capacity,83

how should these limited resources be distributed across providers to minimize the welfare gap? A84

naive uniform distribution of provider capacities may lead to significant welfare losses. In contrast,85

allocating more capacity to providers associated with lower recourse costs, can substantially reduce86

the welfare gap, even when the total capacity remains fixed. In the next section, we present an87

approach for optimizing capacity distribution to minimize this gap.88

3 Minimize Welfare Gap89

Under a fixed total provider capacity K =
∑m

j=1 kj , the welfare gap can vary depending on how90

capacity is distributed among providers. In fact, for any given K, there is an optimal allocation of91

provider capacities kj that minimizes this welfare gap. This observation leads to a new optimization92

problem involving two sets of decision variables namely, the integer variables kj ∀ j, representing93

provider capacities in the optimal solution, and the matching variables zij , as previously defined,94

indicating the best matching under the system settings.95

max
zij , kj

n∑
i=1

m∑
j=1

wij zij s.t.
m∑
j=1

kj = K ∀ j Total Capacity Constraint (2)

1This assumes that providers do not have ulterior preferences affecting the matching process.
2Although the presence of binary decision variables renders the problem NP-hard, Gurobi’s branch-and-

bound engine—augmented with presolve, cutting-plane generation, and heuristic warm-starts–guarantees global
optimality.
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The matching, capacity, and edge constraints remain the same as before in Equation (1), with the96

additional constraint on the total capacity.97

We propose a systematic method that assigns capacities based on each seeker’s top-ranked matching98

weight, previously defined in Section 2 as w∗
i . Since at most K seekers can receive recourse, excluding99

the top K highest-weight edges directly increases the achievable welfare. Thus, the welfare of any100

feasible solution is bounded above by
∑

i∈SK
w∗

i , where SK denotes the set of seekers corresponding101

to the K highest-ranked edges. These insights lead to Algorithm 1, which offers a more direct and102

efficient alternative to MILP.103

Algorithm 1 Optimal Capacity Distribution

1: Input: seekers S, providers P , weights wij , total capacity K
2: Output: provider capacities k = (k1, . . . , k|P|)
3: Initialize empty list L
4: for each seeker i ∈ S do
5: w∗

i = maxj(wij)
6: j∗i ← argmaxj∈P w∗

i {best provider for seeker i}
7: Append triple (i, j∗i , w

∗
i ) to L

8: end for
9: Sort L in descending order of weight

10: Select the first K triples of L {top-K matches}
11: Initialize kj ← 0 for all j ∈ P
12: for each selected triple (i, j, w) do
13: kj ← kj + 1
14: end for
15: return capacity vector k

Capacity Redistribution with Penalizing Modifications In practice, recourse methods often104

operate within established configurations determined by existing organizational structures, resource105

availability, and operational constraints. Transitioning from the current provider capacity configu-106

ration to an optimal setup typically involves real-world adjustment costs. Let k̂j denote the initial107

capacity of provider j, and k̃j represent the target capacity after configuration. The change in capacity108

∆kj = k̃j − k̂j can penalize large changes. Integrating this penalty into our optimization leads to109

a multi-objective problem, balancing social welfare maximization with minimization of capacity110

adjustment penalties. The modified objective function is:111

Welfare = max
zij , kj

 n∑
i=1

m∑
j=1

wijzij −
m∑
j=1

βj |∆kj |

 (3)

subject to all the same constraints previously defined in Equation (2), and βj ≥ 0 controls the112

penalty sensitivity for each of the providers accordingly. This enhanced formulation constitutes a113

MILP problem, solvable by recent versions of solvers like Gurobi [3]. Ultimately, this optimization114

simultaneously identifies the zij and kj , clearly indicating how capacities should be adjusted from115

their initial configuration. The Equation (3) generalizes the previous two through the penalty116

parameter βj . When βj = 0, the formulation reduces to Equation (2), and when βj →∞, it enforces117

fixed capacities(Equation (1)). Thus, βj enables interpolation between these two extremes.118

4 Conclusion and Future Work119

We have introduced a many-to-many view of algorithmic recourse in which multiple seekers obtain120

recommendations from multiple decision-making models whose resources are limited. Further, we121

quantified the welfare gap between the socially optimal solution, computed by a central planner, and122

the individually optimal outcome, where each seeker acts in isolation and selects the provider offering123

the lowest recourse cost, without coordination. In future versions of this work, we will present124

empirical evaluations to assess how well the proposed framework reduces welfare losses across125

synthetic and real datasets. These results will help quantify the welfare achievable with minimal126

capacity adjustments and demonstrate the framework’s practical relevance.127
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