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Abstract

Named entity recognition (NER) is of great001
importance for a wide range of tasks, such as002
medical health record understanding, document003
analysis, dialogue understanding. BERT and004
its variants are the most performing models005
for NER. However, these models are notori-006
ous for being large and slow during inference.007
Thus their usage in the industry is limited. Pi-008
lot experiments exhibit that in the NER task,009
BERT suffers from the severe over-thinking010
problem, thus motivating BERT to exit early at011
intermediate layers. Thus, in this work, we pro-012
pose a novel method, Vote Early Exiting BERT013
(VEE-BERT), for improving the early exiting014
of BERT on NER tasks. To be able to deal with015
complex NER tasks with nested entities, we016
adopt the Biaffine NER model (Yu et al., 2020),017
which converts a sequence labeling task to the018
table filling task. VEE-BERT makeS early exit-019
ing decisions by comparing the predictions of020
the current layer with those of the previous lay-021
ers. Experiments on six benchmark NER tasks022
demonstrate that our method is effective in ac-023
celerating the BERT Biaffine model’s inference024
speed with less performance loss compared to025
the baseline early exiting method.026

1 Introduction027

Since BERT (Devlin et al., 2018), the pre-trained028

language models (PLMs) become the default state-029

of-the-art (SOTA) models for natural language pro-030

cessing (NLP). The recent years have witnessed031

the rise of many PLMs, such as GPT (Radford032

et al., 2019), XLNet (Yang et al., 2019), and AL-033

BERT (Lan et al., 2020), and so forth. These BERT-034

style models achieved considerable improvements035

in many Natural Language Processing (NLP) tasks036

by pre-training on the unlabeled corpus and fine-037

tuning on labeled tasks, such as text classification,038

natural language inference (NLI), sequence label-039

ing, etc. Despite their great performances, there040

are two issues for PLMs.041

First, previous studies show that PLMs such 042

as BERT suffer from the over-thinking problem. 043

(Zhou et al., 2020; Zhu et al., 2021; Zhu, 2021) 044

shows that in the sentence classification task, 045

BERT’s last few layers may be too deep for some 046

samples. For a sentence classification task, if we in- 047

sert a classifier on a certain intermediate layer and 048

drop the deeper layers, these intermediate layers 049

may outperform the last layer. Note that the pre- 050

vious literature focuses on the classification task, 051

which is at the sentence level. Thus, one may 052

wonder, is over-thinking present in the more fine- 053

grained tasks like named entity recognition? 054

We conducted a pilot experiment on the 055

ACE20041 task, which is a nested NER task, and 056

the CONLL2003 (Tjong Kim Sang and De Meul- 057

der, 2003) task, which is a flat NER task. Figure 058

1(a) and 1(b) shows that the over-thinking problem 059

is present in the NER tasks. On both tasks, layer 9 060

performs the best, and there are four layers that are 061

better than the last layer. The overthinking problem 062

motivates us to only use a portion of the BERT base 063

to make predictions on the test samples. 064

The second drawback of PLMs is their high la- 065

tency. NER and other sequence labeling tasks play 066

a central role in many application scenarios, such as 067

question answering, document search, document- 068

level information extraction, etc. However, these 069

applications require low latency. For example, an 070

online search engine needs to respond to the user’s 071

query in less than 100 milo-seconds. Thus, a NER 072

module should be efficient and accurate. In addi- 073

tion, a special feature of consumer queries is that 074

there are time intervals that the number of queries is 075

extremely high. For example, during dinner hours, 076

food search engines will be used much often than 077

usual. Thus, it is important for deployed models to 078

adjust their latency dynamically. 079

There exists a branch of literature focusing on 080

making PLMs’ inference more efficient via adap- 081

1https://catalog.ldc.upenn.edu/LDC2005T09
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(a) Overthinking on the ACE2004 task

(b) Overthinking on the CONLL2003 task

Figure 1: This figure demonstrates that the overthinking
problem prevails in the NER tasks.

tive inference (Zhou et al., 2020; Xin et al., 2020a;082

Liu et al., 2020). The idea of adaptive inference083

is to process simple examples with only shallow084

layers of BERT and process more difficult queries085

with deeper layers, thus significantly speeding up086

the inference time on average while maintaining087

high accuracy. The speed-up ratio can be easily088

controlled with certain hyper-parameters without089

re-deploying the model services or maintaining a090

group of models. Early exiting is one of the most091

important adaptive inference methods (Bolukbasi092

et al., 2017). As depicted in Figure 2, it implements093

adaptive inference by installing an early exit, i.e.,094

an intermediate prediction layer, at each layer of095

BERT and early exiting "easy" samples to speed096

up inference. At the training stage, all the exits are097

jointly optimized with BERT’s parameters. At the098

inference stage, some strategies for early exiting099

are designed to decide whether to exit at each layer100

given the currently obtained predictions (from pre-101

vious and current layers) (Teerapittayanon et al.,102

2016; Kaya et al., 2019; Xin et al., 2020a; Zhou103

et al., 2020). In this mode, different samples can104

exit at different depths.105

Figure 2: Our proposed VEE-BERT method for accel-
erating BERT biaffine NER model’s inference speed.
VEE-BERT compares the current layer with the previ-
ous layers. It will decide to exit at the current layer
when there are enough previous layers making predic-
tions that are consistent with the current layer’s.

In order for our framework to be generally ap- 106

plicable, we mainly adopt the biaffine model (Yu 107

et al., 2020) for NER. The biaffine model converts 108

the NER task into a 2-dimensional table filling 109

task, thus providing a solution to the nested NER 110

problem. (Yu et al., 2020) shows that the biaffine 111

model can achieve the state-of-the-art (SOTA) per- 112

formances on not only nested NER tasks but also 113

flat NER tasks. 114

In this work, we propose a novel early exiting 115

method, VEE-BERT, designated for the NER task. 116

Different from previous work such as DeeBERT 117

(Xin et al., 2020b) and RightTool (Schwartz et al., 118

2020), we look into the consistency of different 119

intermediate layers. At a certain intermediate layer, 120

we first compute the biaffine logits. VEE-BERT 121

mainly uses the KL divergence as the measurement 122

of consistency. That is, if the KL divergence be- 123

tween two layers’ logits is small, their predictions 124

are consistent with each other. Our VEE-BERT 125

compares the current layer’s prediction with the 126

lower layers’. If the number of previous intermedi- 127

ate layers that have consistent predictions with the 128

current layer exceeds the patience parameter, BERT 129

will stop further inference and exit. Intuitively, the 130

decision of early exit is made when enough layers 131

agree with one another and make the votes. Thus, 132

our method can be seen as the ensemble of the 133

current and previous layers. 134

Extensive experiments are conducted on the six 135

benchmark NER tasks. Three of the tasks are 136

2



nested NER tasks, ACE20042, ACE20053, GENIA137

(Kim et al., 2003b). We also experiment on three138

flat NER tasks, CONLL2003 (Tjong Kim Sang139

and De Meulder, 2003), OntoNotes 4.0 Chinese4140

and the Chinese MSRA task (Levow, 2006). We141

show that our VEE-BERT consistently achieves142

better performances under the same speed-up ratio,143

compared with a series of the previous early exit-144

ing methods. Deeper analysis and ablation studies145

result in the following main takeaways: (a) our146

method works for different pre-trained language147

models (PLMs) like ALBERT; (b) we compare148

with a wide range of consistency measures, such as149

edit distance, Euclidean distance, cosine similarity,150

and demonstrate that KL divergence performs the151

best.152

The rest of the paper is organized as follows.153

First, we introduce the preliminaries for the Bi-154

affine NER model and early exiting. Second, we155

elaborate on our VEE-BERT method. Third, we156

conduct experiments on 6 NER tasks and conduct157

a series of ablations studies. Finally, we conclude158

with possible future works.159

2 Preliminaries160

In this section, we introduce the necessary back-161

ground for BERT and early exiting. Throughout162

this work, we consider the case of a NER task with163

samples {(x, y), x ∈ X , y ∈ Y, i = 1, 2, ..., N},164

e.g., sentences and their NER span information,165

and the number of entity categories is K (includ-166

ing the non-entity type label). The input sequence167

length after BERT’s subword tokenization is L.168

2.1 Backbone models169

In this work, we adopt BERT as the backbone170

model. BERT is a multi-layer Transformer171

(Vaswani et al., 2017) network, which is pre-trained172

in a self-supervised manner on a large corpus. In173

the ablation studies, we also use ALBERT (Lan174

et al., 2020) as backbones. ALBERT is more175

lightweight than BERT since it shares parameters176

across different layers, and the embedding matrix177

is factorized. The number of transformer layers178

of our backbone is denoted as M , and the hidden179

dimension is d.180

2https://catalog.ldc.upenn.edu/LDC2005T09
3https://catalog.ldc.upenn.edu/LDC2006T06
4https://catalog.ldc.upenn.edu/LDC2011T03

2.2 The Biaffine model for NER 181

The BERT-Biaffine model (Yu et al., 2019) trans- 182

form the NER task into a two-dimensional table 183

filling task. It asks the model to identify whether 184

the slot in the table with coordinate (s, e) corre- 185

sponds to an entity with category k, that is, whether 186

a pair of tokens (xs, xe) in the input sequence 187

x = (x1, x2, , , , , xL) is the start and end tokens 188

for an entity with category k. Formally, after BERT 189

encoding, the contextualized embedding of tokens 190

s and e are hs and he (hs, he ∈ Rd). Then in a bi- 191

affine layer f , the score of span (s, e) is calculated 192

by5 193

f(s, e) = hTs Uhe +W (hs ⊕ he) + b. (1) 194

Since we need to calculate the scores for K entity 195

categories, U is a d×K×d tensor, and W is a 2d× 196

K tensor. f(s, e) ∈ RK is the scores (or logits). 197

A softmax operation will transform f(s, e) into a 198

probability distribution p(s, e), which represents 199

how likely the span (s, e) is a category k entity. 200

The learning objective of the biaffine model is 201

to assign a correct category (including the non- 202

entity) to each valid span. Hence it is a multi- 203

class classification problem at each slot of the two- 204

dimensional table and can be optimized with cross- 205

entropy loss: 206

L = −
L∑

s=1

L∑
e=s

K∑
k=1

I(y(s, e) = k) log pk(s, e),

(2) 207

where y(s, e) is the ground-truth label of span 208

(s, e), pk(s, e) is the predicted probability mass of 209

(s, e) having label k, and I(·) is the indicator func- 210

tion. After fine-tuning the BERT biaffine model, 211

the inference procedure of the BERT biaffine model 212

follows Yu et al. (2019). 213

2.3 Early-exiting Architecture 214

As depicted in Figure 2, early exiting architectures, 215

or multi-exit architectures, are networks with exits6 216

at each transformer layer. Since the previous litera- 217

ture usually considers sentence-level classification 218

tasks, the exits are classifiers. However, since we 219

are dealing with sequence labeling tasks formulated 220

5Note that in the BERT biaffine NER (Yu et al., 2019), two
feed forward layers are designated to transform the features
of hs and he. However, we find that dropping the two feed
forward layers and increase the learning rate for the biaffine
module result in slightly better test performances.

6Some literature (e.g., DeeBERT (Xin et al., 2020a)) also
refers to exits as off-ramps.
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as two-dimensional table filling, with M exits, M221

separate biaffine modules f (m) are installed right222

after each layer of BERT (m = 1, 2, ...,M ), and223

the scores for span (s, e) at layer m is given by:224

f (m)(s, e) = hTs U
(m)he+W (m)(hs⊕he)+b(m).

(3)225

And the loss function at each layer becomes226

L(m) =

−
L∑

s=1

L∑
e=s

K∑
k=1

I(y(s, e) = k) log p
(m)
k (s, e),

(4)227

where p(m)(s, e) = Softmax(f (m)(s, e)) is the pre-228

dicted probability distribution at exit m.229

2.3.1 Training230

At the training stage, all the exits are jointly op-231

timized with a summed loss function. Following232

Huang et al. (2017) and Zhou et al. (2020), the loss233

function is the weighted average of the losses (from234

Equation 4):235

LWA =

∑M
m=1m ∗ L(m)∑M

m=1m
. (5)236

Note that the weight m corresponds to the relative237

inference cost of exit m.238

2.3.2 Inference239

At inference, the multi-exit BERT can operate in240

two different modes, depending on whether the241

computational budget to classify an example is242

known or not.243

Budgeted Exiting. If the computational budget244

is known, we can directly appoint a suitable exit245

m∗ of BERT, f (m∗), to predict all queries.246

Dynamic Exiting. Under this mode, after re-247

ceiving a query input x, the model starts to predict248

on the classifiers f (1), f (2), ..., in turn in a forward249

pass, reusing computation where possible. It will250

continue to do so until it receives a signal to stop251

early at an exit m∗ < M , or arrives at the last exit252

M . At this point, it will output the final predictions253

based on the current and previous predictions. Note254

that under this early exit setting, different samples255

might exit at different layers.256

3 Over-thinking problems in the NER257

tasks258

Although the over-thinking problem in the sentence259

classification task is investigated in Zhou et al.260

(2020); Zhu (2021); Zhu et al. (2021), whether 261

BERT has the over-thinking problem in the NER 262

task is neglected by the literature. Thus, we 263

first conduct pilot experiments on two benchmark 264

NER tasks, ACE2004, a nested NER task, and 265

CoNLL2003 (Sang and De Meulder, 2003), a flat 266

NER task. We measure the confidence level of an 267

exit m by the average predicted distribution entropy 268

on the two-dimensional table: 269

g(m) = −
L∑

s=1

L∑
e=s

∑K
k=1 p

(m)
k (s, e) ∗ log p(m)

k (s, e)

log(1/K) ∗ (L(L+ 1)/2)
.

(6) 270

This confidence level is thoroughly studied in Teer- 271

apittayanon et al. (2016); Xin et al. (2020a). Note 272

that low entropy indicates the current layer has high 273

confidence. 274

In Figure 1(a) and 1(b), we plot each layer’s aver- 275

age confidence level and the micro-f1 score on the 276

development sets of ACE2004 and CoNLL2003. 277

We can clearly see that, generally, as more layers 278

of the pre-trained BERT are utilized during predic- 279

tion, the model becomes quite confident. However, 280

more layers may not result in better performances. 281

On the ACE2004 task, BERT’s layer 9 achieves 282

the highest score, and the performances drop as 283

the number of layers further increases. Similarly, 284

results can also be found on the CoNLL2003 task. 285

The results in Figure 1(a) and 1(b) convey two 286

important messages. 287

• First, the "overthinking" phenomenon is simi- 288

lar to the observations on the sentence classi- 289

fication task (Kaya and Dumitras, 2018; Zhou 290

et al., 2020; Zhu, 2021). This phenomenon 291

is a direct motivation for early exiting since 292

some of the input queries do not need to uti- 293

lize the full capacity of BERT to obtain the 294

correct prediction. 295

• In the classification task, when the layer depth 296

increases, the average confidence level will 297

usually monotonically increase. However, we 298

can see that in Figure 1(a) and 1(b), the depth- 299

confidence curve drops quite drastically at 300

the first few layers and fluctuates on deeper 301

layers. And the first 2-3 layers can already 302

achieve high confidence while their perfor- 303

mances have a clear gap from the final layer. 304

Thus, the confidence level is not an effective 305

representation of the NER task’s difficulty or 306

performance score. 307
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With the observation of overthinking problems308

in NER, we are motivated to design an early exiting309

strategy to avoid unnecessary computation and in-310

crease the inference speed. Previous work (Li et al.,311

2021) design early exiting strategies for NER based312

on the confidence level, which can be seen as the313

NER version of BranchyNet (Teerapittayanon et al.,314

2016). However, our pilot experiments show that315

entropy is not a proper estimation for the model to316

determine whether the sample is well understood317

and predicted.318

4 Vote Early Exiting319

Note that the entropy-based early exiting method320

makes the exiting decision based on the prediction321

of a single intermediate layer. However, the multi-322

exit BERT has a series of layers that may convey323

important information for us. Thus, we focus on324

designing an early exiting mechanism based on the325

outputs of multiple layers.326

In this work, we propose Voting Early Exiting327

BERT (VEE-BERT), a novel off-the-shelf early ex-328

iting method that can speedup the BERT biaffine329

models’ inference speed without changing the fine-330

tuned model. VEE-BERT mines the early exit-331

ing signal from the comparison among the biaffine332

scores of the intermediate layers. We first elabo-333

rate on how we compare the biaffine scores of two334

exits and when we will consider the predictions335

consistent with each other, then we will present our336

VEE-BERT.337

4.1 Consistency measures338

We denote the table of distributions predicted by339

the biaffine exit m as T (m) = {p(m)(s, e)|s, e ∈340

1, ..., L}, which is a L× L×K tensor. With two341

exits, m1 and m2 (m1 < m2), we want to measure342

whether and to what degree their predictions are in343

consistency with each other, or similar to each other.344

The consistency score between T (m1) and T (m2) is345

denoted as C(T (m1), T (m2)). If C(T (m1), T (m2))346

increases, the predictions of m1 and m2 are more347

in consistency with each other.348

We can select from the four measures:349

• Distance of probability distributions. Since350

we have a probability distribution p(m)(s, e)351

at each slot of the two-dimensional table, it352

is natural to use the average Kullback-Leibler353

divergence (Kullback and Leibler, 1951): 354

C(T (m1), T (m2))

= −
L∑

s=1

L∑
e=s

DKL(p
(m1)(s, e)||p(m2)(s, e))

log(1/K) ∗ (L(L+ 1)/2)
,

(7) 355

where DKL(p||q) is the KL divergence from 356

the distribution q to p.7 357

• Euclidean distance. Since T (m1) and T (m2) 358

are L × L ×K tensors, we can use the neg- 359

ative of Euclidean distance to measure their 360

distance. 361

• Cosine similarity. We can reshape T (m1) and 362

T (m2) into vectors and use the cosine similar- 363

ity as the consistency measure. 364

• Edit distance. In this method, we fill the two- 365

dimensional table with the labels that receive 366

the maximum probability scores and reshape 367

the table into a single-dimensional list. Af- 368

ter the transformation, we can calculate the 369

edit distance between the lists coming from 370

T (m1) and T (m2), and use the negative of edit 371

distance as the consistency measure. 372

We adopt the negative of average KL diver- 373

gence as the default consistency measure. We will 374

conduct ablation studies and compare the perfor- 375

mances of different consistency measures. 376

4.2 VEE 377

Recall that early stopping (Girosi et al., 1995) oc- 378

curs when the training loss becomes stable and 379

parameter updates no longer begin to yield im- 380

proves on a validation set. By analog, we make 381

the early exiting decision based on the cross-layer 382

comparison. The inference process of VEE-BERT 383

is depicted in Figure 2. In VEE-BERT, we need 384

two hyper-parameters, consistency score τ and the 385

patience parameter cnt∗. 386

Assume the forward pass has arrived at the inter- 387

mediate layer m, and we use exit m to obtain the 388

table of predicted distribution T (m). We initialize 389

a patience counter cntm with value 0. We now com- 390

pare T (m) with each of the previous layer’s predic- 391

tion T (i) (i ∈ {1, 2, ..., n− 1}). If the consistency 392

7We also experiment on using alternative distance mea-
sures for probability distributions, such as Helinger coeffi-
cient (Hellinger), Jensen–Shannon divergence (Manning and
Schütze, 2002), and so on, but does not result in any statisti-
cally significant improvements.
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score C(T (i), T (m)) is larger than the threshold τ ,393

cntm will add 1. If cntm reaches or exceeds the pre-394

defined patience parameter cnt∗, we can early exit395

at the current layer m and consider cntm as the fi-396

nal prediction. If this condition can not be satisfied397

at the intermediate layers, the model makes the full398

forward pass and use the whole BERT backbone399

for prediction.400

Intuitively, our VEE-BERT method aggregates401

the predictions of the current layer m and the pre-402

vious layers by asking them to vote whether they403

are in favor of (or being consistent with) the exit404

m’s prediction. If there are enough previous layers405

voting in favor of exit m, BERT will make the call406

to exit early.407

5 Experiments408

5.1 Datasets409

We evaluate our VEE-BERT on both nested and410

flat NER tasks. For the nested NER task, we use411

the ACE2004 task8, ACE2005 task9, and GENIA412

task (Kim et al., 2003a). For the flat NER task, we413

evaluate our method on the CONLL2003 (Sang and414

De Meulder, 2003), the OntoNotes 4.0 corpus10,415

and the MSRA NER task (Levow, 2006).416

5.2 Baselines417

BERT biaffine (Yu et al., 2019). This baseline418

model uses all the BERT layers to encode sentences419

and make predictions by the biaffine module at the420

final layer.421

BranchyNet (Teerapittayanon et al., 2016). This422

is a widely adopted method for early exiting and are423

utilized in Liu et al. (2020); Xin et al. (2020a); Li424

et al. (2021). For classification, it uses the entropy425

of the predicted probabilities as the confidence426

level and will exit if the entropy is low. BranchyNet427

based early exiting is the SOTA method for early428

exiting on the NER tasks. However, this method429

can not be directly adopted for the Biaffine NER430

model. We consider using the average entropy431

score on the biaffine table (in Equation 6) as the432

early signal. That is, if the average entropy score433

at an intermediate layer is lower than a pre-defined434

threshold τ , the model will exit.435

Shallow-Deep (Kaya et al., 2019) adopts the436

maximum probability mass of the predicted dis-437

tribution as the early exiting signal for sentence438

8https://catalog.ldc.upenn.edu/LDC2005T09
9https://catalog.ldc.upenn.edu/LDC2006T06

10https://catalog.ldc.upenn.edu/LDC2011T03

(a) ACE2004 task

(b) CONLL2003 task

(c) MSRA task

Figure 3: Quality–efficiency trade-offs using different
exiting strategies. We can see that our two versions of
VEEs consistently outperform the entropy-based base-
line.

classification tasks. To the best of our knowledge, 439

this method has not been adopted for the NER task. 440

In this work, we consider using the average of the 441

maximum probability mass on the biaffine table as 442

the early exiting signal. 443

5.3 Experimental settings 444

To perform a fair comparison, our VEEs and all 445

baseline models adopt the same configuration as 446

follows. English NER tasks use the open-sourced 447

Google BERT (Devlin et al., 2019)11 as the back- 448

bone, and the Chinese tasks adopt the BERT-www- 449

11https://huggingface.co/bert-base-uncased.
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ACE2004 ACE2005 CONLL2003 GENIA MSRA OntoNotes4.0
score layer score layer score layer score layer score layer score layer

BERT biaffine 0.8290 12 0.8086 12 0.9035 12 0.7635 12 0.9438 12 0.8086 12

Shallow-Deep
0.7027 2.68 0.7024 2.78 0.8046 2.9 0.6475 2.79 0.7415 3.1 0.5678 2.92
0.7753 5.14 0.7749 5.48 0.8736 5.42 0.7208 5.79 0.8510 5.92 0.6913 5.54
0.8251 9.21 0.8089 9.63 0.8964 8.71 0.7612 10.1 0.9484 9.93 0.8129 9.66

BranchyNet
0.7031 2.63 0.7014 2.76 0.8082 3.0 0.6486 2.88 0.7406 3.0 0.5633 2.88
0.7755 5.16 0.7751 5.52 0.8732 5.40 0.7212 5.76 0.8504 5.88 0.6907 5.52
0.8263 9.36 0.8104 9.72 0.8957 8.64 0.7605 10.2 0.9475 9.84 0.8137 9.60

VEE-BERT
0.7165 2.63 0.6808 2.16 0.7990 2.52 0.6502 2.76 0.8389 2.39 0.6488 2.63
0.7965 5.64 0.7862 5.39 0.8858 5.16 0.7288 5.40 0.9323 5.88 0.7770 5.52
0.8283 9.24 0.8168 9.0 0.9072 9.48 0.7660 10.08 0.9458 9.84 0.8113 9.72

Table 1: Experimental results of models with BERT backbone on the GLUE’s development set and test set.

ext released from (Cui et al., 2020)12 as the back-450

bone model. We also use ALBERT-base and AL-451

BERT base Chinese by (Lan et al., 2020) as the452

backbone models for ablation studies.453

Our implementation is adapted from the Hug-454

gingface Transformer Library13. We conduct455

searches on experiment settings such as the op-456

timizer, learning rates, batch sizes, and warmup457

steps and discover that changing the original set-458

tings does not result in statistically significant im-459

provements. Random seeds are also unchanged460

from the library for fair comparisons. We fine-tune461

models for at most 25 epochs; early stopping with462

patience eight is performed, and the best check-463

point is selected based on the dev performance464

score.465

Experiments are done on a single NVIDIA P100466

GPU with CUDA 10.1. For inference, we use a467

batch size of 1 since we need to perform early468

exiting based on each individual sample’s difficulty.469

Figure 4: The results of ablation study on whether to
do ensemble of all the available layers upon exiting.

12https://github.com/ymcui/Chinese-BERT-wwm
13https://github.com/huggingface/transformers

5.4 Main results 470

In this section, we compare quality–efficiency 471

trade-offs of our VEEs and the baseline methods. 472

Specifically, we use the average exit layer of all 473

inference samples as the metric of efficiency. We 474

choose this efficiency metric for the following rea- 475

son: (1) it is linear w.r.t. the actual amount of 476

computation; (2) according to our experiments, it 477

is proportional to actual wall-clock runtime, and 478

is also more stable across different runs compared 479

with actual runtime due to randomness by other 480

processes on the same machine. 481

We visualize the trade-offs on the test sets of 482

the benchmark NER tasks in Figures 7. Detailed 483

numbers are also shown in Table 1. Dots in the 484

figures 7 and different rows of Table 1 are gener- 485

ated by varying the patience parameter cnt∗ and/or 486

threshold τ . The main take-aways from the table 487

and figures are as follows: 488

• On the test set, early exiting with our VEE- 489

BERT methods saves a large amount of in- 490

ference computation, with significantly less 491

quality degradation when compared with the 492

baseline methods. 493

• The entropy-based method BranchyNet 494

slightly outperforms the max-probability- 495

based method Shallow-Deep, especially when 496

the average exiting layers are small. 497

• We can see that for most of the six tasks, uti- 498

lizing the intermediate layers of BERT can 499

outperform the whole BERT base model with 500

fewer layers during inference. These results 501

are consistent with the over-thinking phe- 502

nomenon discussed in Section 3. 503

• From Figure 3(c), we can see the performance 504

gaps between BranchyNet and our VEEs are 505
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very significant on the Chinese NER tasks506

when the average exiting layers are low. A507

similar gap occurs on OntoNote 4.0, another508

benchmark Chinese NER task, which can be509

found in the Appendix.510

5.5 Ablation studies511

5.5.1 Ablation on cross-layer ensemble512

Sun et al. (2021) argues that since we have a predic-513

tion module at each layer of BERT, we can conduct514

model ensemble by simply averaging the predicted515

probabilities of each layer we have go through al-516

ready. Although cross-layer ensemble results in517

performances gains in the classification tasks like518

the GLUE benchmark, our experiments show that519

it is not always beneficial for the NER tasks. In520

Figure 4, we conduct the ablation studies on the521

ACE2004 task. We can see that in the NER task,522

cross-layer ensemble as in Sun et al. (2021) does523

not result in consistent performance improvements.524

At the shallow exits, ensemble distracts the current525

layer from making the correct decisions. However,526

as the layer number increases, ensemble indeed527

slightly improves model generalization. 14528

5.5.2 Ablation on the consistency measures529

In our main experiments, we use the KL divergence530

as the consistency measure. To validate our choice,531

we now conduct ablation experiments showing KL532

divergence works the best among the consistency533

measurements we present in Subsection 4.1. The534

ablation results are conducted on the ACE2004535

task, and the results are presented in Figure 5. We536

can conclude that KL divergence consistently re-537

sults in better early exiting performances across538

different values of the patience parameter. And edit539

distance is the second-best consistency measure.540

5.5.3 Ablation on the different backbones.541

Although our main results are conducted on the542

BERT backbones, our VEE-BERT methods are off-543

the-shelf and also work well on other PLMs. We544

conduct experiments on the ALBERT base model.545

The results are shown in the Figure 6, which shows546

that our VEE-BERT early exiting mechanism is a547

plug-and-play method that can be used in different548

PLMs.549

6 Conclusion550

In this work, we investigate whether we can acceler-551

ate the inference speeds of the BERT biaffine NER552

14Results on the MSRA task can be found in the Appendix.

Figure 5: The results of ablation studies on the consis-
tency measures. We can see that KL divergence consis-
tently outperforms the other distance measures.

Figure 6: With ALBERT, our VEE-BERT method also
performs well.

model. Pilot experiments show that the BERT bi- 553

affine model suffers from an over-thinking problem 554

when applied in the NER tasks. To take advantage 555

of the intermediate layers of BERT to speed up 556

BERT inference, we propose Vote Early Exiting 557

(VEE-BERT). Our VEE-BERT method compares 558

the predictions of the current layer to all the pre- 559

vious layers. Comparison between the predictions 560

of the two layers is made via distance measures 561

like KL divergence, Euclidean distance, etc. If 562

there are enough previous layers that are consis- 563

tent with the current prediction, BERT will stop 564

inference and exit at the current layer. Our VEE- 565

BERT method mimics voting among the interme- 566

diate layers. Experiments on six benchmark NER 567

tasks demonstrate that: (a) Our VEE-BERT method 568

consistently outperforms the previous SOTA early 569

exiting methods; (b) KL divergence works best 570

with our VEE-BERT method as the consistency 571

measure; (c) ablation studies show that our VEE- 572

BERT is off-the-shelf and work well with other 573

pre-trained models. 574
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A Example Appendix 742

A.1 Introduction to the NER tasks 743

ACE2004 and ACE2005 The two datasets each 744

contain 7 entity categories. For each entity type, 745

there are annotations for both the entity mentions 746

and mention heads. For fair comparison, we exactly 747

follow the data pre-processing strategy in Lu and 748

Roth (2015) to split the data into 80%, 10%, 10% 749

for train, development and test set respectively. 750

GENIA Kim et al. (2003a). For GENIA, we 751

use the GENIA v3.0.2 corpus. We preprocess the 752

dataset following the same settings of Katiyar and 753

Cardie (Katiyar and Cardie, 2018). 754

CoNLL2003 (Sang and De Meulder, 2003) is an 755

English dataset with four types of named entities: 756

Location, Organization, Person and Miscellaneous. 757

We followed data processing protocols in Ma and 758

Hovy (2016). 759

OntoNotes 4.0 is a Chinese dataset and consists 760

of text from news domain. OntoNotes 4.0 annotates 761

18 named entity types. In this paper, we take the 762

same data split as Wu et al. (2019). 763

MSRA (Levow, 2006) is a Chinese dataset and 764

performs as a benchmark dataset. Data in MSRA is 765

collected from news domain and is used as shared 766

task on SIGNAN backoff 2006. There are three 767

types of named entities. 768

A.2 Quality–efficiency trade-offs on 3 NER 769

tasks 770

In the main content, we present the qual- 771

ity–efficiency trade-offs curves for 3 benchmark 772

NER tasks. And here we put the results of 773

ACE2005, GENIA, and OntoNotes 4.0 in the ap- 774

pendix, due to length limit of the main content. 775

A.3 Ablation study on the cross-layer 776

ensemble 777

In Figure 4, we conduct the ablation studies on the 778

ACE2004 task. Similar results (in Figure 8) can be 779

observed on the MSRA task. The ensemble results 780

in worse performances at the shallow layers and 781

slight improvements at the deeper layers. 782
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(a) ACE2005 task (b) GENIA task

(c) OntoNotes 4.0 task

Figure 7: Quality–efficiency trade-offs using different exiting strategies. We can see that our two versions of VEEs
consistently outperform the entropy-based baseline.

Figure 8: The performance comparison on the MSRA
task between VEE-BERT without cross-layer ensemble
and that with.

11


