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Abstract

Named entity recognition (NER) is of great
importance for a wide range of tasks, such as
medical health record understanding, document
analysis, dialogue understanding. BERT and
its variants are the most performing models
for NER. However, these models are notori-
ous for being large and slow during inference.
Thus their usage in the industry is limited. Pi-
lot experiments exhibit that in the NER task,
BERT suffers from the severe over-thinking
problem, thus motivating BERT to exit early at
intermediate layers. Thus, in this work, we pro-
pose a novel method, Vote Early Exiting BERT
(VEE-BERT), for improving the early exiting
of BERT on NER tasks. To be able to deal with
complex NER tasks with nested entities, we
adopt the Biaffine NER model (Yu et al., 2020),
which converts a sequence labeling task to the
table filling task. VEE-BERT makeS early exit-
ing decisions by comparing the predictions of
the current layer with those of the previous lay-
ers. Experiments on six benchmark NER tasks
demonstrate that our method is effective in ac-
celerating the BERT Biaffine model’s inference
speed with less performance loss compared to
the baseline early exiting method.

1 Introduction

Since BERT (Devlin et al., 2018), the pre-trained
language models (PLMs) become the default state-
of-the-art (SOTA) models for natural language pro-
cessing (NLP). The recent years have witnessed
the rise of many PLMs, such as GPT (Radford
et al., 2019), XLNet (Yang et al., 2019), and AL-
BERT (Lan et al., 2020), and so forth. These BERT-
style models achieved considerable improvements
in many Natural Language Processing (NLP) tasks
by pre-training on the unlabeled corpus and fine-
tuning on labeled tasks, such as text classification,
natural language inference (NLI), sequence label-
ing, etc. Despite their great performances, there
are two issues for PLMs.

First, previous studies show that PLMs such
as BERT suffer from the over-thinking problem.
(Zhou et al., 2020; Zhu et al., 2021; Zhu, 2021)
shows that in the sentence classification task,
BERT’s last few layers may be too deep for some
samples. For a sentence classification task, if we in-
sert a classifier on a certain intermediate layer and
drop the deeper layers, these intermediate layers
may outperform the last layer. Note that the pre-
vious literature focuses on the classification task,
which is at the sentence level. Thus, one may
wonder, is over-thinking present in the more fine-
grained tasks like named entity recognition?

We conducted a pilot experiment on the
ACE2004! task, which is a nested NER task, and
the CONLL2003 (Tjong Kim Sang and De Meul-
der, 2003) task, which is a flat NER task. Figure
1(a) and 1(b) shows that the over-thinking problem
is present in the NER tasks. On both tasks, layer 9
performs the best, and there are four layers that are
better than the last layer. The overthinking problem
motivates us to only use a portion of the BERT base
to make predictions on the test samples.

The second drawback of PLMs is their high la-
tency. NER and other sequence labeling tasks play
a central role in many application scenarios, such as
question answering, document search, document-
level information extraction, etc. However, these
applications require low latency. For example, an
online search engine needs to respond to the user’s
query in less than 100 milo-seconds. Thus, a NER
module should be efficient and accurate. In addi-
tion, a special feature of consumer queries is that
there are time intervals that the number of queries is
extremely high. For example, during dinner hours,
food search engines will be used much often than
usual. Thus, it is important for deployed models to
adjust their latency dynamically.

There exists a branch of literature focusing on
making PLMs’ inference more efficient via adap-
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Figure 1: This figure demonstrates that the overthinking
problem prevails in the NER tasks.

tive inference (Zhou et al., 2020; Xin et al., 2020a;
Liu et al., 2020). The idea of adaptive inference
is to process simple examples with only shallow
layers of BERT and process more difficult queries
with deeper layers, thus significantly speeding up
the inference time on average while maintaining
high accuracy. The speed-up ratio can be easily
controlled with certain hyper-parameters without
re-deploying the model services or maintaining a
group of models. Early exiting is one of the most
important adaptive inference methods (Bolukbasi
etal.,2017). As depicted in Figure 2, it implements
adaptive inference by installing an early exit, i.e.,
an intermediate prediction layer, at each layer of
BERT and early exiting "easy" samples to speed
up inference. At the training stage, all the exits are
jointly optimized with BERT’s parameters. At the
inference stage, some strategies for early exiting
are designed to decide whether to exit at each layer
given the currently obtained predictions (from pre-
vious and current layers) (Teerapittayanon et al.,
2016; Kaya et al., 2019; Xin et al., 2020a; Zhou
et al., 2020). In this mode, different samples can
exit at different depths.

Biaffine
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Figure 2: Our proposed VEE-BERT method for accel-
erating BERT biaffine NER model’s inference speed.
VEE-BERT compares the current layer with the previ-
ous layers. It will decide to exit at the current layer
when there are enough previous layers making predic-
tions that are consistent with the current layer’s.

In order for our framework to be generally ap-
plicable, we mainly adopt the biaffine model (Yu
et al., 2020) for NER. The biaffine model converts
the NER task into a 2-dimensional table filling
task, thus providing a solution to the nested NER
problem. (Yu et al., 2020) shows that the biaffine
model can achieve the state-of-the-art (SOTA) per-
formances on not only nested NER tasks but also
flat NER tasks.

In this work, we propose a novel early exiting
method, VEE-BERT, designated for the NER task.
Different from previous work such as DeeBERT
(Xin et al., 2020b) and RightTool (Schwartz et al.,
2020), we look into the consistency of different
intermediate layers. At a certain intermediate layer,
we first compute the biaffine logits. VEE-BERT
mainly uses the KL divergence as the measurement
of consistency. That is, if the KL divergence be-
tween two layers’ logits is small, their predictions
are consistent with each other. Our VEE-BERT
compares the current layer’s prediction with the
lower layers’. If the number of previous intermedi-
ate layers that have consistent predictions with the
current layer exceeds the patience parameter, BERT
will stop further inference and exit. Intuitively, the
decision of early exit is made when enough layers
agree with one another and make the votes. Thus,
our method can be seen as the ensemble of the
current and previous layers.

Extensive experiments are conducted on the six
benchmark NER tasks. Three of the tasks are



nested NER tasks, ACE2004%, ACE2005°, GENIA
(Kim et al., 2003b). We also experiment on three
flat NER tasks, CONLL2003 (Tjong Kim Sang
and De Meulder, 2003), OntoNotes 4.0 Chinese*
and the Chinese MSRA task (Levow, 2006). We
show that our VEE-BERT consistently achieves
better performances under the same speed-up ratio,
compared with a series of the previous early exit-
ing methods. Deeper analysis and ablation studies
result in the following main takeaways: (a) our
method works for different pre-trained language
models (PLMs) like ALBERT; (b) we compare
with a wide range of consistency measures, such as
edit distance, Euclidean distance, cosine similarity,
and demonstrate that KL divergence performs the
best.

The rest of the paper is organized as follows.
First, we introduce the preliminaries for the Bi-
affine NER model and early exiting. Second, we
elaborate on our VEE-BERT method. Third, we
conduct experiments on 6 NER tasks and conduct
a series of ablations studies. Finally, we conclude
with possible future works.

2 Preliminaries

In this section, we introduce the necessary back-
ground for BERT and early exiting. Throughout
this work, we consider the case of a NER task with
samples {(z,y),z € X,y € V,i = 1,2,...., N},
e.g., sentences and their NER span information,
and the number of entity categories is K (includ-
ing the non-entity type label). The input sequence
length after BERT’s subword tokenization is L.

2.1 Backbone models

In this work, we adopt BERT as the backbone
model. BERT is a multi-layer Transformer
(Vaswani et al., 2017) network, which is pre-trained
in a self-supervised manner on a large corpus. In
the ablation studies, we also use ALBERT (Lan
et al., 2020) as backbones. ALBERT is more
lightweight than BERT since it shares parameters
across different layers, and the embedding matrix
is factorized. The number of transformer layers
of our backbone is denoted as M, and the hidden
dimension is d.
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2.2 The Biaffine model for NER

The BERT-Biaffine model (Yu et al., 2019) trans-
form the NER task into a two-dimensional table
filling task. It asks the model to identify whether
the slot in the table with coordinate (s, e) corre-
sponds to an entity with category k, that is, whether
a pair of tokens (zs,z.) in the input sequence
x = (z1,22,,,,,2r) is the start and end tokens
for an entity with category k. Formally, after BERT
encoding, the contextualized embedding of tokens
s and e are hy and he (hs, he € R%). Then in a bi-
affine layer f, the score of span (s, e) is calculated
by’

f(s,e) = hTUhe + W(hs @ he) +b. (1)

Since we need to calculate the scores for K entity
categories, U is a d X K x d tensor, and W is a 2d x
K tensor. f(s,e) € RX is the scores (or logits).
A softmax operation will transform f(s, e) into a
probability distribution p(s, e), which represents
how likely the span (s, €) is a category k entity.

The learning objective of the biaffine model is
to assign a correct category (including the non-
entity) to each valid span. Hence it is a multi-
class classification problem at each slot of the two-
dimensional table and can be optimized with cross-
entropy loss:

L K
L=-— Zzzz(y(‘s?e) = k)logpi(s,e),

s=1 e=s k=1
(2)

where y(s,e) is the ground-truth label of span
(s,e), pr(s,e) is the predicted probability mass of
(s, e) having label k, and Z(-) is the indicator func-
tion. After fine-tuning the BERT biaffine model,
the inference procedure of the BERT biaffine model
follows Yu et al. (2019).

2.3 Early-exiting Architecture

As depicted in Figure 2, early exiting architectures,
or multi-exit architectures, are networks with exits®
at each transformer layer. Since the previous litera-
ture usually considers sentence-level classification
tasks, the exits are classifiers. However, since we
are dealing with sequence labeling tasks formulated

>Note that in the BERT biaffine NER (Yu et al., 2019), two
feed forward layers are designated to transform the features
of hs and h.. However, we find that dropping the two feed
forward layers and increase the learning rate for the biaffine
module result in slightly better test performances.

Some literature (e.g., DeeBERT (Xin et al., 2020a)) also
refers to exits as off-ramps.



as two-dimensional table filling, with M exits, M
separate biaffine modules f(™) are installed right
after each layer of BERT (m = 1,2, ..., M), and
the scores for span (s, €) at layer m is given by:

F(s,e) = hTU™he + W (hy @ he) 4+,

3)
And the loss function at each layer becomes
rm) —
L L K
=YY Tly(s.e) = k) logp™ (s.),
s=1 e=s k=1
“4)

where p(") (s, €) = Softmax(f(™)(s, e)) is the pre-
dicted probability distribution at exit m.

2.3.1 Training

At the training stage, all the exits are jointly op-
timized with a summed loss function. Following
Huang et al. (2017) and Zhou et al. (2020), the loss
function is the weighted average of the losses (from
Equation 4):

M
_omx L)
— Zm—l ) (5)

M
Zm:l m

Note that the weight m corresponds to the relative
inference cost of exit m.

EWA

2.3.2 Inference

At inference, the multi-exit BERT can operate in
two different modes, depending on whether the
computational budget to classify an example is
known or not.

Budgeted Exiting. If the computational budget
is known, we can directly appoint a suitable exit
m* of BERT, f(™"), to predict all queries.

Dynamic Exiting. Under this mode, after re-
ceiving a query input z, the model starts to predict
on the classifiers f(l), f(g), ..., In turn in a forward
pass, reusing computation where possible. It will
continue to do so until it receives a signal to stop
early at an exit m* < M, or arrives at the last exit
M. At this point, it will output the final predictions
based on the current and previous predictions. Note
that under this early exit setting, different samples
might exit at different layers.

3 Over-thinking problems in the NER
tasks

Although the over-thinking problem in the sentence
classification task is investigated in Zhou et al.

(2020); Zhu (2021); Zhu et al. (2021), whether
BERT has the over-thinking problem in the NER
task is neglected by the literature. Thus, we
first conduct pilot experiments on two benchmark
NER tasks, ACE2004, a nested NER task, and
CoNLL2003 (Sang and De Meulder, 2003), a flat
NER task. We measure the confidence level of an
exit m by the average predicted distribution entropy
on the two-dimensional table:

L SE p™ (s e) xlogpl™ (s, €)

IR oY
9" =~ Zz_: k]o;(lk/K) * (L(L+1)/2)
(6)

This confidence level is thoroughly studied in Teer-
apittayanon et al. (2016); Xin et al. (2020a). Note
that low entropy indicates the current layer has high
confidence.

In Figure 1(a) and 1(b), we plot each layer’s aver-
age confidence level and the micro-fl score on the
development sets of ACE2004 and CoNLL2003.
We can clearly see that, generally, as more layers
of the pre-trained BERT are utilized during predic-
tion, the model becomes quite confident. However,
more layers may not result in better performances.
On the ACE2004 task, BERT’s layer 9 achieves
the highest score, and the performances drop as
the number of layers further increases. Similarly,
results can also be found on the CoNLL2003 task.

The results in Figure 1(a) and 1(b) convey two
important messages.

* First, the "overthinking" phenomenon is simi-
lar to the observations on the sentence classi-
fication task (Kaya and Dumitras, 2018; Zhou
et al., 2020; Zhu, 2021). This phenomenon
is a direct motivation for early exiting since
some of the input queries do not need to uti-
lize the full capacity of BERT to obtain the
correct prediction.

* In the classification task, when the layer depth
increases, the average confidence level will
usually monotonically increase. However, we
can see that in Figure 1(a) and 1(b), the depth-
confidence curve drops quite drastically at
the first few layers and fluctuates on deeper
layers. And the first 2-3 layers can already
achieve high confidence while their perfor-
mances have a clear gap from the final layer.
Thus, the confidence level is not an effective
representation of the NER task’s difficulty or
performance score.



With the observation of overthinking problems
in NER, we are motivated to design an early exiting
strategy to avoid unnecessary computation and in-
crease the inference speed. Previous work (Li et al.,
2021) design early exiting strategies for NER based
on the confidence level, which can be seen as the
NER version of BranchyNet (Teerapittayanon et al.,
2016). However, our pilot experiments show that
entropy is not a proper estimation for the model to
determine whether the sample is well understood
and predicted.

4 Vote Early Exiting

Note that the entropy-based early exiting method
makes the exiting decision based on the prediction
of a single intermediate layer. However, the multi-
exit BERT has a series of layers that may convey
important information for us. Thus, we focus on
designing an early exiting mechanism based on the
outputs of multiple layers.

In this work, we propose Voting Early Exiting
BERT (VEE-BERT), a novel off-the-shelf early ex-
iting method that can speedup the BERT biaffine
models’ inference speed without changing the fine-
tuned model. VEE-BERT mines the early exit-
ing signal from the comparison among the biaffine
scores of the intermediate layers. We first elabo-
rate on how we compare the biaffine scores of two
exits and when we will consider the predictions
consistent with each other, then we will present our
VEE-BERT.

4.1 Consistency measures

We denote the table of distributions predicted by
the biaffine exit m as 7™ = {p(™) (s, e)|s, e €

., L}, whichisa L x L x K tensor. With two
exits, m1 and mo (M1 < msg), we want to measure
whether and to what degree their predictions are in
consistency with each other, or similar to each other.
The consistency score between 7 (1) and 7(™2) is
denoted as C/(7(™1), 7(m2)) 1f (T (™) T(m2))
increases, the predictions of m; and mo are more
in consistency with each other.

We can select from the four measures:

* Distance of probability distributions. Since
we have a probability distribution p(™) (s, e)
at each slot of the two-dimensional table, it
is natural to use the average Kullback-Leibler

divergence (Kullback and Leibler, 1951):
C(T(ml) T(mz))

Dkr(p
- Z Z log(1

s=1 e=s

(s, €)|[p"2) (s, €))
«(L(L+1)/2) 7
(N
where Dy, (p||q) is the KL divergence from
the distribution ¢ to p.”

« Euclidean distance. Since 7("1) and 7("2)
are L x L x K tensors, we can use the neg-
ative of Euclidean distance to measure their
distance.

« Cosine similarity. We can reshape 7 (") and
7 (m2) into vectors and use the cosine similar-
ity as the consistency measure.

» Edit distance. In this method, we fill the two-
dimensional table with the labels that receive
the maximum probability scores and reshape
the table into a single-dimensional list. Af-
ter the transformation, we can calculate the
edit distance between the lists coming from
T(m1) and T7(m2) and use the negative of edit
distance as the consistency measure.

We adopt the negative of average KL diver-
gence as the default consistency measure. We will
conduct ablation studies and compare the perfor-
mances of different consistency measures.

4.2 VEE

Recall that early stopping (Girosi et al., 1995) oc-
curs when the training loss becomes stable and
parameter updates no longer begin to yield im-
proves on a validation set. By analog, we make
the early exiting decision based on the cross-layer
comparison. The inference process of VEE-BERT
is depicted in Figure 2. In VEE-BERT, we need
two hyper-parameters, consistency score 7 and the
patience parameter cnt*.

Assume the forward pass has arrived at the inter-
mediate layer m, and we use exit m to obtain the
table of predicted distribution 7("™). We initialize
a patience counter cnt,, with value 0. We now com-
pare 7(m) with each of the previous layer’s predic-
tion 7 (i € {1,2,...,n — 1}). If the consistency

"We also experiment on using alternative distance mea-
sures for probability distributions, such as Helinger coeffi-
cient (Hellinger), Jensen—Shannon divergence (Manning and

Schiitze, 2002), and so on, but does not result in any statisti-
cally significant improvements.



score C'(TW, 7(™) is larger than the threshold 7,
cnt,, will add 1. If cnt,, reaches or exceeds the pre-
defined patience parameter cnt*, we can early exit
at the current layer m and consider cnt,, as the fi-
nal prediction. If this condition can not be satisfied
at the intermediate layers, the model makes the full
forward pass and use the whole BERT backbone
for prediction.

Intuitively, our VEE-BERT method aggregates
the predictions of the current layer m and the pre-
vious layers by asking them to vote whether they
are in favor of (or being consistent with) the exit
m’s prediction. If there are enough previous layers
voting in favor of exit m, BERT will make the call
to exit early.

5 Experiments

5.1 Datasets

We evaluate our VEE-BERT on both nested and
flat NER tasks. For the nested NER task, we use
the ACE2004 task®, ACE2005 task®, and GENIA
task (Kim et al., 2003a). For the flat NER task, we
evaluate our method on the CONLL2003 (Sang and
De Meulder, 2003), the OntoNotes 4.0 corpuslo,
and the MSRA NER task (Levow, 2006).

5.2 Baselines

BERT biaffine (Yu et al., 2019). This baseline
model uses all the BERT layers to encode sentences
and make predictions by the biaffine module at the
final layer.

BranchyNet (Teerapittayanon et al., 2016). This
is a widely adopted method for early exiting and are
utilized in Liu et al. (2020); Xin et al. (2020a); Li
et al. (2021). For classification, it uses the entropy
of the predicted probabilities as the confidence
level and will exit if the entropy is low. BranchyNet
based early exiting is the SOTA method for early
exiting on the NER tasks. However, this method
can not be directly adopted for the Biaffine NER
model. We consider using the average entropy
score on the biaffine table (in Equation 6) as the
early signal. That is, if the average entropy score
at an intermediate layer is lower than a pre-defined
threshold 7, the model will exit.

Shallow-Deep (Kaya et al., 2019) adopts the
maximum probability mass of the predicted dis-
tribution as the early exiting signal for sentence

8https://catalog.ldc.upenn.edu/LDC2005T09
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Figure 3: Quality—efficiency trade-offs using different
exiting strategies. We can see that our two versions of
VEEs consistently outperform the entropy-based base-
line.

classification tasks. To the best of our knowledge,
this method has not been adopted for the NER task.
In this work, we consider using the average of the
maximum probability mass on the biaffine table as
the early exiting signal.

5.3 Experimental settings

To perform a fair comparison, our VEEs and all
baseline models adopt the same configuration as
follows. English NER tasks use the open-sourced
Google BERT (Devlin et al., 2019)!! as the back-
bone, and the Chinese tasks adopt the BERT-www-

"https://huggingface.co/bert-base-uncased.



ACE2004 ACE2005 CONLL2003 GENIA MSRA OntoNotes4.0
score layer score layer score layer score layer score layer score layer

BERT biaffine | 0.8290 12 0.8086 12 09035 12 0.7635 12 09438 12 0.8086 12
0.7027 2.68 0.7024 278 0.8046 29 0.6475 279 0.7415 3.1 0.5678 2.92
Shallow-Deep | 0.7753 5.14 0.7749 548 0.8736 542 0.7208 579 0.8510 592 0.6913 5.54
0.8251 9.21 0.8089 9.63 0.8964 871 0.7612 10.1 0.9484 9.93 0.8129 9.66
0.7031 2.63 0.7014 2.76 0.8082 3.0 0.6486 2.88 0.7406 3.0 0.5633 2.88
BranchyNet | 0.7755 5.16 0.7751 552 0.8732 540 0.7212 5.76 0.8504 5.88 0.6907 5.52
0.8263 9.36 0.8104 9.72 0.8957 8.64 0.7605 102 09475 9.84 0.8137 9.60
0.7165 2.63 0.6808 2.16 0.7990 252 0.6502 276 0.8389 239 0.6488 2.63
VEE-BERT | 0.7965 5.64 0.7862 539 0.8858 5.16 0.7288 540 0.9323 5.88 0.7770 5.52
0.8283 9.24 0.8168 9.0 0.9072 9.48 0.7660 10.08 0.9458 9.84 0.8113 9.72

Table 1: Experimental results of models with BERT backbone on the GLUE’s development set and test set.

ext released from (Cui et al., 2020)'? as the back-
bone model. We also use ALBERT-base and AL-
BERT base Chinese by (Lan et al., 2020) as the
backbone models for ablation studies.

Our implementation is adapted from the Hug-
gingface Transformer Library'>. We conduct
searches on experiment settings such as the op-
timizer, learning rates, batch sizes, and warmup
steps and discover that changing the original set-
tings does not result in statistically significant im-
provements. Random seeds are also unchanged
from the library for fair comparisons. We fine-tune
models for at most 25 epochs; early stopping with
patience eight is performed, and the best check-
point is selected based on the dev performance
score.

Experiments are done on a single NVIDIA P100
GPU with CUDA 10.1. For inference, we use a
batch size of 1 since we need to perform early
exiting based on each individual sample’s difficulty.

ACE2004 task: whether to do ensemble
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Figure 4: The results of ablation study on whether to
do ensemble of all the available layers upon exiting.
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In this section, we compare quality—efficiency
trade-offs of our VEEs and the baseline methods.
Specifically, we use the average exit layer of all
inference samples as the metric of efficiency. We
choose this efficiency metric for the following rea-
son: (1) it is linear w.r.t. the actual amount of
computation; (2) according to our experiments, it
is proportional to actual wall-clock runtime, and
is also more stable across different runs compared
with actual runtime due to randomness by other
processes on the same machine.

We visualize the trade-offs on the test sets of
the benchmark NER tasks in Figures 7. Detailed
numbers are also shown in Table 1. Dots in the
figures 7 and different rows of Table 1 are gener-
ated by varying the patience parameter cnt* and/or
threshold 7. The main take-aways from the table
and figures are as follows:

Main results

* On the test set, early exiting with our VEE-
BERT methods saves a large amount of in-
ference computation, with significantly less
quality degradation when compared with the
baseline methods.

* The entropy-based method BranchyNet
slightly outperforms the max-probability-
based method Shallow-Deep, especially when
the average exiting layers are small.

* We can see that for most of the six tasks, uti-
lizing the intermediate layers of BERT can
outperform the whole BERT base model with
fewer layers during inference. These results
are consistent with the over-thinking phe-
nomenon discussed in Section 3.

* From Figure 3(c), we can see the performance
gaps between BranchyNet and our VEEs are



very significant on the Chinese NER tasks
when the average exiting layers are low. A
similar gap occurs on OntoNote 4.0, another
benchmark Chinese NER task, which can be
found in the Appendix.

5.5 Ablation studies

5.5.1 Ablation on cross-layer ensemble

Sun et al. (2021) argues that since we have a predic-
tion module at each layer of BERT, we can conduct
model ensemble by simply averaging the predicted
probabilities of each layer we have go through al-
ready. Although cross-layer ensemble results in
performances gains in the classification tasks like
the GLUE benchmark, our experiments show that
it is not always beneficial for the NER tasks. In
Figure 4, we conduct the ablation studies on the
ACE2004 task. We can see that in the NER task,
cross-layer ensemble as in Sun et al. (2021) does
not result in consistent performance improvements.
At the shallow exits, ensemble distracts the current
layer from making the correct decisions. However,
as the layer number increases, ensemble indeed
slightly improves model generalization. '#

5.5.2 Ablation on the consistency measures

In our main experiments, we use the KL divergence
as the consistency measure. To validate our choice,
we now conduct ablation experiments showing KL
divergence works the best among the consistency
measurements we present in Subsection 4.1. The
ablation results are conducted on the ACE2004
task, and the results are presented in Figure 5. We
can conclude that KL divergence consistently re-
sults in better early exiting performances across
different values of the patience parameter. And edit
distance is the second-best consistency measure.

5.5.3 Ablation on the different backbones.

Although our main results are conducted on the
BERT backbones, our VEE-BERT methods are off-
the-shelf and also work well on other PLMs. We
conduct experiments on the ALBERT base model.
The results are shown in the Figure 6, which shows
that our VEE-BERT early exiting mechanism is a
plug-and-play method that can be used in different
PLMs.

6 Conclusion

In this work, we investigate whether we can acceler-
ate the inference speeds of the BERT biaffine NER

4Results on the MSRA task can be found in the Appendix.

ACE2004 task: ablation on the consistency measures
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Figure 5: The results of ablation studies on the consis-
tency measures. We can see that KL divergence consis-
tently outperforms the other distance measures.

ACE2004 task: avg layers vs. Score

, --e-- entropy-based
0.74 ——=-  ALBERT base
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Figure 6: With ALBERT, our VEE-BERT method also
performs well.

model. Pilot experiments show that the BERT bi-
affine model suffers from an over-thinking problem
when applied in the NER tasks. To take advantage
of the intermediate layers of BERT to speed up
BERT inference, we propose Vote Early Exiting
(VEE-BERT). Our VEE-BERT method compares
the predictions of the current layer to all the pre-
vious layers. Comparison between the predictions
of the two layers is made via distance measures
like KL divergence, Euclidean distance, etc. If
there are enough previous layers that are consis-
tent with the current prediction, BERT will stop
inference and exit at the current layer. Our VEE-
BERT method mimics voting among the interme-
diate layers. Experiments on six benchmark NER
tasks demonstrate that: (a) Our VEE-BERT method
consistently outperforms the previous SOTA early
exiting methods; (b) KL divergence works best
with our VEE-BERT method as the consistency
measure; (c) ablation studies show that our VEE-
BERT is off-the-shelf and work well with other
pre-trained models.
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A Example Appendix

A.1 Introduction to the NER tasks

ACE2004 and ACE2005 The two datasets each
contain 7 entity categories. For each entity type,
there are annotations for both the entity mentions
and mention heads. For fair comparison, we exactly
follow the data pre-processing strategy in Lu and
Roth (2015) to split the data into 80%, 10%, 10%
for train, development and test set respectively.

GENIA Kim et al. (2003a). For GENIA, we
use the GENIA v3.0.2 corpus. We preprocess the
dataset following the same settings of Katiyar and
Cardie (Katiyar and Cardie, 2018).

CoNLL2003 (Sang and De Meulder, 2003) is an
English dataset with four types of named entities:
Location, Organization, Person and Miscellaneous.
We followed data processing protocols in Ma and
Hovy (2016).

OntoNotes 4.0 is a Chinese dataset and consists
of text from news domain. OntoNotes 4.0 annotates
18 named entity types. In this paper, we take the
same data split as Wu et al. (2019).

MSRA (Levow, 2006) is a Chinese dataset and
performs as a benchmark dataset. Data in MSRA is
collected from news domain and is used as shared
task on SIGNAN backoff 2006. There are three
types of named entities.

A.2 Quality—efficiency trade-offs on 3 NER
tasks

In the main content, we present the qual-
ity—efficiency trade-offs curves for 3 benchmark
NER tasks. And here we put the results of
ACE2005, GENIA, and OntoNotes 4.0 in the ap-
pendix, due to length limit of the main content.

A.3 Ablation study on the cross-layer
ensemble

In Figure 4, we conduct the ablation studies on the
ACE2004 task. Similar results (in Figure 8) can be
observed on the MSRA task. The ensemble results
in worse performances at the shallow layers and
slight improvements at the deeper layers.
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Figure 7: Quality—efficiency trade-offs using different exiting strategies. We can see that our two versions of VEEs
consistently outperform the entropy-based baseline.
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Figure 8: The performance comparison on the MSRA
task between VEE-BERT without cross-layer ensemble
and that with.
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