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Abstract
Multi-view clustering has proven to be highly effective in exploring
consistency information across multiple views/modalities when
dealing with large-scale unlabeled data. However, in the real world,
multi-view data is often distributed across multiple entities, and due
to privacy concerns, federated multi-view clustering solutions have
emerged. Existing federated multi-view clustering algorithms often
result in misalignment in feature representations among clients, dif-
ficulty in integrating information across multiple views, and poor
performance in heterogeneous scenarios. To address these chal-
lenges, we propose HFMVC, a heterogeneity-aware federated deep
multi-view clustering method. Specifically, HFMVC adaptively per-
ceives the degree of heterogeneity in the environment and employs
contrastive learning to explore consistency and complementarity
information across clients’ multi-view data. Besides, we seek con-
sensus among clients where local data originates from the same
view, incorporating a contrastive loss between local models and
the global model during local training to adjust consistency among
local models. Furthermore, we elucidate the sample representa-
tion logic for local clustering in different heterogeneous environ-
ments, identifying the degree of heterogeneity by computing the
within-cluster sum of squares (WCSS) and the average inter-cluster
distance (AICD). Extensive experiments verify the superior perfor-
mance of HFMVC across both IID and Non-IID settings.
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1 Introduction
Perceiving the same thing from multiple perspectives often allows
for a more comprehensive understanding of the information. In re-
cent years, the rapid development of multimedia technology [10, 12]
has generated a substantial amount of unlabeled multimodal data,
posing a challenge for clustering analysis of multi-view data. In
response, Multi-View Clustering (MVC) [2, 3, 5, 6, 11] methods have
been proposed and gained momentum. These methods expedite the
exploration of consistent and complementary information within
the data by fostering collaboration across multiple views, thereby
achieving a comprehensive clustering structure.

However, most existing MVC methods [23, 41, 44, 46] are built
on the assumption of centralization, presuming that multi-view
data is stored within a single entity, which proves challenging to
apply in many real-world scenarios. For example, patients may
undergo relevant examinations at different hospitals. Only through
the aggregation of the medical data can their health status be accu-
rately reflected. However, the simplistic consolidation of this data
may give rise to privacy concerns [25]. To address this challenge,
Federated Learning (FL) [17, 35] presents a promising approach
by aggregating individual client models through a central server
while preserving the privacy of raw data. The integration of FL with
MVC, referred to as Federated Multi-View Clustering (FedMVC)
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Figure 1: Problem illustration of existing FedMVC methods.

[8], which aims to explore a more comprehensive clustering struc-
ture from unlabeled multi-view data distributed across multiple
clients while preserving privacy [21]. Despite the demonstrated po-
tential of FedMVC in distributed environments, the amalgamation
of these technologies has not garnered sufficient attention due to
three crucial challenges, as depicted in Figure 1.

(1) Challenge 1: Due to the heterogeneity of local data, random-
ness in the training process, and differences in training time and
computational resources among clients, there are inconsistencies in
the feature representations encoded by the clients. Specifically, data
representations on each client may exhibit angular deviation [51],
so an effective method is needed to align these representations.

(2) Challenge 2: Heterogeneity intensifies this misalignment,
as data from different clients may vary in terms of categories and
quantities. While some methods [26, 28, 30, 53] address the chal-
lenge of non-independent and identically distributed (Non-IID) data
in federated learning, they fall short when it comes to handling
unsupervised learning tasks, making them difficult to apply directly.

(3) Challenge 3: Multi-view data may be distributed across mul-
tiple clients, resulting in non-uniformity between the feature spaces
encoded by each client. Therefore, efficiently performingmulti-view
information mining across multiple clients is challenging.

Our solution: To address the aforementioned challenges, we pro-
pose HFMVC, a Heterogeneity-aware Federated deep Multi-View
Clustering method. HFMVC is designed for distributed scenarios
where each client possesses data from a single view. Specifically,
each client learns representations specific to a single view by de-
ploying an autoencoder to encode and reconstruct its local data.
Then we map the encoded features from all views into a unified
high-level space to eliminate irrelevant information. Based on this,
we address the aforementioned challenges through the following
methods: (1) To tackle the misalignment between representations
generated by different clients mentioned inChallenge 1, we employ
selective aggregation, wherein the server aggregates only the local
models uploaded by clients with the same view data at a given time.
This allows knowledge to be shared among these clients, improving

their ability to represent data from the same view and aligning their
encoded features in the feature space. (2) To mitigate the negative
impact of heterogeneous data on feature representation mentioned
in Challenge 2, our objective is to reveal the differences in fea-
ture representations across different heterogeneous environments
and adopt targeted feature learning approaches. By evaluating the
within-cluster sum of squares (𝑊𝐶𝑆𝑆) and the average inter-cluster
distance (𝐴𝐼𝐶𝐷) of the concatenated high-level features, we can
measure the degree of heterogeneity and assess the training trends
of local models, thus conducting model-level contrastive learning.
(3) To address the challenge of conducting feature learning across
multiple clients mentioned in Challenge 3, we use a trusted server
to facilitate the exchange of high-level features. The dual contrastive
learning module allows each client to learn multi-view features,
ultimately leading to the exploration of clearer clustering structures.
Through these measures, we can evaluate the heterogeneity of the
environment based on the characteristics of the initial local clus-
tering and promote the flow of information among clients to fully
utilize their knowledge, ultimately discovering a clear clustering
structure. In summary, our contributions primarily include:

• We propose HFMVC, a novel federated MVC method with
robust generalization capabilities, enabling the exploration
of clear clustering structures from multiple clients.

• We introduce a heterogeneity-aware module that can assess
the degree of data heterogeneity based on the local clustering
results from the clients. This enables HFMVC to adaptively
adjust its clustering strategy, achieving robust adaptability
in both IID and Non-IID scenarios.

• We conduct extensive experiments across varying degrees of
heterogeneity and different numbers of clients. The results
demonstrate that HFMVC consistently exhibits state-of-the-
art performance while ensuring privacy.

2 Related Work
2.1 Federated Multi-View Clustering
As a subdomainwithin federatedmulti-view learning [14, 15, 22, 49],
federated multi-view clustering is designed to execute unsuper-
vised clustering tasks in multi-view settings by fostering collabo-
ration among numerous clients. Due to the Non-IID data among
different clients, the models trained by them exhibit variations,
consequently leading to distinct feature representations. It is pre-
cisely this departure from traditional centralized MVC methods
[29, 32, 39, 41, 48, 50, 52] that makes addressing the challenges of
FedMVC highly demanding. Hu et al. [21] proposed FedMVFPC, a
federated multi-view fuzzy clustering method to address the chal-
lenges of feature heterogeneity and distributed data storage. How-
ever, compared to deep MVC, this strategy based on traditional
methods inherently lacks robust feature representation capabilities.
Moreover, as the number of clients increases, FedMVFPC expe-
riences significant performance degradation. Chen et al. [8] pro-
posed FedDMVC, a federated deep multi-view clustering method
designed to tackle the challenge of incomplete multi-view data in
distributed environments through global self-supervision. How-
ever, FedDMVC assumes precise partitioning of data from𝑀 views
among𝑀 clients, suggesting that the number of clients in this FL
system strictly equals the number of views, thereby limiting its
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applicability. Furthermore, FedDMVC overlooks the challenge of
high communication costs that may lead to server paralysis, further
impacting its availability. These identified weaknesses motivate us
to propose a more sophisticated and practical MVC solution.

2.2 Federated Unsupervised Representation
Unsupervised learning methods can be classified into generative
and discriminative types. The former focuses on learning represen-
tations by generating pixels in the input space [18, 19, 27], while
the latter involves modeling data to discover intrinsic patterns or
relationships within it [1, 16, 36]. Some related studies [24, 40, 40]
have attempted to apply FL to unlabeled data. However, a straight-
forward combination of FL with unsupervised methods may not
yield satisfactory results. Lu et al. [33] proposed FedUL, a feder-
ated unsupervised learning framework. But FedUL requires specific
prior knowledge, which often poses challenges in practice. Liao et
al. [31] proposed FedU2 to analyze representation in federated un-
supervised learning with Non-IID data. Zhang et al. [51] proposed
FedCA, a method based on federated contrastive averaging with a
dictionary and alignment.While FedCA overlooks privacy concerns
and shows limited improvement in experimental results. Besides,
there is limited research on the data representation problem in
federated multi-view scenarios involving multiple clients.

3 Methodology
3.1 Problem Definition
Here we present the formal definition of federated multi-view clus-
tering. Suppose there is a dataset with 𝑁 samples and 𝑀 views
distributed among 𝐶 clients (denoted as X =

{
X1,X2, ...,X𝐶

}
),

with an expectation to be partitioned into 𝐾 clusters. Each client
possesses a subset of the data corresponding to a particular view
X𝑐 ∈ R𝑁𝑐×𝐷𝑚 , where 𝑁𝑐 and 𝐷𝑚 represent the number of samples
in client 𝑐 and the dimensionality of samples in view 𝑚, respec-
tively. The local models with corresponding local data on the client-
side are defined as F = {𝐹1 (X1;w1), 𝐹2 (X2;w2), · · · , 𝐹𝐶 (X𝐶 ;w𝐶 )}.
We use widely adopted autoencoders [9, 23, 44, 47, 48] for data
representation and reconstruction. Specifically, each local model
consists of the most basic encoder-decoder pair {𝑓 𝑐

𝜙𝑐
(·), 𝑔𝑐

𝜃𝑐
(·)},

which denote the encoding and decoding processes for client 𝑐 ,
where the learnable parameters are represented by 𝜙𝑐 and 𝜃𝑐 , re-
spectively. Autoencoders can map raw data to a specified feature
space, i.e., 𝑓 𝑐

𝜙𝑐
(X𝑐 ;𝜙𝑐 ) : X𝑐 ∈ R𝑁𝑐×𝐷𝑚 ↦−→ Z𝑐 ∈ R𝑁𝑐×𝑑𝑚 and

𝑔𝑐
𝜃𝑐

(Z𝑐 ;𝜃𝑐 ) : Z𝑐 ∈ R𝑁𝑐×𝑑𝑚 ↦−→ X̂𝑐 ∈ R𝑁𝑐×𝐷𝑚 . Here, 𝑁𝑐 is the
number of samples for client 𝑐 , and 𝑑𝑚 is the dimensionality of the
features after encoding. Please note HFMVC assumes each client
only has data from a single view, yet it still supports more scenarios
by deploying multiple autoencoders on each client (please see the
Appendix). Based on this, we introduce two additional definitions:

(1) Friend clients: Refers to clients whose samples correspond
to the same object but come from different views (e.g., client 1 and
client n-1 in Figure 2 are friend clients).

(2) Peer clients: Refers to clients whose samples correspond to
different objects but come from the same view (e.g., client n-1 and
client n in Figure 2 are peer clients).

3.2 Representation Learning
We instruct each client to reconstruct their local data to obtain
client-specific feature representations. The reconstruction loss is:

L𝑅 =

𝐶∑︁
𝑐=1

L𝑐𝑅 =

𝐶∑︁
𝑐=1



X𝑐 − X̂𝑐


2

2 =

𝐶∑︁
𝑐=1

𝑁𝑐∑︁
𝑖=1




x𝑐𝑖 − 𝑔𝑐𝜃𝑐 (𝑓 𝑐𝜙𝑐 (x𝑐𝑖 ) )


2

2
.

(1)
Due to the potential noise in the encoded features from individual

client data and the possibility that data from different clients might
be encoded into different latent spaces, we need to further learn
high-level features within the same feature space. Therefore, we
add an additional MLP layer P (𝑐 ) to the autoencoder model of
client 𝑐 , aiming to explore more valuable information. Here, we use
H =

{
H1,H2, ...,H𝑀

}
to represent high-level features. {H𝑚

𝑗
} |𝐶𝑚 |
𝑗=1

denotes the high-level features of view𝑚 distributed across |𝐶𝑚 |
clients, where 𝐶𝑚 is the set of clients with data from view𝑚 and
h𝑐
𝑖
= P (𝑐 ) (z𝑐

𝑖
) represents the high-level features extracted from the

encoded feature z𝑐
𝑖
for sample 𝑖 of client 𝑐 , i.e.,

∑𝑀
𝑚=1 |𝐶𝑚 | = 𝐶 .

3.3 Dual Contrastive Learning
The objective of HFMVC is to achieve more comprehensive infor-
mation acquisition through collaboration among multiple clients.
Based on this, HFMVC performs selective aggregation among peer
clients and dual contrastive learning among friend clients.

3.3.1 Selective aggregation among peer clients. Since the data of
peer clients only vary in quantity and category, the server can
selectively aggregate their local models to enhance each client’s
feature representation capabilities, thereby mitigating the negative
impact of heterogeneous data. Thus the global model for view𝑚 is:

w̄𝑚 =
1

|C𝑚 |
∑︁
𝑖∈C𝑚

w𝑖 . (2)

3.3.2 Contrastive learning among friend clients. Given that data
among friend clients originates from different views but describes
the same object, extracting complementary information between
them proves advantageous for uncovering crucial semantics. In-
spired by [45], we implement contrastive learning among friend
clients. Specifically, the server forwards the high-level features up-
loaded by client 𝑐 to its friend client(s). Following this procedure,
each client acquires the high-level features of its friend client(s).
Then each high-level feature h𝑐

𝑖
from client 𝑐 generates (𝑀𝑁𝑐 − 1)

feature pairs, denoted as {h𝑐
𝑖
, h𝑝
𝑗
}𝑝=1,..., |𝐶′ |
𝑗=1,...,𝑁𝑐 , where 𝐶′ represents

the set of friends for this client, satisfying |𝐶′ | = 𝑀 . And these
pairs include (𝑀 − 1) positive pairs {h𝑐

𝑖
, h𝑝
𝑖
}𝑐≠𝑝 and the remaining

𝑀 (𝑁𝑐 − 1) negative pairs. Besides, cosine similarity is commonly
employed as a measure of similarity for high-level features [45, 46]:

sim⟨h𝑐𝑖 , h
𝑝

𝑗
⟩ =

h𝑐
𝑖
· h𝑝
𝑗

∥h𝑐
𝑖
∥ ∥h𝑝

𝑗
∥
. (3)

We use 𝜏𝐶 to denote a temperature parameter, thus the overall
contrastive loss for the clients possessing data from view 𝑐 and
those possessing data from view 𝑝 is:



MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia. Xiaorui Jiang et al.

...

C
lient 1

C
lient 2

C
lient n-1

C
lient n

View 1

View m

0

A little cat with  
a green hat is

staring blankly.

A little dog is
joyfully bouncing

on the grass.

Encoder

1

…

1

0

0

…

1
Decoder

1

1

…

1

0

0

Encoder

1

…

1

0

0

…

1

Decoder

1

1

…

1

0

0

Encoder

1

…

1

0

0

…

1

Decoder

1

1

…

1

0

Peer Clients

Friend Clients

0

1

1

0

1

1

Selective Aggregation

0

1

1

0

 High-level features 

Exchange FeaturesA little cat with 
a green hat is  
staring blankly.

A little cat is
comfortably
yawning.

A little cat with  
a green hat is
staring blankly.

A little dog is
joyfully bouncing
on the grass.

High-level features

Global model t

Local model t-1

Local model t

Local models

1

1

0

0

Heterogeneity-Aware
Module (Section 3.4)

𝑊𝐶𝑆𝑆 / 𝐴𝐼𝐶𝐷

0

1

 High-level features 

1

1

…

…

K-means

Non-IID ?
( )

( )

( )

( )
( )

( )

IID

Non-IID

( )
( )

( )

Dual Contrastive Learning (Section 3.3)Representation Learning (Section 3.2)Clients Server

Push away
Pull close

...

0

…

1

…

1

…

 High-level features 

Figure 2: The framework of HFMVC. After the representation of samples from each client (Section 3.2), the system assesses the
heterogeneity in the environment (Section 3.4), and adopts dual contrastive learning (Section 3.3).

L (𝑐𝑝 )
𝐶

= − 1
𝑁

𝑁∑︁
𝑖=1

log
𝑒
sim⟨h𝑐

𝑖
, h𝑝
𝑖
⟩/𝜏𝐶∑𝑁

𝑗=1
∑
𝑣=𝑐,𝑝 𝑒

sim⟨h𝑐
𝑖
, h𝑣
𝑗
⟩/𝜏𝐶 − 𝑒1/𝜏𝐶

. (4)

Since all clients perform the above steps, from a global perspec-
tive, the total contrastive loss can be accumulated as the sum of
contrastive losses for all clients, and it can be represented as:

L𝐶 =
1
2

𝑀∑︁
𝑚=1

∑︁
𝑛≠𝑚

L (𝑚𝑛)
𝐶

. (5)

By conducting contrastive learning among friend clients, HFMVC
achieves the exploration of common semantics across views.

3.3.3 Contrastive learning in local training. The key challenge posed
by the distributed environment to MVC is the lack of uniformity
in representation spaces across different clients. Although HFMVC
addresses this by selectively aggregating among peer clients to
uniformly represent the feature space, biases may still emerge after
multiple rounds of local training. To tackle this issue, a promising
strategy involves integrating contrastive learning into the local
training process on the client side [7, 28].

Specifically, in the 𝑡-th round of global training, client 𝑐 is re-
quired to independently extract representations for local data X𝑐

using the selectively aggregated view-specific encoder 𝑓 𝑔,𝑡
𝜙

(·), lo-
cal encoder 𝑓 𝑐,𝑡

𝜙𝑐
(·) in round 𝑡 and local encoder 𝑓 𝑐,𝑡−1

𝜙𝑐
(·) in round

𝑡 − 1. Subsequently, client 𝑐 can obtain the corresponding high-
level feature representations H𝑔,𝑡 = P (𝑔,𝑡 )

(
𝑓
𝑔,𝑡

𝜙
(X𝑐 ;𝜙)

)
, H𝑐,𝑡 =

P (𝑐,𝑡 )
(
𝑓
𝑐,𝑡

𝜙𝑐
(X𝑐 ;𝜙𝑐 )

)
andH𝑐,𝑡−1 = P (𝑐,𝑡−1)

(
𝑓
𝑐,𝑡−1
𝜙𝑐

(X𝑐 ;𝜙𝑐 )
)
. Then,

we adopt different client-level contrastive learning strategies based
on the system’s degree of heterogeneity.

(1) In IID scenarios, the sample distributions among peer clients
are similar. However, due to factors such as randomness during
training, different models may generate representations with cer-
tain angular deviations, resulting in misalignments between rep-
resentations. Nevertheless, the model obtained through selective
aggregation integrates knowledge from multiple clients, leading
to a model with higher representational capacity. Therefore, we
propose defining the model-contrastive loss:

L (𝑐,𝑖𝑖𝑑 )
𝑇

= − log
𝑒sim⟨H𝑐,𝑡 ,H𝑔,𝑡 ⟩/𝜏𝑇

𝑒sim⟨H𝑐,𝑡 ,H𝑔,𝑡 ⟩/𝜏𝑇 + 𝑒sim⟨H𝑐,𝑡 ,H𝑐,𝑡−1 ⟩/𝜏𝑇
. (6)

Here, 𝜏𝑇 represents the temperature parameter. The significance of
Eq. (6) is to treat (H𝑐,𝑡 , H𝑔,𝑡 ) as a positive pair and (H𝑐,𝑡 , H𝑐,𝑡−1) as a
negative pair. This allows the model to bring local representations
closer to global representations, and amplify the changes in feature
representations before and after each round of local training.

(2) In Non-IID scenarios, since each client has different quantities
and categories of local samples, the representation capabilities of
clients for each class of samples vary. The effectiveness of a client’s
representation of a certain data class depends on the quantity of
samples it possesses for that class. Consequently, all clients exhibit
strong, and sometimes unique, representation capabilities for the
majority class in their local data. Therefore, during local training,
it is crucial for the client’s feature representation to maintain a
greater distance from the representation generated by the global
model. Additionally, minimizing the change in feature represen-
tation before and after each round of local training is necessary.
Thus, the model-contrastive loss is reformulated as:

L (𝑐,𝑛𝑜𝑛𝑖𝑖𝑑 )
𝑇

= − log
𝑒sim⟨H𝑐,𝑡 ,H𝑐,𝑡−1 ⟩/𝜏𝑇

𝑒sim⟨H𝑐,𝑡 ,H𝑔,𝑡 ⟩/𝜏𝑇 + 𝑒sim⟨H𝑐,𝑡 ,H𝑐,𝑡−1 ⟩/𝜏𝑇
. (7)
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Figure 3: Motivation of the heterogeneity-aware module. We
observed that after pre-training, the concatenated features
exhibit relatively poor (good) intra-cluster compactness and
inter-cluster separability in the IID (Non-IID) scenarios.

Therefore, the overall model-contrastive loss is the sum of indi-
vidual contrastive losses across all clients:

L (𝑖𝑖𝑑 )
𝑇

=

𝐶∑︁
𝑐=1

L (𝑐,𝑖𝑖𝑑 )
𝑇

, L (𝑛𝑜𝑛𝑖𝑖𝑑 )
𝑇

=

𝐶∑︁
𝑐=1

L (𝑐,𝑛𝑜𝑛𝑖𝑖𝑑 )
𝑇

. (8)

3.4 Heterogeneity-Aware Module
To precisely quantify the boundaries between IID and Non-IID
for adaptation to Eq. (8), we design a heterogeneous-aware mod-
ule. Indeed, the design motivation for this module stems from the
following key observation (as shown in Figure 3):

Key Observation: During the pre-training phase, as heterogene-
ity increases, the feature representations obtained by clustering
local data on the client side become more similar, resulting in better
separability between clusters and compactness within clusters for
the global feature concatenated from all features’ sets.

Based on this, at the end of the pre-training phase, we apply
k-means [34] to the concatenated high-level features. Then we
compute the within-cluster sum of squares (𝑊𝐶𝑆𝑆) and the average
inter-cluster distance (𝐴𝐼𝐶𝐷) to assess the inter-cluster separability
and intra-cluster compactness of the clustering structure:

𝑊𝐶𝑆𝑆 =

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑗=1

∥h𝑘 𝑗 − u𝑘 ∥2, (9)

𝐴𝐼𝐶𝐷 =
1

𝐾 (𝐾 − 1)

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗≠𝑖

∥u𝑖 − u𝑗 ∥, (10)

where u𝑘 denotes the 𝑘-th centroid of the global clustering, h𝑘 𝑗 is
the 𝑗-th concatenated high-level feature belonging to cluster u𝑘 ,
and 𝑛𝑘 is the number of samples in cluster u𝑘 . By considering both
𝑊𝐶𝑆𝑆 (where smaller values indicate better compactness within
clusters) and𝐴𝐼𝐶𝐷 (where larger values indicate better separability
between clusters), and introducing a threshold 𝜆, we can calculate
the heterogeneity assessment coefficient 𝐴 for L𝑇 .

𝐴 =𝑊𝐶𝑆𝑆 / 𝐴𝐼𝐶𝐷 − 𝜆. (11)

Algorithm 1 Pipeline of HFMVC
Input: Dataset with 𝑁 samples and𝑀 views distributed among 𝐶

clients, with an expectation to be partitioned into 𝐾 clusters.
Global epoch 𝑇 , Local epoch 𝐸.

Output: Global clustering predictions.
1: For each 𝑐 ∈ 𝐶 , pretrain its autoencoder. ⊲ Clients
2: Evaluate the heterogeneity of local data by Eqs. (9) - (12).
3: while not reaching 𝑇 epochs do
4: for 𝑐 = 1 to 𝐶 do in parallel
5: Obtain high-level features and the global model.
6: while not reach the maximum iterations 𝐸 do
7: Optimize the total loss function by Eq. (13).
8: end while
9: end for
10: Aggregate models among peer clients by Eq. (2). ⊲ Server
11: Exchange high-level features among friend clients.
12: Distribute aggregated models selectively to each client.
13: end while
14: Calculate the clustering predictions by Eqs. (14)-(15).

Here, we use I(·) to represent the indicator function, and the
complete L𝑇 is expressed as:

L𝑇 = I(𝐴 > 0) · L (𝑖𝑖𝑑 )
𝑇

+ I(𝐴 < 0) · L (𝑛𝑜𝑛𝑖𝑖𝑑 )
𝑇

. (12)
Eq. (12) indicates the structure and value of themodel-contrastive

loss are correlated with the level of heterogeneity in the environ-
ment, where the quantification of heterogeneity is implemented by
the heterogeneity-aware module.

3.5 Objective Function
In summary, our objective function can be summarized as:

L = L𝑅 + 𝛼L𝐶 + 𝛽L𝑇 , (13)

where L𝑅 , L𝐶 , and L𝑇 represent the local reconstruction loss of
all the clients, the contrastive loss between friend clients, and the
model-contrastive loss arising from selective aggregation among
peer clients, respectively. Meanwhile, 𝛼 and 𝛽 denote the corre-
sponding trade-off coefficients. Finally, the server performs k-means
on all the high-level features to obtain the global centroids U:

min
u1,u2,...,u𝐾

𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1



h𝑖 − u𝑗


2
. (14)

Therefore, the final prediction result for sample 𝑖 is:

𝑦𝑖 = arg min
𝑗



h𝑖 − u𝑗


2
. (15)

3.6 Pipeline of HFMVC
Algorithm 1 outlines the execution flow for both clients and the
server in HFMVC. Once the pretraining is completed, the server
assesses the degree of heterogeneity to selectively apply model
contrastive learning strategies. Then each client optimizes its local
loss. In turn, the server selectively aggregates data from peer clients
and shares high-level features with friend clients. These steps form
a complete iteration that is repeated until convergence is achieved.
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Table 1: Clustering performance. The mean values (%) of 5 runs are reported. The best and the second best values are highlighted
in red and blue.

D
at
a Heterogeneity Dirichlet (0.5) Dirichlet (1.0) Dirichlet (10) IID, Dirichlet (∞)

Metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

M
N
IS
T-
U
SP

S

DEMVC [43] 38.72 32.38 20.34 36.42 13.28 7.35 25.97 16.68 8.07 29.39 6.31 4.06
SDMVC [44] 36.57 12.96 7.02 30.01 20.79 10.96 36.93 15.53 10.10 25.16 18.26 9.16
MFLVC [45] 39.74 39.55 23.11 31.89 29.65 14.88 31.88 29.65 15.25 33.36 34.71 17.44
GCFAgg [46] 49.38 43.27 28.37 42.51 36.91 21.28 30.36 24.11 11.51 26.40 22.81 10.01
FedDMVC [8] 46.91 41.01 28.68 43.34 31.67 25.60 29.48 21.11 11.94 26.80 20.31 10.97
FCUIF [38] 45.14 38.80 24.82 31.52 23.69 12.89 25.68 17.58 8.77 23.77 16.03 7.81

Ours 86.21 84.66 78.96 95.32 91.07 90.29 97.35 94.04 94.31 98.27 96.04 96.31

BD
G
P

DEMVC [43] 56.78 35.01 28.66 50.94 27.17 20.24 33.44 7.28 5.10 31.21 6.98 4.95
SDMVC [44] 57.24 36.70 27.12 51.19 31.24 21.79 35.70 15.98 10.66 43.42 18.43 13.71
MFLVC [45] 39.23 17.84 13.59 37.19 13.20 9.13 43.42 21.34 15.14 39.26 17.76 11.82
GCFAgg [46] 50.32 26.95 21.23 46.63 23.12 18.43 33.75 9.82 6.76 34.30 11.36 7.26
FedDMVC [8] 52.92 36.56 27.51 45.48 23.17 14.13 34.40 14.08 9.05 42.64 18.79 13.23
FCUIF [38] 59.76 38.89 31.36 48.01 25.18 18.31 36.59 14.44 9.38 39.62 16.58 12.46

Ours 73.32 55.24 48.98 85.69 71.81 69.97 98.42 94.89 96.13 98.67 95.47 96.72

M
ul
ti-
Fa
sh
io
n

DEMVC [43] 39.17 34.50 21.13 35.39 31.98 17.11 26.58 18.85 8.97 30.45 26.77 15.12
SDMVC [44] 40.16 32.86 20.53 39.45 37.83 21.58 28.86 23.17 11.53 30.98 31.55 15.87
MFLVC [45] 34.00 27.68 15.65 31.72 23.49 12.56 26.51 19.87 9.43 28.32 22.46 11.34
GCFAgg [46] 54.42 54.05 36.22 50.13 51.85 33.76 29.40 31.74 13.65 34.66 45.13 24.07
FedDMVC [8] 33.53 28.03 15.52 34.92 28.14 16.11 29.02 23.24 11.85 38.12 38.87 23.09
FCUIF [38] 46.88 25.20 19.48 48.54 25.32 18.71 36.74 13.81 9.91 40.45 17.60 12.82

Ours 75.08 80.30 69.08 84.41 85.28 77.18 91.27 88.61 84.44 93.18 89.80 86.85

Ca
lte

ch
-5
V

DEMVC [43] 35.89 24.91 14.88 37.87 25.13 16.02 35.01 22.27 13.80 33.13 21.17 12.08
SDMVC [44] 38.83 25.06 15.55 40.71 28.08 19.33 34.27 18.16 10.72 29.90 16.48 9.11
MFLVC [45] 38.89 23.60 15.61 33.13 16.58 9.96 29.09 13.48 7.45 27.37 13.50 7.25
GCFAgg [46] 42.65 30.56 18.62 41.28 30.39 17.94 31.61 22.00 11.84 34.00 24.95 14.09
FedDMVC [8] 39.93 25.56 17.66 40.39 25.39 17.50 36.27 19.13 12.25 35.30 21.67 13.29
FCUIF [38] 50.83 40.67 28.53 38.67 25.97 16.38 32.09 19.15 10.75 32.56 19.30 11.70

Ours 60.24 50.02 40.62 63.26 55.04 45.42 69.69 62.02 52.97 66.76 56.97 47.98

Table 2: Ablation experiments of the proposed HFMVC with different heterogeneity settings on BDGP dataset.

Components Dirichlet (0.5) Dirichlet (1.0) Dirichlet (10) IID, Dirichlet (∞)

L𝑅 L𝐶 L𝑇 ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

✓ 50.12 28.47 16.43 41.16 27.18 14.48 68.20 52.73 31.16 73.40 55.98 41.69
✓ ✓ 66.04 56.25 47.35 78.28 69.89 65.60 78.80 71.59 67.04 98.24 94.50 95.68
✓ ✓ 60.28 52.58 42.68 83.52 70.20 65.70 91.80 83.52 80.82 96.96 90.23 92.59

✓ ✓ 67.08 53.79 46.89 76.92 70.04 65.67 81.56 78.40 72.60 81.00 79.88 73.63
✓ ✓ ✓ 73.32 55.24 48.98 85.69 71.81 69.97 98.42 94.89 96.13 98.67 95.47 96.72



Heterogeneity-Aware Federated Deep Multi-View Clustering towards Diverse Feature Representations MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia.

(a) 𝛼 𝑣𝑠. 𝛽 in Dirichlet(∞) (b) 𝛼 𝑣𝑠. 𝛽 in Dirichlet(0.5) (c) The impact of 𝜆 in Dirichlet(∞) (d) The impact of 𝜆 in Dirichlet(0.5)

Figure 4: Parameter sensitivity analysis under Dirichlet(∞) (IID) and Dirichlet(0.5) (Non-IID) settings on BDGP.

Figure 5: The convergence curves of HFMVC on BDGP.

4 Experiment
4.1 Experimental Settings

Datasets. We conduct experiments on four datasets: MNIST-
USPS [37] (5000 samples with 2 views), BDGP [4] (2500 samples
with 2 views),Multi-Fashion [42] (10000 samples with 3 views)
and Caltech-5V [13] (1400 samples with 5 views). To better sim-
ulate heterogeneous scenarios in the real world, data partitioning
adopts the Dirichlet distribution [20]. We configure four heteroge-
neous environments: Dirichlet (0.5), Dirichlet (1.0), Dirichlet (10),
and IID. Here, smaller values within Dirichlet (·) denote greater
heterogeneity (imbalances in classes and labels), which is used to
evaluate the adaptability of HFMVC and comparative methods.

Comparison Methods. We select the following six state-of-the-
art (SOTA) methods for comparison: DEMVC [43], SDMVC [44],
MFLVC [45], GCFAgg [46], FedDMVC [8] and FCUIF [38]. It is worth
noting that among the aforementionedmethods, only FedDMVC [8]
and FCUIF [38] are applied in a federated environment, while the
others are centralized methods. To ensure a fair comparison to the
greatest extent, we make simple modifications to the alignment to
support a distributed environment. Given the scarcity of research on
FedMVC, thesemodifications are inevitable. Even for FedDMVC and
FCUIF, their targeted FL scenarios are limited. In contrast, HFMVC
supports distributions with an unlimited number of clients/views.
We also set the client-to-view ratio to 5, which means that in a
dataset with 2 views, we set up 10 clients accordingly.

Evaluation Metrics. We evaluate the clustering performance us-
ing three metrics: accuracy (ACC), normalized mutual information
(NMI), and adjusted rand index (ARI).

4.2 Comparison Results
We conduct experiments of HFMVC alongside other comparative
methods on four publicly available datasets, with results presented
in Table 1. By comparing the results under four different heteroge-
neous settings, we can make the following observations:

(1) Our method (HFMVC) consistently demonstrates superior
performance and a significant lead across various experimental
environments. For example, on the MNIST-USPS dataset, HFMVC
outperforms in terms of ACC, NMI, and ARI, achieving maximum
leads of up to 64.91%, 64.39% and 79.06%, respectively.

(2) Compared to traditional centralized algorithms, HFMVC
achieves significant advantages. Furthermore, relative to distributed
algorithms like FedDMVC and FCUIF, HFMVC stands out due to
its compatibility with multiple clients, stronger cross-client knowl-
edge sharing, and information mining capabilities. Particularly in
IID scenarios, the clustering performance of FedDMVC and FCUIF
nearly collapses (with ACC on MNIST-USPS being respectively
only 26.80% and 23.77%, while HFMVC achieves 98.27%), demon-
strating the practical feasibility of only HFMVC.

(3) HFMVC exhibits superior robustness. For instance, when the
degree of heterogeneity ranges from Dirichlet(0.5) to IID, HFMVC’s
ACC on MNIST-USPS ranges from 86.21% to 98.27%, while on
Caltech-5V, it ranges from 60.24% to 66.76%. In contrast, other
methods exhibit much more significant fluctuations. It is particu-
larly noteworthy that while HFMVC’s overall performance tends to
improve as the level of heterogeneity decreases, the situation is the
opposite for the comparative methods. This seemingly paradoxical
phenomenon can be attributed to the following: unlike centralized
experimental environments, in distributed settings, data is parti-
tioned into more client nodes, resulting in fewer data points being
reconstructed by each autoencoder. As the level of heterogeneity
increases, the data reconstructed by single autoencoders becomes
purer (with fewer categories), thus yielding better results. HFMVC
enhances its clustering performance in IID scenarios through selec-
tive aggregation and dual contrastive learning.

4.3 Ablation Study
We conduct comprehensive ablation studies on BDGP to evaluate
the impact of each component, including L𝑅 (defined in Eq. (1),
L𝐶 (defined in Eq. (5)), and L𝑇 (defined in Eq. (12)), with results
presented in Table 2. And we can derive the following observations:
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Figure 6: Clustering performance of HFMVC and FedDMVC under IID and Non-IID scenarios with different numbers of clients.

(1) An intuitive result is that the method incorporating all com-
ponents exhibits the best performance, while the result produced
solely using L𝑅 is the poorest, as it only focuses on data recon-
struction. This holds true across all levels of heterogeneity.

(2) The configuration lacking L𝐶 performs worse compared
to the setting where all components are used. This discrepancy
becomes more pronounced, especially in settings with higher levels
of heterogeneity. For example, the difference in ACC between these
two settings is 13.04% under Dirichlet(0.5), while it reduces to 1.71%
under Dirichlet(∞). This is because contrastive learning among
clients aligns the representations of the same sample across different
views. In other words, the absence of L𝐶 contributes to poorer
clustering results due to the lack of information exchange among
friend clients (defined in Section 3.1).

(3) The absence ofL𝑇 prevents the globalmodel obtained through
selective aggregation from guiding the training of local models on
clients. This leads to two issues: firstly, when the degree of hetero-
geneity is low, the local training process fails to converge quickly,
and peer clients (defined in Section 3.1) struggle to achieve max-
imum knowledge sharing. Secondly, when the degree of hetero-
geneity is high, due to imbalanced samples among clients, there
exists significant diversity in the representational capabilities of
each autoencoder. However, lackingL𝑇 often results in a weakened
representational capability of local data for each client.

4.4 Parameter Analysis
We conduct a detailed analysis of the hyperparameters in HFMVC,
including 𝛼 , 𝛽 (defined in Eq. (13)) and 𝜆 (defined in Eq. (11)). Specif-
ically, this comprises two aspects: (1) Figures 4 (a)-(b) illustrate the
impact of 𝛼 and 𝛽 on clustering performance in IID and Non-IID
scenarios. It can be observed that the clustering results exhibit over-
all high ACC values in IID scenarios, indicating good robustness
(except when 𝛼=0.01 and 𝛽=0.001). In Non-IID scenarios, the best
performance is observed when both 𝛼 and 𝛽 are within the range of
0.1 to 1. (2) Figures 4 (c)-(d) illustrate the impact of 𝜆 on clustering
performance in IID and Non-IID scenarios. In fact, as a threshold
coefficient, 𝜆 controls the boundary of heterogeneity in the system.
Therefore, a smaller/larger value of 𝜆 may lead to inaccurate per-
ceptions of heterogeneity, thereby affecting clustering performance.
It can be observed that when 𝜆 is 5, all metrics achieve the best per-
formance, regardless of whether it is in IID or Non-IID scenarios. It
is worth noting that the value of 𝜆 varies depending on the dataset.

4.5 Convergence Analysis
Figure 5 illustrates the convergence curves of HFMVC under dif-
ferent levels of heterogeneity. It can be observed that under both
conditions, HFMVC achieves rapid convergence and eventually
stabilizes, indicating its excellent convergence properties. More
importantly, the characteristic of rapid convergence significantly
reduces the communication overhead of HFMVC.

4.6 Scalability Analysis
To measure the scalability of HFMVC, Figure 6 shows the cluster-
ing performance of HFMVC as the number of clients changes in
environments with varying degrees of heterogeneity. We choose
FedDMVC as the comparison method. It can be observed that: (1)
HFMVC outperforms FedDMVC under all heterogeneity settings;
(2) In IID scenarios, HFMVC exhibits excellent stability, as increas-
ing the number of clients has little impact on its performance,
whereas FedDMVC’s performance significantly decreases; (3) In
Non-IID scenarios, HFMVC’s performance decreases as the num-
ber of clients increases, but it remains generally more stable than
FedDMVC. These observations demonstrate that HFMVC possesses
good scalability, mainly because HFMVC promotes the flow of
knowledge among clients through selective aggregation and dual
contrastive learning, preventing the clustering results from drasti-
cally declining with the increase in the number of clients.

5 Conclusion
In this paper, we propose a Heterogeneity-aware Federated deep
Multi-ViewClustering (HFMVC)method, which enables the sharing
of multi-view knowledge across clients while preserving privacy.
Each client uses autoencoders to perform representation learning,
followed by dual contrastive learning between the local and global
models as well as among clients to explore consistent and comple-
mentary information. Besides, we design a heterogeneity-aware
module that adaptively handles different heterogeneous scenar-
ios. Extensive experiments validate that HFMVC exhibits the best
performance in both IID and Non-IID environments.
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