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TOWARDS SYNERGISTIC, GENERALIZED AND EFFI-
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Figure 1: Overview of RoboDual. Our objective is to develop a synergistic dual-system framework
which supplements the generalizability of large-scale pre-trained generalist with the efficient and
task-specific adaptability of specialist. (a) The fast specialist policy achieves real-time and accurate
control by aid of the slow yet generalized output from the generalist one trained with large-scale
data. (b) RoboDual exhibits significant improvement in terms of performance and efficiency over a
single standalone option and surpasses previous state-of-the-arts in the real-robot setting.

ABSTRACT

The increasing demand for versatile robotic systems to operate in diverse and
dynamic environments has emphasized the importance of a generalist policy, which
leverages a large cross-embodiment data corpus to facilitate broad adaptability
and high-level reasoning. However, the generalist would struggle with inefficient
inference and cost-expensive training. The specialist policy, instead, is curated
for specific domain data and excels at task-level precision with efficiency. Yet, it
lacks the generalization capacity for a wide range of applications. Inspired by these
observations, we introduce RoboDual, a synergistic dual-system that supplements
the merits of both generalist and specialist policy. A diffusion transformer-based
specialist is devised for multi-step action rollouts, exquisitely conditioned on the
high-level task understanding and discretized action output of a vision-language-
action (VLA) based generalist. Compared to OpenVLA, RoboDual achieves 26.7%
improvement in real-world setting and 12% gain on CALVIN by introducing
a specialist policy with merely 20M trainable parameters. It maintains strong
performance with 5% of demonstration data only, and enables a 3.8× higher control
frequency in real-world deployment. Code would be made publicly available. An
anonymous real-robot demo is hosted at https://robodual.github.io.

1 INTRODUCTION

The pursuit of versatile and adaptive robotic intelligence has been a central objective in the robotics
community for decades (Franklin, 1997; Kunze et al., 2018; Duan et al., 2022). Conventional
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robot learning methods typically develop policies through datasets curated for the designated robot
and its specific task. The resulting policy could be deemed as a specialist, including the popular
ACT (Zhao et al., 2023) and Diffusion Policy (Chi et al., 2023). It exhibits high precision in dedicated
scenarios and tasks, and yet often demonstrates limited generalization ability (Brohan et al., 2023a).
As robots are increasingly employed in open-ended and multi-task environments, the demand for
systems capable of handling diverse tasks and adapting seamlessly across various embodiments has
surged. This has fueled the development of the generalist, such as RT-2 (Brohan et al., 2023a) and
Octo (Ghosh et al., 2024). They leverage extensive, heterogeneous datasets to enhance cross-domain
generalizability and aim to transfer web knowledge to robotic control. Recent advances on Vision-
Language-Action (VLA) approaches (Li et al., 2024; Brohan et al., 2023a; Kim et al., 2024; Covariant,
2024) exemplify the potential of generalist policy to meet the ever-evolving demands. VLAs integrate
vast cross-embodiment data with pre-trained large (vision-)language models, facilitating capabilities
such as common-sense reasoning and instruction following (Zhao et al., 2024).

While VLA-based generalists excel at knowledge transfer and generalization across diverse scenarios,
several limitations remain: 1) They cannot be directly deployed to new embodiments or environments
out-of-the-box without adaptation (Wang et al., 2024b). The finetuning process is more data and
training intensive compared to specialist policies (Fu et al., 2024). 2) Though VLAs are skilled in
high-level decision making, their large model nature leads to extremely high inference latency (Brohan
et al., 2023a). This pivotal bottleneck makes them unsuitable for fine-grained control in dynamic
environments. 3) Current generalist models support single-frame RGB observations only, which,
while enabling training on larger-scale datasets, restricts their effectiveness in tasks where additional
sensory inputs such as depth or tactile feedback play pivotal roles. In the meantime, incorporating
these extra modalities requires resource-intensive re-training (Han et al., 2024) and runs the risk of
catastrophic forgetting (Zhai et al., 2023b).

Significant efforts, such as model quantization and fine-tuning of the generalist with multimodal
data, have been made to address the aforementioned limitations (Kim et al., 2024; Zhen et al., 2024).
Nonetheless, these approaches still face inevitable performance declines or data scarcity-related
issues. This raises the question of whether it is sufficient to rely solely on enhancements to generalists
to resolve these challenges. We recall that a generalist model offers broad generalizability and benefits
from web-scale pre-training, while a specialist policy is competent at efficiency and fast adaptation to
specific tasks. Based on the insights, we propose a generalized and efficient framework in which both
policies complement each other for improved manipulation, as illustrated in Figure 1(a). Our work
introduces a novel dual-system1 synergy approach, namely RoboDual. It is designed to harness the
advantages of both parties and facilitate the practical deployment of large generalist policies.

We start with the large-scale pre-trained OpenVLA (Kim et al., 2024) to establish our generalist
policy. For seamless cooperation between the two models, we implement the specialist model as a
lightweight and scalable diffusion transformer (Peebles & Xie, 2023) policy. The specialist learns the
multimodal action distribution by utilizing any sensory inputs and the generalist outputs adaptively
through a unified conditioning mechanism. Latent representations and discretized action outputs from
the generalist enable our specialist to adapt to new tasks or environments efficiently with minimal
data and training costs. During inference, the generalist provides deliberate yet comparatively slower
conditioning, which supports multistep roll-outs of the fast-reacting specialist to achieve precise
and generalized control. In this way, RoboDual is rendered with high-level task understanding
and generalizability from the generalist, combined with efficient action refinement of the specialist,
achieving outstanding performance across a diverse array of tasks. As demonstrated in Figure 1(b), it
realizes a 12% performance gain over the generalist-only variant on CALVIN (Mees et al., 2022b)
with minimal training cost. In real-robot setting, RoboDual outperforms both specialist and generalist
baselines by a significant margin. To summarize, our contributions are threefold:

• We introduce a novel approach that integrates generalist and specialist policies into a synergistic
framework, dubbed as RoboDual, following a dual-system spirit. Our methodology leverages the
merits of each party and paves the way for the practical application of VLAs to dexterous tasks.

1In cognitive science, the dual-system framework distinguishes between System-1 that engages in rapid,
automatic processing, and System-2, which involves slow, deliberate thinking with intentional effort (Kahneman,
2011). By analogy, it can be suggested that our specialist model may operate in a manner akin to System-1,
while the generalist model might reflect the characteristics of System-2.
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• We propose a diffusion transformer-based specialist policy that enables real-time control, adaptively
conditioned by generalist outputs and various sensory inputs. The framework facilitates the flexible
integration of diverse modalities and allows for the deconstruction of the two models on the aspect
of training data, thereby enhancing their individual strengths and capabilities.

• We demonstrate that the dual-system approach surpasses both specialist- and generalist-only models
in various tasks, through extensive real-world and simulation experiments.

2 RELATED WORK

Generalist policy. The RT-X series of works (Brohan et al., 2023b;a) have sparked significant
progress in the development of multi-task generalist policies (Yang et al., 2023; Ghosh et al., 2024) by
leveraging extensive cross-embodiment datasets (Padalkar et al., 2024; Walke et al., 2023; Khazatsky
et al., 2024). Octo (Ghosh et al., 2024) employs a transformer-based policy trained on 800k trajectories
from the Open-X-Embodiment dataset (Padalkar et al., 2024), enabling flexible fine-tuning for novel
robotic configurations. OpenVLA (Kim et al., 2024), which represents the most advanced generalist
policy to date, directly integrates pre-trained vision-language models to generate robotic actions by
treating them as tokens within the language model’s vocabulary. Unlike Octo, which relies solely
on a pre-trained language encoder T5 (Raffel et al., 2020) and derives generalization primarily
from large-scale in-domain policy training, OpenVLA harnesses world knowledge from a much
broader vision-language dataset. Despite its demonstrated generalizability, OpenVLA’s model size,
which comprises billions of parameters, hinders both data and inference efficiency. Hence it would
confine the deployment on heterogeneous robot setup as a generalist policy. In contrast, our approach
introduces a novel and cost-effective dual-system framework to address these caveats, instead of
developing another larger generalist model reliant on extensive datasets.

Specialist policy. We regard specialist models as policies specifically trained to execute a narrow
set of tasks or functions with high precision (Goyal et al., 2023; 2024). These models typically
utilize curated datasets tailored to their specific applications (Zhao et al., 2023; Chi et al., 2023).
While many specialist policies excel in few-shot imitation learning, they often lack the integration
of language inputs, necessitating the training of distinct models for different tasks. A notable trend
in prior studies is the reliance on 3D representations (Shridhar et al., 2023; Gervet et al., 2023;
Ze et al., 2023; Yan et al., 2024; Goyal et al., 2024) to improve performance on low-dimensional
control tasks. Transformer-based models have emerged as powerful tools for extracting multimodal
features, enhancing manipulation capabilities through their flexibility in processing heterogeneous
observations (Kim et al., 2021; Dasari & Gupta, 2021; Goyal et al., 2023; Simeonov et al., 2023).
The recent development of the Diffusion Policy (Chi et al., 2023), along with subsequent works (Ze
et al., 2024; Prasad et al., 2024), has proven effective in managing multimodal action distributions
for robotic manipulation while exhibiting improved training stability. In our work, the specialist
model is designed as a scalable diffusion transformer (Peebles & Xie, 2023) policy, adept at handling
multimodal inputs and generalist outputs as conditioning in a unified framework. Furthermore, we
demonstrate how collaboration with a generalist model enhances generalization and enables the
execution of multi-instruction tasks that previous specialist-only models struggle to address.

Hierarchical control with LLMs. The rise of Large Language Models (LLMs) and their ability to
interpret prompts and perform reasoning has sparked interest in their application to robotics (Wang
et al., 2024a). A key area is high-level task planning, where LLMs decompose tasks using natural
language, as demonstrated in SayCan (Ahn et al., 2022), PaLM-E (Driess et al., 2023), and HiP (Ajay
et al., 2024). This enables robots to translate abstract commands into concrete actions. This is followed
by works using structured code for control (Liang et al., 2023; Singh et al., 2023), which map user
instructions into executable programs. Another line of work, including RoboFlamingo (Li et al., 2024)
and LCB (Shentu et al., 2024), involves hierarchical control via latent space representations, where
they employ an additional action decoder network on top of LLM latent outputs to regress actions
directly. Recent works also explore action tokenization through VQVAE techniques (Van Den Oord
et al., 2017) to better bridge LLMs and actions (Wang et al., 2024c; Szot et al., 2024). Although our
framework shares a similar hierarchical philosophy, it does not explicitly decompose tasks and does
not require end-to-end optimization of decoupled policies. Instead, we utilize both discretized outputs
and latent embeddings as “interfaces” to connect two models, rather than pre-defined low-level
skills. The generalist and specialist can be decoupled on the aspect of training data to develop their
respective capabilities, which also brings flexibility to utilizing various modal inputs.
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Figure 2: The overall architecture of RoboDual. (a) Generalist. The generalist takes as inputs
RGB images and language prompts, generating conditioning sources for the specialist model, in-
cluding latent representations and discretized actions. (b) Specialist. Comprising stacked Diffusion
Transformer (DiT) blocks, the specialist is conditioned on multiple sensory inputs and the generalist’s
output through a cross-attention mechanism. It predicts noise injected into ground truth actions,
providing fast, precise control by leveraging the slower, high-level guidance of the generalist.

3 ROBODUAL: GENERALIST-SPECIALIST SYNERGY

Our goal is to develop a synergistic and generalized framework that leverages the strengths of both
generalist and specialist policies while simultaneously addressing their respective limitations beyond
mere integration. We introduce the generalist policy, which forms a meticulous and robust planner in
our framework in Section 3.1. In Section 3.2, we provide design principles of the specialist policy,
which is optimized for precise, real-time control and allows unified conditioning. Finally, we describe
our training and inference protocols in Section 3.3. The systematic diagram is illustrated in Figure 2.

3.1 GENERALIST: AN AUTO-REGRESSIVE VISION-LANGUAGE-ACTION MODEL

Figure 2(a) demonstrates our generalist’s architecture. Our generalist model is built upon Open-
VLA (Kim et al., 2024), a 7B-parameter autoregressive vision-language-action model trained with a
large corpus of robotic manipulation data, including Open-X-Embodiment (Padalkar et al., 2024),
Bridge V2 (Walke et al., 2023), DROID (Khazatsky et al., 2024), etc. The generalist model follows
the architecture of Prismatic-7B (Karamcheti et al., 2024) vision-language model (VLM), which
consists of a fused visual encoder from different backbones (Zhai et al., 2023a; Oquab et al., 2024),
a projection layer to align visual embeddings with language modality, and a large language model
LLaMA2 (Touvron et al., 2023). Despite extensive training on a large-scale cross-embodiment
dataset, OpenVLA is not capable of functioning in a zero-shot manner in new environments or em-
bodiments (Wang et al., 2024b). Adaptation to our specific robotic setup and test environments (with
novel coordination system, camera angle, etc.) remains necessary, which we accomplish through
LoRA (Hu et al., 2022) fine-tuning. Nonetheless, we intend to leverage the massive pre-trained
knowledge embedded in OpenVLA to endow our dual-system framework with certain generalizability.

Autoregressive generation of action chunking. Following RT-2 (Brohan et al., 2023a) and Open-
VLA (Kim et al., 2024), we map the least used 256 words in the LLaMA tokenizer vocabulary into
uniformly distributed action bins within [−1, 1]. This approach allows us to detokenize language
tokens into discretized actions based on their corresponding indices in the vocabulary. The generalist
model decodes every degree-of-freedom of actions in an auto-regressive manner, where the decoding
for the current token is dependent upon input prompts and previously decoded tokens. We further
extend the original OpenVLA to predict action chunks with a temporal length of kg . This longer-range
planning on the generalist side enhances its own ability to capture non-Markovian behavior in human
demonstrations, and also facilitates more informative conditioning provided to the specialist model.
The action output corresponding to each time step is separated by [space] token in the tokenizer
vocabulary. However, action chunking increases the inference latency of VLA due to the generation
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of a greater number of tokens. This further prompts the need for a specialist model that runs at a
higher frequency between consecutive VLA outputs to achieve more responsive control.

3.2 SPECIALIST: A CONTROLLABLE DIFFUSION TRANSFORMER POLICY

Built on top of a pre-trained generalist policy, the specialist is to achieve improved performance
while reducing control latency, even with limited training data and compute. To fully exploit the
multimodal sensory inputs necessary for effective manipulation, as well as the privileged knowledge
from the generalist policy, we design the specialist based on Diffusion Transformer (DiT) (Peebles &
Xie, 2023), to perform controllable action sequences denoising.

Base architecture. Figure 2(b) illustrates the architecture of our specialist model, which is primarily
composed of stacked DiT blocks. Each block includes a causal self-attention layer to process
temporal actions, a cross-attention layer to fuse information, and a point-wise feedforward network
that performs non-linear transformations. Drawing parallels with image diffusion models (Saharia
et al., 2022), we treat a 7-DoF action as a pixel with seven channels, which is linearly projected
into a single token and processed by the diffusion model. This formulation facilitates a seamless
temporal expansion of action tokens, enabling action chunk prediction (Zhao et al., 2023) with a
flexible temporal length of ks. We employ Vision Transformers (ViT) (Dosovitskiy et al., 2021) as
generalized sensory encoders to encode all possible input modalities (e.g., RGB, depth, and tactile),
with minor modifications on the patchify layer given different number of channels. A DINO (Caron
et al., 2021) pre-trained model is leveraged to encode the RGB inputs, which is frozen during training.
Encoders for other modalities are constrained to six layers with a hidden size of 256 to ensure
efficiency. Beyond what we have explored, our framework is also adaptable to non-image inputs that
can be encoded into a sequence of embeddings.

Action denoising with multimodal conditioning. The specialist model leverages multiple sources
of conditioning and their corresponding conditioning approaches to enhance decision-making: 1)
proprioceptive states (Proprio.) of the robot, 2) multimodal sensory inputs, 3) generalists’ discretized
action outputs, and 4) latent representations (refer to Figure 2(a)) from the generalist model. Each
source contributes distinct information, facilitating a more informed and robust policy.

The proprioceptive states are processed through a two-layer MLP and combined with a time-step
embedding to enable adaptive sample-wise conditioning. Beyond regressing γ and β parameters for
adaptive layer normalization (Perez et al., 2018), a scaling parameter α, is introduced in the residual
connections to ensure stable conditioning and improve training robustness (Peebles & Xie, 2023).

For sensory inputs, we incorporate a perceiver resampler (Alayrac et al., 2022), consisting of a multi-
head attention pooling module followed by an MLP layer, to selectively distill key features from
observation embeddings generated by ViTs while reducing token length. Specifically, we employ
eight learnable queries for every sensory input. The resampler preserves performance and accelerates
the multistep denoising process, particularly when dealing with multi-source inputs advantageous for
manipulation tasks, such as multiview observations, historical frames, and multimodal data.

To condition the specialist on the discretized actions from the generalist, we concatenate them with
the noised action of the corresponding time step, and project the concatenated inputs into a shared
latent space through linear layers. This approach is inspired by video prediction models (Blattmann
et al., 2023), which concatenate initially known frames with noised inputs to predict future states.

Conditioning our specialist model on the task and action latents derived from the generalist involves
utilizing linear projection on the generalist tokens to align their hidden spaces. Despite simplicity, it is
parameter-efficient and preserves the original positional encoding within VLA. Finally, the projected
generalist latents, along with the resampled observation embeddings, are concatenated and utilized as
keys and values in the cross-attention layer. Our diverse conditioning enables the specialist model to
process comprehensive contextual data effectively, prompting more informed decision-making.

Given that the generalist and specialist models operate asynchronously during inference (with a
single generalist inference supporting multiple specialist rollouts), we implement a shifted-window
conditioning mechanism. Specifically, following τs steps of specialist inference, only the most recent
kg − τs generalist actions are sampled as conditioning before a second update. We also apply this
mechanism as an augmentation during training to ensure latency robustness of RoboDual. The
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specialist model is optimized to denoise future trajectories by conditioning on the lagged generalist’s
output, with the specialist’s observation input leading the generalist’s by τ ∈ [0, kg] steps.

3.3 TRAINING & INFERENCE PROTOCOL

Generalist training. Unlike recent studies (Li et al., 2024; Szot et al., 2024) that directly applies
action regression loss to the output tokens of VLMs, we follow OpenVLA (Kim et al., 2024) and use
discrete token prediction, which naturally aligns the next-token prediction approach of decoder-only
LLMs (Chen et al., 2021). The model gϕ is fed with prompts p and prefixes of the ground truth
actions a<i, and trained to minimize the sum of next-token negative log-probabilities:

Lgen = Ep,a<i

[
−

Na∑
i=1

log gϕ(âi = ai | p, a<i)

]
, (1)

where Na represents the total length of action tokens. During the inference stage, the generalist
decodes âi based on previously decoded tokens â<i, instead of ground truth actions.

Specialist training. Following Diffusion Policy (Chi et al., 2023), we train our specialist with an
action denoising objective. Given an action trajectory of temporal length ks from dataset a0 ∼ Da,
randomly sampled noise ϵ ∼ N (0, I), and an arbitrary timestamp t ∼ U(1, T ), where t ∈ Z, T =
100, the forward diffusion process is formulated in closed form as at =

√
αta0 +

√
1− αtϵ. αt

denotes noise schedule that performs one-step noise adding (Ho et al., 2020). We optimize the
following training objective to train the specialist model πθ as follows:

Lspec = Et,c,a0,ϵ

[
∥ϵ− πθ(

√
αta0 +

√
1− αtϵ, c, t)∥2

]
, (2)

where c denotes the set of conditioning sources. We explore training a lightweight specialist model
from scratch, conditioned on a pre-trained generalist, and promote synergistic interactions between
the two systems. Introducing merely 20M trainable parameters and 8 GPU-hours of training with our
specialist model, the resulting dual-system demonstrates a more significant performance improvement
compared to the gains achieved from several days of additional training on the VLA alone (17%
v.s. 10%). We delve into this in Section 4.4. Further details regarding training hyperparameters and
architecture design are provided in Appendix B.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the performance of our method and to highlight its
notable attributes concerning generalizability, efficiency, and adaptability. We intend to study the
following research questions: I. (Section 4.2) Could RoboDual demonstrate higher success rates in
simulation and real-world tests compared to previous methods? II. (Section 4.3) Does RoboDual
perform generalizable manipulation? III. (Section 4.4) How is the adaptation and inference efficiency
of RoboDual? IV. (Section 4.5) What are the key factors contributing to the dual-system synergy?

4.1 EVALUATION SUITE

Simulation experiments on CALVIN. CALVIN (Mees et al., 2022b) is a widely recognized simula-
tion benchmark for assessing long-horizon language-conditioned manipulation tasks. Our objective
is to demonstrate the generalizability of our system in multitask learning using free-form language
instructions. Additionally, we investigate how the specialist model can leverage multiple input
modalities, beyond the third-view RGB input of the generalist, to enhance manipulation performance.
Further information regarding the benchmark and implementation details are provided in Appendix A.

Real-world robot experiments. All real-world experiments are conducted with an ALOHA platform
featuring a 7-DoF action space and a third-view RGB camera. We evaluate policies on both single-
instruction tasks (“Lift the pod did”, “Pour shrimp into bowl”, and “Push block Left”) and multi-
instruction tasks (“Put <obj> into basket” and “Knock <obj> over”). Additionally, we propose a
comprehensive set of evaluation tasks that cover various axes of generalization: 1) position variation,
2) visual distractions, 3) unseen background, and 4) novel objects. Each task is collected with
teleportation for 20-120 demonstrations based on their complexity. To establish our baselines,
we take the most advanced and widely adopted specialist policies, ACT (Zhao et al., 2023) and
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Table 1: Language-conditioned visuomotor control on CALVIN ABC→D. We report success rates
along with the average length of completed tasks (out of the whole 5 tasks) per evaluation sequence.
Lang and All denote whether models are trained only with the subset vision-language data pairs.

Method Train
sets

Task completed in a row (%) ↑ Avg. Len. ↑1 2 3 4 5

MCIL (Lynch & Sermanet, 2021) All 30.4 1.3 0.2 0.0 0.0 0.31
HULC (Mees et al., 2022a) All 41.8 16.5 5.7 1.9 1.1 0.67
RT-1 (Brohan et al., 2023b) Lang 53.3 22.2 9.4 3.8 1.3 0.90
MDT (Reuss et al., 2024) Lang 61.7 41.6 23.8 14.7 8.7 1.54
RoboFlamingo (Li et al., 2024) Lang 82.4 61.9 46.6 33.1 23.5 2.48
SuSIE (Black et al., 2024) All 87.0 69.0 49.0 38.0 26.0 2.69
GR-1 (Wu et al., 2024) Lang 85.4 71.2 59.6 49.7 40.1 3.06
3D Diffuser Actor (Ke et al., 2024) Lang 92.2 78.7 63.9 51.2 41.2 3.27

RoboDual (Ours) Lang 94.4 82.7 72.1 62.4 54.4 3.66

Diffusion Policy (Chi et al., 2023), alongside generalist models, Octo (Ghosh et al., 2024) and
OpenVLA (Kim et al., 2024), for comparative analysis. Specialists are trained in a single-task manner,
while the generalists are first trained with the combination of all tasks and then tuned on specific
scenarios to optimize their performance. For a clearer comparison, we implement our method by first
training the generalist across all tasks, followed by training the specialist separately using either task-
specific data (Ours-single-task) or multi-task data (Ours-multi-task). To enable specialist baselines,
which do not use language inputs, to effectively learn multi-instruction tasks, we incorporate FiLM
conditioning (Perez et al., 2018) into the visual backbone as RT-1 (Brohan et al., 2023b). For all
tasks, we report the average success rate over 15 independent runs. More details are in Appendix A.

4.2 COMPARISON TO STATE-OF-THE-ARTS

Table 2: Evaluations on robustness to free-form
language instructions. RoboDual shows exceptional
instruction-following capability.

Method Task completed in a row (%) ↑ Avg.
Len. ↑1 2 3 4 5

RoboFlamingo 63.0 33.0 16.4 8.6 3.6 0.40
3D Diffuser Actor 65.2 39.1 20.3 11.7 6.1 1.42
LCB 73.6 50.2 28.5 16.0 9.9 1.78

RoboDual (Ours) 91.8 81.8 68.5 57.8 48.8 3.47

CALVIN benchmark. We compare the
performance of RoboDual with other state-
of-the-art methods on CALVIN ABC→D.
The results are given in Table 1. We yield
an improvement from 3.27 to 3.66 on the
average length of completed tasks. The
success rate of accomplishing consecutive
5 tasks is elevated by 13.2%. Addition-
ally, we further investigate the robustness to
free-form task instructions of various meth-
ods, as shown in Table 2. We incorporate
RoboFlamingo and LCB (Shentu et al., 2024), both of which also utilize LLMs (MPT-1B (MosaicML,
2023) and LLaVA-7B (Liu et al., 2024) respectively), as our baseline approaches. All methods are
trained exclusively on the ABC split using the original language annotations and are evaluated with
GPT-4 enriched ones. While the performance of baseline methods decreases significantly compared
to their results in Table 1, our method exhibits minimal impact and nearly doubles the average length
compared to LCB. This improvement can be attributed to both the semantic understanding capability
of the generalist and the specialist model’s robustness to variations in conditioning latents.

Real-world experiments. The results are presented in Figure 3. The state-of-the-art specialist
policy, Diffusion Policy, achieves smoother control with a high success rate on more dexterous, yet
narrowly defined tasks. However, it struggles significantly with multi-instruction tasks, achieving
only a 20% success rate in “Put <obj> into basket.” In contrast, OpenX-pretrained generalist
models (Octo and OpenVLA) perform better on diverse tasks involving multiple objects and requiring
language conditioning. Regarding OpenVLA, its data and inference efficiency could be primary
bottlenecks that constrain its overall performance. In the “Push block left” task, OpenVLA overfits to
specific trajectories, despite demonstrations involving block placements in three distinct positions.
Its high inference latency also induces jittering and pauses, undermining performance in dexterous
control tasks. RoboDual harnesses the high-level reasoning capabilities of the generalist to guide the
specialist in executing smooth control, demonstrating strong performance across both single- and
multi-instruction tasks. Overall, RoboDual exhibits an improvement of +20% compared to the most
competitive baseline and consistently achieves a minimum success rate of 60% across all tasks.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Push block left Pour shrimp into bowl

20 20

53.3

73.3
66.766.7

0

20

40

60

80

100

37.3
49.3

62.7
56

82.7 80

0

20

40

60

80

100

Su
cc

es
s 

R
at

e

ACT Diffusion 
Policy

Octo OpenVLA

Ours
(single)

Average Single-instruction Tasks

Put <obj> into basket
Ours
(multi)

20

33.333.3
20

73.3
66.7

0

20

40

60

80

100

53.3

80

60

40

86.786.7

0

20

40

60

80

100

80

93.3
100

86.7

100 100

0

20

40

60

80

100

13.3
20

66.7
60

86.7
80

0

20

40

60

80

100

Lift the pod lid Knock <obj> over

Multi-instruction Tasks

+20%

Figure 3: Real-world robot experiments. We report the success rates of each method on three single-
instruction tasks and two multi-instruction tasks, along with the aggregate performance. RoboDual
outperforms all specialist and generalist baselines by a notable margin across all tasks.

(d) Novel Object(a) Position Variation (b) Visual Distractor (c) Unseen Background

"Push block left""Put block into bowl" "Put <obj> into plate""Open the drawer"

Changed

Original

Figure 4: Setting on generalizability evaluation. We evaluate four axes of generalizability with
different tasks: (a) Position Variation: The red block will be randomly placed in a 20cm × 10cm
area; (b) Visual Distractor: We change the color of drawer, with added plush toys, yellow bowls and
clay as distractors; (c) Unseen Background: We replace the checkered tablecloth with a solid white
one; and (d) Novel Object: Manipulated objects are replaced with unseen ones (banana → eggplant).

Table 3: Generalizability evaluation. RoboDual excels at all evaluated tasks that require generaliza-
tion capability from high-level semantic understanding to low-level position variation.

Framework Method Position
Variation

Visual
Distractor

Unseen
Background

Novel
Object Average ↑

Specialist ACT (Zhao et al., 2023) 46.7 26.7 0 13.3 21.7
Diffusion Policy (Chi et al., 2023) 53.3 40.0 26.7 40.0 40.0

Generalist Octo (Ghosh et al., 2024) 20.0 60.0 6.7 6.7 23.4
OpenVLA (Kim et al., 2024) 26.7 73.3 20.0 46.7 41.7

RoboDual Ours-single-task 93.3 80.0 60.0 46.7 70.0
Ours-multi-task 86.7 73.3 53.3 60.0 68.3

4.3 GENERALIZABILITY EVALUATION

We investigate the generalizability of RoboDual and baseline methods from four different aspects, as
illustrated in Figure 4. Detailed quantitative results are given in Table 3. In task “Put block into bowl”
that requires position generalization, specialist policies and Octo exhibit a noticeable bias towards
certain tested positions, likely due to the inherent imbalance in the training data. Although OpenVLA
can move in the correct direction, its control frequency prevents swift adjustments to the end effector,
often causing the object to be pushed away before it can be grasped. Conversely, both the multi-task
and single-task learning variants of RoboDual demonstrate strong performance on this challenging
task. It is also noted that RoboDual demonstrates error-correction capabilities by attempting to
re-grasp the block following a failed initial attempt, as shown in our video demos. Moreover, thanks
to the large, pre-trained VLMs leveraged, RoboDual outperforms both ACT and Diffusion Policy
in tasks necessities high-level generalizability (e.g., “visual distractor” and “novel object”). These
results demonstrate RoboDual’s superior ability to generalize across various scenarios.
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4.4 EFFICIENCY ANALYSIS

Training Efficiency (1 / GPU Hours)
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2.95

+17%3.44

Ours*

Figure 5: Training efficiency. We re-
port the training duration (GPU hours)
of the different methods and the model
performance in different training phases.
RoboDual achieves notable performance
gains with minimum training time.

Training efficiency. We first investigate the efficient adap-
tation of RoboDual to new environments, as illustrated
in Figure 5. The “generalist-only” and “specialist-only”
variants are implemented precisely as utilized within our
framework to ensure a fair comparison. To facilitate multi-
task learning on CALVIN using our specialist model, we
employ T5-xxl (Raffel et al., 2020) to encode task in-
structions and concatenate the language embeddings with
visual observations for conditioning. The performance of
the generalist-only variant stabilizes at 3.27 after approx-
imately 1,400 GPU hours of training on CALVIN. Based
on this, RoboDual, which further incorporates a special-
ist model with only 20M trainable parameters, enhances
performance to 3.52 following just one hour of training
on a node equipped with eight A100 GPUs. Our approach
ultimately improves the performance of a fully-trained
generalist by an additional 12%. Notably, when applied to
an inadequately trained generalist, just one hour of adapta-
tion with RoboDual achieves greater improvement than several days of further training with the VLA
alone (3.44 v.s. 3.27, denoted as Ours∗ in Figure 5). These results demonstrate that RoboDual is a
cost-effective approach that provides substantial performance gains with minimal training costs.

Table 4: Data efficiency. We explore the adaptability of
our specialist model to novel tasks with constrained data
availability. RoboDual’s performance advantage becomes
more pronounced with limited data. R.F.: RoboFlamingo.

(a) CALVIN benchmark.

Data
Scale

Avg. Len.
R.F. RoboDual

5% 1.35 3.59
10% 1.71 3.62
Full 2.48 3.66

(b) Real-world experiments.

No.
Demos

Success Rate
ACT D.P. RoboDual

5 0 20.0 73.3
10 6.7 20.0 80.0

100 46.7 53.3 93.3

Data efficiency. We then investigate
how the specialist model can efficiently
adapt to new environments and improve
the overall performance with limited
in-domain data. Results on CALVIN
are listed in Table 4(a). We take
RoboFlamingo, which also utilizes a
large VLM, to conduct comparative
analysis. We initialize RoboFlamingo
with its official checkpoint trained on
the full set of CALVIN dataset and reini-
tialize its LSTM-based action decoder
head to train it with a sub-proportion of data. While RoboFlamingo’s results diminish by nearly half
when utilizing only 5% of demonstrations, RoboDual exhibits robust performance with limited data
and maintains an average length of 3.59, demonstrating exceptional data efficiency. The superiority
of our method is further evidenced by real-world experiments. As presented in Table 4(b), we select
“put block into bowl” as a exemplar task. Training with just five demonstrations, RoboDual achieves
a notable success rate of 73.3%, which is more than three times the performance of the diffusion
policy (D.P.). In contrast, ACT completely fails to grasp the block with such limited demonstrations.
Additionally, our method demonstrates the ability to succeed in novel block positions which are not
included in the training set with only 5 episodes. Such an observation indicates that the specialist can
effectively leverage privileged knowledge from the generalist and extrapolate with limited data.

Inference latency analysis. In real-world experiments, we constrain the generalist model to produce
a single action (specifically the 8th action), which is then followed by eight steps of rapid specialist
inference with a latency of 0.035 seconds. Correspondingly, RoboDual achieves a control frequency
of 15 Hz in our real-world setup using NVIDIA A5000 Ada GPUs, facilitating deployment in more
dexterous tasks. Notably, inference latency is a primary factor contributing to the performance
degradation of OpenVLA. Operating at only 3.9 Hz within our system, it significantly alters the
system dynamics compared to the 20 Hz non-blocking controller used in our real-world tasks. It can
be observed that OpenVLA often struggles to adjust the end effector precisely before initiating a
grasp, resulting in lower success rates for tasks requiring fine control, such as “Put block into bowl”
(Table 3). Therefore, we believe that RoboDual is an effective and simple solution for deploying
large VLA models in diverse robotics setups. We include video demos in our anonymous project
page to offer a more intuitive glimpse into RoboDual’s performance in real-world scenarios.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

3.52    
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3.58

3.66

3.54   

3.63      
3.64

3.66

3.58  

3.63
3.66

(a) Generalist Outputs (b) Sensory Inputs (c) Conditioning Method

Figure 6: Ablations on the factors affecting system synergy. We investigate: (a) The importance
of each output from the generalist as conditioning sources, (b) The effectiveness of incorporating
additional sensory inputs, and (c) Comparison between different conditioning methods.

4.5 ABLATION STUDY

The competitive results presented above position our approach favorably compared to specialist and
generalist-only policies. In the following, we examine factors that pay credit towards a more desirable
synergistic framework for RoboDual.

Generalist outputs as conditioning. Figure 6(a) describes that each conditioning source from the
generalist model contributes to synergy and enhances overall performance. Although discretized
trajectories may not be perfect, they offer plausible directions that can be iteratively refined by the
specialist model, resulting in an improvement of 0.8. Furthermore, both the action and task latents
(refer to Figure 2) encapsulate high-level task understanding, which is crucial for multi-task learning.
The absence of task latents solely leads to a performance decline of 0.14 in average length.

Additional sensory inputs. Incorporating additional sensory inputs into the specialist model for
specific scenarios proves to be a cost-effective strategy. Our approach eliminates the necessity for
further fine-tuning of the VLA, without compromising the inference efficiency of the specialist model.
As demonstrated in Figure 6(b), RoboDual leverages additional modalities (e.g., depth and tactile)
and extra viewpoints (e.g., gripper camera) effectively to enhance overall performance.

Conditioning method. The firm bridges connecting generalist and specialist models are constructed
through stable conditioning mechanisms. We assess three well-established methods: FiLM (Perez
et al., 2018), in-context conditioning (Wang et al., 2023), and cross-attention. Results are shown
in Figure 6(c). Cross-attention based method performs slightly better than in-context conditioning
while also being more computationally efficient. Therefore, it is selected as our final approach.

5 CONCLUSION AND FUTURE WORK

We present RoboDual, a synergistic dual-system for robotic manipulation that capitalizes the gener-
alizability of Vision-Language-Action (VLA) models alongside the efficiency and adaptability of
specialist policies. Our proposed diffusion transformer-based specialist can achieve finer-grained
control, efficiently incorporate any sensory input, and adapt to diverse tasks and heterogeneous
environments with minimal data and training costs. By fostering synergistic cooperation, RoboDual
effectively addresses several limitations inherent in existing VLAs, offering a cost-effective and
widely adaptable solution for the practical deployment of large generalist policies.

Limitations and future work. In RoboDual, we assume that the inference time for both the generalist
and specialist remains constant. Consequently, during deployment, each generalist inference step
is associated with a fixed number of specialist steps. Besides, current generalist outputs discretized
actions only. Given the scalability of auto-regressive VLAs, there is potential for the generalist to be
trained to perform task decomposition (Ahn et al., 2022), affordance grounding (Qian et al., 2024; Lai
et al., 2024), and image goal generation (Sun et al., 2024). These capabilities may serve as effective
complements, establishing better “bridges” between the generalist and specialist models.
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Appendix

A EXTENDED DETAILS ON EVALUATION SUITES

CALVIN Benchmark. CALVIN (Mees et al., 2022b) encompasses 34 distinct tasks, characterized
by unconstrained task instructions that cover a range of skills, from basic pick-and-place operations
to articulated object manipulation. The benchmark comprises four different environments as shown
in Figure 7, each featuring a Franka Panda robotic arm for tabletop manipulation. In our study,
we adopt the challenging evaluation setting, where policies are trained with demonstrations from
environments A, B, and C, followed by zero-shot evaluations in environment D. The evaluation
protocol includes a test set of 1,000 unique instruction chains, each composed of five consecutive tasks.
The results of the baselines are directly referenced from the official benchmark. For implementation
on CALVIN, we train the generalist model with LoRA (Hu et al., 2022) for 50 epochs. The specialist
model is trained for 100k iterations with a batch size of 64 (∼8 epochs). We set the action chunk size
to kg = ks = 8 for both the generalist and specialist policy. Unless specified otherwise, our specialist
model takes as input RGB and depth images from static (third-view) and gripper view cameras. Both
the generalist and specialist operate on images of size 224× 224.

Env A Env B Env C Env D

Training Test

Figure 7: Experiment setting of CALVIN. CALVIN consists of four simulated environments
(designated as A, B, C, and D), which differ in textures and object positions.

Real-world experiments. We propose an array of tasks to evaluate different manipulation skills, such
as basic pick and place (“put the block into bowl”), non-prehensile manipulation (“push block left”),
and articulated object manipulation (“open the drawer”), targeting at a comprehensive assessment of
different policies. Due to limitations of our real-world setup, both the generalist and specialist take as
input RGB images from a single camera view, with size 192× 256. Notably, all generalist baselines
(i.e., Octo (Ghosh et al., 2024) and OpenVLA (Kim et al., 2024)) show zero success rate if we directly
deploy them in a zero-shot manner. In addition to the challenges posed by novel camera views and
embodiment configurations, current generalist policies face limitations in direct deployment due to
being trained in normalized action space. The statistics of normalization are tailored to each dataset
in the OpenX collection (Padalkar et al., 2024), resulting in an implicit, dataset-specific mapping
between action spaces and corresponding observations. The reasons mentioned above raise the
necessity of further adapting generalist policies with our self-collected demonstrations. We train the
specialist baselines from scratch, while the generalists benefit from initialization with pre-trained
checkpoints. All models undergo extensive training to ensure clear convergence over time.

The implementation of RoboDual follows a two-stage training pipeline, where the generalist is
trained with multi-task data using LoRA (Hu et al., 2022) finetuning, followed by the efficient
training of our specialist model with either multi-task or task-specific demonstrations. We set
the action chunk size ks = 8 for the specialist and use temporal aggregation during inference to
achieve smoother control. Specifically, action outputs are temporally aggregated with an exponential
weighting scheme wi = exp(−m · i), where i ∈ [0, ks] and w0 is the weight for the oldest
action. We set m to 0.1 by default. DDIM scheduler (Song et al., 2021) is employed with the
timestamps set to 100 for training and only 5 for inference. Directly predicting samples shows
to be more robust than noise prediction. We find that increasing the denoising steps does not
necessarily bring performance improvement, while using smaller steps allows faster inference and
more responsive control. Classifier-free guidance (Ho & Salimans, 2022) is applied on generalist
latents and proprioceptive states with a guidance scale of wg = 3 for better controllability. We also
explore the capability of the generalist to anticipate and plan ahead, generating actions ks steps
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beyond its current observation. Consequently, we observe that the specialist is able to accurately
“interpolate” actions based on conditioning from the generalist, guiding the robotic arm to the intended
position and enabling precise, fine-grained control.

B ARCHITECTURE DESIGN AND TRAINING HYPERPARAMETERS

Generalist. The architecture of our generalist policy is identical to Prismatic-7B (Karamcheti et al.,
2024). Regarding training of the generalist, we follow OpenVLA (Kim et al., 2024), and use the
AdamW optimizer with a constant learning rate of 2e-5 and weight decay of 0.01. We find that
achieving robust convergence on the CALVIN benchmark, with its 34 distinct tasks and diverse
environments, necessitates a sufficiently large batch size of 2048. We leverage gradient accumulation
to achieve a large batch size with constrained compute. However, for real-world experiments, a
smaller batch size of 64 remains feasible, offering greater flexibility in practical applications.

Specialist. We provide the detailed architecture information of our specialist policy in Table 5.
Rotary position embeddings are incorporated into each DiT block to ensure coherence among
chunked actions. In general, it is more lightweight than previous popular specialist policies (Zhao
et al., 2023; Chi et al., 2023) that contains 50M to 80M parameters. Incorporating a new sensory
input entails an individual ViT encoder (6.4M) and a perceiver resampler module (1.1M), which
introduces additional 7.5M parameters in total. Considering an input size of 224, sensory encoders
generate 196 tokens with a patch size of 16. Observation embeddings are subsequently downsampled
to only 8 tokens by the resampler. Notably, conditioning latents in the cross-attention module only
need to be computed once for the multistep denoising process, leading to more efficient control.

During training, we leverage the AdamW optimizer with a learning rate of 1e-4 and weight decay of
1e-3, mostly following Chi et al. (2023). A cosine-annealing scheduler with warm-up steps of 1,000 is
employed to improve training stability. We apply classifier-free guidance (Ho & Salimans, 2022) on
generalist latents and proprioceptive states with a condition drop chance of 0.1, allowing the specialist
policy to imitate without privileged information from the generalist. No specific modifications of
training parameters are made for any tasks or environments.

Table 5: Architecture details of our diffusion transformer-based specialist policy.

Architecture of Specialist Policy

Diffusion
Transformer

Layers 6
Heads 8
Hidden Size 256
MLP Ratio 4
Action Steps 8

Perceiver
Resampler

Layers 1
No. Tokens 8
MLP Ratio 4

Sensory
Encoders
(ViT)

Layers 6
Heads 8
Hidden Size 256
MLP Ratio 4
Patch Size 16

Parameters 16.2M

C EXTENDED EVALUATIONS ON GENERALIZABILITY

We conduct extended the generalization experiment with multiple distractors at varied locations,
as illustrated in Figure 8. We still pick "Put Block into Bowl" as the task for evaluation, but
the environment is different from what is introduced in Figure 4. Beyond visual distractions, the
block is placed at randomized positions to also evaluate position generalizability. Due to hardware
constraints, the following experiments are conducted with a NVIDIA RTX 4060 laptop GPU with
only 8GB memories. We perform 4-bit quantization to OpenVLA and our generalist model to fit

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: Experiment setting for our extended generalization evaluation. We place multiple
different objects at various positions in the scene.

Method Success Rate

Diffusion Policy 26.7
OpenVLA 46.6

RoboDual 60.0

Table 6: Extended generalization evaluation. RoboDual shows robustness under diverse distractions
and object positions, achieving better performance over specialist and generalist-only baselines.

in the device. Specialist of RoboDual can still run at full precision. Experiment results are given
in Table 6. RoboDual demonstrates superior generalizability over Diffusion Policy and OpenVLA,
two representative specialist and generalist-only policies. We also explore whether RoboDual
can generalize from "blue blocks" to "carrots" and achieve robust manipulation with video playing
(dynamic visual changes) in the background. We have uploaded corresponding video demos to our
anonymous project page.

D FAILURE ANALYSIS

During the 100 testing runs of the all tasks in our real-world environment, we record the causes
behind each failure. Subsequently, we present these failure causes in a Sankey diagram, exemplified
in Figure 9. We found one major failure issue would be "Not Following Instruction". The instruction-
following ability of the VLA (generalist) model may not be fully leveraged by the specialist model to
perform the desired task. It’s worth future exploration of building better "bridges" beyond what is
discussed in RoboDual (i.e., discretized actions and generalist latent features) to facilitate a more
synergistic framework.

Figure 9: Detailed failure case analysis on real-world robot experiments.
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