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Abstract

Multi-task learning (MTL) has gained significant popularity
in recommender systems as it enables simultaneous optimiza-
tion of multiple objectives. A key challenge in MTL is neg-
ative transfer, but existing studies explored negative transfer
on all samples, overlooking the inherent complexities within
them. We split the samples according to the relative amount of
positive feedback among tasks. Surprisingly, negative transfer
still occurs in existing MTL methods on samples that receive
comparable feedback across tasks. Existing work commonly
employs a shared-embedding paradigm, limiting the ability of
modeling diverse user preferences on different tasks. In this
paper, we introduce a novel Shared and Task-specific EMbed-
dings (STEM) paradigm that aims to incorporate both shared
and task-specific embeddings to effectively capture task-
specific user preferences. Under this paradigm, we propose a
simple model STEM-Net, which is equipped with an All For-
ward Task-specific Backward gating network to facilitate the
learning of task-specific embeddings and direct knowledge
transfer across tasks. Remarkably, STEM-Net demonstrates
exceptional performance on comparable samples, achieving
positive transfer. Comprehensive evaluation on three public
MTL recommendation datasets demonstrates that STEM-Net
outperforms state-of-the-art models by a substantial margin.
Our code is released at https://github.com/LiangcaiSu/STEM.

Introduction
Recently, multi-task learning has drawn great interest in rec-
ommender systems since they are able to optimize multiple
objectives (e.g., Like, Share, Finish) simultaneously.
The effectiveness of multi-task recommendation (MTR) de-
pends on leveraging knowledge from other tasks to help the
learning of each task. However, prior works have identi-
fied negative transfer (Torrey et al. 2010) and seesaw phe-
nomenon (Tang et al. 2020), whereby multi-task learning
models may not always outperform single-task models. To
address negative transfer, MMoE (Ma et al. 2018a) and
PLE (Tang et al. 2020) incorporate task-specific gate net-
works and experts, respectively. Additionally, techniques
such as gradient clipping (Yu et al. 2020; Chen et al. 2018;
He et al. 2022) and task-aware optimizer (Yu et al. 2020;
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Figure 1: Existing MTL models such as MMoE and PLE
suffer from negative transfer on the comparable subset of
TikTok test samples, while STEM-Net achieves positive
transfer. STEM-Net also outperforms MMoE and PLE on
task-overwhelming subsets. ST: Single-Task.

Chen et al. 2018; Yang et al. 2023) have also been employed
to alleviate gradient conflicts.

Existing methods tend to treat all samples in a task as
a whole, overlooking the inherent intricacies within them.
Consequently, it remains unclear where negative transfer oc-
curs. To address this concern, we split the test set of Tik-
Tok, a public MTL recommendation dataset, into three sub-
sets according to the relative amount of feedback between
task Finish and Like: Finish-Overwhelming, Compa-
rable, and Like-Overwhelming. We then evaluate the per-
formance of two popular MTL models, MMoE and PLE,
and the single-task model on task Like over these sub-
sets, since it has much fewer positive samples and there-
fore suffers from negative transfer. As shown in Figure 1,
compared to the single task model, both MMoE and PLE
demonstrate a notable performance lift on the Finish-
Overwhelming subset by incorporating additional knowl-
edge of task Finish to resolve the feedback sparsity on
Like. They also have a slight performance boost on the
Like-Overwhelming subset where task Like itself can al-
ready learn well, but stills benefits from the complementary
knowledge from Finish. However, to our surprise, on the
subset that receives comparable positive feedback from both
tasks, the performance of existing methods is inferior to that
of the single-task model.

The performance drop of existing MTL methods on the
comparable subset prompts us to reconsider the design of
MTL recommendation models. Intuitively, users may pos-
sess diverse and sometimes even conflicting preferences
over items across various tasks, which become more pro-



Figure 2: Comparison between representative MTL models and our proposed STEM-Net. Dot lines denote connections with
stop-gradient operation.

nounced when there are sufficient signals from multiple
tasks, as on the comparable subset here. The preference of
users is captured through user and item embeddings in rec-
ommendation models. However, existing MTL methods, in-
cluding MMoE (Ma et al. 2018a) and PLE (Tang et al. 2020),
all follow a shared-embedding paradigm. That is, they learn
a universal embedding for each user and item, shared across
tasks. Such a paradigm is only able to capture a single prefer-
ence of users, hindering the ability to capture the preference
divergence across tasks.

Motivated by the limitations of the shared-embedding
paradigm, this paper introduces a Shared and Task-specific
EMbeddings (STEM) paradigm. STEM aims to incorporate
both shared and task-specific embeddings to learn common
and task-specific user preference. Under this paradigm, we
design a simple model, namely STEM-Net, which begins by
introducing the shared and task-specific embedding tables.
STEM-Net then constructs a set of experts, where each ex-
pert is either shared across tasks, utilizing only shared em-
beddings, or task-specific, utilizing embeddings specific to
a particular task. Furthermore, STEM-Net employs an All
Forward Task-specific Backward gating network for each
task tower, which a) receive forward from shared and all
task-specific experts and b) employs a stop-gradient opera-
tion on the experts of the other tasks to learn task-specific
embeddings by preventing a task’s gradients from updating
embeddings of the other tasks.

We conduct extensive evaluation of STEM-Net on three
subsets of the TikTok dataset. STEM-Net consistently out-
performs both MMoE and PLE on the Finish and Like-
Overwhelming subsets. Moreover, STEM-Net exhibits re-
markable performance in the comparable subset, surpass-
ing the Single-Task Like model. Furthermore, we assess
STEM-Net on three public MTL recommendation datasets.
In all cases, STEM-Net surpasses state-of-the-art models by
a substantial margin, further validating its effectiveness. We
outline our contributions as follows:
• We delve into the intricacies of samples to investigate the

negative transfer in MTL recommendation models. Sur-
prisingly, our investigation reveals the presence of neg-
ative transfer on samples that receive comparable feed-
back from both tasks.

• We propose a novel paradigm called STEM (Shared
and Task-specific EMbeddings) for multi-task recom-
mendation. Under this paradigm, we design a simple
model called STEM-Net equipped with an All Forward

Task-specific Backward gating network to facilitate di-
rect knowledge transfer across tasks while learning task-
specific embeddings.

• We conduct comprehensive experiments and ablation
studies on three MTL recommendation datasets and pro-
vide compelling evidence of STEM-Net’s effectiveness.
In online A/B testing, STEM-Net achieves significant
improvement in GMV (Gross Mechanise Value) over the
base model (MMoE), and it has been successfully de-
ployed in Tencent’s online advertising platform.

Related Work
Evolution of the MTL Model Architectures
In this section, we provide a comprehensive review of multi-
task recommendation models that are based on the widely
adopted Embedding-Expert-Gate-Tower architecture (Caru-
ana 1997; Ma et al. 2018a; Tang et al. 2020; Yang et al. 2022;
Hazimeh et al. 2021; Qin et al. 2020). This architecture com-
prises four key modules: Embeddings, which employ dense
vectors to represent sparse features; Experts, which extract
knowledge from the input features; Gates, which aggregate
the outputs of the experts using attentive weights; and Tow-
ers, which are task-specific classifiers. Figure 2 illustrates
representative models at various levels of task specificity.
Notably, recent works have witnessed a gradual shift in the
placement of task-specific modules, from top modules such
as towers (Caruana 1997; Misra et al. 2016) or gates (Ma
et al. 2018a; Pan et al. 2019) toward bottom modules such
as experts (Tang et al. 2020).

Tower-level task-specific models, where each task has
an independent tower and is updated only by its own loss, as
shown in Figure 2(a). All remaining parameters are shared
across tasks. Shared-Bottom (Caruana 1997) is a representa-
tive of these models, also known as hard parameter sharing.
OMoE (Ma et al. 2018a), Cross-stitch (Misra et al. 2016) are
variants of Shared-Bottom with shared experts (i.e. bottom).

Gate-level task-specific models, which employ a gating
network to each task to weight the outputs of experts. MMoE
is a representive of these models, as shown in Figure 2(b).
Dselect-k (Hazimeh et al. 2021), MoSE (Qin et al. 2020)
and MT-FwFM (Pan et al. 2019) also fit into this category.
All parameters in the modules below the gates, including
experts and embeddings, are shared across tasks.

Expert-level task-specific models, where each task has
its own experts on the basis of the Tower/Gate-level task-



specific model. PLE (Tang et al. 2020) is a representa-
tive model, which utilizes both task-specific and shared ex-
perts. Numerous subsequent works follow this design in-
cluding PFE (Xin et al. 2022), MLPR (Wu et al. 2022) and
TAML (Liu et al. 2023). Moreover, some methods based
on sparse routings, such as SNR (Ma et al. 2019) and
CSRec (Bai et al. 2022), are also Expert-level task-specific
models since some parameters of their experts are task-
specific. In these models, even though parameters of some
experts are task-specific, the embeddings are still shared
across tasks.

In contrast to the above studies, we focus on Embedding-
level task-specific models. We will discuss this in detail in
the method section.

Delve into Negative Transfer in MTL
Recommenders

In MTL recommendation, negative transfer refers to the phe-
nomenon where knowledge or information learned from one
task adversely affects the performance of another task. Ex-
isting research primarily focuses on investigating negative
transfer across all samples as a whole, often overlooking the
inherent intricacies within samples. To illustrate this point,
let us consider an MTL setting involving two tasks, denoted
as task A and B. Samples with limited positive feedback from
A may intuitively benefit from MTL by receiving additional
feedback from B. Besides, samples with abundant positive
feedback from A can also get performance lift by incorpo-
rating complementary feedback from B. However, when a
comparable amount of feedback exists for both tasks A and
B, negative transfer may occur due to the possible contradic-
tory user preferences over items between two tasks.

To verify this hypothesis, we can split the testing sam-
ples into three subsets according to the relative amount
of (expected) positive feedback between task A and B: A-
Overwhelming subset DA-O and B-Overwhelming subset
DB-O, each consisting of samples with overwhelming posi-
tive feedback from task A or B, respectively, and Comparable
subset DComp which consists of samples with comparable
positive feedback from both tasks. In particular, we measure
the amount of positive feedback for a given sample regarding
each task by the expected positive feedback from each single
task model, and then split the samples into subsets according
to the gap between task-wise expected positive feedback.

We conducted an empirical analysis on the TikTok
dataset, which consists of two tasks: Like and Finish.
We aim to investigate negative transfer on the Like task,
as it exhibits a significantly lower number of positive sam-
ples, rendering it susceptible to be dominated. Following
the above mentioned procedure, we first discretize the ex-
pected feedback of each task into 10 buckets with equal sam-
ple frequency. The relative feedback can then be quantified
by the difference in bucket indices: b(fA(x)) − b(fB(x)).
We define Finish-Overwhelming subset as the set of sam-
ples with a bucket index difference in the range of [−9,−4],
the Comparable subset with a range of (−4, 6] and Like-
Overwhelming with a range of (6, 9]. We evaluate the perfor-
mance of two existing MTL models, MMoE and PLE, and

the Like single task model, on the Like task. As depicted
in Figure 1, both MMoE and PLE demonstrate improved
performance when there is overwhelming feedback from
either task. However, both models exhibit inferior perfor-
mance compared to the single task model on subset DComp.
We attribute the performance drop of MMoE and PLE to that
there may be contradictory user preference over items be-
tween Like and Finish on the comparable subset. Shared
embedding methods, such as MMoE and PLE, is incapable
to capture such contradictory preference. We’ll investigate
contradictory user preference in the Performance Evaluation
Section. In the following, we’ll present our STEM paradigm
and STEM-Net under this paradigm.

Method
The STEM Paradigm
In recommendation, each sample consists of M active fea-
tures, i.e., x = {x1, x2, · · · , xM}, where M denotes the
number of fields and xi represents the active feature of the
i-th field. All existing methods follow a shared-embedding
paradigm, that is, they have only one shared embedding ta-
ble, and learn one shared embedding for each feature.

Under STEM paradigm, in addition to the shared em-
bedding table ES ∈ RN×K in the shared-embedding
paradigm, we also employ T task-specific embedding tables
{E1, . . . , Et, . . . , ET }, one for each task t. Here N denotes
the total number of features across all fields, and K denotes
the embedding dimension. For a given feature xi, we get the
task-specific embeddings {vt

i} as well as the shared embed-
ding vS

i as follows :

vt
i = Lookup(xi, E

t),

vS
i = Lookup(xi, E

S).
(1)

We concatenate the task-specific and shared embeddings
across all active features as follows:

ht
0 = [vt

1, . . . ,v
t
i , . . . ,v

t
M ],

hS
0 = [vS

1 , . . . ,v
S
i , . . . ,v

S
M ],

(2)

where the concatenated task-specific embedding ht
0 and

shared-embedding hS
0 are the input to the experts, as dis-

cussed below.

The STEM-Net Model
Under STEM paradigm, our proposed STEM-Net further
employ Shared & Task-Specific Experts and an All For-
ward Task-specific Backward gating network to facilitate the
learning of task-specific embeddings and knowledge trans-
fer across tasks.

Shared & Task-Specific Experts Following PLE (Tang
et al. 2020), we employ shared and task-specific experts.
However, each shared or task-specific expert group is
equipped with an independent embedding table, so as to pre-
vent any parameters interference. In particular, the shared
experts only takes hS

0 as the input, which consists of em-
beddings from the ES . Experts for task t only takes ht

0 as
the input, consisting of embeddings from Et. For brevity,
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Figure 3: Overview of STEM-Net.

we assume that each task-specific expert group and shared
expert group contains K1 and K2 experts respectively. Each
expert is a multi-layer perceptrons (MLPs) over the input:

ht
i = MLPt

i(h
t
0),∀i = 1, . . . ,K1,

hS
j = MLPS

j (h
S
0 ),∀j = 1, . . . ,K2,

(3)

where ht
i represents output of the i-th expert for task t and

hS
j represents the output of the j-th shared expert.

All Forward Task-specific Backward Gating Network
The gating mechanism aims to integrate outputs from ex-
perts for each task’s tower. In STEM-Net, we’d like to re-
ceive the outputs from all experts, including both shared and
task-specific ones, to maximize knowledge transfer, while at
the same time learn task-specific embeddings, so as to cap-
ture task-specific preference. We achieve this by designing
an All Forward Task-specific Backward gating network, that
connects the tower of each task to all experts, with a stop gra-
dient operation on the experts of the other tasks. Formally,
the output of the gating network for task t is formalized as:

ot =

K1∑
i

gt→t
i ht

i +

K2∑
i

gS→t
i hS

i

+
∑

t′∈T ,t′ ̸=t

K1∑
i

gt′→t
i SG(ht′

i ),

(4)

where SG(·) is the stop gradient operator, and gt→t ∈ RK1

denotes the attentive weight on connections between task t’s
corresponding tower and experts, gt′→t ∈ RK1 denotes the
weight between the expert of task t′ and tower of task t,
gS→t ∈ RK2 denotes the weight between shared experts
and tower of task t, respectively. These weights are com-
puted with a softmax over the concatenated embeddings:

[gt→t, {gt′→t}, gS→t] = Softmax(W t
g(h

t
0 + hS

0 )), (5)

where W t
g ∈ Rd×(K1×T+K2).

Figure 4: Comparison of gating networks of MMoE (All
Forward All Backward), PLE (Task-specific Forward Task-
specific Backward) and our STEM-Net (All Forward Task-
specific Backward).

Towers and Loss Function Finally, we assign each task
an independent tower and obtain the final output as:

ŷt = σ(MLPt(ot)), (6)

where σ is the sigmoid function. We choose binary cross-
entropy loss function as the objective function for each task,
and the final loss function is formulated as follows:

L = −
T∑
t

yt log(ŷt) + (1− yt) log(1− ŷt), (7)

where yt is the ground truth of task t.

Comparison of Gating Networks MMoE adopts an All
Forward All Backward gating network, that each task’s
tower receives output from all experts, and propagate the
gradients to all experts, too. All Backward makes MMoE
unable to learn task-specific embeddings, even if we assign
independent embedding tables for each expert, denoted as
Multi-Embedding MMoE (ME-MMoE for short).

PLE adopts a Task-specific Forward Task-specific Back-
ward gating network, where each task’s tower receives out-
puts from shared experts and its own experts, but not from
experts of the other tasks. Similarly, each task’s tower only



Dataset #User #Items #Samples #Fields #Tasks Positive Ratio (%)
TikTok 560K 1800K 223.4M/24.8M/27.6M 8 2 28.31/1.60

QK-Video 970K 760K 95.9M/12.0M/12.5M 16 2 24.01/2.03
KuaiRand1K 1K 189K 10.9M/0.39M/0.42M 32 8 37.76/1.54/0.10/0.26/0.08/0.10/26.17/1.78

Table 1: Statistics of processed datasets.

Model Task A Task B Task C Task D Task E Task F Task G Task H Avg. AUC MTL Gain
Single-Task 0.7534 0.9293 0.8294 0.8943 0.8572 0.8821 0.7650 0.8358 0.8433 -
Shared-Bottom 0.7535 0.9261 0.8162 0.8881 0.8228 0.7820 0.7642 0.8340 0.8234 -0.0199
OMoE 0.7549 0.9273 0.8404 0.8923 0.8352 0.8750 0.7655 0.8349 0.8407 -0.0026
MMoE 0.7541 0.9278 0.8268 0.8901 0.8591 0.8908 0.7647 0.8360 0.8437 +0.0003
PLE 0.7537 0.9290 0.8362 0.8885 0.8449 0.8940 0.7643 0.8374 0.8435 +0.0002
ME-MMoE 0.7555 0.9288 0.8310 0.8912 0.8500 0.8668 0.7658 0.8385 0.8410 -0.0024
ME-PLE 0.7536 0.9294 0.8353 0.8970 0.8521 0.8871 0.7637 0.8381 0.8445 +0.0012
STEM-Net 0.7523 0.9282 0.8420 0.8910 0.8635 0.9070 0.7637 0.8359 0.8480 +0.0047

Table 2: Overall performance on KuaiRand1K.

Model Finish Like Avg.
AUC ↑Logloss↓ AUC ↑ Logloss↓ AUC↑

Single-Task 0.5111 0.7505 0.0558 0.9058 0.8281
Shared-Bottom 0.5112 0.7504 0.0560 0.9022 0.8263
OMoE 0.5103 0.7516 0.0559 0.9029 0.8273
MMoE 0.5105 0.7511 0.0560 0.9018 0.8265
PLE 0.5105 0.7511 0.0560 0.9016 0.8264
ESMM 0.5111 0.7503 0.0564 0.9012 0.8258
AITM 0.5109 0.7506 0.0560 0.9026 0.8266
ME-MMoE 0.5114 0.7502 0.0557 0.9045 0.8274
ME-PLE 0.5120 0.7492 0.0560 0.9058 0.8275
STEM-Net 0.5104 0.7513 0.0553 0.9095 0.8304

Table 3: Overall performance on TikTok.

backward propagate gradients to the shared experts and its
own experts, but not to the other tasks’ experts. Task-specific
Forward makes PLE can’t fully transfer the knowledge from
other tasks directly besides the shared expert, even if we
assign independent embeddings for each expert (group) in
PLE, denoted as ME-PLE. The comparison of our gating
network with those of MMoE and PLE is shown in Figure 4.

Performance Evaluation
Experimental Setup
Public Datasets. We choose three public datasets,
namely TikTok, QK-Video (Yuan et al. 2022), and
KuaiRand1K (Yuan et al. 2022) for performance evaluation.
We replace features from all datasets that appeared less than
10 times in the training set by a default value. The statistics
of the processed dataset is presented in Table 1.

Baselines. To establish a performance benchmark for
comparison, we implement a Single-Task model, as well as
popular MTL methods including Shared-Bottom (Caruana
1997), OMoE (Ma et al. 2018a), MMoE (Ma et al. 2018a)
and PLE (Tang et al. 2020). The Single-Task model adopts
MLPs (Multi-Layer Perceptrons) that are trained only for
a single task. In implementation, it is essentially equiva-
lent to a Shared-Bottom model with only one tower. For the

Model Click Like Avg.
AUC ↑Logloss↓ AUC ↑ Logloss↓ AUC↑

Single-Task 0.2826 0.9234 0.0378 0.9400 0.9317
Shared-Bottom 0.2857 0.9235 0.0380 0.9389 0.9312
OMoE 0.2826 0.9238 0.0373 0.9394 0.9316
MMoE 0.2813 0.9238 0.0379 0.9401 0.9319
PLE 0.2832 0.9238 0.0375 0.9399 0.9318
ESMM 0.2847 0.9208 0.0378 0.9368 0.9288
AITM 0.2836 0.9237 0.0386 0.9398 0.9318
ME-MMoE 0.2815 0.9239 0.0375 0.9407 0.9323
ME-PLE 0.2818 0.9238 0.0374 0.9410 0.9324
STEM-Net 0.2816 0.9237 0.0381 0.9426 0.9331

Table 4: Overall performance on QK-Video.

Tiktok and QK-Video datasets, we introduce two additional
baselines: ESMM (Ma et al. 2018b) and AITM (Xi et al.
2021). Furthermore, we provide the Multi-Embedding ver-
sions of MMoE and PLE as strong baselines to study the
effect of simply including additional embeddings, namely
ME-MMoE (Fig. 2(d)) and ME-PLE (Fig. 2(e)). For ME-
MMoE, we allocate independent embeddings for each ex-
pert, while for ME-PLE, we assign separate embeddings for
task-specific and shared experts. Note that ME-PLE also fol-
lows the STEM paradigm, in the sense that it also learns
shared and task-specific embeddings. ME-MMoE and ME-
PLE use the same gating network as MMoE and PLE, i.e.,
All Forward All Backward and Task-specific Forward Task-
specific Backward, respectively.

Hyper-Parameter Settings. We implement all meth-
ods based on Pytorch and use Adam (Kingma and Ba
2015) as the optimizer. We set the learning rate as
{1e−3, 5e−4, 1e−4}, the batch size as 4096, and the l2 reg-
ularization factor of embedding as 1e−6. We set the dimen-
sion of the embedding to 16, and each expert/bottom is an
MLP with hidden units of [512, 512, 512]. The towers and
the gate networks of all methods are MLPs with hidden units
of [128, 64]. The number of task-specific and shared experts
is chosen from {1, 2, 4, 8}. Grid search is used to find opti-



Variants Tiktok KuaiRand1K
AUC #Param AUC #Param

STEM-Net-∅ 0.8261 1.00x 0.8382 1.00x
STEM-Net-(user id, item id) 0.8302 1.95x 0.8448 1.36x
STEM-Net-(user side) 0.8301 1.23x 0.8437 1.00x
STEM-Net-(item side) 0.8260 2.62x 0.8193 2.05x
STEM-Net-(all features) 0.8304 2.85x 0.8480 2.06x

Table 5: Performance of STEM-Net variants where only se-
lected feature fields deploy task-specific.

mal hyper-parameters for all methods.

Overall Performance
The comparison between STEM-Net and the baselines on
the three datasets is presented in Tables 3, 4 and 2.We have
the following observations. First, STEM-Net achieves the
best average AUC across all datasets. Specifically, STEM-
Net exhibits an average AUC improvement of approximately
4e−3, 2e−3, and 4e−3 over the state-of-the-art model (PLE)
on three datasets, respectively.

Second, STEM-Net achieves positive transfer over the
single task model on the Like task on both TikTok and QK-
Video dataset for the first time. These tasks have much less
positive feedback than the other tasks, making them fragile
to negative transfer. STEM-Net tackles negative transfer by
learning task-specific embedding and hence capturing task-
specific preference on this task.

Third, to make a fair comparison regarding number of pa-
rameters, we compare STEM-Net with another two multi-
embedding baselines: ME-MMoE and ME-PLE. STEM-Net
and ME-PLE both have T +1 embedding tables, while ME-
MMoE has the same number of embedding tables as experts
(typically greater than T ). STEM-Net still beats these two
methods on three datasets. Furthermore, ME-PLE, which
also follows STEM paradigm, outperforms ME-MMoE, es-
pecially on Like on TikTok and QK-Video datasets, vali-
dating the effectiveness of task-specific embeddings in cap-
turing task-specific user preference.

Which Feature Fields Should Be Task-Specific?
We investigate which feature fields should be task-specific
to learn diverse user preferences across tasks. To this end,
we designed STEM-Net variants that only learn task-specific
embeddings for selected fields F , denoted as STEM-Net-
(F ). Results on the TikTok dataset are presented in Table 5.

First, if no features are task-specific in STEM-Net, de-
notes as STEM-Net-∅, its performance is comparable with
that of MMoE and PLE. This proves that task-specific em-
beddings or the STEM paradigm (facilitated by All Forward
Task-specific Backward gating) is the key for STEM-Net’s
performance lift, rather than the model architecture itself.

Second, our main purpose is to capture user’s preference
on items in STEM-Net, so we wonder if we can still achieve
decent performance lift when only making embeddings of
User ID and Item ID task-specific. We evaluate the perfor-
mance of the corresponding model STEM-Net-(user id, item
id), observing that it also achieves competitive performance

Input SG Finish Like Avg.
AUCAUC Logloss AUC Logloss

ht
0

! 0.7509 0.5107 0.9077 0.0555 0.8293
% 0.7511 0.5106 0.9023 0.0560 0.8267
∆ +0.0001 -0.0001 -0.0054 +0.0005 -0.0026

hS
0

! 0.7510 0.5106 0.9089 0.0553 0.8300
% 0.7511 0.5105 0.9037 0.0558 0.8274
∆ +0.0001 0.0000 0.0052 +0.0005 -0.0026

ht
0 + hS

0

! 0.7513 0.5104 0.9095 0.0553 0.8304
% 0.7510 0.5106 0.9008 0.0562 0.8259
∆ -0.0002 +0.0003 -0.0080 +0.0009 -0.0045

Table 6: The effect of input and stop gradient to gating net-
work.

with STEM-Net. This verify our hypothesis that STEM-
Net’s performance lift is mainly attributed to its ability to
capture diverse user preference over items.

Further, we are curious whether user side (e.g., user id and
device id in Tiktok) or item side (e.g., item id, author id, item
city, channel, music id and video duration in Tiktok) fea-
tures are more critical to have task-specific embeddings. We
design two new variants, STEM-Net-(user side) and STEM-
Net-(item side), and observe the former one perform better,
indicating that user side features are more effective than item
in capturing diverse user preference among tasks.

Effectiveness of the Proposed Gating Network
In STEM-Net, our proposed All Forward Task-specific
Backward gating network is critical to learn task-specific
embeddings via stop gradients (SG) operation. Furthermore,
the input to the gating network is also worth discussing (Fei
et al. 2021; Chang et al. 2023). Thus, we present three vari-
ants by replacing the input of Eq. 5, i.e., ht

0 + hS
0 , by ht

0
or hS

0 , and conduct ablation study of SG on each variant.
Experimental results are shown in Table 6. Here are two ob-
servation:

(a) The stop gradient operation proves to be critical for
performance lift. As shown in Table 6, across all input set-
tings, introducing SG (highlighted in gray) leads to an AUC
improvement of approximately 5e−3 to 8e−3 for the Like
task. Without SG, the embeddings are essentially shared be-
tween tasks, making the model similar to ME-MMoE.

(b) The best performance is achieved when the input con-
sists of both task-specific and shared concatenated embed-
dings, resulting in an improvement of 1e−3 in average AUC.
We argue this is because that task-specific embeddings are
exclusively updated by their corresponding tasks, which re-
stricts their ability to perceive the information of the other
tasks. Consequently, integrating shared embeddings as a
constituent of the input aids the gating network in perceiving
common information across tasks.

Contradictory User Preference Analysis
We hypothesize that on the comparable subset where there
is enough feedback from both tasks, there may be contradic-
tory user preference over items across tasks. For example, a
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(a) Single Task (Like Embedding)
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(b) Single Task (Finish Embedding)
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(c) PLE (Shared-Embedding)
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(d) STEM-Net (Like Embedding)
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(e) STEM-Net (Finish Embedding)
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(f) STEM-Net (Shared Embedding)

Figure 5: The distance distribution of the contradictory user item pair set S (with solid color) as well as the whole user item pair
set (with slash lines) regarding: the single task Like (a) and Finish embedding (b), the PLE embedding (c), and the Like
(d) and Finish-specific (e) embedding and shared embedding (f) in STEM-Net.

user u may be inclined to an item i regarding task A, but be
declined to it or neutral regarding task B. For these user item
pairs, shared embedding methods fail to learn such contra-
dictory preference, since they have only a single shared em-
bedding table, and therefore can learn only a single prefer-
ence. In contrast, STEM-Net should be able to capture such
contradictory preference by task-specific embeddings.

We conduct the follow analysis to validate the above hy-
pothesis. We select a set of contradictory user item pairs
S whose Euclidean distance1 are among the top-40% re-
garding single task Like embedding (Fig. 5(a)) and among
the bottom-40% regarding single task Finish embedding
(Fig. 5(b)). These user item pairs correspond to 9.63% of
all samples. We plot the distance distribution of these pairs
regarding the shared embedding from PLE in Fig. 5(c) and
observe that PLE learn small distances for most of them,
which is similar to the distribution of single task Finish,
while contradictory to that of single task Like.

In STEM-Net, the distance distribution of Like
(Fig. 5(d)) and Finish-specific (Fig. 5(e)) embedding table
are consistent to single task correspondence, showing case
that STEM-Net is able to learn the contradictory user item
preference. Note that similar to the PLE emebdding, the dis-
tance distribution of shared embedding table (Fig. 5(c)) in
STEM-Net is also similar to the distribution of single task
Finish while contradictory to that of single task Like.

Online A/B Test
Online Deployment Since 2022, STEM-Net has been de-
veloped on Tencent’s display advertising platform over vari-

1We choose Euclidean distance as the similarity metric because
the experts adopt MLPs.

Scenario Follow Activation Fulfill Sheet Pay Avg.
Scenario 1 +0.29% +0.33% +0.29% +0.35% +0.32%
Scenario 2 +0.13% +0.22% +0.33% +0.27% +0.24%
Scenario 3 +0.47% +0.39% +0.28% +0.78% +0.48%

Table 7: AUC Lift of Online A/B Test.

ous scenarios. These advertising scenarios consists of sev-
eral tasks including Follow, Activation, Fulfill
Sheet, and Pay.

Performance The production model follows an MMoE
architecture, where each expert is NFwFM, a variant of
NFM (He and Chua 2017) which replaces the vanilla
FM (Rendle 2010) by FwFM (Pan et al. 2018). We equip the
production model with shared and task-specific embeddings.
The overall improvements of all tasks are shown in Table ??,
indicating a significant improvement of STEM-Net over the
production MMoE model. In particular, STEM-Net brings
0.32%, 0.24%, and 0.48% average AUC lifts for three repre-
sentative scenarios, leading to 4.2%, 3.9%, and 7.1% GMV
lift in our online A/B test.

Conclusion
In this paper, we propose a novel Share and Task-specific
EMbedding paradigm to tackle the negative transfer in MTL
recommendation. We design a simple model under such
paradigm, namely STEM-Net, which demonstrates com-
pelling performance on comparable samples, achieving pos-
itive transfer. In three public datasets and industrial online
A/B test, we validate that our proposed STEM-Net achieves
significant performance lift over state-of-the-art MTL rec-
ommendation models.
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