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Accurate characterization of radiation pulse profiles is crucial for optimizing beam quality and
enhancing experimental outcomes in free electron laser (FEL) research. In this paper, we present a
unique approach that employs machine learning techniques for real-time virtual diagnostics of FEL
radiation pulses. Our simple artificial intelligence (AI)-based diagnostic tool utilizes longitudinal phase
space data obtained from the X-band transverse deflecting structure to reconstruct the temporal profile
of FEL pulses in real time. Unlike traditional single-shot methods, this AI-driven solution provides a
noninvasive, highly efficient alternative for pulse characterization. By leveraging state-of-the-art machine
learning models, our method facilitates precise, single-shot measurements of FEL pulse power, offering
significant advantages for FEL science research. This work outlines the conceptual framework,
methodology, and validation results of our virtual diagnostic tool, demonstrating its potential to
significantly impact FEL research.
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I. INTRODUCTION

In recent years, electron beam accelerators have become
essential in fields such as medical therapies, materials
science, and particle physics research. Their successful
operation relies on the precision and stability of the electron
beam, which requires advanced diagnostic technologies to
monitor and maintain beam quality. Traditional diagnostic
methods, while effective, often struggle with the complex,
dynamic nature of electron beams. This is where machine
learning (ML) emerges as a transformative technology,
elevating diagnostic capabilities by providing enhanced
precision, adaptability, and efficiency (Scheinker et al. [1],
Edelen et al. [2], Sanchez-Gonzalez et al. [3], Ratner [4],
Kaiser et al. [5,6], Fujita [7], Emma et al. [8], and Dingel
et al. [9]). Machine learning algorithms excel at processing
and analyzing vast amounts of data from diagnostic sensors
and instruments with unprecedented speed and accuracy.
These algorithms can identify patterns and anomalies that
might indicate issues with the beam or the accelerator
components. For instance, ML models can be trained on
archived (history) data to recognize normal operating
parameters of an electron beam. By continuously

monitoring real-time data, these models can quickly detect
deviations from the norm, signaling potential issues before
they escalate [10–12].
The integration of machine learning into diagnostic

technology brings numerous advantages: enhanced preci-
sion, real-time analysis, adaptability, and data-driven
insights. ML algorithms enable highly accurate detection
and monitoring of beam characteristics, ensuring precision
in diagnostics. The real-time data processing capabilities of
ML models allow for the immediate identification of issues
and swift corrective actions. Additionally, while machine
learning systems adapt to new data, their ability to respond
to evolving conditions is still an active area of research,
offering a flexible solution for the dynamic nature of
electron beams [13,14]. Moreover, ML-driven diagnostics
provide deeper insights into accelerator behavior and
performance, facilitating informed decision making and
optimization strategies [1–3]. As machine learning con-
tinues to evolve, its expanding role in the diagnostic
technology of electron beam accelerators is gradually
transforming the field of accelerator diagnostics and
control systems. By improving the precision, reliability,
and efficiency of diagnostic processes, ML contributes
significantly to the optimal performance and longevity of
these complex systems. As these technologies evolve, their
impact on diagnostic applications is expected to expand,
driving further innovations and enhancements in electron
beam accelerator operations [8,15–20].
Building on decades of advancements in accelerator

technology, including significant progress in hardware and
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software, free electron lasers (FELs) have revolutionized
the generation of highly coherent, powerful electromag-
netic radiation at subatomic wavelengths. Innovations
in electron accelerators now enable FELs to produce
intense, ultrashort pulses, spanning from extreme ultra-
violet to hard x-rays at exceptionally high repetition rates.
These FELs, powered by high-brightness electron beams,
have opened up new possibilities for exploring molecular
and atomic dynamics, with profound implications across
fields such as physics, chemistry, biology, medical
physics, and materials science. The ability to generate
coherent, powerful, and ultrashort pulses in the short-
wavelength regime has become crucial for advancing
research in these domains [21–25].
To analyze FEL experimental data, especially for non-

linear interactions, it is essential to have precise knowledge
of the FEL pulse peak power and the electric field in the
time domain. Conducting pulse-to-pulse measurements of
the x-ray pulse structure over time could pave the way for
new scientific discoveries, such as the ability to study
ultrafast dynamics in materials or biological systems. For
example, the use of single-shot x-ray pulse measurements
has already enabled groundbreaking insights into the
behavior of matter under extreme conditions, as seen in
studies conducted at the European XFEL [26–28]. Such
measurements are critical for understanding time-resolved
phenomena at the atomic scale. For instance, more power-
ful x-ray analogs of optical nonlinear spectroscopies, such
as x-ray absorption spectroscopy or x-ray pump-probe
techniques, and resolution-limited standard pump-probe
experiments, would greatly benefit from precise knowl-
edge of the FEL radiation’s electric field. Such measure-
ments can improve temporal resolution and enable the
study of ultrafast processes at atomic and molecular
levels, as demonstrated in studies using x-ray FELs like
those at the European XFEL [26,28]. This enhanced
understanding of the FEL pulse structure could also pave
the way for novel applications in material science and
biological imaging [29–37].

To achieve the precision required in FEL experiments,
various diagnostic methods have been developed. One such
method is the transverse reconstruction of the electron
beam and x-ray algorithm, which aims to reconstruct the
temporal power profile P(t) by analyzing the product of
the measured current profile and the difference between the
energy spread or mean energy profiles of lasing-on and
lasing-off shots using a transverse deflecting cavity (TDS)
(see Fig. 1 in [38]). However, this approach is constrained
by the finite resolution of the TDS [39], and it is also
impossible to simultaneously measure the lasing-on and
lasing-off electron phase spaces for a single shot [18,40].
To overcome the single-shot measurement challenges,

we introduce the virtual pulse reconstruction diagnostic
(VPuRD), a novel tool designed to reconstruct or measure
the FEL pulse on a shot-to-shot basis. VPuRD leverages
advanced machine learning (ML) techniques to bypass the
cumbersome limitations associated with traditional meth-
ods of single-shot phase space measurements. Typically,
the process involves turning off the lasing for each
measurement and capturing the longitudinal phase space
across multiple electron beam shots, which is both time
consuming and invasive [38]. The VPuRD tool addresses
this by employing ML models to reconstruct the longi-
tudinal phase space of the electron beam using parameters
derived from noninvasive diagnostic tools. This innovation
enables our virtual diagnostic tool to accurately reconstruct
the FEL pulse for each individual electron beam, providing
a more efficient and precise measurement process. By
eliminating the need for repeated lasing-off measurements,
VPuRD not only simplifies the diagnostic procedure but
also enhances the accuracy and reliability of FEL pulse
characterization. To demonstrate the applications and
advantages of our VPuRD tool, we selected the Free
electron LASer in Hamburg (FLASH), a state-of-the-art
facility located at Deutsches Elektronen-Synchrotron
(DESY) in Germany. In the following section, we will
discuss the facility and hardware tools utilized for our
measurements. The subsequent sections will be dedicated
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FIG. 1. (a) Schematic layout of the FLASH0 (injector and accelerator) and the FLASH2 beamline at DESY. Data sources for training
the machine learning model are indicated by dashed arrows. (b) Process workflow. During machine operation, we measured machine
parameters and the longitudinal phase space (phase image) for each electron bunch. We use a multilayer perceptron machine learning
model (MLP model) to predict the temporal power profile of the electron bunch in the lasing-off condition (lasing-off e-beam power).
From the longitudinal phase space, we calculate the temporal power profile of the electron bunch in the lasing-on condition (lasing-on
e-beam power). Thus, we can estimate the temporal power profile of each individual photon pulse (photon power).
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to the methodology, discussion, and results of our virtual
diagnostic tool.

II. FACILITY, HARDWARE AND SOFTWARE

A. FLASH

FLASH is a free-electron laser machine that generates
extremely bright, ultrashort pulses of laser light in the
ultraviolet and soft x-ray regions of the electromagnetic
spectrum. This unique capability makes FLASH an invalu-
able tool for researchers across a wide range of scientific
disciplines, including physics, chemistry, biology, and
materials science [41,42]. FLASH is a high-repetition
facility at 1 MHz in burst mode, i.e., offers the ability to
deliver a burst of 500 electron bunches in each 0.1 s.
FLASH operates by accelerating a train of electron bunches
using a superconducting linear accelerator (Linac). These
high-energy electrons are then directed through a series of
undulator magnets, whose magnetic structures force the
electrons to follow a sinusoidal path, causing them to emit
synchrotron radiation. Through a process known as self-
amplified spontaneous emission (SASE), this radiation is
amplified to produce intense, coherent laser pulses. FLASH
has two undulator magnet chains, referred to as FLASH1
and FLASH2.
Figure 1 shows the layout of the common FLASH0

(injector and accelerator) and the FLASH2 FEL beamline.
The accelerator section includes two bunch compressor
sections, BC1 and BC2, each with two bunch compressor
monitor systems (BCMs) and two bunch arrival time
monitors (BAMs) at the entrance and exit of the bunch
compressors [43–48]. The FLASH2 line features an addi-
tional bunch compressor, allowing for further compression
of the electron beam, and includes two BCM systems along
with one BAM.
The bunch compressor monitor at FLASH, utilizing the

detection of coherent diffraction radiation, is a noninvasive
diagnostic tool essential for monitoring electron bunch
compression to achieve the desired length and properties.
For accurate measurements, the BCM system often incor-
porates diagnostic components such as pyroelectric detec-
tors and filters, which are specifically sensitive to infrared
radiation. These detectors and filters are optimized to match
the spectral range of the coherent diffraction radiation
emitted, which depends on the beam energy and bunch
lengths at each stage of compression. Pyroelectric detectors
in the BCMs converts changes in temperature caused by
absorbed electromagnetic radiation (primarily in the infra-
red spectrum) into electrical signals. This signal is propor-
tional to the intensity of the coherent radiation. Filters and
amplifiers are typically used to isolate the relevant fre-
quency range, which corresponds to the spectral region of
interest for the bunch compression stage. By analyzing the
intensity of detected signals, the BCM provides real-time
information about the compression state of the electron

bunch. Changes in signal amplitude indicate variations in
bunch length and compression efficiency. The FLASH
machine employs both more sensitive and less sensitive
pyroelectric detectors within its BCM systems, allowing
for enhanced measurement capabilities and improved
control over the electron bunch compression process.
More details about the BCM setups at FLASH have been
presented in [44–46].
The bunch arrival monitor (BAM) is also a noninvasive

diagnostic tool used to measure the entry and exit times
of electron bunches. The longitudinal dispersion in the
bunch compression chicanes correlates changes in beam
energy upstream of the chicane with arrival time changes
downstream of the bunch compressor. In other words,
for a given fixed machine setup, the BAM measures the
relative energy of the beam during the run. The data
acquisition (DAQ) system in our virtual diagnostic setup
collects shot-to-shot data from the BAMs and BCMs, as
well as the charge and energy of the electron beam at the
end of the Linac. The following two sections will discuss
our DAQ system in detail.
One of the most notable features of FLASH is its

capability to generate extremely short pulses, on the order
of femtoseconds (10−15 s), particularly in the FLASH2
undulator line [49]. These ultrashort pulses allow research-
ers to study phenomena occurring on extremely fast
timescales, such as the dynamics of chemical reactions
and electron behavior in materials. Users of the FLASH2
beamline are often interested in the FEL pulse profile [50].
To a certain extent, this need is addressed by a feature of the
variable-polarization X-band transversely deflecting struc-
ture (POLARIX TDS) downstream of the FLASH2 undu-
lator line [51]. This device enables pulse reconstruction
of the FEL through the transverse reconstruction of the
electron beam and x-ray algorithm [52]. Wewill explore the
POLARIX TDS and its role in our virtual diagnostic in
detail in a separate subsection.

B. POLARIX TDS

The POLARIX TDS is an advanced device that plays a
crucial role in the detailed characterization of the electron
bunches produced by the FLASH facility. It provides
valuable insights into the temporal and spatial properties
of these ultrafast electron beams. POLARIX operates at a
specific radio frequency (rf), with almost 12 GHz fre-
quency that is synchronized with the electron bunches
passing through it [53–56]. The frequency is carefully
chosen to match the operational parameters of FLASH2.
The cavity generates an electromagnetic field that imparts
a transverse momentum to the electrons. Both the strength
(rf voltage) and direction (rf phase) of this deflection are
meticulously controlled to achieve the desired temporal-to-
spatial mapping. This mapping allows for measurements of
bunch length and temporal distribution at a resolution of the
order of femtoseconds. The device plays a crucial role in
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optimizing FLASH’s performance [51]. Consequently, the
POLARIX TDS is integral to our virtual diagnostic tool.
During data collection, we gather information on the
POLARIX TDS rf phase, rf voltage, electron beam energy,
charge, and the position of the electron both before and
after the TDS cavity. Additionally, the longitudinal phase
space of the electron beam is captured by the YAG screen
located after the bending magnet positioned downstream
of the TDS cavity (see Fig. 1). During data acquisition, the
time calibration factor was 1.13 fs=mm and energy cali-
bration factor was 21 keV=mm. By considering the trans-
verse electron beam spot size, the time resolution was
15.4 fs in our measurements.

C. Data acquisition system

The fast data acquisition system (DAQ) [57] of the
FLASH control system has been used in our virtual
diagnostic. The DAQ system was developed to study,
monitor, and document the machine performance and
parameters and also to collect the results of the experiment
measurements at FLASH. The DAQ data (machine param-
eters) are collected in real time with the unique identi-
fication for each shot in the Linac coming from the FLASH
timing system. In this way, one can easily correlate any
diagnostics DAQ channel data at the bunch-by-bunch level.
The collected data can be processed both on and off-line.
The first approach is used by the slow feedback middle
layer servers. The second approach makes use of the DAQ
data raw files written during the data collection. The DAQ
files are written in a highly optimized custom format. For
our virtual diagnostics the raw files were converted to
HDF5 files.

III. METHODOLOGY

Machine learning (ML) methods are increasingly being
employed to enhance the accuracy of longitudinal phase
space measurements of electron beams in FELs like
FLASH2 at DESY. These techniques provide sophisticated
tools to analyze complex data and improve the precision of
measurements, which are critical for optimizing the per-
formance of FELs [20].
We collected data while the FLASH machine was

optimized for FEL radiation for user delivery. The electron
beam, with a charge of 200 pC, was accelerated to an energy
of 875 MeV, allowing the FLASH2 beamline to generate
FEL radiation at 12 nm. In the lasing-off condition, FEL
radiation was suppressed by deflecting the electron beam
trajectory at the entrance of the undulator line.
For virtual pulse reconstruction, we employed the

following workflow (see Fig. 1): For each electron bunch,
the DAQ system collected 23 machine parameters (as
shown in Table I) along with a longitudinal phase space
image. These machine parameters were used as inputs to
predict the shape of the temporal power profile of the

electron bunch in the lasing-off condition. The temporal
power profile of the electron beam in the lasing-on
condition was measured directly from the longitudinal
phase space. Consequently, we were able to reconstruct
the temporal radiation power profile for each individual
photon pulse.
Here, we focus on the machine learning part. Toward this

end, we develop a multilayer perceptron (MLP) machine
learning model that is able to predict the temporal power
profile of the electron bunch in the lasing-off condition.
Toward this end, we collect the machine parameters as well
as the longitudinal phase space for 2826 electron bunches
in the lasing-off condition as training data.

A. Data collection and preprocessing

We collect 23 machine parameters detailed in Table I.
Each parameter is a scalar that corresponds to a measure-
ment at a specific point of the beamline. A precision timing

TABLE I. Machine parameters used as model input.

Parameter name Definition

BCM.1a Measured data from more sensitive
pyroelectric detector after BC1

norm. BCM.1a Normalized BCM.1a to the bunch charge
BCM.1b Measured data from less sensitive pyroelectric

detector in BC1
norm. BCM.1b Normalized BCM.1b to the bunch charge
BCM.2a Measured data from more sensitive

pyroelectric detector after BC2
norm. BCM.2a Normalized BCM.2a to the bunch charge
BCM.2b Measured data from less sensitive pyroelectric

detector after BC2
norm. BCM.2b Normalized BCM.2b to the bunch charge
BCM.3a Measured data from more sensitive

pyroelectric detector in FLASH2 after BC3
norm. BCM.3a Normalized BCM.3a to the bunch charge
BCM.3b Measured data from less sensitive pyroelectric

detector in FLASH2 after BC3
norm. BCM.3b Normalized BCM.3b to the bunch charge
BAM1-1 Bunch arriving time before BC1
BAM1-2 Bunch exciting time after BC1
BAM2-1 Bunch arriving time before BC2
BAM2-2 Bunch exciting time after BC2
BAM3 Bunch arriving time before BC3
Δt (BAM1-2-
BAM1-1)

Time delay at BC1

Δt (BAM2-2-
BAM2-1)

Time delay at BC2

CHARGE
in gun

Electron bunch charge generated at electron
gun

CHARGE in
FLASH2

Electra bunch charge at FLASH2 beamline

ENERGY in
FLASH2

Electron beam energy

BPM x, y Electron beam position before TDS in x and y
directions
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system is used to assign individual measurements to
specific electron bunches. High-resolution data on the
electron beam’s longitudinal phase space, collected by
POLARIX TDS at 10 Hz [Fig. 2(a)], are preprocessed
to remove noise, background, and irrelevant information.

1. Jittering

The jitter observed in the electron bunch longitudinal
phase space data [Fig. 2(a)] originates from POLARIX
radio-frequency (rf) phase jitters. Accurately calculating
the FEL pulse power profile from longitudinal phase
space data necessitates precise alignment of the electron
beam power profiles for lasing-on and lasing-off con-
ditions. This alignment is critical because the FEL power
profile is derived as the difference between these two
electron beam profiles.
To compensate for jitter in the electron bunch longi-

tudinal phase space [Fig. 2(c)] we employed a data-
cleaning procedure to align the images and mitigate its
impact on the calculated FEL pulse power profile. In our
case, since the jitter predominantly originates from rf phase
fluctuations in the deflecting cavity, our approach effec-
tively compensates for this artifact, ensuring accurate
reconstruction. We calculate the electron temporal power

profile for each electron bunch [examples shown in
Figs. 2(a) and 2(b)]. The electron bunches show notable
temporal jitter [Fig. 2(c)]. To compensate for the jitter, the
peak power locations are determined from power profiles
smoothed by convolving the signal with a Gaussian profile
with 10 pixel radius. Then, we calculate the offset of each
peak to the median peak location and shift the power
profiles accordingly, resulting in a proper alignment
[Fig. 2(d)]. Finally, we crop away the parts of the signal
that only contain background in every bunch. The location
of the signal is determined by segmenting the signal using
Otsu’s method [58] and cropping to the bounding box of
the segmentation with a padding of 50 pixels. The aligned
power profiles are used as labels for the training of the MLP
model. Image processing was performed using pycles-
peranto, a GPU-accelerated Python library for image
analysis [59,60].

2. Temporal power profile

The electron temporal power profile is calculated from
the charge detected in each slice of the longitudinal phase
space image [Fig. 2(a)], multiplied by the corresponding
energy difference (Δ energy) in MeV. The resulting energy
weighted charge is projected onto the time axis to calculate
the electron temporal power profile [Fig. 2(b)].

B. Model training and validation

We use a simple MLP model with 23 input nodes, one
for each scalar machine parameter from the beamline (see
Table I for details on the input parameters), a single hidden
layer with 295 nodes, and an output layer with 567 nodes
(the width of the electron temporal power profiles in the
training data). The 2826 datasets are split into training,
validation, and test sets with 2261, 283, and 282 samples,
respectively.
We use an adapted loss function that penalizes regression

to the mean:

L ¼
XD

i¼1

ðxi − yiÞ2 − α
XD

i¼1

ðxi − ŷÞ2; (1)

where ŷ is the mean vector of the label vectors of the entire
training dataset, α is a penalty factor, which we set to 0.056,
xi are the prediction vectors, and yi are the respective label
vectors.
Hyperparameters are optimized with optuna [61] using

200 trials. After optimization, a model with one hidden
layer is trained in Pytorch [62] using the Adam optimizer
[63], a dropout fraction of 0.45 on the hidden layer, an
initial learning rate of 0.005, a learning rate scheduler
with a factor of 0.054 and a patience of 238. Training is
stopped using the EarlyStopping callback from
Pytorch Lightning [64] with a patience of 1225. To improve
GPU utilization, we use single batch training, training

(a)

(b)

(c)

(d)

FIG. 2. Dejittering. (a) Electron beam phase space image.
(b) Temporal power profile created by weighting the phase
image by the energy axis and projecting it onto the time axis.
(c) Temporal power profiles of 700 samples before dejittering.
(d) Temporal power profiles after dejittering.
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the model on the entire training dataset. Training and
validation losses converge well with no indication of
overfitting [Fig. 3(a)].

IV. RESULTS AND DISCUSSION

A. Prediction results

Predicted temporal electron beam power profiles
matched the measured profiles very well [Fig. 3(b) blue

line vs red line]. Because of the penalty for predictions that
were too close to the mean in the loss function [Eq. (1)], the
model did not simply regress to the mean of the training
dataset [Fig. 3(b) orange dotted line]. Notably, the neigh-
boring measurement [Fig. 3(b) green dashed line] fit the
measurement even worse than the mean of all shots. These
individual observations exemplified in [Fig. 3(b)] are
confirmed by plotting the mean squared errors for
all samples in the test dataset [Fig. 3(c)]. The predictions
have the lowest mean squared error compared to the
measurements in the test dataset [0.009� 0.0050 (mean
� standard deviation, n ¼ 282)]. This is better than the
mean squared error between the mean of the entire training
dataset and the individual measurements in the test dataset
(0.011� 0.007). The highest mean squared error was
observed between neighboring measurements and can be
approximated as:

Pðxi − xiþ1Þ2
n − 1

; (2)

where xi are the individual measurements and n is the total
number of measurements. In the test dataset (0.02�
0.014), all three errors are statistically significantly differ-
ent from each other (p < 0.01) as determined by a one-way
analysis of variance (ANOVA) followed by Tukey’s
HSD test [67]. The observation that neighboring measure-
ments are not good predictors is significant, because
neighboring shots have previously been used as labels to
train machine learning models to predict longitudinal phase
space data [20].

B. Photon power reconstruction

We apply the model, trained on 2261 shots in the lasing-
off condition, to 574 shots acquired in the lasing-on
condition (Fig. 4). The model predicted electron beam
powers in the lasing-off condition [blue line in Fig. 4(a)].
By subtracting the measured electron beam power in the
lasing-on condition [red line in Fig. 4(a) and Eq. (3)], we
were able to reconstruct the photon pulse power profile
[Fig. 4(b)]. Photon power was calculated as:

pν ¼ peoff − peon; (3)

where pν is the photon power profile vector, peoff is the
electron power profile vector in the lasing-off condition,
and peon is the electron power profile vector in the lasing-on
condition. This shot-to-shot reconstruction is compatible
with the state-of-the-art reconstruction method based on
averaging the datasets from both the lasing-off and lasing-
on conditions [Figs. 4(c) and 4(d)]. As displayed in this
figure, the electron beam power in the lasing-on condition
in the 80–120 fs time range is larger than in the lasing-off
condition. In pulse reconstruction, this effect results in
negative FEL radiation power, which needs to be removed

(a)

(b)

(c)

FIG. 3. MLP model training performance. (a) Training and
validation loss. (b) Illustrative example of electron power profiles
from the test dataset: Predictions for individual shots (blue line),
actual measurements (red line), measurements from previous shot
(dashed green line); as well as the mean electron power profile of
all measurements in the training data (dotted orange line).
(c) Boxplots of all mean squared errors in the test dataset: Mean
squared error between the predictions and the measurements in
the test dataset (prediction). Mean squared error between the
measurements in the test dataset and the mean of all measure-
ments in the training dataset (mean). Mean squared error between
adjacent measurements in the test dataset (neighbors). All three
errors are statistically significantly different from each other
(Wilcoxon signed-rank test [65] followed by a Bonferroni
correction [66] for multiple comparisons).
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for accurate analysis. This indicates that electrons in this
part of the bunch are absorbing FEL radiation, likely due to
the slippage effect and phase mismatch. While the electrons
travel through the undulator line, the high-power FEL
radiation generated by the peak current slips (around
170 fs) onto the head of the electron beam. A portion of
this radiation can be absorbed by the electrons, and part
of it is observed as FEL radiation at the head of the beam.
This phenomenon is evident in the results of both
methods. This introduces an uncertainty in the recon-
structed pulse’s head, though it is explainable and
consistent with the slippage mechanism.
The temporal spike structure in the SASE (self-amplified

spontaneous emission) spectrum is a well-known character-
istic [68]. These spikes result from the stochastic nature of
the initial electron beam density modulations that amplify
through the undulator. The length of each spike in the time
domain (or the spike width) is determined by the coherence
time of the FEL radiation. This coherence time, τc, is
inversely proportional to the spectral bandwidth Δω of the
SASE radiation τc ≈ 1=Δω. For typical x-ray SASE FELs,
such as FLASH, this coherence time (and hence the
duration of each temporal spike) is in the range of femto-
seconds, often between one fs and a few tens fs depending
on the wavelength and specific machine parameters. At
shorter wavelengths, the spikes tend to be narrower, while
at longer wavelengths, they can be somewhat broader. In
our measurements, FLASH2 was operated at a wavelength

of 12 nm, producing temporal spikes of only a few femto-
seconds each [68], which is shorter than the 15.4 fs
resolution of POLARIX. This makes it challenging to
capture the temporal spike structure of the SASE FEL pulse
using this method. The overall accuracy of both arms of the
reconstruction (laser-on and laser-off prediction) depends on
the resolution of longitudinal phase space measurements
obtained from the transverse deflecting cavity.
Figure 5 illustrates ten single-shot FEL pulse recon-

structions measured using VPuRD at the FLASH control
system. The results are shown for two approaches in plots
(a) and (b). In both methods, a single shot of the electron
beam phase space in the lasing-on condition was used to
directly evaluate the beam power. In Fig. 5(a), a machine
learning-based method was employed to predict the elec-
tron beam power for the lasing-off condition for each FEL
shot. In Fig. 5(b), the mean values from 2261 shots were
used to evaluate the electron beam power for the lasing-off
condition. The machine learning method in VPuRD facil-
itates the reconstruction of FEL pulses, making the process
more efficient and accessible.
While the VPuRD tool has demonstrated its capability

for FEL pulse characterization, it faces a specific challenge
that requires consideration. During data collection in the
lasing-off condition, the SASE radiation was suppressed
by deflecting the electron beam trajectory at the entrance
of the undulator line. This approach introduced betatron

(a)

(b)

(c)

(d)

FIG. 4. Single shot vs mean photon power reconstruction.
(a) Electron beam power for one example shot. Electron beam
power in the lasing-off condition (blue line) is predicted by the
model and electron beam power in the lasing-on condition (red
line) is measured. (b) Reconstructed photon pulse power for the
same shot as in (a). (c) Mean electron beam power from 2826
shots from the lasing-off condition (blue dotted line) and 574
shots from the lasing-on condition (red dotted line). (d) Mean
photon pulse power calculated from (c).

(a) (b)

FIG. 5. Multiple examples of single-shot photon power
reconstruction. (a) Photon powers reconstructed from data
predicted by the machine learning model [calculated as for
Fig. 4(b)]. (b) Photon powers reconstructed by subtracting the
same measured lasing-on profiles as in (a) from the mean of 2261
shots from the lasing-off condition.
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oscillations and slightly shifted the position of the electron
beam on the energy axis. To address this issue, we
compensated for the error using energy measurement data
obtained near the screen (Δenergy ¼ 1.35 MeV). In the
future, we plan to implement trajectory feedback to correct
the beam trajectory after the undulator line. Alternatively,
data could be collected by detuning the undulator’s
resonance condition, which may help mitigate this chal-
lenge more effectively.
Additionally, it should be noted that slippage presents

another challenge for the VPuRD tool. Due to the signifi-
cant slippage associated with FEL radiation at longer
wavelengths, VPuRD tends to provide more accurate
results for FEL radiation at shorter wavelengths.

V. CONCLUSION

This paper introduces the virtual pulse reconstruction
diagnostic (VPuRD), a novel tool for single-shot
reconstruction of FEL radiation power profiles. VPuRD
employs a machine learning-based approach to address key
challenges in traditional diagnostic methods, particularly
their reliance on extensive lasing-off data. By utilizing
longitudinal phase space measurements of the electron
beam obtained via the X-band transverse deflection struc-
ture (TDS), VPuRD enables accurate reconstruction of
temporal power profiles using only lasing-on electron beam
data. This makes it a highly efficient and noninvasive
diagnostic tool. Its compatibility with high-repetition-rate
FEL facilities, such as FLASH, positions it as a significant
innovation for real-time diagnostics. In addition to its
diagnostic capabilities, VPuRD has the potential to con-
tribute to FEL optimization and feedback systems, offering
opportunities to enhance FEL performance and stability.
Despite its strengths, VPuRD faces certain challenges, such
as the slippage effect, which is particularly pronounced at
longer wavelengths, and trajectory-induced errors. These
effects can introduce uncertainties in certain parts of the
reconstructed profiles, limiting the tool’s applicability
under specific conditions. Furthermore, the tool relies on
training data that was acquired under the same conditions
as the experiment in order to be able to accurately predict
the lasing-off electron power profile. Addressing these
challenges in future developments will further improve
VPuRD’s accuracy and reliability, broadening its utility for
various FEL regimes.
In conclusion, VPuRD represents a significant advance-

ment in FEL diagnostics, providing an efficient and reliable
method for single-shot pulse characterization. Its imple-
mentation has the potential to streamline FEL operations,
facilitate experimental success, and enable new opportu-
nities in ultrafast science and related research fields.
Looking ahead, we plan to enhance VPuRD with addi-

tional capabilities, transforming it into a valuable tool not
only for DESY but also for the broader scientific commu-
nity engaged in accelerator and FEL research.
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