
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SYMBOLIC REGRESSION WITH SELF-SUPERVISED
HEURISTIC BEAM SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Symbolic Regression (SR) aims to discover simple and interpretable mathemati-
cal expressions that explain observed data, making it a powerful tool for scientific
discovery. In this work, we introduce a conceptually simple SR method that is
both sample-efficient with respect to observed data points and self-supervised on
large-scale synthetic data. By design, our approach favors parsimony, yielding
interpretable and concise expressions. We focus on problems with exact solu-
tions, evaluating our method on datasets containing physical laws and dynamical
equations. Our results demonstrate that combining beam search with a learned
heuristic achieves competitive performance compared to existing methods in SR-
Bench. Additionally, our approach effectively handles expressions with constants,
a common challenge in the SR field. Finally, we provide a comprehensive scal-
ability analysis across four key dimensions: (i) expression length, (ii) number of
variables, (iii) number of domains, and (iv) number of observed data points.

1 INTRODUCTION

In Machine Learning, many models are designed to achieve low training error and perform well
in unseen but similar data. Yet, fitness to data is not the only important attribute. Some applica-
tions require interpretability: models must be meaningful in terms of familiar constructs. Another
desirable quality is to have Out-Of-Distribution (OOD) generalization. In this context, Symbolic
Regression (SR) is the task of finding mathematical expressions that fit the data and are as simple
as possible. In Physics and other natural sciences, interpretability is commonly accompanied by
OOD generalization, as laws of nature have been widely tested. This makes SR a good candidate
for finding scientific insight from data. Other areas that can benefit from SR include medicine and
finance (Jobin et al., 2019; Rudin, 2019), which are critical and high-stakes.

Formally, given a domain set of data points D := {(xi, yi)}1≤i≤n consisting of paired features xi

and target values yi, the goal of SR is to find a mathematical expression E such that E(xi) ≈ yi and
E is as simple as possible (e.g. it has a small number of symbols from a pre-defined vocabulary). In
the case where an exact solution F exists, it is required that E ≡ F up to some tolerance on constant
values that may appear (e.g. 1.5x · x+ 2.0001 and 1.4999x2 + 2 may be considered equivalent).

In this paper, we present HTSSR: HeurisTic beam Search Symbolic Regression, a new method
for SR that learns, in a self-supervised way, a precedence relation among expressions to guide a
beam search algorithm. We detail key design choices that make our results possible, investigate the
scalability of the search and its ability to work with only a few data points, and compare HTSSR
against existing methods on SRBench (Cava et al., 2021). Besides being a new method for SR
compared against existing work, the contributions of HTSSR have many facets:

• A shift from the current generative approach: Our heuristic model is solely dedicated to
the task of attributing scores for the search elements, with no need to predict symbols. The
expression formation happens by expanding preceding expressions with pre-defined rules,
allowing great control over expression generation.

• Independence from fitness to data: When training the heuristic model, there is no need
to use numeric fitness to data information, as it can be ambiguous and unstable. The model
can be trained self-supervised with virtually infinite synthetic expressions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Clean, simple, and modular design: Our design allows easy and free customization of
symbolic vocabulary, operator definition, generation rules, heuristic model, and search al-
gorithm. Although we use beam search in this work, it can be easily replaced by other
algorithms such as stochastic search or MCTS.

• A new and elegant way to frame the search heuristic: We demonstrate that learning
the guiding heuristic is equivalent to learning a binary classification task. This contrasts
with existing learning-based methods with complicated training processes or heavy reward
engineering.

• Almost no assumption about data distribution: Because the heuristic can be dedicated
to a specific dataset, it is not necessary to make assumptions about the distribution of input
data and it is easy to avoid overfitting. The only exception is the distribution of constants
that may appear.

• Robustness to noise and efficiency with scarce data: Expressions can be found even
in the presence of noise or few available data points. This might be useful in real world
applications where data is scarce or considerably noisy.

2 RELATED WORK

Genetic Programming (GP) was the first note-worthy way to approach SR and many SR methods
fall into this category. Early works include (Koza, 1989; 1990), which deal with Program Synthesis,
a superclass of SR in a sense. More recent applications of GP to SR are (Keijzer, 2003; Vladislavleva
et al., 2009; Schmidt & Lipson, 2009; Korns, 2011; Uy et al., 2011; Jin et al., 2020). GP techniques
are known to be easily parallelized and have high parallelism, allowing for the evaluation of a high
number of expressions. One downside of GP methods is that they are not robust in cases involving
hyperparameters (Petersen et al., 2021). Hybrid approaches, like those proposed in (Mundhenk et al.,
2021; Kamienny et al., 2023), combine Deep Learning and GP by letting one or more learned models
perform sub-tasks of the GP search, like population seeding, mutation, and selection. (Mundhenk
et al., 2021) combines GP with Deep Learning by seeding the GP search with expressions from the
learned model. In principle, the learned models help guide GP to more promising regions in search
space. Similarly to (Petersen et al., 2021), the model is trained with Reinforcement Learning with
the reward signal based on the fitness to data. A clear disadvantage is that a supervision/reward
signal based on numerical fit means very different things depending on the context. For instance,
the same numerical error may come from a candidate solution that is very close or very far in the
space of discrete expressions. In contrast, the supervision of our heuristic model is a simple binary
value indicating a precedence relation between pairs of elements, having simple optimization and
using well-stabilished binary cross-entropy loss.

The application of Deep Learning to SR has early examples like (Kusner et al., 2017; Sahoo
et al., 2018; Alaa & van der Schaar, 2019). The work (Udrescu & Tegmark, 2020) is possibly
the first to show notable progress of Deep Learning in SR. It approaches Symbolic Regression
mostly by simplifying a problem into subproblems. (Cranmer et al., 2020; Bendinelli et al., 2023)
also allows for the inclusion of simplifying assumptions or prior knowledge. Even though problem
simplification should be used in expression discovery, it needs domain-specific knowledge and even
so there is always some remaining search space of possible solutions. Instead, we focus on the
search guidance approach and let problem simplification for further study.

Regarding neural architecture, many recent works employ Transformer architecture (d’Ascoli
et al., 2024; Shojaee et al., 2023b; Kamienny et al., 2023; Lalande et al., 2023; Valipour et al.,
2021; Biggio et al., 2021). Even though we do use Transformer layers in the last part of our neural
networks to process expressions as sequences, we do not use those as a generative model. (Petersen
et al., 2021) uses RNN architecture while (Cranmer et al., 2020) uses GNN. Some works hard-code
symbolic operations inside the neural networks in order to recover an expression after training (Kim
et al., 2021), (Kubalı́k et al., 2023).

Generative methods can be divided in two types: (i) a generative model is trained to infer the
desired expressions as sequences of tokens (Kamienny et al., 2022; Biggio et al., 2021; Petersen
et al., 2021; Vastl et al., 2022; d’Ascoli et al., 2024); (ii) a decoding or search strategy is added
to find expressions using token probabilities from a model of the first type (Shojaee et al., 2023a;
Bendinelli et al., 2023; Hayes et al., 2025). The runtime of the methods in the first category is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

usually low, although independent sampling may produce inferior solutions. The methods in the
second category take advantage of post-training time and employ sophisticated search strategies,
such as MCTS. Although MCTS is a popular choice, long lookaheads may yield large expressions,
while a beam search might be more parsimonious. Additionally, some methods can add RL after the
first training and before the search phase (Hayes et al., 2025), or have RL but no extra search strategy
at all (Petersen et al., 2021). With multiple phases, a training pipeline can become complicated. RL
methods may rely heavily on reward engineering with the fitness to data signal, which is ambiguous
and unstable.

TPSR (Shojaee et al., 2023a) proposes using the token probabilities from some pre-trained SR model
like E2ESR (Kamienny et al., 2022) in order to perform MCTS. While the source model is trained
to generate correct expressions in a single shot, it needs more inference runs to achieve success in
practice. TPSR brings a smarter search strategy than pure random trials or token-level beam search.
The only similarity to our work is the existence of a training phase followed by a search phase. Even
if the source model is trained in a self-supervised way, it is a different setup because our heuristic
model does not produce any symbol itself, but rather just a binary signal. Also, one disadvantage
of long lookaheads of the MCTS in TPSR is that the expressions found tend to be large. Even in
the Feynman datasets with most ground-truth solutions having fewer than 15 symbols, TPSR finds
non-exact solutions with more than 50 symbols.

A key difference between the generative models and our heuristic model is that we do not have
an explicit distribution over tokens. Instead, the output of the model is a score that can be used
to prioritize elements in a search. Also, the expression generation in our method is independent
of any parametric model: it happens by applying pre-defined grammar-like generation rules and is
very fast by means of its simplicity. Another advantage of our method lies in its strong theoretical
justification. Like (Yu et al., 2025), our search objective contains an optimal substructure (Cormen
et al., 2009): if the heuristic prediction is the true precedence relation (Section 3), a beam search
that prioritizes expressions based on precedence value and size will, at every step of the search,
contain at least one expression that precedes the target. Also, each new search round will produce
slightly larger expressions until a solution is found. The parsimonious increase in size of preceding
expressions then guarantees that a solution with minimum size will be found.

The most similar to our work that we know about is SR4MDL (Yu et al., 2025). More specifically,
it also proposes learning a self-supervised heuristic model that guides the search for expressions
afterwards. Like ours, their learning objective also comes from the structure of expressions and does
not use fitness to data as a training signal. During training, the expressions also are synthetically gen-
erated at runtime. So far, we are not aware of other SR works that share those same characteristics.
Still, there are important differences, as we show in Table 1.

Table 1: Main differences between our work and SR4MDL (Yu et al., 2025). The generative ap-
proach is also compared. 1 Minimum Description Length. 2 SME stands for the Sign-Mantissa-
Exponent representation from (Kamienny et al., 2022).

Aspect Ours SR4MDL Generative
Objective Formation precedence MDL1 Fitness to data
Expression formation Top-down Bottom-up Token sequence
Use Dedicated to dataset General purpose Varies
Data assumptions Just constants Distribution of input Varies
Training Single phase Two phases Varies
Constant fitting Any form Limited forms Any form
Input representation Digit Transform (Eq. 3) SME2 SME (common)
Search algorithm Beam Search MCTS One shot, decoding
Optimal substructure Yes Yes Does not apply

Datasets and benchmarks. Possibly, the most well-known effort to standardize SR evaluation is
SRBench (Cava et al., 2021). It contains more than 250 problems with and without ground-truth
formulas. At least 14 methods have already been tested and compared (Makke & Chawla, 2024).
SRBench includes the Strogatz (Strogatz, 2024) and Feynman (Feynman et al., 2011; Udrescu &
Tegmark, 2020) dataset groups, the latter having some of the original physical laws removed. Other

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 2: Example of primitives with the re-
spective generation rules.

Symbol Rule
□ x 7→ □
y x 7→ y
+ x 7→ +xx
− x 7→ −xx
· x 7→ ·xx√

x 7→ √ x

Table 3: Expressions and respective prefix
forms.

Expression Prefix Form
x+
√
y +x

√
y

□+ x · y +□ · xy
x− (y +□) −x+ y□

dataset groups for SR with ground-truth are available in (Keijzer, 2003; Vladislavleva et al., 2009;
Uy et al., 2011; Korns, 2011; Petersen et al., 2021), but they are not physics-related.

The reporting of SR results still needs adherence to standardization. For instance, in (Biggio et al.,
2021; Kamienny et al., 2022) authors report metrics based on R2 > 0.99 as a proxy for symbolic
solution on the Feynman problem subset from SRBench. As pointed out in (Matsubara et al., 2023),
R2-based accuracy does not take expression interpretability into account and is vulnerable to the use
of dummy variables. Also, the R2-criteria changes from work to work, sometimes being R2 > 0.9
(d’Ascoli et al., 2024), R2 > 0.99 (Kamienny et al., 2022), (Kamienny et al., 2023), (Shojaee et al.,
2023b), while SRBench requires R2 > 0.999. We stick to the Symbolic Solution Rate (SSR) defined
in SRBench (Cava et al., 2021) as the main metric, but we still do use R2 in the black-box datasets.

3 HTSSR: HEURISTIC BEAM SEARCH SYMBOLIC REGRESSION

Understanding the following components of our method is necessary for its comprehension. The
basic constructs are the set of primitives and the generation rules. Then, expressions can be generated
or randomly sampled with the rollout strategy. This generation procedure is at the core of the training
data synthesis. That given, some care needs to be taken when evaluating the expressions numerically
and feeding the heuristic neural network with such values.

3.1 PRIMITIVES AND GENERATION RULES

The mathematical expressions in this study are a combination of symbols, namely operators (unary
and binary), variables, and constants. We call the set of all symbols the primitives set. Optionally,
that set can be enriched with complexity constraints that tell the maximum allowed occurrences of
a symbol under another symbol (e.g., at most 0 cosine operations inside a cosine). This controls the
appearance of bizarre expressions and reduces the search space size. All considered expressions have
a syntactical tree structure and are implemented using prefix notation. This choice of implementation
allows for the fast generation, evaluation, and automatic differentiation of expressions.

Generation rules are defined in terms of the primitive symbols and their arities. One of the variables,
x, is considered to be the special symbol used for rule applications. The generation rules have one
of three forms: x 7→ o2xx, x 7→ o1x, and x 7→ o0. The oi indicate an operator with arity i. o0
can be a variable name, including x, or the constant placeholder, □. Multiple appearances of □
represent independent constants. Tables 2 and 3 show examples of primitive sets, generation rules,
and expressions with prefix forms.

3.2 EXPRESSION ROLLOUTS AND CANONICAL DATASET

Instead of working with a static dataset, we find it better to synthesize the expressions during the
training of the heuristic model. The expressions are sampled in generation sequences, or rollouts
(see Figure 1), where a source expression is first sampled from a static canonical dataset to then be
expanded into increasingly more complex forms. This strategy gives access to a very large set of
expressions, even when there are constraints for expression formation. (Kamienny et al., 2023) uses
a mechanism similar to our rollouts in reverse order to generate expressions for training a mutation
generative model. This model helps the main GP procedure in the search. Like our method, it

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

is a tree-search but uses MCTS instead of beam-search. Their method combines 3 parameterized
models: a mutation policy, a selection policy, and a critic network. Ours, instead, only has one
self-supervised model, trained for binary classification.

+ + +x

x x x
√

x

x
√

w

Figure 1: Example rollout from x to x+
√
w. After the rollout is finished, x becomes like any other

variable.

The canonical dataset contains representatives of the numerical equivalence classes of expressions.
The representatives are the smallest elements of a class. We define smallest as having the least
number of primitive symbols and being the lexicographically smallest. If the constant placeholder
is fixed, computing such a dataset and storing it on disk is possible up to some expression size. This
limit also depends on the generation rules and on the primitives.

Uniformly sampling an entire set without considering complexity may underrepresent simpler ex-
pressions. We believe that such an imbalance makes the learning process harder. This is the main
motivation behind the use of the rollouts. Regarding how the starting points of the rollouts are
sampled, we see that sampling (uniformly on length) from canonical sets of different maximum
expression lengths shows no significant difference (see Appendix A.2, Figure 12, for an ablation).
However, the canonical set is important for the evaluation of the method, as the heldout datasets
come from it.

3.3 NUMERIC EVALUATION

We make extensive use of stack-based evaluation of the expressions in prefix form. Given the limited
scope of operations and the small number of variables, this solution is easy to implement and faster
than SymPy (Meurer et al., 2017) and isolated Python code calls. The evaluation in the leaves
involves variables and constants. The values attributed to the variables are the feature domain D[X]
- the part of the observed data D that is not the vector of target values D[y]. Constant placeholders
are sampled from a uniform random distribution or get a fixed value. Our ablation in Appendix A.2,
Figure 11, suggests that both choices result in very similar results. Operators get the result of being
applied to their arguments. This happens until the top operation is computed.

The numeric results of expressions can easily get out of hand. Common problems are nondetermined
(nan), overflow, underflow, and infinite values. To deal with values with large magnitude or that are
infinite, we clip at a fake infinite (e.g. ±1010). Overflows, underflows, and nondetermined results
are avoided by the design of safe operators. For instance, a safe division attributes a floating-point
number even if the result is not determined in the regular division. When the input domain is well
behaved, the safe operators give the exact same results as the regular ones.

When performing prefix-order evaluation, there is a choice between keeping just the final result and
also keeping the intermediary results of subexpressions. The last naturally distinguishes different
expressions that have equal final values. The first needs some extra information for the distinc-
tion, like expression embeddings. We find that training with the first option converges with fewer
iterations.

Constant optimization. The small number of numeric constants that might appear in the expres-
sions works well with second-order optimization methods like Levenberg-Marquardt, taking be-
tween 4 and 12 iterations when converging. This is considerably faster than using first-order gradient
methods like those based on SGD (Ruder, 2017). Using tools like Pytorch’s autograd (Paszke et al.,
2019), performing such inner optimizations is feasible. Because we implement all the evaluation
processes, we can differentiate it with PyTorch.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 THE HEURISTIC MODEL

Given an expression E and the observed data D, the heuristic models the probability that there is
an expression F such that V (F), the evaluation of F , matches D[y] and there is a rollout from E
to F . In other words, the heuristic tries to tell if a given expression is in the way of generating (or
precedes) one expression that fits the data. The basic architecture (see Figure 2) has two parts: (i) an
encoder that takes numeric values and outputs latent representations, and (ii) a binary classification
module that takes a pair of outputs from the first module (plus some additional information about
the potentially preceding expression) to predict the probability that one element precedes the other.
The Sort-Diff and Digit transforms introduced in the following sections are performed in this order,
before the parametric part of the encoder.

V ∗(E)

V (F)

Encoder

z∗E

zF

E

Binary Classifier I(E ≼ F)

Figure 2: The generic form of the neural networks for the heuristic model. E represents the po-
tentially preceding expression, while V (F) mocks the observed target data D[y]. The inputs to the
encoder are processed independently. V ∗ denotes the set of evaluations of all sub-expressions of E,
including E itself.

Sort-Diff transform. Motivated by the idea that information about the derivatives of the expression
value with respect to input variables is helpful to learn the heuristic task, we introduce the Sort-
Diff features. Those features consist of sorting V (E) with respect to each input variable and then
performing a diff operation on the sorted vector. This is supposed to be a surrogate for differentiation
and can be applied to data that are not homogeneously sampled (e.g. there is no single step size).
Notice that the observed data D cannot be automatically differentiated. The transformed evaluation
vectors are concatenated with the original in a single vector. Equations 1 and 2 define the transform.
We get better results when using Sort-Diff (see Appendix A.2, Figure 10 for an ablation).

Diff(Y) := {Yi+1 − Yi}0 ≤ i < |Y | (1)

SortDiff(Y, x) := Diff({Yi}i∈ArgSort(x)) (2)

Digit transform. It is known that having high differences in value ranges from feature to feature
affects the stability and convergence of optimization during training. Because expression evaluations
in SR do suffer from such differences in range, we introduce a transformation that, for every single
number in the input data, outputs a vector. This vector contains what would be digits in a base b
representation. For a suitable value of b, each input feature can have a standardized and optimization-
friendly range. Equation 3 defines the transform. Here, a%b := a− ⌊a/b⌋ · b.

DigitTransform(x) := (x · b[−d,−d+1,...,d]) % b (3)

Common normalization techniques like Min-Max and Mean-Std lose scale information, which is
fundamental for the SR task. Transformations that try to make high values more amenable, like
taking the logarithm, might squeeze values from higher ranges into smaller intervals, making their
representations less useful. The input representation introduced in (Kamienny et al., 2022) and
commonly used by other works like (Yu et al., 2025), (Shojaee et al., 2023a) is token-based and
consists of three tokens: a sign, a mantissa, and an exponent. The mantissa represents 4 significant
positions using the tokens from 0 to 9999. The exponent tokens range from −100 to 100 and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

therefore the total of distinct input representations is in the order of 108. On the other hand, our
digit transform can give a representation for every floating point number, with roughly 7 significant
positions for 32-bit float and 16 for 64-bit float. Because SR explores a combinatorially vast space,
the more expressive digit transform can improve performance. We provide a comparison between
our digit transform and an adapted version of the sign-mantissa-exponent representation in Appendix
A.2, Figure 9.

Binary classifier. Each pair of outputs from the encoder can be combined in different ways before
entering the classifier. In our experiments, the best approach was to take the difference between
the latent representations and then add positional encodings and expression embeddings. Since
precedence is antisymmetric, subtracting (not adding) the latent vectors better distinguishes input
order. The loss function is the binary cross-entropy.

Training with all-pairs mini-batches. During training, a set of rollouts is sampled such that the
starting points have an equal chance of having any length from 1 to the maximum length of the
canonical set. Only starting points are guaranteed to not have a smaller form, up to simplification
of constant sub-expressions. Then, when the collection of rollouts reaches a certain number of
expressions (e.g., 32), the binary labels (precedes or not) are computed for all ordered pairs of
elements. It is easy to do that for pairs of the same rollout, as the expressions that appear first
precede the ones that appear later. For pairs of different rollouts, the syntactic trees are compared.
We use the convention that any expression precedes itself.

Synthetic heldout datasets. For each number of variables nvar ∈ {1, 2, 3, 4}, a set with 30 expres-
sions for each expression length fom 5 to 10 is created (except for 4 variables, which require at least
7 symbols). Each expression is sampled from the canonical set created with the respective number
of variables, but keeping the rest of primitives the same. Unlike rollouts, this sampling is uniform
given the number of variables and length. Also, cases where an expression simplifies to a simpler
one only happen when the canonical expression has a subexpression of composite constants (e.g.
□ · e□). When evaluating on these heldout sets, expressions that simplify are counted as having the
shorter length. Check Appendix A.10 to see the heldouts.

3.5 BEAM SEARCH

The search starts from x and keeps creating new expressions by expanding leaf nodes with x. These
expansions are exhaustive: for each combination of x leaf and generation rule, a new expression is
formed. It uses the same set of primitives and generation rules used to train the heuristic model.
Then, each expression is numerically evaluated and fed to the heuristic model. Then, a priority
queue receives the expressions with their respective priorities. Whenever an expression without
constants (purely operators and variables) is taken from the queue, it is evaluated and compared to
the observed values. If the relative squared error is less than some threshold (e.g. 10−4), it returns
the solution. In case the expression has at least one placeholder for constants, a subroutine optimizes
for the constants and, if converging, returns the parameter values. The main routine then applies the
same acceptance criteria. If a maximum number of expressions is visited, the search stops. The
pseudo-code for HTSSR is available in Appendix A.5, Algorithm 1. The acceptance criterion is
defined in terms of a relative tolerance and the relative squared error between the target y and the
expression evaluation ŷ:

RSE(y, ŷ) :=

∑
(yi − ŷi)

2∑
y2i

(4)

4 EXPERIMENTS

Next, we first analyze HTSSR with respect to dataset size and scalability (Section 4.1). Then,
we show the results of HTSSR on the ground-truth (Feynman and Strogatz) and black-box dataset
groups from SRBench (Section 4.2). The scalability experiments show how the Symbolic Solu-
tion Rate (SSR) changes given expression length and some other aspects, which are the number of
variables and the number of domains D. The evaluation datasets used in Section 4.1 are the same
heldouts described in Section 3.4 and are integrally shown in Appendix A.10. The default domain is

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

feynman_I_34_1, appearing other domains only in the SRBench and domain scalability experi-
ments. More details about configuration can be found in Appendices A.6 A.7.

4.1 EFFICIENCY ON DATASET LENGTH AND SCALABILITY

Efficiency on dataset length. We investigate how search performance changes when changing the
availability of data points. The results in Figure 3 support the idea that, under similar conditions,
more data points produce better results. Increasing one order of magnitude from 102 to 103 data
points shows little to no gain, while increasing from 101 to 102 shows clear gains. Importantly,
HTSSR can find solutions with as few as 10 points, which supports the idea that the method has
potential in a data-scarce scenario. The dummy baseline shows the brute force of beam search, where
the heuristic is clueless but still can find some simple expressions under the imposed conditions. The
dummy trial also makes this experiment into an ablation of the heuristic model, indicating that the
model does make a difference.

5 6 7 8 9 10

0

0.25

0.5

0.75

1

Expression Length

SS
R

101

102

103

dummy

Figure 3: SSR vs. expression length for sample sizes 101, 102, 103, and a dummy model. nvar = 3.

Scalability: number of variables. Now we investigate the impact that nvar has on the SSR. From
Figure 4, it looks like the expression length plays a more important role in the decay of the SSR than
the number of variables. Only for nvar = 4 versus nvar < 4 is there a clear sign of degradation
for expression length greater than 7. Furthermore, it seems that the decay of SSR for nvar = 1
is slower at larger lengths. It could be that for n = 1 it is possible to find solutions larger than 10
symbols somewhat frequently. We invite the reader to look at the complementary scalability analysis
in Appendix A.3.

5 6 7 8 9 10

0.25

0.5

0.75

1

Expression Length

SS
R

1
2
3
4

Figure 4: SSR versus expression length for 1 ≤ nvar ≤ 4.

Scalability: number of domains. Figure 5 indicates that increasing the number of domains in
which a single heuristic model is trained (using learnable domain embeddings) degrades its quality
on the evaluation domain feynman_I_34_1, also seen during training, at least for nvar = 1
versus nvar > 1. However, among nvar > 1, the degradation of SRR is relatively small, if any.
This might indicate potential for reusability of the heuristic model, as one single model could be
used for many data domains.

4.2 SRBENCH

Feynman and Strogatz datasets. We run HTSSR on the Feynman (119 datasets) and Strogatz
(14 datasets) dataset groups under the constraints of SRBench for ground-truth problems. There

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 6 7 8 9 10
0

0.25

0.5

0.75

1

Expression Length

SS
R

20

21

22

23

24

Figure 5: SSR versus expression length for 1 to 16 domains in the same heuristic model. nvar = 3.

are training time limits of 36000 and 3600 seconds for each problem in Feynman and Strogatz,
respectively. Within the training time budget, model checkpoints at different epochs are used to
search.

HTSSR ranks among the top methods and its performance drops mainly at 0.1 noise in Strogatz, less
so in Feynman. The only noise level that visibly disturbs our method is 0.1. Except for SR4MDL
(on both dataset groups) and AIFeynman2 (Udrescu et al., 2020) (on the Feynman datasets), HTSSR
with 0.1 noise level surpasses or is equivalent to the other methods with 0.0 noise. In addition, the
performance of HTSSR is consistent when changing dataset groups, as it does not make specific
assumptions about the problems. In principle, HTSSR could score higher if helped with problem
simplification or a divide-and-conquer approach, where a problem is decomposed into sub-problems.
Also, variations of HTSSR that replace the search algorithm are worth investigating.

0 50
Solution Rate (%)

SR4MDL
htssr

AIFeynman2
AFP-FE

DSR
AFP

GPlearn
RSRM

GP-GOMEA
SPL

EPLEX
E2ESR

Operon
SBP-GP
NeurSR

SNIP
BSR

FEAT

 Feynman

0 50
Solution Rate (%)

 Strogatz

Target Noise
0.0
0.01
0.1

(a) SSR grouped by problem set.

0 20 40 60
Solution Rate (%)

SR4MDL
htssr

AIFeynman2
AFP-FE

DSR
AFP

GPlearn
RSRM

GP-GOMEA
SPL

EPLEX
E2ESR

Operon
SBP-GP
NeurSR

SNIP
BSR

FEAT

Target Noise
0.0
0.01
0.1

(b) Aggregated SSR results.

Figure 6: Comparison with the SRBench results of other methods.

Black-box datasets. The black-box results (122 datasets) reveal that HTSSR is able to find very
concise and moderately accurate results. It appears on the Pareto front of the R2 versus model size
(see Figure 7) and dominates the generative methods E2ESR (Kamienny et al., 2022) and NeuralSR
(Biggio et al., 2021). It performs similarly to DSR (Petersen et al., 2021), but using less time, Figure
8. Consider that DSR also needs to train from zero for every new dataset. In R2 alone, HTSSR is
closer to MLP, but has more than two orders of magnitude smaller sizes. The conceptually close
SR4MDL (Yu et al., 2025) has around 25% higher R2, but almost 10× larger expressions.

5 CONCLUSION

This paper presents a new and simple method for SR with key advantages, making a shift from
common approaches in the literature that use fitness to data as training signal or that explore the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 5 10 15 20
R2 Test Rank

0

5

10

15

20

M
od

el
 S

ize
 R

an
k

AFP*
AFP-FE

AIFeynman2

AdaBoost

BSR*

DSR*

E2ESR
EPLEX*

FEAT*

FFX*

GP-GOMEA*

GPlearn

ITEA*
KernelRidge

LGBM

Linear

MLP

MRGP*

NeurSR

Operon*

RandomForest

SBP-GP*

SNIP

SR4MDL

XGB

htssr*

Figure 7: Pareto plot of results on the black-box datasets.

−0.25 0.00 0.25 0.50 0.75 1.00

*Operon
*SBP-GP

*FEAT
*EPLEX

XGB
LGBM

*GP-GOMEA
AdaBoost

RandomForest
SR4MDL

*ITEA
AFP-FE

*AFP
*FFX

KernelRidge
*DSR

*MRGP
GPlearn

MLP
*htssr
Linear
E2ESR

SNIP
*BSR

AIFeynman2
NeurSR

R2 Test

101 102 103 104 105

Model Size

100 102 104

Training Time (s)

Figure 8: R2, model size, and training time on the black-box datasets.

space of solutions on a token-by-token manner. It finds solutions with desired properties, such as
exactness, and simplicity, while being competitive with existing methods and less affected by noise.
We also analyze some aspects of scalability and efficiency in data scarcity, providing insight into
further investigations and improvements. We find that the major factors that affect the effectiveness
of the method seem to be the length of expressions and the number of data points. However, the
clean design and modular nature of the method is encouraging for adaptations and developments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY

We plan to soon release a refactored version of the code and instructions to the public. As of
now, code and instructions are available as suplementary material for the reviewers in the reviewing
platform. Each experiment ran on a NVIDIA A100-80GB GPU with single process at a maximum
2.2 GHz processor core.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Ahmed M. Alaa and Mihaela van der Schaar. Demystifying black-box models with symbolic
metamodels. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/567b8f5f423af15818a068235807edc0-Paper.pdf.

Tommaso Bendinelli, Luca Biggio, and Pierre-Alexandre Kamienny. Controllable neural symbolic
regression. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Paras-
candolo. Neural symbolic regression that scales. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 936–945. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/biggio21a.html.

W. L. Cava, Patryk Orzechowski, Bogdan Burlacu, Fabr’icio Olivetti de Francca, M. Virgolin, Ying
Jin, Michael Kommenda, and Jason H. Moore. Contemporary symbolic regression methods and
their relative performance. Advances in neural information processing systems, 2021 DB1:1–16,
2021. URL https://api.semanticscholar.org/CorpusID:236635250.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN 0262033844.

Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering symbolic models from deep learning with inductive biases. In
Proceedings of the 34th International Conference on Neural Information Processing Systems,
NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Stéphane d’Ascoli, Sören Becker, Philippe Schwaller, Alexander Mathis, and Niki Kilbertus. ODE-
Former: Symbolic regression of dynamical systems with transformers. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=TzoHLiGVMo.

Richard P. Feynman, Robert B. Leighton, and Matthew Sands. The Feynman Lectures on Physics,
Vol. I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat. Basic Books, 2011.
ISBN 978-0465024933.

Conor F. Hayes, Felipe Leno Da Silva, Jiachen Yang, T. Nathan Mundhenk, Chak Shing Lee, Ja-
cob F. Pettit, Claudio Santiago, Sookyung Kim, Joanne T. Kim, Ignacio Aravena Solis, Ruben
Glatt, Andre R. Goncalves, Alexander Ladd, Ahmet Can Solak, Thomas Desautels, Daniel Fais-
sol, Brenden K. Petersen, and Mikel Landajuela. Deep symbolic optimization: Reinforcement
learning for symbolic mathematics, 2025. URL https://arxiv.org/abs/2505.10762.

Ying Jin, Weilin Fu, Jian Kang, Jiadong Guo, and Jian Guo. Bayesian symbolic regression, 2020.
URL https://arxiv.org/abs/1910.08892.

Anna Jobin, Marcello Ienca, and Effy Vayena. The global landscape of ai ethics guidelines. Nature
Machine Intelligence, 1, 09 2019. doi: 10.1038/s42256-019-0088-2.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
end symbolic regression with transformers. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Asso-
ciates Inc. ISBN 9781713871088.

Pierre-Alexandre Kamienny, Guillaume Lample, Sylvain Lamprier, and Marco Virgolin. Deep gen-
erative symbolic regression with monte-carlo-tree-search. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23. JMLR.org, 2023.

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/567b8f5f423af15818a068235807edc0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/567b8f5f423af15818a068235807edc0-Paper.pdf
https://proceedings.mlr.press/v139/biggio21a.html
https://proceedings.mlr.press/v139/biggio21a.html
https://api.semanticscholar.org/CorpusID:236635250
https://openreview.net/forum?id=TzoHLiGVMo
https://openreview.net/forum?id=TzoHLiGVMo
https://arxiv.org/abs/2505.10762
https://arxiv.org/abs/1910.08892

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Maarten Keijzer. Improving symbolic regression with interval arithmetic and linear scaling. In
Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa
(eds.), Genetic Programming, pp. 70–82, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.
ISBN 978-3-540-36599-0.

Samuel Kim, Peter Y. Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir Ceperic, and Marin
Soljacic. Integration of neural network-based symbolic regression in deep learning for scientific
discovery. IEEE Transactions on Neural Networks and Learning Systems, 32(9):4166–4177,
September 2021. ISSN 2162-2388. doi: 10.1109/tnnls.2020.3017010. URL http://dx.
doi.org/10.1109/TNNLS.2020.3017010.

Michael F. Korns. Accuracy in Symbolic Regression, pp. 129–151. Springer New York, New York,
NY, 2011. ISBN 978-1-4614-1770-5. doi: 10.1007/978-1-4614-1770-5 8. URL https://
doi.org/10.1007/978-1-4614-1770-5_8.

John R. Koza. Hierarchical genetic algorithms operating on populations of computer programs.
In Proceedings of the 11th International Joint Conference on Artificial Intelligence - Volume 1,
IJCAI’89, pp. 768–774, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

J.R. Koza. Genetically breeding populations of computer programs to solve problems in artificial in-
telligence. In [1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial
Intelligence, pp. 819–827, 1990. doi: 10.1109/TAI.1990.130444.

Jiřı́ Kubalı́k, Erik Derner, and Robert Babuška. Toward physically plausible data-driven mod-
els: A novel neural network approach to symbolic regression. IEEE Access, 11:61481–61501,
2023. ISSN 2169-3536. doi: 10.1109/access.2023.3287397. URL http://dx.doi.org/
10.1109/ACCESS.2023.3287397.

Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoen-
coder. In Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, pp. 1945–1954. JMLR.org, 2017.

Florian Lalande, Yoshitomo Matsubara, Naoya Chiba, Tatsunori Taniai, Ryo Igarashi, and Yoshi-
taka Ushiku. A transformer model for symbolic regression towards scientific discovery. In
NeurIPS 2023 AI for Science Workshop, 2023. URL https://openreview.net/forum?
id=AIfqWNHKjo.

Nour Makke and Sanjay Chawla. Interpretable scientific discovery with symbolic regression:
a review. Artif. Intell. Rev., 57(1), January 2024. ISSN 0269-2821. doi: 10.1007/
s10462-023-10622-0. URL https://doi.org/10.1007/s10462-023-10622-0.

Yoshitomo Matsubara, Naoya Chiba, Ryo Igarashi, Tatsunori Taniai, and Yoshitaka Ushiku. Re-
thinking symbolic regression datasets and benchmarks for scientific discovery, 2023. URL
https://openreview.net/forum?id=i2e2wqt0nAI.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rath-
nayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam
Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka,
Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy:
symbolic computing in python. PeerJ Computer Science, 3:e103, January 2017. ISSN 2376-5992.
doi: 10.7717/peerj-cs.103. URL https://doi.org/10.7717/peerj-cs.103.

T. Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P. Santiago, Daniel M. Faissol, and
Brenden K. Petersen. Symbolic regression via neural-guided genetic programming population
seeding. In Proceedings of the 35th International Conference on Neural Information Processing
Systems, NIPS ’21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: an imperative style, high-performance deep
learning library. Curran Associates Inc., Red Hook, NY, USA, 2019.

13

http://dx.doi.org/10.1109/TNNLS.2020.3017010
http://dx.doi.org/10.1109/TNNLS.2020.3017010
https://doi.org/10.1007/978-1-4614-1770-5_8
https://doi.org/10.1007/978-1-4614-1770-5_8
http://dx.doi.org/10.1109/ACCESS.2023.3287397
http://dx.doi.org/10.1109/ACCESS.2023.3287397
https://openreview.net/forum?id=AIfqWNHKjo
https://openreview.net/forum?id=AIfqWNHKjo
https://doi.org/10.1007/s10462-023-10622-0
https://openreview.net/forum?id=i2e2wqt0nAI
https://doi.org/10.7717/peerj-cs.103

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Brenden K Petersen, Mikel Landajuela Larma, Terrell N. Mundhenk, Claudio Prata Santiago,
Soo Kyung Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering mathematical
expressions from data via risk-seeking policy gradients. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=m5Qsh0kBQG.

Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017. URL https:
//arxiv.org/abs/1609.04747.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, May 2019. doi:
10.1038/s42256-019-0048-x. Epub 2019 May 13.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
4442–4450. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
sahoo18a.html.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science,
324(5923):81–85, 2009. doi: 10.1126/science.1165893. URL https://www.science.
org/doi/abs/10.1126/science.1165893.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan Reddy. Transformer-
based planning for symbolic regression. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Process-
ing Systems, volume 36, pp. 45907–45919. Curran Associates, Inc., 2023a. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
8ffb4e3118280a66b192b6f06e0e2596-Paper-Conference.pdf.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan K. Reddy. Transformer-based
planning for symbolic regression. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023b. URL https://openreview.net/forum?id=0rVXQEeFEL.

S.H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry,
and Engineering. CRC Press, 2024. ISBN 9780429676284. URL https://books.google.
com.br/books?id=1wrsEAAAQBAJ.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for sym-
bolic regression. Science Advances, 6(16):eaay2631, 2020. doi: 10.1126/sciadv.aay2631. URL
https://www.science.org/doi/abs/10.1126/sciadv.aay2631.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max
Tegmark. Ai feynman 2.0: Pareto-optimal symbolic regression exploiting graph modular-
ity. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 4860–4871. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/33a854e247155d590883b93bca53848a-Paper.pdf.

Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, R. I. Mckay, and Edgar Galván-
López. Semantically-based crossover in genetic programming: application to real-valued sym-
bolic regression. Genetic Programming and Evolvable Machines, 12(2):91–119, June 2011.
ISSN 1389-2576. doi: 10.1007/s10710-010-9121-2. URL https://doi.org/10.1007/
s10710-010-9121-2.

Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative
transformer model for symbolic regression. ArXiv, abs/2106.14131, 2021. URL https:
//api.semanticscholar.org/CorpusID:235658383.

Martin Vastl, Jonáš Kulhánek, Jiřı́ Kubalı́k, Erik Derner, and Robert Babuška. Symformer: End-to-
end symbolic regression using transformer-based architecture, 2022. URL https://arxiv.
org/abs/2205.15764.

14

https://openreview.net/forum?id=m5Qsh0kBQG
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://proceedings.mlr.press/v80/sahoo18a.html
https://proceedings.mlr.press/v80/sahoo18a.html
https://www.science.org/doi/abs/10.1126/science.1165893
https://www.science.org/doi/abs/10.1126/science.1165893
https://proceedings.neurips.cc/paper_files/paper/2023/file/8ffb4e3118280a66b192b6f06e0e2596-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8ffb4e3118280a66b192b6f06e0e2596-Paper-Conference.pdf
https://openreview.net/forum?id=0rVXQEeFEL
https://books.google.com.br/books?id=1wrsEAAAQBAJ
https://books.google.com.br/books?id=1wrsEAAAQBAJ
https://www.science.org/doi/abs/10.1126/sciadv.aay2631
https://proceedings.neurips.cc/paper_files/paper/2020/file/33a854e247155d590883b93bca53848a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/33a854e247155d590883b93bca53848a-Paper.pdf
https://doi.org/10.1007/s10710-010-9121-2
https://doi.org/10.1007/s10710-010-9121-2
https://api.semanticscholar.org/CorpusID:235658383
https://api.semanticscholar.org/CorpusID:235658383
https://arxiv.org/abs/2205.15764
https://arxiv.org/abs/2205.15764

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ekaterina J. Vladislavleva, Guido F. Smits, and Dick den Hertog. Order of nonlinearity as
a complexity measure for models generated by symbolic regression via pareto genetic pro-
gramming. IEEE Transactions on Evolutionary Computation, 13(2):333–349, 2009. doi:
10.1109/TEVC.2008.926486.

Zihan Yu, Jingtao Ding, Yong Li, and Depeng Jin. Symbolic regression via mdlformer-guided
search: from minimizing prediction error to minimizing description length, 2025. URL https:
//arxiv.org/abs/2411.03753.

15

https://arxiv.org/abs/2411.03753
https://arxiv.org/abs/2411.03753

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE

In this work, LLMs helped spot typos and suggest words in a few cases.

A.2 ABLATIONS

Digit Transform. Figure 9 compares the performances of the Digit Transform and SME input rep-
resentations. There is a clear pattern of dominance of Digit Transform over the expression lengths.

5 6 7 8 9 10
0

0.25

0.5

0.75

1

Expression Length

SS
R

Digit Transform.
SME

Figure 9: Comparison between our digit transform and the sign-mantissa-exponent (SME) repre-
sentation. We adapted the SME version to comply with our numeric encoder such that both neural
networks have the same size specifications.

Sort-Diff. In Figure 10 there is a clear pattern that shows the superiority of applying the Sort-Diff
transform to input features versus not. The results show dominance of Sort-Diff across all expression
lengths.

5 6 7 8 9 10

0.25

0.5

0.75

1

Expression Length

SS
R

Sort-Diff.
No Sort-Diff.

Figure 10: Symbolic Solution Rate (SSR) versus expression length for model with and without the
SortDiff transform. nvar = 3.

Evaluation of the constant placeholder. Figure 11 shows very close tendencies when compar-
ing the SSR resulting from heuristics trained with a fixed value v□ versus the sampled value
v□ + U(−0.1, 0.1). The motivation behind this experiment is to see if sampling □ improves the
ability of the heuristic model to perform well for expressions with constants that are not seen during
training. The results have only small, opposite differences at the lengths 9 and 10 and suggest that
no difference is revealed.

Maximum size in the canonical set. In Figure 12 there is a comparison between the SSRs result-
ing from heuristics trained by sampling the starting points of rollouts from canonical datasets of
different sizes. The idea of using canonical datasets to anchor the sampling is that it would make
the mini-batches more balanced with respect to expression length. This was expected to yield better
heuristics, but the results show no improvement. In part, this could be because the rollouts naturally

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

5 6 7 8 9 10

0.25

0.5

0.75

1

Expression Length

SS
R

Sampled
Fixed

Figure 11: Symbolic Solution Rate (SSR) versus expression length for □ sampled versus fixed
during training. nvar = 3.

create expressions with varying complexities, and the expressions that simplify are not sufficient to
impact the representation of larger expressions negatively. On the other hand, the larger number of
longer expressions do not affect the representation of smaller ones because of the nature of rollouts.

5 6 7 8 9 10

0.25

0.5

0.75

1

Expression Length

SS
R

2
4
8

Figure 12: Symbolic Solution Rate (SSR) versus expression length for canonical sets with maximum
expression lengths 2, 4, and 8. nvar = 3.

A.3 COMPLEMENTARY SCALABILITY ANALYSIS

In order to have a broader idea about the power of the proposed heuristic, we perform simula-
tions where a simulated heuristic model is characterized by two parameters: the Recall at the
positive and negative classes. This is possible by taking the ground-truth precedence signal and
flipping it with some probability. We combine all pairs of Recall@0 and Recall@1 from the set
{0.75, 0.80, 0.85, 0.90, 0.95} for each of two search algorithms: the stochastic search (repeated ran-
dom rollouts based on probabilities) and the beam search (with fixed beam window of 32). We also
repeat for an additional parameter: the maximum allowed size of an expression in the search, which
can be 12 or 18. Every search run can visit up to 2 · 104 different expressions and an expression can
be visited multiple times counting as one. The result of each search is either the solution or nothing.

The expressions to be found are a subset of the expressions in the Feynman dataset. There are 73 of
size up to 12 and 96 with size up to 18. The number of variables ranges from 1 to 6. The distribution
of expression sizes can be seen in Figure 13 and the distribution of number of variables in Figure
14. The set of primitives is the set in Table 4, but adding the operators arccos and arctan.

The aggregated SSR results are shown in Figure 15. We see that for beam search the Recall@1
is a more important factor in success than Recall@0 and that the algorithm tends to get lost if not
pruned, as the results with maximum size 12 are much higher than those for 18. The results for beam
search start to get better when Recall@1 is around 0.95, if properly pruned. On the other hand, the
stochastic search seems less sensitive to the maximum allowed size and its quality is affected by
both Recall@0 and Recall@1 more equally.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figures 16 and 17 shows how the SSR varies along expression lengths for different simulated heuris-
tic performances. While the stochastic search can find longer expressions and improves gradually
with the recalls, the beam search indeed seems to require pruning and a high value of Recall@1 to
perform well in the shorter range. The variations with respect to nvar are shown in Figures 18 and
19. Knowing that more variables mean longer expressions, it is natural to expect a decrease in SSR
when the number of variables increases.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

5

10

15

Expression Size

Fr
eq

ue
nc

y

Figure 13: Frequency of expression sizes in the chosen subset for the simulated heuristics.

1 2 3 4 5 6

0

10

20

30

nvar

Fr
eq

ue
nc

y

Figure 14: Frequency of nvar in the chosen subset for the simulated heuristics.

0.75 0.8 0.85 0.9 0.95

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall@1 (18, S)

SS
R

R@0 0.75

R@0 0.80

R@0 0.85

R@0 0.90

R@0 0.95

0.75 0.8 0.85 0.9 0.95

0.1

0.12

Recall@1 (18, B)
0.75 0.8 0.85 0.9 0.95

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall@1 (12, S)
0.75 0.8 0.85 0.9 0.95

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall@1 (12, B)

Figure 15: SSR versus Recall at the positive (precedes) class for each Recall at the negative class
(does not precede). The (12/18, S/B) annotations indicate two parameters: maximum allowed ex-
pression size in the search and if the search algorithm is the stochastic search or the beam search.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

0.25

0.5

0.75

1

Expression Length

SS
R (S, 0.90, 0.90)

(S, 0.95, 0.90)
(S, 0.90, 0.95)
(S, 0.95, 0.95)

Figure 16: SSR versus expression length for the stochastic search (S) with the simulated heuristic
with different Recall@0 and Recall@1.

3 4 5 6 7 8 9 10 11 12

0

0.25

0.5

0.75

1

Expression Length

SS
R (B, 0.90, 0.90)

(B, 0.95, 0.90)
(B, 0.90, 0.95)
(B, 0.95, 0.95)

Figure 17: SSR versus expression length for the beam search (B) with the simulated heuristic with
different Recall@0 and Recall@1.

A.4 SET OF PRIMITIVES

Table 4 shows the set of primitive symbols. Table 5 shows the constraints used in the formation of
expressions for the experiments.

Table 4: Constants, variables, and operators used in the experiments. arcsin was used only in the
SRBench experiment (Section 4.2).

Symbol □ x y z w + − · / ·2 √
sin cos e· arcsin

Arity 0 0 0 0 0 2 2 2 2 1 1 1 1 1 1

A.5 ALGORITHMS

Algorithm 1 synthesizes the high-level workings of the beam-search, given a trained heuristic hΘ.
Algorithm 2 is a simplified version of the implementation for creating canonical sets of expressions.

A.6 SETUPS FOR THE SCALABILITY AND SAMPLE EFFICIENCY EXPERIMENTS

Every heuristic model in that part of the experiments was trained for 1000 epochs of 50 iterations
each. The mini-batches were all-pairs of size 16×16. The beam search window is 128 and the limit
of visited states is 10240. Except for the multi-domain experiment, the default domain used is from
the problem feynman_I_34_1, with the extra fourth variable being sampled from U(1, 5). D is
randomly sub-sampled from 105 to 103 data points (and to {102, 101} in Section 4.1). Details about
the neural net configuration are in Appendix A.8.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 1 HTSSR, based on beam-search.

Q← [(0, x)] ▷ Initialize priority queue
V ← { } ▷ Set of visited states
while length(V) ≤ m do ▷ Maximum of m visited states

if length(Q) = 0 then
return ▷ No solution found

end if
B ← [Q.pop(), ..., Q.pop()] ▷ Beam size pops while not empty
for s, E ∈ B do ▷ Iterate through priority-expression pairs

if □ /∈ E and Accept(Eval(E),D) then
return E ▷ Constant-free solution found

else if □ ∈ E then
ξ ← LM(E,D) ▷ Run Levenberg-Marquadt optimization
if Accept(Eval(E),D, ξ) then

return E, ξ ▷ Solution with constant(s) found
end if

end if
C ← Expand(E) ▷ Get the set of children expressions
S ← 1− σ(hΘ(C,D)) ▷ Attribute priority scores with the learned heuristic, hΘ

Q.push((S,C)) ▷ Update the priority queue
V.add(E)

end for
end while

Algorithm 2 Creation of canonical set of expressions up to length n.

S ← O0 ▷ Initialize canon set with zero-ary elements.
V ← { } ▷ Initialize visited values.
for 2 ≤ l ≤ n do ▷ Iterate from lengths 2 to n.

for o ∈ O1 do ▷ For each unary operator
for F ∈ Sl−1 do ▷ For each expression in S with length l − 1

E ← o(F) ▷ Create new expression of length l
if Eval(E) /∈ V then ▷ Add only if a smaller one is not equivalent.

S.append(E)
V.add(Eval(E))

end if
end for

end for
for o ∈ O2 do ▷ For each binary operator

for 1 ≤ lL ≤ n− 2 do ▷ For each length of the left subtree
lR ← n− 1− lL

for FL ∈ SlL do
for FR ∈ SlR do

E ← o(FL, FR)
if Eval(E) /∈ V then

S.append(E)
V.add(Eval(E))

end if
end for

end for
end for

end for
end for
return S

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6

0

0.25

0.5

0.75

1

nvar

SS
R (S, 18, 0.90, 0.90)

(S, 18, 0.95, 0.90)
(S, 18, 0.90, 0.95)
(S, 18, 0.95, 0.95)

Figure 18: SSR versus nvar for the stochastic search (S) with the simulated heuristic with different
Recall@0 and Recall@1.

1 2 3 4 5 6

0

0.25

0.5

0.75

1

nvar

SS
R

(B, 12, 0.90, 0.90)

(B, 12, 0.95, 0.90)

(B, 12, 0.90, 0.95)

(B, 12, 0.95, 0.95)

Figure 19: SSR versus nvar for the beam search (B) with the simulated heuristic with different
Recall@0 and Recall@1.

A.7 SETUPS FOR THE SRBENCH EXPERIMENT

The general process for searching for a solution of a given problem starts by training the heuristic
model. Training is interrupted at defined epochs ([2499] for Strogatz and [2499, 9999, 25999] for
Feynman) so that HTSSR uses the current checkpoint to search. The beam of the search is 16384.
The limit of visited states is 102400. The relative tolerance to accept a candidate solution and stop
the search is 2 · 10−4. If the threshold is not met but there is still time remaining, the checkpoint
goes back to training. The search ends if the threshold is met or if time is out, in which case the
expression with the lowest relative error is returned. Other configuration and neural net structure are
described in Appendix A.8.

A.8 NEURAL NET ARCHITECTURE

Table 6 shows the main neural net configuration used across experiments. The main difference
between experiments is at the first layer, as the number of input units is different between dataset
groups (10, 100, 1000 for Feynman, 300 for Strogatz). In the Self-Attention layers, dmodel = 1024
for all experiments except for the SRBench experiment, where dmodel = 768. The “Linear” layers in
the numerical encoder have standard 2048 hidden-layer width, with final layer width being dmodel.
The exception is for the SRBench experiment, where those hidden Linear layers have width 1024.
In the Digit Transform, all experiments use 67 digit equivalents in base 2, with position values from
2−33 to 233.

A.9 TRAINING TIMES

Figure 20 compares the training times of HTSSR and two methods with similar performance: DSR
and BSR. Here, the most relevant comparison is between HTSSR and DSR, as both are learning-
based and dedicated to each given dataset and need to be trained from zero.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 5: Constraints for the formation of expressions. Row elements can appear up to the specified
number of times under the column element in the expression syntactic tree. Empty cells indicate no
constraint.

+ − · / ·2 √
sin cos e· arcsin

□ 2 2 2 2 2 2 2 2 2 2
x
y 2 2 2 2 2 2 2 2 2 2
z 2 2 2 2 2 2 2 2 2 2
w 2 2 2 2 2 2 2 2 2 2
+
−
·
/
·2 0 0 0 0 1 0√

0 0 0 0 0

sin 0 0 0
cos 0 0 0 0
e· 0 0 0 0

arcsin 0

Table 6: General Neural Net Configuration for the Experiments.

Module Submodules
SortDiff (optional)

Numeric Encoder Digit Transform
3× (Linear, RMSNorm, GELU)

Source-Target aggregation − (difference)
Final result or all-tree results

Positional Encoding + (padded to length 15)
Positional Encoding (parent symbol) + (optional)

Expression Embeddings + (optional)
Domain Embeddings + (optional)

4× Self-Attention (4 heads)
Classification Sequence aggregation (mean)

Linear

A.10 EXPRESSION HELDOUTS

The following Tables 7 8 9 10 11 12 13 14 contain the heldout dataset groups used in the experiments
(except SRBench). Those are grouped by nvar.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

101 102

Dataset Nfeatures

100

101

Tr
ai

ni
ng

 T
im

e
(h

r)

algorithm
BSR
DSR
htssr

(a) Training time by number of features.

102 103 104 105 106 107

Dataset Npoints

100

101

Tr
ai

ni
ng

 T
im

e
(h

r)

algorithm
BSR
DSR
htssr

(b) Training time by number of dataset points.

102 103 104

Dataset Nsamples Train

100

101

Tr
ai

ni
ng

 T
im

e
(h

r)

algorithm
BSR
DSR
htssr

(c) Training time by number of training samples.

102 103 104 105 106

Dataset Nsamples

100

101

Tr
ai

ni
ng

 T
im

e
(h

r)

algorithm
BSR
DSR
htssr

(d) Training time by number of total samples.

Figure 20: Training times comparisons with methods that perform similarly.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 7: Heldout expressions for nvar = 1. Part 1.

(ex −
√
□) (x ·

√
sin(x)) ((x− cos(□)))2

(
√
sin(□)− x) ((□+

√
x))2 (x−□)

□√
sin((□− x)) (cos(□)− (x)2) □

(cos(x))2

x
(ex)2

√
ex

□
x√

sin(x)
□√
(x)2

ex

sin(x) ((x · sin(□)))2

(e(□·x) − x) ((x+ x
□))2 (x+ cos((□ · x)))

x
(□+e□)

(x · cos((□ · x))) (□+ □
sin(x))

(□−x)√
□

√
(sin(□)− ex) (□+ ((x)2 − x))

(
√

x
sin(x))

2 ((□)2 −
√
sin(x)) (

√
(x)2 · e□)

(x−□)
cos(□)

□
(□+ex) (ex −

√
sin(□))

(x · cos(□)
ex) (x− ex

cos(□)) (sin(□x) + cos(□))

(sin(x)□ − ex) ((e□)2 − □
x)

□√
((x)2−□)

(cos(x)− x
sin(x)) (□+ (x+ (e□)2)) (e(□+x) − sin(x))

(x−
√

cos(x)

□) (□ ·
√
(□ · (x)2))

√
x

((x)2−□)

((x ·
√
□)−

√
x)

√
(□ · (x+ sin(□))) e□

(□−
√
x)

(□ ·
√

(sin(x) + ex)) (
√
sin(□)− x

cos(□)) ((x
cos(x) + e□))2

(x)2√
□

cos(□) (cos(x)− □
(sin(□))2)

√
(sin(□)− sin((□ · x)))

(
√

(x
cos(□) −□))2

√
□

(cos(x
□
))2 (sin((□+□))√

x
)2

((□x + x
□))2 (ex−(cos(□))2)

□
x

((□+x)·
√
□)√

(□ · cos(x)sin(x)) (x · sin((□− (□ · x)))) (□
cos(x) + (

√
x)2)

(
√
x+ cos(x

(x+x)))
(cos(□))2

(□+(
√
x)2)

((x
(x+x) −

√
x))2

(((□+ x) · e□) + cos(x)) (□ ·
√

(e
□
x − x)) (((x+

√
sin(□)) ·

√
x))2

(((sin(□))2 − sin(x))− cos(x)) (x− (x+
√
□)

sin(x)) (x+ (x+ (x−
√
sin(□))))

(x
(cos(□))2 +

√
ex) (((x)2 · sin(□)) + e(x)

2

) (x · (
√
x− sin((x+ x))))

√
□

(sin((x−□))−x) (
x√
x

x − e□) (x+ (x · (
√
□+ ex)))

(□
(□−sin(x)) + (ex)2)

√
(□−(sin(x)+cos(□)))

x ((□− (x+
√
(x)2)) · cos(x))

((
√
x−□) · (

√
x

□)2) (□−((x·sin(x)))2)
ex (□ · (□− (

√
(cos(x)− x))2))

□
(x·
√

(x−(□·x)))
(□ · (x− (

√
x+
√
ex)))

√
((x

□
)2+ex)

□

(
√

((x+x))2

cos(x) −□) (e(□)2−sin(x))
(
√
x)2

(((□ · x))2 + (e
□
x)2)

(x−
√

(x+e□))

sin(x)
(cos(x)+cos((x+x)))

e□
(((x+ x) · (sin(□)−□))− x)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 8: Heldout expressions for nvar = 1. Part 2.

(cos(□)−
√
x) (cos(x)x)2 (□−

√
ex)

((□)2 · ex) sin(x)
cos(x) (cos(x) + e□)

((x)2 · sin(□)) (x
□ − x) (□+ □

x)

(x ·
√

cos(x))
√
(□ · cos(x)) (□ ·

√
(x)2)√

(x · e□)
√
(x− cos(□)) ((□− cos(x)))2

(□+ cos(x)
□) ((sin(□)− cos(x)))2 ((cos(x))2 + sin(x))√

(□ · (x+ x)) (ex)2

e□
sin(□)
(□−x)

((□ · x)− sin(x)) (x · (cos(x)− x)) (□−sin(x))
x

(x+ (x−
√
x)) ((x−□) · e□) (□+x)

cos(x)
(□−

√
x)

x
□

(x+ex) (□x − (□)2)

(□+
√
(x− cos(□))) (x√

□
− cos(x)) (

√
(□− x) · sin(x))

(□)2√
(□−x)

(cos(□)−sin(□))
x ((x−cos(□))

x)2

(ex−sin(x))
x

√
□

(x+(x)2) (□−
√

cos(□)
x)

cos(□)√
(x−□)

(x+ (x− x
□)) (□+

√
(x)2

□)
√
e(x−□)

x (sin((□+□)) + ex) (sin(x)−(□)2)
x

((□− x) ·
√

(x+ x)) (
√
e□ − ex

□) (x− ((cos(x))2 + sin(x)))

(x · (x+ sin((x+ x))))
x√
e□

ex ((sin(□) · ex)− e□)
(□−sin(x

□
))

x

√
(ex)2

(sin(□))2 ((e□)2 − sin((□+ x)))

(x · (□+
√

(ex)2)) □
(□·((x)2−x))

e(
□
x

)2

√
x

□
(□+(x·sin(x))) ((sin(x) · ex)− sin(□)) e(□+x)

(sin(□))2

(□−
√

((cos(□))2 + cos(x)))
(x
sin(x)

−(x)2)

□ ((
√
(x+ sin(x)))2 +

√
□)

(
√
□−
√

sin(□))

ex

√
((cos(x))2 − x

e□
) x

(
√
□·cos((□+x)))√

□
((e□)2−cos(x))

((□·x))2

cos(□
x)

e□

(□+cos((x+x)))

((ex − sin(□))− e(□)2)
√
(((e□)2 − x) · (x)2) (cos(x)+e(□)2)

(x)2

(x · ((x)
2+

√
x)

□) (x+
√

x
(sin(□)−□)) (□− (x+ (x ·

√
sin(x))))

(x−(
√
x·ex))

cos(□)
x

((
√
□−cos(x))·cos(x))

(
√

((cos(x))2 − x)− (
√
x)2)

(x
sin(□) −

√
ex

□) ((□ · e□

sin(x)) + ex)
(□+
√

(x−sin(x)))

cos(x)

((□+ □√
cos((x+x))

))2 (x− ((□+ (
√
x)2) · cos(□))) (

x√
x

x +
√
(x)2)

(
√

(□− ex)− sin(x)
x) (

√
e

(□−x)
x − (x)2) ((x+ (x)2) · sin(x)cos(x))

(((□)2 · ex) + sin((□ · x))) (
√
((sin(x)− cos(□)))2 − (□)2) (

(
√

x
□

)2

x − ex)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 9: Heldout expressions for nvar = 2. Part 1.

(cos(y)− ex)
√
cos(yx)

√
ey

x
((y)2 − sin(x)) (□+ x

y) (ex −√y)√
e

x
y (

√
cos(x)− y) (y − (□ · x))

((□ · x)− y) (y −
√

cos(x)) (y +
√

cos(x))

(
√
sin(x)− y) y

(sin(x))2
(x−y)

y

(x ·
√
(y + y)) (y − (x · sin(y))) (x−y)√

□
x

((□−y))2 (
√
x+

√
sin(y)) (

√
y +
√
ex)

(y · cos(x)x) (x− y
cos(□))

√
x

(sin(y))2

(y +
√
(x+ x)) cos((□+y)

x) ((x− y) · cos(□))
(□− (y + cos(x))) (yx − ey) x

(sin(x)−y)

(sin(x)− (y ·
√
x))

√
(x+ cos(y

□)) (□− sin(y)√
x

)

(y + (x ·
√
sin(□))) (x− sin(x)√

y) (
√
(y)2 ·

√
ex)

(sin(x)sin(y) − x) ((□+ (y · sin(x))))2 x
(□+ y

x)

((y)2−x)
ex (y − sin(x)

sin(□))
e

x
(y)2

x

((y · (□+ x))− y) y
(sin(x)+sin(x)) ((x)2 + sin((y −□)))

(
√
e(x)2 − (

√
y)2) ((y + (

√
□− ex)))2 (x · (x− (y

□)2))

((
√
x
x −

√
y))2

√
y

((x)2+cos(y)) (ey − (□+x)
□)

(sin(□)−□)
(x+y) (((□ · √y) +

√
x))2 (

√
(y − x)− □

x)

(cos((y · (□+ x)))−□)

√
((□)2−sin(y))

x (□+ (x+ sin((□+ y))))

((y +
√
(x)2) · e□) x

((□·y)−sin(□))

(x− cos(x)
y)

x√
(sin(y)+cos(□))

(x)2 (x · (□− (sin((□+ y)))2))

√
(y−cos(x))√

sin(y)
sin((□·x))√

y

y (
√

(□ · y)−
√

x
□) ((□+

√
□)

y + ex)√
(sin(□)+cos(y))

sin(x)

(y
sin(x)

+cos(x))

□
((x)2+sin(y))

(
√
x)2

(□ · ((x+sin(□))
y)2) ((□ ·

√
□
x) + sin(y)) (x√

□
− sin(x)

y)

((y · (y −□))− e(x)
2

)
√
((x+ y) · sin(x)x) □√

cos(y)
(x+y)

(x− e
□
y

x)

x (x− (y · cos((□+ (y − x))))) (((y − ey) · sin(x)) + e□)
ex

(
√

y−□)

(y)2
y

((x·(sin(□))2)−cos(x)) (
√

(cos(y))2

x +
√
(y)2)

√
y

□
((y)2+cos(x)) (x+ cos(y)

(
√
x+sin(x))

) ((□+□) · (y
sin(y) − x))

y
((sin(□)−(x)2)−sin(y))

x

((□)2−
√

(y+cos(y)))
(x+ (x+

√
y

(sin(y))2))√
((x+y)
sin(□) + (□)2)

√
x

(x−(
√
x+sin(y)))

(□+ (y · (
√
sin(□x))

2))

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 10: Heldout expressions for nvar = 2. Part 2.

(y − x
y)

√
cos(y)

x ((x)2 · sin(y))

(
√
x · √y)

√
sin(x)

y

√
ex

y

y√
sin(x)

e
y

(x)2 ((ex)2 − y)

ex

sin(y) (
√
x− (y)2) (y · (x−□))

cos(y)
cos(x) (x+

√
(y)2) x

(□+y)
y√

(□+x)

(□−x)
sin(y) (x · sin(xy))

(y−cos(x))
□ ((x · e□)− y) cos((□+x))

y
x

(sin(y)−y)

√
((y · sin(x)))2 x

(y+sin(□))

cos((x− y
□)) (cos(y)−y)

x (sin(y)−
√

sin(x))

(x · cos(□y)) (((x+ y))2 − x) (x+ cos(□y))√
(y − cos((□+ x))) ((y + (sin(x)−□)))2 (y · (x)2

sin(x))

(x− ((□ · √y))2)
√

(□+y)

(x)2 (
√
□− (y)2

x)√
x

(y+cos(y))
(x+ex)
(y)2 (

√
x− y√

□
)√

cos((x · (y + y))) (y +
√

cos(x)
□) ((□+ e(x−y)))2

((x)2−(y)2)
□ (x

e□
+ (y)2) ((□)2 − y

(x)2)

y√
(sin(y)·ex)

(
y
□

)2

□
x

cos(x)
y√
ey

((x · y) + cos(□□)) (□ · ((x)2 ·
√
(y)2)) (□+ex)

(x·y)

(
√
ey

x − (y)2) (e
(y−x)

sin(□))
2 (x+

y√
x

y)

((x)2

sin(x) − sin(y)) (y + (yx + (□)2)) sin(x)√
(x−sin(y))

((
√
y−cos(x)))2

x ((cos(x))2 − (x · √y)) (y − (y · sin(x)x))

(
√

x
(ex)2 −

√
y) ((x−

√
x

(□+y)))
2 (cos(y)−□)

sin((□+x))

((x · y)− (
√
x · sin(y))) ((

√
(y)2 − (□)2)− cos(x)) (((□+□) · e

x
y))2

(
√

□
ey +

√
ex)

(x−√
y)

cos((□+x)) ((y · (x− y))− (sin(□))2)

(e
x

□ − (y · √y)) (□ · (e(□−y) − ex)) ((
√
x+

√
sin(y)) + sin(□))

(((sin(x)− y)− y)− e□) ((y + (cos(y)x − x)))2
√

(cos(y)−(y)2)
sin(x)

x
(y+(sin((□·x))−□))

√
x

(y−
√

x

e□
)

(□
(x)2 +

√
(y − cos(x)))

(x+ (x+ ((x · y)− e□))) (sin((y − x))− cos(x)√
y) ((

√
ex

y − x)− cos(y))

((□ · (x)
2

√
y) · cos(□)) y

((y−(sin(□))2)·(x)2) (y + □
sin(x

(□·y)
))

(x+ ((□
sin(y))

2 · sin(□))) ((x− (ey + ey)) · sin(x)) ((x·
√

sin(y))−ex)

y

((sin((x · y)) · e□)− cos(x)) (((□− x
sin(y)))

2 + cos(y)) ((cos(y)□)2 +
√
(□ · x))

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 11: Heldout expressions for nvar = 3. Part 1.

(y + (z − x)) ((x · z)− y) y
(x+z)

(x+ y
z)

(y−z)
x (zy − x)

(x+ (y · z)) (y · (x− z)) (y · zx)
(z − (x · y)) (y+z)

x
(x−z)

y
x

(y+z)
z

(x−y)
z

(x·y)

e
(y+z)

x
x

(
√
y−z) (z · sin(yx))

(z − sin((x+ y))) ((xy)
2 − z) ((y · sin(x))− z)

(y · e(x−z)) sin((x·z))
y

z
(y·cos(x))

y

e
x
z

((y · ex)− z) ((x+y)
z)2

sin((x+ z
y)) (x− (y + sin(z))) ((y + z) · cos(x))

(sin(z)−y)√
x

z
(x+(x−y)) (sin(yx)− sin(z))

(
√
x ·

√
(z − y)) (x · (x+y)

z) (
√
(z + ex)− y)

(y−
√

cos(x))

z ((z − y)− e(x)
2

) (y+ex)√
z

(x+ (z +
√
cos(y))) (sin(y))2

(z−x)
(x+z)
(x·y)

((y ·
√
x
z))2 (

√
y

z − cos(x)) x
(y·(x−z))

z
cos((y·(x−y))) (x− (z + cos((y + y))))

√
(x
(y)2 − cos(z))

e(z·(x−z))

y ((z)2 + ((x− cos(y)))2) (ex − x
(y·z))

z
(sin(x

y)−x)

√
(z−(x+y))

□ (z + ((□+ x) · (y)2))
(
√
y − (cos((x+ z)))2) x

(y·sin((y+z))) (
√
x+

√
((y − z))2)

z
(cos((x+z))−y)

x
((z·sin(y))−z)

(□+x)
cos((y−z))

(z
(cos(x

y))2 − z) (x · e
(z−y)

(y)2) (
√
(x− z)− (x · (y)2))

((
√
y·sin(z))−x)

z ((z · (y + sin(x
□))))2 ((z · cos((□− x))) + sin(y))

((x · z√
y) + ez) (y

sin(z) +
√

(x− y)) (□ · (
√

(cos(y)− x)− z))

(x+ (e
x
z − cos(y))) (y − (

√
(x− z) · e□)) □

(y·e((x−z))2)
(y−z)

(
√
x−(z)2)

(x · (cos(z)− y
cos(□))) (x− □

(z+(sin(y))2))

((x+ (y ·
√

sin(□)))− ez) (e(x−□) −
√
(y + cos(z))) (((ex −□) + ey) ·

√
z)

sin(z)
(cos(y)− z

sin(x)
) (((x)2 − sin(z)) + sin((□+ y))) z

((e(z−y))2+sin(x))√
sin(x)

(x+
√

(z−y))
((x+ (□)2

z) · (x− y))
ey

z√
(y+(x)2)

(x+ (□ · sin(
z
y)

y)) (y − sin((x·z))
e(□)2

)
(
√
y+e(□·z))√

x√
((y− z

sin(x)
))2

z ((((y)2 − z) + cos(x)) ·
√
x) (y · z

cos((□+(x+z))))

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 12: Heldout expressions for nvar = 3. Part 2.

(xy − z) (y + z
x) (x · (z − y))

(x · (y − z)) (y − (x · z)) (x · yz)
(x− (y + z)) (x · (y · z)) (z − x

y)

(y − z
x)

x
(z−y) (x− (y · z))

x
(y−z) (y − x

z) (z − (x+ y))

(x+ (z − sin(y))) ((y)
2

z − x) ((x− z
y))

2

(zx −
√
y) ((x · z) + ey) (z−x)

(y)2

e(x−
z
y) sin((y−x))

z ((x ·
√
z)− y)

x
(z+

√
y) ((z)2 − x

y) ((z − y) · (x)2)
((y · z) + sin(x)) (y · sin(x)z) z

(y−cos(x))

(x+ z
(□−y))

√
(x+ez)

y (x− (z + y
x))

(x− (sin(y) + cos(z))) (ez · e
x
y) (z+z)

(x·y)

(x− (
√

(y − z))2)
(z+ y

x)

□
(x+sin(z))

sin(y)

((y−x)
x − z) ((y ·

√
(z − x)))2 y

e
z

(x)2

(e(y−x) − ez) sin(z)√
(y−x)

(((x)2 − y) · (z)2)

((sin(y))
2

√
z
− x) (z · (x

(x−y))
2) ((y + cos(z)

cos(x)))
2

((z)2 +
√

x
cos(y))

(cos((□·y))−x)
z (□ · (x−y)

ez)

(
√
cos(y)−

√
(x · z))

√
((x+ sin(y)) · sin(z)) (x+ (

√
(□+ y)− z))√

((x)
2

y + sin(z)) ((y · z)− cos(y)
x) (□− z

(x+(y)2))

((z · (z + sin(x)))− y) (((□+ z) · ex)− y)
(□+

cos(z)
x)

y

(x)2

(y
z+sin(y)) (x−

√
ex

y

z)
√
cos(x

(y·(x+z)))

(((cos(x))2 − sin(y)) · (z)2)
√

((x)2− x
y)

z
y

(x·
√

cos(□)
z)

((x · ((y)2 − y)) + (z)2) (

√
(x·sin(y))

x − z) (□+x)√
ez

y

(y · ((x+ z) · (sin(y))2))
√

(z − (x · ((□+ y))2)) (z − (y · (z + (cos(x))2)))

(((yz)
2 · cos(y))− x) ((y−cos(z))

(x−z))2 ((x− (y · cos(zx))))
2

(z · (
√
x− (y · (y + z)))) (y −

(z)2√
x

(z)2) (e
x
z − (y ·

√
sin(□)))

(x+ z
((
√
y+sin(z)))2)

(y−(□+(z·sin(y))))
x (

√
sin(x)

y + (zy)
2)

(□ · (x+ (x · cos(y)z))) x
((sin(x))2+

√
z
y)

(y + sin(z)
(x− y

x))

(
√
(x+ (x−z)

x)− y) (y − (z · (□+ (x · √y)))) (
√
z − (x ·

√
x
ey))

x

((z)2·
√

((□+y))2)
(z + ((y−x)

□ + sin(y))) (
√
cos(x) + sin((y · (x− z))))

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 13: Heldout expressions for nvar = 4. Part 1.

z
(w− y

x) ((w · (x+ y))− z) x
((y·w)−z)

(x
w −

z
y) ((z · wy)− x) x

(w− y
z)

(x−w
z)

y
z

((y·w)−x) (x · y
(z−w))

(w
(y+z) − x) (z · (x− y

w)) (w
(x·z) − y)

w
(x+(y·z))

(y+z)
(x−w) (y · (z − (x+ w)))

(yz − (w · ex)) ((w · cos(z)) + x
y) (e(w·(x−z)) − y)

(
cos(z)

x

y − w) (z + (w+sin(y))
x)

√
(x · (z + y

w))

e(x·
(y−w)

z) y
(x−(w+sin(z))) ((w · ((y)2 − z))− x)

(x+ (z+sin(w))
y) (y · ((z − w) ·

√
x)) (y · (z)2

(w−x))

(w · (x+ cos((y − z)))) ((z · ((x− w))2)− y) (z + e
x

(w−y))

(w − ((zx − cos(y)))2)
(sin(z

w)−x)

ey ((x ·
√
ez) + (y · w))√

(x·(y+(w)2))

z (y
(w)2 +

√
x
z) (x ·

√
(y · sin(w)

z))

((y−x)√
z
−
√
w) ((cos(z)− y)− ((x− w))2)

(w
cos(y)

−x)

cos(z)

(y · (z + e((x−w))2)) (w+sin(y))
(x−cos(z)) (((y − w) · (cos(x))2)− z)

(w − ((x−
√
(y + z)))2)

√
((z+w

y))2

x ((
√
w − x) · ((y + z))2)

(
(y−□)

w +cos(x))

z ((y · (x+ w)) + e(z−w)) (x− e
(y−z)
(w−z))

y
ez

e(
x
w

)2
(
(z
cos(y)

)2

x − (w)2) (z + e
w

(x
y

−y))

(□ · (z+cos(x))
(y−w))

√
((y)2+((z·w))2)

x (y + (
√

(x · w)− (□ · z)))
(y + ((z · w)− sin(x)

z)) (
√
w
z −

y√
(x)2

) ((z − (x · (
√
w)2)) · cos(y))

(sin(y
(x−z)

)−w)

z ((
√
z − (y)2) · ((x · w))2) ((x+ z) · e

(y−w)

z)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 14: Heldout expressions for nvar = 4. Part 2.

(w · (y + z
x)) ((y · (z − x))− w) ((y · z)− x

w)

(y − (x+w)
z) (y

(x·w) − z) (x− (y · z
w))

(x−y)
(z·w)

(w
y −z)

x (y · (xz − w))

(w
(x+z) − y) (x · (y

w − z)) (w − (x+ (y · z)))
(z+(x·y))

w
w

(z
x−y) (w · (x− y

z))

sin((x−z)
(y+w))

z
(y·(w·(x)2)) (w · (y + (sin(x)− z)))

(w+ z
sin(x)

)

y ((w · (ey − x))− z) (e
x

(y·z) − w)

(y · (z + e(x−w)))
√
(x+ (y · (w − z))) (x+(cos(y)−w))

z√
y

(w−(x·z))
(z+

√
w)

(x·y)
(x+((y·w))2)

z

(y−w)
(x−(z)2) (((y · z)− x)− cos(w)) (y + x

(
√
w−z)

)

(x+ (w + (cos(y))2

z)) (x
(y−(z·w)) − y)

((
√
y−z)−(w)2)

x

((w−sin(x))
(y)2 − z)

√
y

(w+sin(x
z))

((w · (y − x
z))− y)

(
(x
w)2

z · sin(y)) (w · (xy −
□
z))

x
(y√

w
+sin(z))

(x · (((y)2 · cos(z))− w)) (w + e
y

((x)2−z)) ((y · cos(z))− ((x · w))2)
(w−cos(x))
(y+cos(z))

z
((sin(w)−x)+cos(y)) ((x+ (cos(y)− w

z)))
2

((((x− cos(y)))2 · sin(z))− w) ((□− z) · cos(x
(y+w))) (z − cos((□+(x+y)))

w)

((z)2 ·
√

(w + (x)2

y)) ((
√
y

(w)2 − z) +
√
x) ((sin((y+w)))2

z + sin(x))

(
√
(y + ((z · w)− x))− z) w

(□− z
cos(x

y
)
)

x
(ez

sin(w)
−cos(y))√

(ew

y −sin(z))

x (((y · sin(w)
x))2 ·

√
z) (z −

√
y

(z−x)

w)

((y · (yx)
2)− z

w) ((□− (z ·
√
x)) · (y − w)) ((wy +

√
(x+ ez)))2

31

	Introduction
	Related Work
	HTSSR: HeurisTic beam Search Symbolic Regression
	Primitives and generation rules
	Expression rollouts and canonical dataset
	Numeric evaluation
	The heuristic model
	Beam Search

	Experiments
	Efficiency on dataset length and scalability
	SRBench

	Conclusion
	Reproducibility
	Appendix
	LLM Usage
	Ablations
	Complementary Scalability Analysis
	Set of primitives
	Algorithms
	Setups for the scalability and sample efficiency experiments
	Setups for the SRBench experiment
	Neural Net Architecture
	Training Times
	Expression heldouts

