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ABSTRACT

Symbolic Regression (SR) aims to discover simple and interpretable mathemati-
cal expressions that explain observed data, making it a powerful tool for scientific
discovery. In this work, we introduce a conceptually simple SR method that is
both sample-efficient with respect to observed data points and self-supervised on
large-scale synthetic data. By design, our approach favors parsimony, yielding
interpretable and concise expressions. We focus on problems with exact solu-
tions, evaluating our method on datasets containing physical laws and dynamical
equations. Our results demonstrate that combining beam search with a learned
heuristic achieves competitive performance compared to existing methods in SR-
Bench. Additionally, our approach effectively handles expressions with constants,
a common challenge in the SR field. Finally, we provide a comprehensive scal-
ability analysis across four key dimensions: (i) expression length, (ii) number of
variables, (iii) number of domains, and (iv) number of observed data points.

1 INTRODUCTION

In Machine Learning, many models are designed to achieve low training error and perform well
in unseen but similar data. Yet, fitness to data is not the only important attribute. Some applica-
tions require interpretability: models must be meaningful in terms of familiar constructs. Another
desirable quality is to have Out-Of-Distribution (OOD) generalization. In this context, Symbolic
Regression (SR) is the task of finding mathematical expressions that fit the data and are as simple
as possible. In Physics and other natural sciences, interpretability is commonly accompanied by
OOD generalization, as laws of nature have been widely tested. This makes SR a good candidate
for finding scientific insight from data. Other areas that can benefit from SR include medicine and
finance (Jobin et al.|[2019; Rudin, |[2019)), which are critical and high-stakes.

Formally, given a domain set of data points D := {(x;, v;) }1<i<n consisting of paired features x;
and target values v;, the goal of SR is to find a mathematical expression F such that F(x;) ~ v; and
E'is as simple as possible (e.g. it has a small number of symbols from a pre-defined vocabulary). In
the case where an exact solution F’ exists, it is required that Z/ = F' up to some tolerance on constant
values that may appear (e.g. 1.52 - 2 + 2.0001 and 1.499922 + 2 may be considered equivalent).

In this paper, we present HTSSR: HeurisTic beam Search Symbolic Regression, a new method
for SR that learns, in a self-supervised way, a precedence relation among expressions to guide a
beam search algorithm. We detail key design choices that make our results possible, investigate the
scalability of the search and its sample efficiency, and compare HTSSR against existing methods on
SRBench (Cava et al., [2021).

2 RELATED WORK

Genetic Programming (GP) was the first note-worthy way to approach SR and many SR methods
fall into this category. Early works include (Kozal [1989;1990), which deal with Program Synthesis,
a superclass of SR in a sense. More recent applications of GP to SR are (Keijzer,[2003}; Vladislavleva
et al.|[2009; Schmidt & Lipson, 2009; |Korns} 2011} Uy et al.,[2011; Jin et al., |2020). GP techniques
are known to be easily parallelized and have high parallelism, allowing for the evaluation of a high
number of expressions. One downside of GP methods is that they are not robust in cases involving
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hyperparameters (Petersen et al.,[2021)). Hybrid approaches, like those proposed in (Mundhenk et al.,
2021;|Kamienny et al.,[2023)), combine Deep Learning and GP by letting one or more learned models
perform sub-tasks of the GP search, like population seeding, mutation, and selection. (Mundhenk
et al.| 2021)) combines GP with Deep Learning by seeding the GP search with expressions from the
learned model. In principle, the learned models help guide GP to more promising regions in search
space. Similarly to (Petersen et al., 2021), the model is trained with Reinforcement Learning with
the reward signal based on the fitness to data. A clear disadvantage is that a supervision/reward
signal based on numerical fit means very different things depending on the context. For instance,
the same numerical error may come from a candidate solution that is very close or very far in the
space of discrete expressions. In contrast, the supervision of our heuristic model is a simple binary
value indicating a “precedence” relation between pairs of elements, having simple optimization and
using well-stabilished binary cross-entropy loss.

When it comes to datasets and benchmarks, possibly the most well-known effort to standardize
SR evaluation is SRBench (Cava et al.,|2021). It contains more than 250 problems with and without
ground-truth formulas. At least 14 methods have already been tested and compared (Makke &
Chawla, 2024). SRBench includes the Strogatz (Strogatz, [2024) and Feynman (Feynman et al.,
2011;|Udrescu & Tegmark, 2020) problem sets, the latter having some of the original physical laws
removed. Other problem sets for SR with ground-truth are available in (Keijzer, 2003 |Vladislavleva
et al.,[2009; [Uy et al.,[2011; |Korns, 201 1; [Petersen et al.,2021), but they are not physics-related.

The application of Deep Learning to SR has earlier examples like (Kusner et al., |2017; |Sahoo
et al., |2018; [Alaa & van der Schaar, [2019). The work (Udrescu & Tegmark, 2020) is possibly
the first to show notable progress of Deep Learning in SR. It approaches Symbolic Regression
mostly by simplifying a problem into subproblems. (Cranmer et al.| 2020; Bendinelli et al., [2023)
also allows for the inclusion of simplifying assumptions or prior knowledge. Even though problem
simplification should be used in expression discovery, it needs domain-specific knowledge and even
so there is always some remaining search space of possible solutions. Instead, we focus on the
search guidance approach and let problem simplification for further study.

Under the umbrella of Deep Learning, some more recent works employ Self-Attention (Vaswani
et al., [2017) architecture (d’Ascoli et al., 2024} [Shojaee et al., |2023; |Kamienny et al.| 2023} La-
lande et al., 2023} [Valipour et al.| [2021). Even though we do use Self-Attention layers to process
expressions as sequences, we do not use those as a generative model.

(Hayes et al., [2025) introduces a framework based on neural guided search where the core model
can be trained (and fine-tuned) in different ways, including with Reinforcement Learning, Expert
Imitation Learning, and pre-training with synthetic data. The guiding generative model outputs a
distribution over tokens, while in our method there is no explicit distribution over tokens. Instead,
the output of the model is a score that can be used to prioritize elements in the search. Also, the
expression generation in our method is independent of any parametric model: it happens by applying
pre-defined grammar-like generation rules and is very fast by means of its simplicity.

Most of the methods try to solve SR in two steps: (i) finding “skeletons” of expressions and (ii)
optimizing for the constants. For instance, (Biggio et al.| 2021) applies self-supervised training to
sample expression skeletons with beam-search (not to be confused with the beam-search of our
method, where each element is an entire expression instead of a token) and then solves for the
constants. Differently from this approach, (Kamienny et al., 2022) tries to infer both expression
structure and constants directly with a Transformer-based model, using the inner optimization just
for small adjustments. Notice that depending on the choice and configuration of optimizer for the
inner constant fitting, the whole search process may be severely affected.

The reporting of SR results still needs adherence to standardization. For instance, in (Biggio et al.
2021} [Kamienny et al.l 2022) authors report metrics based on R? > 0.99 as a proxy for symbolic
solution on the Feynman problem subset from SRBench. As pointed out in (Matsubara et al.,|2023)),
R?-based accuracy does not take expression interpretability into account and is vulnerable to the use
of “dummy” variables. Also, the R?-criteria changes from work to work, sometimes being R > 0.9
(d’ Ascoli et al[2024), R? > 0.99 (Kamienny et al., [2022), (Kamienny et al.,[2023), (Shojaee et al.,
2023)), while SRBench requires R? > 0.999. We stick to the Symbolic Solution Rate (SSR) defined
in SRBench (Cava et al.,|2021)) as the default metric.
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Table 1: Example of primitives with the re- Table 2: Expressions and respective prefix
spective generation rules. forms.
Symbol Rule Expression | Prefix Form
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3 HTSSR: HEURISTIC BEAM SEARCH SYMBOLIC REGRESSION

Understanding the following components of our method is necessary for its comprehension. The
basic constructs are the set of primitives and the generation rules. Then, expressions can be generated
or randomly sampled with the rollout strategy. This generation procedure is at the core of the training
data synthesis. That given, some care needs to be taken when evaluating the expressions numerically
and feeding the heuristic neural network with such values.

3.1 PRIMITIVES AND GENERATION RULES

The mathematical expressions in this study are a combination of symbols, namely operators (unary
and binary), variables, and constants. We call the set of all symbols the primitives set. Optionally,
that set can be enriched with complexity constraints that tell the maximum allowed occurrences of
a symbol under another symbol (e.g., at most 0 cosine operations inside a cosine). This controls the
appearance of bizarre expressions and reduces the search space size. All considered expressions have
a syntactical tree structure and are implemented using prefix notation. This choice of implementation
allows for the fast generation, evaluation, and automatic differentiation of expressions.

Generation rules are defined in terms of the primitive symbols and their arities. One of the variables,
x, is considered to be the special symbol used for rule applications. The generation rules have one
of three forms: x +— osxx, x — o012, and x — 0. The o; indicate an operator with arity 7. og
can be a variable name, including z, or the constant placeholder, [J. Multiple appearances of [
represent independent constants. Tables [T] and [2] show examples of primitive sets, generation rules,
and expressions with prefix forms.

3.2 EXPRESSION ROLLOUTS AND CANONICAL DATASET

Instead of working with a static dataset, we find it better to synthesize the expressions during the
training of the heuristic model. The expressions are sampled in generation sequences, or rollouts
(see Figure[I)), where a source expression is first sampled from a static canonical dataset to then be
expanded into increasingly more complex forms. This strategy gives access to a very large set of
expressions, even when there are constraints for expression formation.

Figure 1: Example rollout from x to = + ,/y. After the rollout is finished, = becomes like any other
variable.

(Kamienny et al., [2023) uses a mechanism similar to our “rollouts” in reverse order to generate
expressions for training a mutation generative model. This model helps the main GP procedure in
the search. Like our method, it is a tree-search but uses MCTS instead of beam-search. Their method
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combines 3 parameterized models: a mutation policy, a selection policy, and a critic network. Ours,
instead, only has one self-supervised model, trained for binary classification.

The canonical dataset contains representatives of the numerical equivalence classes of expressions.
The representatives are the smallest elements of a class. We define smallest as having the least
number of primitive symbols and being the lexicographically smallest. If the constant placeholder
is fixed, computing such a dataset and storing it on disk is possible up to some expression size. This
limit also depends on the generation rules and on the primitives.

Uniformly sampling an entire set without considering complexity may underrepresent simpler ex-
pressions. We believe that such an imbalance makes the learning process harder. This is the main
motivation behind the use of the rollouts. Regarding how the starting points of the rollouts are
sampled, we see that sampling (uniformly on length) from canonical sets of different maximum
expression lengths shows no significant difference (see Appendix [A.2] Figure 0] for an ablation).
However, the canonical set is important for the evaluation of the method, as is described in Section
3.6l

3.3 NUMERIC EVALUATION

We make extensive use of stack-based evaluation of the expressions in prefix form. Given the limited
scope of operations and the small number of variables, this solution is easy to implement and faster
than SymPy (Meurer et al.,2017) and isolated Python code calls.

The evaluation in the leaves involves variables and constants. The values attributed to the variables
are the feature domain D[X] - the part of the observed data D that is not the vector of target values
D[v]. Constant placeholders are sampled from a uniform random distribution or get a fixed value.
Our ablation in Appendix Figure [8] suggests that both choices result in very similar results.
Operators get the result of being applied to their arguments. This happens until the top operation is
computed.

The numeric results of expressions can easily get out of hand. Common problems are nondetermined
(nan), overflow, underflow, and infinite values. To deal with values with large magnitude or that are
infinite, we clip at a fake infinite (e.g. +10'9). Overflows, underflows, and nondetermined results
are avoided by the design of safe operators. For instance, a safe division attributes a floating-point
number even if the result is not determined in the regular division. When the input domain is well
behaved, the safe operators give the exact same results as the regular ones.

When performing prefix-order evaluation, there is a choice between keeping just the final result and
also keeping the intermediary results of subexpressions. The last naturally distinguishes different
expressions that have equal final values. The first needs some extra information for the distinc-
tion, like expression embeddings. We find that training with the first option converges with fewer
iterations.

3.4 CONSTANT OPTIMIZATION

The small number of numeric constants that might appear in the expressions works well with second-
order optimization methods like Levenberg-Marquadt, taking between 4 and 12 iterations when
converging. This is considerably faster than using first-order gradient methods like those based on
SGD (Ruder,2017). Using tools like Pytorch’s autograd (Paszke et al.|[2019), performing such inner
optimizations is feasible. Because we implement all the evaluation processes, we can differentiate it
with PyTorch.

3.5 THE HEURISTIC MODEL

Given an expression E and the observed data D, the heuristic models the probability that there is
an expression F' such that V(F), the evaluation of F, matches D[v] and there is a rollout from E
to F. In other words, the heuristic tries to tell if a given expression is in the way of generating (or
precedes) one expression that fits the data.

The basic architecture (see Figure [2)) has two parts: (i) an encoder that takes numeric values and
outputs latent representations, and (ii) a binary classification module that takes a pair of outputs
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from the first module (plus some additional information about the potentially preceding expression)
to predict the probability that one element precedes the other. The Sort-Diff and Digit transforms
introduced in the following sections are performed in this order, before the parametric part of the
encoder.

[ Binary Classifier J—»

Figure 2: The generic form of the neural networks for the heuristic model. E represents the po-
tentially preceding expression, while V' (F') mocks the observed target data D[v]. The inputs to the
encoder are processed independently.

“Sort-Diff”” transform. Motivated by the idea that information about the derivatives of the ex-
pression value with respect to input variables is helpful to learn the heuristic task, we introduce the
Sort-Diff features. Those features consist of sorting V' (E) with respect to each input variable and
then performing a “diff” operation on the sorted vector. This is supposed to be a surrogate for dif-
ferentiation and can be applied to data that are not homogeneously sampled (e.g. there is no single
step size). Notice that the observed data D cannot be automatically differentiated. The transformed
evaluation vectors are concatenated with the original in a single vector. Equations [I] and [2] define
the transform. We get better results when using Sort-Diff, but it still not clear whether it is because
Sort-Diff or if just the increase in parameters (see Appendix Figure[/|for an ablation).

Diff (V) :== {Vis1 — Vito<i < v| (D

SortDiff (V, z) := Diff ({V; }ic ArgSort(x)) )

Digit transform. It is known that having high differences in value ranges from feature to feature
affects the stability and convergence of optimization during training. Because expression evaluations
in SR do suffer from such differences in range, we introduce a transformation that, for every single
number, outputs a vector. This vector contains what would be “digits” in a base b representation.
For a suitable value of b, each input feature can have a standardized and optimization-friendly range.
Equation [3|defines the transform. Here, a%b := a — [a/b] - b.

DigitTransform(v) := (v - b[_d’_d+1""’d]) % b 3)

Common normalization techniques like Min-Max and Mean-Std lose scale information, which is
fundamental for the SR task. Transformations that try to make high values more amenable, like
taking the logarithm, might “squeeze” values from higher ranges into smaller intervals, making
their representations less useful.

Binary classifier. Each pair of outputs from the encoder can be combined in different ways before
entering the classifier. In our experiments, the best approach was to take the difference between the
latent representations and then add positional encodings and expression embeddings. Because the
precedence relation is antisymmetric, the classifier must distinguish different orderings of the input
pair. That is why subtracting the latent vectors works better than adding them. The loss function is
the Binary Cross-Entropy.

Training with “all-pairs” mini-batches. During training, a set of rollouts is sampled such that
the starting points have an equal chance of having any length from 1 to the maximum length of the



Under review as a conference paper at ICLR 2026

canonical set. Only starting points are guaranteed to not have a smaller form, up to simplification
of constant sub-expressions. Then, when the collection of rollouts reaches a certain number of
expressions (e.g., 32), the binary labels (precedes or not) are computed for all ordered pairs of
elements. It is easy to do that for pairs of the same rollout, as the expressions that appear first
precede the ones that appear later. For pairs of different rollouts, the syntactic trees are compared.
We use the convention that any expression precedes itself.

3.6 SYNTHETIC HELD-OUT PROBLEM SETS

For each number of variables n,., € {1,2,3,4}, a set with 30 expressions for each expression
length fom 5 to 10 is created (except for 4 variables, which require at least 7 symbols). Each
expression is sampled from the canonical set created with the respective number of variables, but
keeping the rest of primitives the same. Unlike rollouts, this sampling is uniform given the number
of variables and length. Also, cases where an expression simplifies to a simpler one only happen
when the canonical expression has a subexpression of “composite” constants (e.g. [J - eM). When
evaluating on these held-out sets, expressions that simplify are counted as having the shorter length.
Check Appendix to see the held-outs.

3.7 BEAM SEARCH

The search starts from x and keeps creating new expressions by expanding leaf nodes with z. These
expansions are exhaustive: for each combination of = leaf and generation rule, a new expression is
formed. It uses the same set of primitives and generation rules used to train the heuristic model.

Each expression is numerically evaluated and fed to the heuristic model. Then, a priority queue
receives the expressions with their respective priorities. Whenever an expression without constants
(purely operators and variables) is taken from the queue, it is evaluated and compared to the observed
values. If all values differ by less than some threshold (e.g. 10~®), it returns the solution. In case
the expression has at least one placeholder for constants, a subroutine optimizes for the constants
and, if converging, returns the parameter values. The main routine then applies the same acceptance
criteria. If a maximum number of expressions is visited, the search stops.

The acceptance criterion is defined in terms of a relative tolerance and the relative squared error
between the target v and the expression evaluation v:

RSE(v,v) := Z(vzvzv)z (4)

Algorithm [I]synthesizes the high-level workings of the beam-search, given a trained heuristic he.

4 EXPERIMENTS

Next, we first analyze HTSSR with respect to sample efficiency and scalability (Sections[4.T[4.2J4.3).
Then we show the results of HTSSR on the Feynman and Strogatz problem sets from SRBench
(Section 4.4). The scalability experiments show how the Symbolic Solution Rate (SSR) changes
given expression length and some other aspects, which are the number of variables and the number
of domains D. All experiments have the same set of primitives with 3 variables, differing only in
the number of variables when needed (Section[d.2)).

The evaluation problem sets used in Sections {.1|4.2|4.3] are the same described in Section [3.6|and
are integrally shown in Appendix The default domain is feynman_I_34_1, appearing other
domains only in the experiment from Section[4.3] More details about configuration can be found in

Appendices[A.5][A.6]

4.1 SAMPLE EFFICIENCY

We investigate how search performance changes when changing the availability of data points. The
results in Figure E] support the idea that, under similar conditions, more data points produce better
results. Increasing one order of magnitude from 10? to 10% data points shows little to no gain, while
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Algorithm 1 HTSSR, based on beam-search.

Q + [(0,2)] > Initialize priority queue
Ve« {} > Set of visited states
while length(V) < m do > Maximum of m visited states
if length(Q) = 0 then
return > No solution found
end if
B+ [Q.pop(), ..., Q.pop()] > Beam size pops while not empty
for s, £ € Bdo > Iterate through priority-expression pairs
if 0 ¢ E and Accept(Eval(E), D) then
return £ > Constant-free solution found
else if [J € E then
¢« LM(E,D) > Run Levenberg-Marquadt optimization
if Accept(Eval(E), D, &) then
return F, £ > Solution with constant(s) found
end if
end if
C + Expand(E) > Get the set of children expressions
S+ 1—-o0(he(C,D)) > Attribute priority scores with the learned heuristic, hg
Q.push((S,C)) > Update the priority queue
V.add(FE)
end for
end while

increasing from 10" to 10? shows clear gains. Importantly, HTSSR can find solutions with as few
as 10 points, which supports the idea that the method has potential in a data-scarce scenario. The
dummy baseline shows the raw “brute force” capacity of the search, where the heuristic is clueless
but still can find some simple expressions under the imposed conditions.

As in the case of Sort-Diff, the increase in SSR is not necessarily because of more data. Having
more data points makes a larger input layer in the numeric encoder and this also needs to be taken
into account. For example, from 102 to 103 data points, the model increases 176% in the number of
parameters.

The fact that this evaluation is over the single feynman_I_34_1 domain raises the question of
how different the behavior shown in Figure [3| would be with different domains. Regarding this, we
think that because the overall difficulty of the task depends both on the data and on the expressions
to be discovered, this experiment covers an important part of the investigation.

Other question that can be raised is about what happens after length 10. To that, under the same
resource constraints, the tendency is indeed to fall to zero SSR shortly after 10. Repeating this
experiment with more time, compute, and more degrees of magnitude in data points would certainly
improve the analysis.

L s= S U
0.75 | < 10° .
N _e- 3
o . L 10
2 05p -4-10% dummy | |
0.25 | e .
.
0+ B G G- |
| | | |
5 6 7 8 9 10

Expression Length

Figure 3: Symbolic Solution Rate (SSR) versus expression length for sample sizes 10!, 102, 103,
and a non-trained baseline. 1,4, = 3.
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4.2 SCALABILITY: NUMBER OF VARIABLES

Now we investigate the impact that 7,4, has on the SSR. From Figure ] it looks like the expression
length plays a more important role in the decay of the SSR than the number of variables. Only for
Nyar = 4 VErsus N, < 4 is there a clear sign of degradation for expression length greater than 7.
Furthermore, it seems that the decay of SSR for n,,, = 1 is “slower” at larger lengths. It could be
that for n = 1 it is possible to find solutions larger than 10 symbols somewhat frequently.

Given that the lines for each n,,, look very entangled, a larger sample of expressions in each com-
bination of length and 7,4, might produce clearer tendencies. Although we sampled 30 expressions
for each length and n,,,, the cases where “composite” constants form and simplify expressions
reduce the number of expressions that really have higher lengths.

Still, the “hardness” of finding expressions is being evaluated under a fixed set of primitives. Chang-
ing the set of primitives may produce considerably different results, even if the total number of
elements in the primitives is kept the same.

0.75 -

SSR

0.5

0.25

) 6 7 8 9 10
Expression Length

Figure 4: Symbolic Solution Rate (SSR) versus expression length for 1 < ny,q, < 4.

4.3 SCALABILITY: NUMBER OF DOMAINS

Figure [3] indicates that increasing the number of domains in which a single heuristic model
is trained (using learnable domain embeddings) degrades its quality on the evaluation domain
feynman_TI_34_1, also seen during training, at least for 1,4, = 1 versus n,,. > 1. However,
among n,qr > 1, the degradation of SRR is relatively small, if any. This might indicate potential
for reusability of the heuristic model, as one single model could be used for many data domains. A
better way to test potential for reusability would be to let variables assume any set of values, but we
cannot find such a general model at the present moment. It would need to be invariant to the order
of input samples and robust to small differences in the set of samples (e.g. sets differing by a small
number of elements), all of this while keeping relevant information.

0.75 -

SSR

0.5

0.25

1
) 6 7 8 9 10
Expression Length

Figure 5: Symbolic Solution Rate (SSR) versus expression length for 1 to 16 domains in the same
heuristic model. 1,4, = 3.
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4.4 SRBENCH: FEYNMAN AND STROGATZ PROBLEM SETS

We run HTSSR on the Feynman and Strogatz problem sets under the constraints of SRBench for
“ground-truth problems”. There are training time limits of 36000 and 3600 seconds for each prob-
lem in Feynman and Strogatz, respectively. Within the training time budget, model checkpoints at
different epochs are used to search. Expressions that do not meet HTSSR’s acceptance criteria are
not returned as approximate solutions. See Appendix [A.6]for details and Appendix [A.8]for the lists
of solutions.

Unlike the other methods in Figure [0} HTSSR has only one trial per combination of problem and
noise level, not 10. Therefore, the confidence intervals (95%) suggested by the horizontal bars tend
to be narrower for the other methods. The noise levels considered are [0.0,0.01]. Refer to (Cava
et al.,[2021)) for the exact meaning of the noise levels in SRBench.

Even considering the confidence intervals, HTSSR is likely among the top methods and is possi-
bly the best at the Strogatz set. Compared with the other methods, it has a small degradation in
performance when the noise level increases. On Strogatz, HTSSR with 0.01 noise level surpasses
the other methods with 0.0 noise (using the middle of CIs as reference). Also, the performance of
HTSSR is consistent when changing problem sets, as it does not make specific assumptions about
the problems. In principle, HTSSR could score higher if helped with problem simplification or a
“divide-and-conquer” approach, where a problem is decomposed into sub-problems.

In this experiment, the same primitives are used for both Feynman and Strogatz problems, but the
expressions from Strogatz use a smaller set of symbols. So, in principle, HTSSR applied to the
least sufficient set could reach more intricate expressions from Strogatz, but this would have to be
checked empirically.

Feynman Strogatz htssr S—
htssr - = =  AlFeynman —
AlFeynman —— — AFP FE ’—
AFP_FE * — DSR !
DSR "= « “: - AFP
AFP * = GP-GOMEA ——
GP-GOMEA — —_—— N
. . gplearn —%
gplearn 5 $ ITEA
ITEA —— wo-
EPLEX % - EPLEX =
Operon > —— Operon ——
SBP-GP + <% — SBP-GP —=
BSR * BSR %
FEAT 3t % Target Noise FEAT % Target Noise
MRGP 3t % x 0.0 MRGP 3t X 0.0
FFX 3 *® o0 FFX ¢ o0t
0 50 0 50 0 20 40 60
Solution Rate (%)  Solution Rate (%) Solution Rate (%)
(a) SSR grouped by problem set. (b) Aggregated SSR results.

Figure 6: Comparison with the SRBench results of other methods.

5 CONCLUSION

This paper presents a new and simple method for SR with key innovations, making a shift from
common approaches in the literature that use fitness to data as training signal or that explore the
space of solutions on a token-by-token manner. It finds solutions with desired properties, such as
exactness and simplicity, while being competitive with existing methods and less affected by noise.
We also analyze some aspects of the scalability and sample efficiency of the algorithm, getting
insight into further investigations and improvements. We find that the major factors that affect the
effectiveness of the method seem to be the length of expressions and the number of data points.
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6 REPRODUCIBILITY

We plan to soon release a refactored version of the code and instructions to the public. As of
now, code and instructions are available as suplementary material for the reviewers in the reviewing
platform. Each experiment ran on a NVIDIA A100-80GB GPU with single process at a maximum
2.2 GHz processor core.

10
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A APPENDIX

A.1 LLM USAGE

In this work, LLMs helped to find typos and suggested words in a minority of cases.

A.2 ABLATIONS

Sort-Diff. In Figure [/| there is a clear pattern that shows the superiority of applying the Sort-Diff
transform to input features versus not. However, it is true that with Sort-Diff the input layer of the
numeric encoder is larger and therefore the model has more parameters. That difference only occurs
at the first layer and, if we take n,,, = 3, the addition in number of parameters is in the order of
3 -m - n, where m and n are the dimensions of the input (without Sort-Diff) and output of the first
layer, respectively. This is around 412 million parameters increase over the original 194 million
total, or roughly 213% increase. This suggests that the number of parameters may play a more
important role in this case than the Sort-Diff transform itself.

A~ Sort-Diff. B

1 |
0.75 I - No Sort-Diff. | |
A
2 05| |
025 | |
0k ‘ | | | |

) 6 7 8 9 10
Expression Length

Figure 7: Symbolic Solution Rate (SSR) versus expression length for model with and without the
SortDiff transform. 1,4, = 3.

Evaluation of the constant placeholder. Figure [8| shows very close tendencies when compar-
ing the SSR resulting from heuristics trained with a fixed value vy versus the sampled value
vg + U(—0.1,0.1). The motivation behind this experiment is to see if sampling OJ improves the
ability of the heuristic model to perform well for expressions with constants that are not seen during
training. The results have only small, opposite differences at the lengths 9 and 10 and suggest that
no difference is revealed.

L —A- Sampled | |
++ Fixed
0.75 i
a1
0
%)
0.5 - i
0.25 |- i
| | | | | |
5 6 7 8 9 10
Expression Length

Figure 8: Symbolic Solution Rate (SSR) versus expression length for [J sampled versus fixed during
training. Nyq, = 3.

Maximum size in the canonical set. In Figure [0 there is a comparison between the SSRs resulting
from heuristics trained by sampling the starting points of rollouts from canonical datasets of different
sizes. The idea of using canonical datasets to “anchor” the sampling is that it would make the mini-
batches more balanced with respect to expression length. This in turn would result in better heuristic
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models. However, the results do not indicate such improvement. In part, this could be because the
rollouts naturally create expressions with varying complexities, and the expressions that simplify are
not sufficient to impact the representation of larger expressions negatively. On the other hand, the
larger number of longer expressions do not affect the representation of smaller ones because of the
nature of rollouts.

0.75 -

SSR

0.25 -

) 6 7 8 9 10
Expression Length

Figure 9: Symbolic Solution Rate (SSR) versus expression length for canonical sets with maximum
expression lengths 2, 4, and 8. n,4, = 3.

A.3 PRIMITIVES SET

Table [3] shows the set of primitive symbols. Table ] shows the constraints used in the formation of
expressions for the experiments.

Table 3: Constants, variables, and operators used in the experiments. arcsin was used only in the
SRBench experiment (Section [4.4).

Symbol | O

x w  + /2 y/ sin cos e arcsin
Arity | 0 0 0 2 2

1 1 1 1 1 1

Z —_— .
0 2 2

Table 4: Constraints for the formation of expressions. Row elements can appear up to the specified
number of times under the column element in the expression syntactic tree. Empty cells indicate no
constraint.

|+ -] -|/]?]y|sin]cos|e | arcsin |
21222212 2 2 2 2

[\
[\
[\
[\
[\
[\
[\
[\
[\
[\

SIS A
[N}
[\]
[\]
[N}
[\]
[\]
[N}
[N}
[N}
[N}

/

2 0] 0 0 0 1 0
Na 0 0 0 0 0
sin 0 0 0
cos 0 0 0 0

e 0 0 0 0

arcsin 0

A.4 ALGORITHM FOR CREATING CANONICAL SETS

Algorithm [2)is a simplified version of the implementation for creating canonical sets of expressions.
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Algorithm 2 Creation of canonical set of expressions up to length n.

S Oo
Ve {}
for2 <[l <ndo
for o € O; do
for ' € S;_1 do
E + o(F)
if Eval(E) ¢ V then
S.append(E)
V.add(Eval(E))
end if
end for
end for
for o € O, do
for1 <X <n—2do
e n—-1-1F
for 'X ¢ S; do
for F® € Sir do
E + oo FE, FE)
if Eval(E) ¢ V then
S.append(E)
V.add(Eval(E))
end if
end for
end for
end for
end for
end for
return S

> Initialize canon set with zero-ary elements.
> Initialize visited values.

> Iterate from lengths 2 to n.

> For each unary operator

> For each expression in S with length [ — 1
> Create new expression of length [

> Add only if a smaller one is not equivalent.

> For each binary operator
> For each length of the left subtree
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A.5 SETUPS FOR THE SCALABILITY AND SAMPLE EFFICIENCY EXPERIMENTS

Every heuristic model in that part of the experiments was trained for 1000 “epochs” of 50 iterations
each. The mini-batches were “all-pairs” of size 32 x 32. The beam search window is 128 and the
limit of visited states is 10240. Except for the multi-domain experiment, the default domain used is
from the problem feynman_I_34_1, with the extra fourth variable being sampled from U(1, 5).
D is randomly sub-sampled from 10° to 103 data points (and to {10%,10'} in Section4.1)). Details
about the neural net configuration are in Appendix

A.6 SETUPS FOR THE SRBENCH EXPERIMENT

The general process for searching for a solution of a given problem starts by training the heuristic
model. Training is interrupted at defined epochs ([599, 999] fpr Strogatz and [99, 199, 399, 599, 799)
for Feynman) so that the current checkpoint is used by HTSSR to search. The beam of the search
is 16384 for Strogatz and 8192 for Feynman. The limit of visited states is 102400 for both. If no
solution is found but there is still time remaining, the checkpoint goes back to training. The search
ends if a solution is found or if time is out.

The relative tolerance to accept a candidate solution and stop the search is 1073, We choose this
threshold in order to conform to both levels of noise, [0.0,0.01], but it can be orders of magnitude
lower (e.g. 10~8) in the absence of noise.

Other configuration and neural net structure are described in Appendix

A.7 NEURAL NET ARCHITECTURE

Table [5] shows the main neural net configuration used across experiments. The main difference
between experiments is at the first layer, as the number of input units is different between problem
sets (10,100, 1000 for Feynman, 300 for Strogatz). In the Self-Attention layers, d;,oqe; = 1024 for
all experiments except for the SRBench experiment, where d,oq4e; = 768. The “Linear” layers in
the numerical encoder have standard 2048 hidden-layer “width”, with final layer width being d,,,0de;-
The exception is for the SRBench experiment, where those hidden Linear layers have width 1024.

In the Digit Transform, all experiments use 67 “digits” in base 2, with position values from 2733 to
233,

Table 5: General Neural Net Configuration for the Experiments.

Module Submodules
SortDiff (optional)
Numeric Encoder Digit Transform
3% (Linear, RMSNorm, GELU)
Source-Target aggregation — (difference)
Final result or “all-tree” results
Positional Encoding + (padded to length 15)
Positional Encoding (parent symbol) + (optional)
Expression Embeddings + (optional)
Domain Embeddings + (optional)
4x Self-Attention (4 heads)
Classification Sequence aggregation (mean)
Linear

A.8 SYMBOLIC SOLUTIONS

Tables [6][7][8][9] list solutions found for the SRBench experiment.

A.9 EXPRESSION HELD-OUTS

The following Tables [TO[TT][T2J[T3|[T4|[T5][16][I7] contain the held-out problem sets used in the experi-
ments (except SRBench). Those are grouped by 1.
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Dataset Training Time (s) Solution Ground-Truth
strogatz_barmag?2 3489 sin(y - x) ¥ 0.5 -sin(y) 0.5 * sin(y - X) - sin(y)
strogatz_glider1 703 x**2 [ (-20.0) - sin(y) -0.05 * x**2 - sin(y)
strogatz_glider2 43 X - cos(y) / X X - cos(y) / x
strogatz_lv2 630 (20-x)-y)*y 2Fy-x*y-y*E2
strogatz_shearflow1 566 (cos(x) * cos(y)) / sin(y) cot(y) * cos(x)
strogatz_vdp2 276 (-0.1) *x -(1/10) * x

Table 6: Ran on Strogatz with 0.0 noise level under 3600 seconds for each problem.

Dataset Training Time (s) Solution Ground-Truth
strogatz_glider1 2004 ((x * x) * (-0.0499866)) - sin(y) -0.05 * x**2 - sin(y)
strogatz_glider2 1604 X - cos(y) / x X - cos(y) / x
strogatz_lv2 2554 (2.0004959 - (x +y)) *y 2Fy-x¥y-y*E2
strogatz_shearflow 2083 (cos(x) * cos(y)) / sin(y) cot(y) * cos(x)
strogatz_vdp2 570 x *(-0.0999554) -(1/10) * x

Table 7: Ran on Strogatz with 0.01 noise level under 3600 seconds for each problem.
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Dataset Time (s) Solution Ground-Truth
12513 27 q/C q/C

1.12.5 27 q2 * Ef q2 * Ef

11221 27 mu * Nn mu*Nn

1.29 4 27 omega/c omega/c

1.34.27 45 (h * omega) / 6.2831855 (h/(2*pi))*omega
1391 49 pr*¥V*15 3/2%pr*V

1143 59 m*g*z m*g*z

14331 59 mob * T * kb mob*kb*T
111243 61 h/(6.2831855 / n) n*(h/(2*pi))

1.6_2a 108 0.3989423 / sqrt(exp(theta**2)) exp(-theta**2/2)/sqrt(2*pi)
1.18_12 117 r * sin(theta) * F r*F*sin(theta)

.14 4 130 (k_spring * x)**2 / (k_spring + k_spring) 1/2*k_spring*x**2
11831 131 (epsilon * Ef)**2 / (epsilon + epsilon) epsilon*Ef**2/2
11324 145 (Pwr * 0.0795775) / r**2 Pwr/(4*pi*r*+2)
2716 164 ¢ * Ef**2 * epsilon epsilon*c*Ef**2
1M.37_1 167 (mom * chi + mom) * B mom*(1+chi)*B
1.4723 172 sqrt(gamma * pr / tho) sqrt(gamma*pr/rho)
11383 179 Y*A*x/d Y*A*x/d

11_.109 221 sigma_den / (epsilon + (epsilon * chi)) sigma_den/epsilon*1/(1+chi)
1276 223 d2/((d2/dl)+n) 1/(1/d1+n/d2)
1.34_14 225 omega 0 * (exp(v/c)) (1+v/e)/sqrt(1-v**2/c**2)*omega_(
11342 290 r/((2.0/v)/q) q*v*r/2

1134 2a 294 q/((r/0.1591549) / v) q*v/(2*pi*r)

1134 29a 301 (q *h/m) * 0.0795775 q*h/(4*pi*m)
1.34_1 301 omega 0/(1.0-v/c) omega_0/(1-v/c)
I.15_27 304 ((6.2831855 / n) / d) * alpha 2*pi*alpha/(n*d)
I_17_37 304 beta * alpha * cos(theta) + beta beta*(1+alpha*cos(theta))
2718 309 epsilon * Ef**2 epsilon*Ef#*2
1348 314 B*q*v/p q*v*B/p
11.38_14 320 Y / (sigma + 2.0 + sigma) Y/(2*(1+sigma))
1.3922 340 n/(V/(T * kb)) n*kb*T/V

11423 342 (q/ epsilon) * (0.0795775 / 1) g/(4*pi*epsilon*r)
1.43_16 344 (q/ d) * mu_drift * Volt mu_drift*q*Volt/d
11738 359 (mom /h) * B * 12.5663710 2*mom*B/(h/(2*pi))
1155 434 -0.0000001 - p_d * cos(theta) * Ef -p-d*Ef*cos(theta)
1154 445 0.0000001 - (B * cos(theta) * mom) -mom*B*cos(theta)
1.18_14 453 m * sin(theta) *r * v m*r*v*sin(theta)
1187 544 0.0477465 * q**2 / (epsilon * d) 3/5*q**2/(4*pi*epsilon*d)
I_15_14 746 (h/d)**2/(En/0.0126651) (h/(2%pi))**2/(2*E_n*d**2)
1124 1046 (ql *0.0795775 / epsilon) / r**2 ql*r/(4*pi*epsilon*r**3)
1.39_11 3014 (pr * V) / (gamma - gamma / gamma) 1/(gamma-1)*pr*V
1M34.11 3507 q/((m+m)/(g-*B)) g_*q*B/(2¥*m)
1.43.43 3686 kb * v/ (gamma * A - A) 1/(gamma-1)*kb*v/A
2120 7591 (0.0 - A_vec *rhoc.0/m) *q -tho_c_0*q*A_vec/m

Table 8: Ran on Feynman with 0.0 noise level under 36000 seconds for each problem.
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Dataset Time (s) Solution Ground-Truth
12513 20 q/C q/C

1125 20 q2 * Ef q2 * Ef

1.12_1 20 mu * Nn mu*Nn

1294 20 omega/c omega/c

1.34.27 78 (h/6.2837) * omega (h/(2*pi))*omega
1.39_1 47 (pr + sqrt(pr)) *V 3/2%pr*vV

1143 78 z¥m*g m*g*z

14331 81 mob * T * kb mob*kb*T
111243 65 h *n/6.2822762 n*(h/(2*pi))

1.6 2a 52 exp(theta - (theta * 2.4011037)) exp(-theta**2/2)/sqrt(2#pi)
1.18_.12 237 sin(theta) * r * F r*F*sin(theta)

.14 4 190 (k_spring * x)**2 / (k_spring + k_spring) 1/2*k_spring*x**2
11.8.31 192 (sqrt(exp(Ef) - epsilon)) * epsilon epsilon*Ef##2/2
11324 224 Pwr / (r * (-3.5453365))**2 Pwr/(4*pi*r*+*2)
m.27_16 231 epsilon * ¢ * Ef#*2 epsilon*c*Ef**2
1371 230 (mom * chi + mom) * B mom*(1+chi)*B
14723 241 sqrt(gamma * pr / rho) sqrt(gamma*pr/rho)
11383 409 Y*A*x/d Y*A*x/d

I1-10.9 348 sigma_den / (epsilon * chi + epsilon) sigma_den/epsilon*1/(1+chi)
1276 337 d2/(m+(d2/dl)) 1/(1/d1+n/d2)
11342 2632 0.5001777 *q*v *r q*v¥t/2

I1.34 2a 1623 (sqrt(v * q) - 1.4519717) / r q*v/(2*pi*r)

1134 29a 1635 (q/ m)/ (exp(2.5306423) / h) q*h/(4*pi*m)
1341 219 exp(v/c) * omega 0 omega_0/(1-v/c)
11527 1846 (alpha / n) * exp(2.0399628 / d) 2*pi*alpha/(n*d)
1737 1414 beta + (alpha * beta * cos(theta)) beta*(1+alpha*cos(theta))
12718 22 Ef**2 * epsilon epsilon*Ef**2
1348 406 (q/(p/B)) *v q*v*B/p
11.38_14 248 (Y / sqrt(sigma)) * 0.2274444 Y/(2*(1+sigma))
1.39.22 340 n*T*kb/V n*kb*T/V

11423 1607 ((q/1)/12.5702) / epsilon q/(4*pi*epsilon*r)
1.43_16 1425 mu_drift * (q / (d / Volt)) mu_drift*q*Volt/d
I11.7_38 1586 (((mom + 3.0326998)**2) / h) * B 2*mom*B/(h/(2*pi))
1I.15.5 480 p-d - p-d- (p-d * Ef * cos(theta)) -p-d*Ef*cos(theta)
11154 1584 mom - mom - (cos(theta) * B * mom) -mom*B*cos(theta)
1.18_14 1867 v * sin(theta) * m * r m*r*v*sin(theta)
.87 1882 (q**2 / exp(3.0413795)) / (epsilon * d) 3/5*q**2/(4*pi*epsilon*d)
I_15_14 11162 (((cos(-4.8251600) * h) / d)**2) / E_n (h/(2*pi))**2/(2*E_n*d**2)
1124 1713 (ql / epsilon) / (r/ cos(-1.8567311))**2 ql*r/(4*pi*epsilon*r**3)
1.39_11 1503 (pr * V) / (gamma - gamma / gamma) 1/(gamma-1)*pr*V
1134_11 1928 B *((g-*q)/ (m+m)) g-*q*B/(2*m)
1.43.43 1839 kb/ ((gamma * A - A) / v) 1/(gamma-1)*kb*v/A
1112120 1967 (q/m) * (sin(rho_c_0) - rho_c_0 * A _vec) -rho_c_0*q*A_vec/m

Table 9: Ran on Feynman with 0.01 noise level under 36000 seconds for each problem.
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Table 10: Held-out expressions for 1,4, = 1. Part 1.

(e* —VO) (- /sin(z)) (= — cos(0D)))?
(v/sin(0) — ) (O+ va))? “@m
sin((O — x)) (cos(O) — (m)z) CEGIE
(er)? U sin(z)
— - (= - sin(0)))?
(8 — ) (z + &) (v + cos(@-2)))
(%Jreg) (z - cos((O-x))) (O+ m(:z:))
(\/g) (sin(0J) — e®) O+ ((2)* —2))
(\/55)? (0)? - /sin(x)) (V@2 D)
e e (¢* — /sin(0))
( (C)"Z& ) ) (sin(Z >+cos<m)>
sin(x T 0\2 0
( —e”) ((e=)*=3) \/ﬁ
(cos(a) — 2) O+ (@ + (7)) (@) — sin(x))
(v — Y52) O /O- @)7) O
((x\/ﬁ) —\/5) V(O (z +sin(0))) @37\/5)
(O +/(sin(x) + e*)) (v/sin(d) — os:I(;D)) ((CO:(l_) +e9))?
()2
) (cos(2) — Gmany) V/Gin(0) = sin((@ - 2)))
( (cosga:l) B D))2 \/ (cos(DU))2 (@)2
(5 + )7 GECIE)S) s
(O- $659) (2 sin((0 — (0~ 2))) (5 + (VD))
(v + cos(55)) A (G — VD)
(O +2) - €7) + cos(x)) (O \/(e7 — ) (((z + v/sin(0)) - v7))?
(((sin(0))? = sin(x)) — cos(x)) (a — VD) (z+ (2 + (z — /sin(0))))
(st + V) ()2 -sin(@)) +el) (@ (V& = sin((z +2))))
% (32 - D) @+ (z M + ef»)
(m +<ex)2) \/(D*(sin(:f)Jrcos(QD))) (D $+ / COS
(Vo —0)- () @) @- (O <cos<> x))?))
— (®)2+e")
T (= (w—D (VE 4V ) e
WeEF -0 e (O + (2)?)
oyt Costelien(@in) (g + ) - (sin(0) — O)) - 2)
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Table 11: Held-out expressions for 1,4, = 1. Part 2.
(cos(D) — /) (“32)? (O - Ver)
((O)2 - e”) %((z)) (cos(z) + €M)
((z)? - sin(0)) (g — =) @+
(2 - \/oos(x)) V(O cos(@)) @)
V(z-eb) v (x — cos(0d)) (O = cos(x)))?
(O + <2 (sin(D) - cos(x)))* ((cos(x))? + sin(x))
@ (@ +2) “F T2
(O- z) —sin(z)) (z - (cos(z) — z)) 7@;;“(1))
(¢ + (z = V7)) (z—0)-e) e
(D_acﬁ) (zEe’”) (% - (D)2)
O+ /(z — cos(Od))) (2= — cos(x)) (v/ (O —x) - sin(x))
(0O)2 (cos(0)—sin(0)) ((w—cos(D)) )2
©-2) z T
(e” —sin(z)) - ;(F)z) (O— \/W )
o= (e + (@ - ) O+ /&)
e(;—‘]) (sm((D + D)) em) (Sm(I)T (E’) )
(O==)-(z+a) (VeP — ) (z = ((cos(x))? + sin(z)))
(2 (fﬂ+sifl((iﬂ+x)))) ~ ((sin(@) - e*) =€)
Eta) e ((€)? = sin(@ + 2))
(z- (04 +/(e")?)) TP e%;
O (in(z) %) = sin(@) O
O- \/((CfOS(D))2 + cos(z))) e ((V/(z +sin(2)))* +vO)
(vO—4/sin(0)) 2 T T
I — ((cos(z))? — eTv) VB-cos((T12))
d (O-2))? H
cos(H) (O-+cos((z+x)))
(cos(x)+e(D)2)

()2 —cos(x))
((e* — sin(D)) — e(®)%)
xT 2 xT
(z - (( )S\f))

(z—(Vz-e"))
cos(UJ)

(sinm(D) Y, %)

V(D)2 —2) - (2)?)

@+ ./ mr=my)

((vO- Cos(z)) cos(z))
(O 225) + %)

si n(m)

(z = (@ + (Vz)?) - cos()))

(z)?
(O —(z+ (z-y/sin(x))))
(v ((cos(2))? — z) — (vVz)?)
(O84+/(z—sin(z)))

cos(x)

ﬁ_’_/ 2

((D + cos(E(]ac+ac)) ))2
(VO =)~ ) (Ve =" — (@) (@ + @) 256)
(@) e") +sin(0-2)))  (/(Gin(z) — cos(@))2 — (0)%) (BFE )
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Table 12: Held-out expressions for 1,4, = 2. Part 1.

(cos(y) — ™) cos(¥) ‘/;T’
((1)? = sin(x)) (O+%) (e = /1)
e (v/cos(z) — ) (y—(0-2)
(O-2)-y) (y — v/cos(x)) (y + /cos(x))
( S l’) - y) (sm(yr)) (z%
(= +) (y — (z - sin(y))) n
= (V@ + /sin(y)) (VI + Ver)
(y- <) (o — ) e
y+ /(@ +2)) cos({Z4) ((z —y) - cos())
(O = (y + cos(x))) (4 —ev) (SIH(i)fy)
(sin(z) — (y - V) (@ + cos()) @O =)
(y+ (- v/sin(0))) ) (V)2 Ver)
() — @) (O + (y -sin(2)))? o=
o) (v - 2 ok
((y- (@O +=)—y) CIOESTE)) ((z)* +sin((y — 0)))
(Ve — (5)?) (v + (VO = e7))? (@ (z = (%))
(5 = vi)? Tl (ev — 57
e (B v9) + Va)? (V=2 - 5)
(cos((y - (O +2)) — 0) A (O + (= +sin(0 +9)))
((y +/(@)?) - e7) (B ETIE)) @
sin(y)+cos(CJ . 9 y—cos(z
CEEGEEL @ (@ )) Yot
sm((ﬁ-m)) fﬂ m \/» ((D+\/ﬁ) +em)
(sinm?i%s@» (s +eos(=) (o) +siny))
sin(@) m (Va2
(@ (@) (O /D) +sin(y)) (g - 22)
((y- (y = ) = @) ((+y) - 52) Wi
(”C‘e?) (z = (y-cos(O+ (y—2)))  (((y—e¥) -sin(a)) + )
3 Gaoteen VP
W@ (@ + (fcfs(li)(x))) (O+0) (g — )
(Cr(E R REET ) (@ —Visrent)) @+ (=4 /mmtr)
(s + (@9 e O+ (y- (/sin(9))?)
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Table 13: Held-out expressions for 1,4, = 2. Part 2.

-3 e
(V@ - /5) snz)
\/sié(x) el
o) (Vz = (9)*)
ey (@ +v®)?)
y (O-=)

\/m sin(y)
{y=cosle)) ((z-ev)—y)
nly)—) ((y - sin(x)))?

COS((.’L‘ _ ﬁ)) (COS(@;)—y)
(2 - cos(3)) ((z+y))? —2)
V(y = cos((0 + 2))) ((y + (sin(z) — 0)))?
(z = (O v5)?) o
x (z+e”)
(y+cos(y)) (y)?
Veos((z - (y+ ) (y+ 1/ <52)
((z) (y) ) (gxlj _!_ (Qy)2)
y B
(sin(y)-e*) @
((z-y) + cos(7)) (@O ((2)*-/(9)?)
(5~ W) (Sry)?
(525 — sin(y)) (y+ (L +(D)?)
(VY- cos(z)))2 ((COS(Z‘))2 —(z- \/@))
(/57 — V) ((z = /)
((z-y) - (\/5 sin(y)))  ((V/(¥)? = (0)?) = cos(x))
( e/ + \/87) co(saE(D\ﬁ-gw)))
(5 - W-vy) (@O () —ev))
(((sin(z) — y) —y) —€") ((y + (2= — )2
(EEn(Em=n) ey

cos(x)

(z+ (z+ ((z-y) =€) (sin((y — 2)) — =77)
(@ &5) - cos(D)) (TEET ()R
(@ + ((z057)? - sin(D))) ((z — (e +¢¥)) - sin())
((sin((a ) -&9) —cos(@)) (O~ 552))2 + cos(y)

((z)? - sin(y))

eT

((e")? —y)
(y-(z-0))
T
(z -sin(7))

cos((0+z))
Y

(sin(y) — +/sin(z))
(x + cos(%))

)2
(y ’ 51(n():r))

(VB - )
(V7 ~ Jr)

(@+ =02

cos(z)

[<

$

(Ote?)
(@y)
(2 + %)
sin(x)
(z—sin(y))

(y . (y . Slnw(fl,') ))
(cos(y)—L))
sin((0+x))

(O+0)-ev))?

((y - (z —y)) — (sin(0))?)

((v/z 4+ +/sin(y)) + sin(O))

(cos(y)— ( )?)

sin(z)

(IQ—i—\/ —cos
<¢*—>wmw

O
W+ srer)

(o))
()2 | O-2))
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Table 14: Held-out expressions for 1,4, = 3. Part 1.

W+ (1) (@29 =5
(@ + 1) w=2) (2 -2)
(@+(y-2)) (y-(z—2)) (y-2)
(2= (z-1)) vts) =
ﬁ =) @)
e (\/;_Z) (z-sin(%))
(z —sin((z + y))) ((£)° - 2) ((y - sin(z)) - 2)
(y- =) T weos@)
X ((y-e) = 2) (2
sin((z+ 2)) (x — (y +sin(2))) ((y + 2) - cos(x))
(Smi;%_y) (z+(achy)) (sin(¥) —sin(2))
(VT /(2 —9)) (x - =ty (VGE+em) —y)
(y*\/:os(w)) (z—y) — f(ac) ) (y\-;; )
(x+ (2 + +/cos(y))) (s(ljﬁyr))) (&ij))
((y @))2 (@ — cos(x)) CneED)
) (& — (= + cos((y + 1)) (2= — cos(2))
B ((2)? + ((z — cos(y)))?) (" — )
D) Vg (= + (O +2)- (1))
(V7 — (cos((x + 2)))?) TRz (VE+ V(=27
(C(E=y= (T )
(fesstzy = %) (2 £r) (V@ —2)— (z-(y)?)
(/geintz)—2) ((z- (y +sin(F >>>>2 ((z - cos((d = x))) +sin(y))
(z- %) +¢) (55 + V@ —1) (@3- (y/(cos(y) — @) - 2))
(& + (e — cos(y))) (y— (V@ —2)-€?)) T Gt
o=em) (2 - (cos(2) — zmy)) (@ ~ ErEnm)
(x4 (y-vsim@) —¢*) (D — /ly+ cos(2))) (" —O) +e¥) - V2)
o (((2)2 — sin(2)) + sin((D + y))) (G TN
v/ sin(z) (D)2 Ezy
(o+ /(z ) ((m + 7) . (33 - Z/)) /(y+((é?2))
) (y - 22D e )

VT

((((9)* = 2) + cos()) - V) ¥ cosmraan)
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Table 15: Held-out expressions for 1,4, = 3. Part 2.

(5 —2) W+2) (@ (2-y))
(- (y - 2)) (y—(x-2)) (z-2)
(z = (y+2)) (- (y+2)) (z=3)
(y - %) (zfy) (x - (y Z))
e (v—*) (z = (@ +))
(2 + (= = sin(y))) (-~ 2) (@~ 35)”
(- V) (z-2) +ev) 108
e@=3) sinlly=z)) ((w-v/2) — )
e (O (== 9) - (2)°)
((y - 2) + sin(x)) (y- sz(m)) —cos@))
(o + ) 5 == +1)
(= (sin(y) + cos(2)) (¢ e¥) &
(@~ (VD) e - om
(422 —2) (y- V=)
(@) —¢7) L (@) )
(" _ ) (= (5%7)?) ((y+ 22252) )?
((2)° + /o) S (O 22)

(Veos(y) — V/(z- 2)) V((z +sin(y)) - sin(z)) (z+(V(E+y)—2)

m (y-2) — =) O~ riym)
(- (= + sin(x))) — ) (@ +2)-¢7) ) e
- (@5 o ——
(((cos(@))? = sin(y)) - (2)?) o T
(- ((9)2 - ) + (2)2) (A=) ) Gtz
- (@+2)-6n®)?)  VE—@(@FD) (= (- + (cos()?))
(((4)? - cos(y)) — =) (resty ((z = (y - cos(£))))?
(5 (Vo (g (y+2)) (v— ) (% — (y- omD)))
(@ + qrme?) LSl (VR (22
(O (& + (x- “=2))) (e s v+ 25

(y—(z- @+ (x- D)) (Vz— (/%))
(z+ (Y52 +sin(y)))  (Veos(z) +sin((y - (z - 2))))
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Table 16: Held-out expressions for 1,4, = 4. Part 1.

ﬁ (w-(z+y)) —2) m
(2 -2) ((z- ) —x) (==
e (O] =)
(5% — ) (- (x— 1)) (G —v)
@t (y2) ez (Y- (2= (2 +w)))
(2= (w-en) ((w - cos(z)) + £) (e =) —y)
(= —w) (= + Lol CRCEEA)
ol t552) R . (w-((4)* ~2) =)
(o + Eeinlw))) (- ((z—w)- V) (y-
(we(@+cos((y—2)) (2 ((z—w)*) —y)
(1w = (5 — cos(u)))?) M
(2 — Vw) ((cos(2) — ) = ((z —w))?)
(y- (z + el Ceost) —2)
(w—((z — V+2))?) Ve )?)
S (5 (o -+ w) + =) (- et
e (=" wp) (=457
(O Gleoston, (=) (y+ (V@ w) — (@ 2)))
(y+ (2 w) = =) (5 = ) ((= = (& (V0)?)) - cos(y))
otz (VZ~ )2 - (@ w)?) ((+2) - <2
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Table 17: Held-out expressions for 1,4, = 4. Part 2.

(w-(y+2))

(y — 1)y

(z—y)
(z-w)

@z Y
(z+(z-y))

w
(z—2) )
(ytw)
(v+ 7y
Y
(y- (z+e*=™)))
Yy
(w—(z-2))
(y—w)
(z—(2)?)
(SC + (w + M))
(w—sin(z))
( z(yzy z)
(S - sin(y))
(z- (((1/22 : COE(f))) —w))
(y+cos(z))

(2 — cos(y)))? - sin(2)) — w)
((2)% -/ (w+ &)
WVt w) —a) - 2)

sin(

(2-v)
(y-(w-(2)?))
(w- (e —x)) — 2)

Viz+(y- (w-2)))
eV

(((y - 2) — ) = cos(w))
(m -y)
VY

(w+sin(§))
(w-(£-9)

(w + e((mgfz))

(@) ) Teos@))
(O 2) - cos(2)

(e~ 2) +V/a)
COS(?/))

(((y - 20))2 . /2)
(O (z- @) - (y — w))

(ap

(z+(cos(y)—w))
z
(z+((y-w))?)

z

W+ )

(VF—2)=(w)*)

(w-(y—=2%)—v)
(45 ()
((y - cos(z)) — ((z - w))?)
((z + (cos(y) — £)))?

(Z ~ cos(( D+(z+y))))

(o) 4 gin(2))

z
g

(ﬁ—cos(y))
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