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ABSTRACT

Symbolic Regression (SR) aims to discover simple and interpretable mathemati-
cal expressions that explain observed data, making it a powerful tool for scientific
discovery. In this work, we introduce a conceptually simple SR method that is
both sample-efficient with respect to observed data points and self-supervised on
large-scale synthetic data. By design, our approach favors parsimony, yielding
interpretable and concise expressions. We focus on problems with exact solu-
tions, evaluating our method on datasets containing physical laws and dynamical
equations. Our results demonstrate that combining beam search with a learned
heuristic achieves competitive performance compared to existing methods in SR-
Bench. Additionally, our approach effectively handles expressions with constants,
a common challenge in the SR field. Finally, we provide a comprehensive scal-
ability analysis across four key dimensions: (i) expression length, (ii) number of
variables, (iii) number of domains, and (iv) number of observed data points.

1 INTRODUCTION

In Machine Learning, many models are designed to achieve low training error and perform well
in unseen but similar data. Yet, fitness to data is not the only important attribute. Some applica-
tions require interpretability: models must be meaningful in terms of familiar constructs. Another
desirable quality is to have Out-Of-Distribution (OOD) generalization. In this context, Symbolic
Regression (SR) is the task of finding mathematical expressions that fit the data and are as simple
as possible. In Physics and other natural sciences, interpretability is commonly accompanied by
OOD generalization, as laws of nature have been widely tested. This makes SR a good candidate
for finding scientific insight from data. Other areas that can benefit from SR include medicine and
finance (Jobin et al.|[2019; Rudin, |2019)), which are critical and high-stakes.

Formally, given a domain set of data points D := {(x;, ¥;) }1<i<n consisting of paired features x;
and target values y;, the goal of SR is to find a mathematical expression F such that F(x;) ~ y; and
E'is as simple as possible (e.g. it has a small number of symbols from a pre-defined vocabulary). In
the case where an exact solution F’ exists, it is required that ZZ/ = F' up to some tolerance on constant
values that may appear (e.g. 1.52 - 2 + 2.0001 and 1.499922 + 2 may be considered equivalent).

In this paper, we present HTSSR: HeurisTic beam Search Symbolic Regression, a new method
for SR that learns, in a self-supervised way, a precedence relation among expressions to guide a
beam search algorithm. We detail key design choices that make our results possible, investigate the
scalability of the search and its ability to work with only a few data points, and compare HTSSR
against existing methods on SRBench (Cava et al.| 2021). Besides being a new method for SR
compared against existing work, the contributions of HTSSR have many facets:

* A shift from the current generative approach: Our heuristic model is solely dedicated to
the task of attributing scores for the search elements, with no need to predict symbols. The
expression formation happens by expanding preceding expressions with pre-defined rules,
allowing great control over expression generation.

* Independence from fitness to data: When training the heuristic model, there is no need
to use numeric fitness to data information, as it can be ambiguous and unstable. The model
can be trained self-supervised with virtually infinite synthetic expressions.
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* Clean, simple, and modular design: Our design allows easy and free customization of
symbolic vocabulary, operator definition, generation rules, heuristic model, and search al-
gorithm. Although we use beam search in this work, it can be easily replaced by other
algorithms such as stochastic search or MCTS.

* A new and elegant way to frame the search heuristic: We demonstrate that learning
the guiding heuristic is equivalent to learning a binary classification task. This contrasts
with existing learning-based methods with complicated training processes or heavy reward
engineering.

* Almost no assumption about data distribution: Because the heuristic can be dedicated
to a specific dataset, it is not necessary to make assumptions about the distribution of input
data and it is easy to avoid overfitting. The only exception is the distribution of constants
that may appear.

* Robustness to noise and efficiency with scarce data: Expressions can be found even
in the presence of noise or few available data points. This might be useful in real world
applications where data is scarce or considerably noisy.

2 RELATED WORK

Genetic Programming (GP) was the first note-worthy way to approach SR and many SR methods
fall into this category. Early works include (Kozal [1989;1990), which deal with Program Synthesis,
a superclass of SR in a sense. More recent applications of GP to SR are (Keijzer,[2003}; Vladislavleva
et al.,2009; Schmidt & Lipson, |2009; Korns, [2011}|Uy et al., [2011}; Jin et al., 2020). GP techniques
are known to be easily parallelized and have high parallelism, allowing for the evaluation of a high
number of expressions. One downside of GP methods is that they are not robust in cases involving
hyperparameters (Petersen et al.,|2021)). Hybrid approaches, like those proposed in (Mundhenk et al.,
2021; Kamienny et al.,[2023), combine Deep Learning and GP by letting one or more learned models
perform sub-tasks of the GP search, like population seeding, mutation, and selection. (Mundhenk:
et al.| 2021)) combines GP with Deep Learning by seeding the GP search with expressions from the
learned model. In principle, the learned models help guide GP to more promising regions in search
space. Similarly to (Petersen et al., 2021), the model is trained with Reinforcement Learning with
the reward signal based on the fitness to data. A clear disadvantage is that a supervision/reward
signal based on numerical fit means very different things depending on the context. For instance,
the same numerical error may come from a candidate solution that is very close or very far in the
space of discrete expressions. In contrast, the supervision of our heuristic model is a simple binary
value indicating a precedence relation between pairs of elements, having simple optimization and
using well-stabilished binary cross-entropy loss.

The application of Deep Learning to SR has early examples like (Kusner et al., 2017} |Sahoo
et al.l 2018} |Alaa & van der Schaar, 2019). The work (Udrescu & Tegmark} 2020) is possibly
the first to show notable progress of Deep Learning in SR. It approaches Symbolic Regression
mostly by simplifying a problem into subproblems. (Cranmer et al.| 2020; Bendinelli et al., [2023)
also allows for the inclusion of simplifying assumptions or prior knowledge. Even though problem
simplification should be used in expression discovery, it needs domain-specific knowledge and even
so there is always some remaining search space of possible solutions. Instead, we focus on the
search guidance approach and let problem simplification for further study.

Regarding neural architecture, many recent works employ Transformer architecture (d’Ascoli
et al.| |2024; [Shojaee et al., 2023b; |[Kamienny et al) 2023 [Lalande et al., |2023} [Valipour et al.,
2021} Biggio et al.l|2021). Even though we do use Transformer layers in the last part of our neural
networks to process expressions as sequences, we do not use those as a generative model. (Petersen
et al.,[2021)) uses RNN architecture while (Cranmer et al., [2020) uses GNN. Some works hard-code
symbolic operations inside the neural networks in order to recover an expression after training (Kim
et al.l [2021)), (Kubalik et al., [2023]).

Generative methods can be divided in two types: (i) a generative model is trained to infer the
desired expressions as sequences of tokens (Kamienny et al., [2022} |Biggio et al., 2021} Petersen
et al. 2021} [Vastl et al., [2022; [d’ Ascoli et al.l 2024)); (ii) a decoding or search strategy is added
to find expressions using token probabilities from a model of the first type (Shojaee et al., |[2023a;
Bendinelli et al.l 2023; [Hayes et al.| 2025). The runtime of the methods in the first category is
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usually low, although independent sampling may produce inferior solutions. The methods in the
second category take advantage of post-training time and employ sophisticated search strategies,
such as MCTS. Although MCTS is a popular choice, long lookaheads may yield large expressions,
while a beam search might be more parsimonious. Additionally, some methods can add RL after the
first training and before the search phase (Hayes et al.,2025), or have RL but no extra search strategy
at all (Petersen et al.,[2021). With multiple phases, a training pipeline can become complicated. RL
methods may rely heavily on reward engineering with the fitness to data signal, which is ambiguous
and unstable.

TPSR (Shojaee et al.,2023a)) proposes using the token probabilities from some pre-trained SR model
like E2ESR (Kamienny et al.| [2022) in order to perform MCTS. While the source model is trained
to generate correct expressions in a single shot, it needs more inference runs to achieve success in
practice. TPSR brings a smarter search strategy than pure random trials or token-level beam search.
The only similarity to our work is the existence of a training phase followed by a search phase. Even
if the source model is trained in a self-supervised way, it is a different setup because our heuristic
model does not produce any symbol itself, but rather just a binary signal. Also, one disadvantage
of long lookaheads of the MCTS in TPSR is that the expressions found tend to be large. Even in
the Feynman datasets with most ground-truth solutions having fewer than 15 symbols, TPSR finds
non-exact solutions with more than 50 symbols.

A key difference between the generative models and our heuristic model is that we do not have
an explicit distribution over tokens. Instead, the output of the model is a score that can be used
to prioritize elements in a search. Also, the expression generation in our method is independent
of any parametric model: it happens by applying pre-defined grammar-like generation rules and is
very fast by means of its simplicity. Another advantage of our method lies in its strong theoretical
justification. Like (Yu et al.,|2025), our search objective contains an optimal substructure (Cormen
et al] [2009): if the heuristic prediction is the true precedence relation (Section [3), a beam search
that prioritizes expressions based on precedence value and size will, at every step of the search,
contain at least one expression that precedes the target. Also, each new search round will produce
slightly larger expressions until a solution is found. The parsimonious increase in size of preceding
expressions then guarantees that a solution with minimum size will be found.

The most similar to our work that we know about is SR4MDL (Yu et al., |2025)). More specifically,
it also proposes learning a self-supervised heuristic model that guides the search for expressions
afterwards. Like ours, their learning objective also comes from the structure of expressions and does
not use fitness to data as a training signal. During training, the expressions also are synthetically gen-
erated at runtime. So far, we are not aware of other SR works that share those same characteristics.
Still, there are important differences, as we show in Table E}

Table 1: Main differences between our work and SR4MDL (Yu et al., [2025). The generative ap-
proach is also compared. ! Minimum Description Length. > SME stands for the Sign-Mantissa-
Exponent representation from (Kamienny et al., 2022).

Aspect Ours SR4MDL Generative
Objective Formation precedence MDL! Fitness to data
Expression formation | Top-down Bottom-up Token sequence
Use Dedicated to dataset General purpose Varies
Data assumptions Just constants Distribution of input | Varies
Training Single phase Two phases Varies
Constant fitting Any form Limited forms Any form
Input representation Digit Transform (Eq. SME? SME (common)
Search algorithm Beam Search MCTS One shot, decoding
Optimal substructure | Yes Yes Does not apply

Datasets and benchmarks. Possibly, the most well-known effort to standardize SR evaluation is
SRBench (Cava et al.l 2021). It contains more than 250 problems with and without ground-truth
formulas. At least 14 methods have already been tested and compared (Makke & Chawlal [2024).
SRBench includes the Strogatz (Strogatzl |2024) and Feynman (Feynman et al.| 2011} Udrescu &
Tegmarkl [2020) dataset groups, the latter having some of the original physical laws removed. Other
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Table 2: Example of primitives with the re- Table 3: Expressions and respective prefix
spective generation rules. forms.
Symbol Rule Expression \ Prefix Form

U z— U T+ .y +r /Yy

Yy ey O+4z-y +0 zy

+ A I r—(y+0) | —z+y0O

- T = —TT

. T = T

\/ X = \/33

dataset groups for SR with ground-truth are available in (Keijzer, 2003} |Vladislavleva et al., 2009
Uy et al.||2011; Korns, |2011}; [Petersen et al., |2021)), but they are not physics-related.

The reporting of SR results still needs adherence to standardization. For instance, in (Biggio et al.,
2021} |[Kamienny et al., 2022) authors report metrics based on R? > 0.99 as a proxy for symbolic
solution on the Feynman problem subset from SRBench. As pointed out in (Matsubara et al.,|2023)),
R?-based accuracy does not take expression interpretability into account and is vulnerable to the use
of dummy variables. Also, the R?-criteria changes from work to work, sometimes being R? > 0.9
(d’ Ascoli et al.,2024), R2 > 0.99 (Kamienny et al.,|2022)), (Kamienny et al.,|[2023), (Shojaee et al.,
2023b)), while SRBench requires R > 0.999. We stick to the Symbolic Solution Rate (SSR) defined
in SRBench (Cava et al.,[2021) as the main metric, but we still do use R? in the black-box datasets.

3 HTSSR: HEURISTIC BEAM SEARCH SYMBOLIC REGRESSION

Understanding the following components of our method is necessary for its comprehension. The
basic constructs are the set of primitives and the generation rules. Then, expressions can be generated
or randomly sampled with the rollout strategy. This generation procedure is at the core of the training
data synthesis. That given, some care needs to be taken when evaluating the expressions numerically
and feeding the heuristic neural network with such values.

3.1 PRIMITIVES AND GENERATION RULES

The mathematical expressions in this study are a combination of symbols, namely operators (unary
and binary), variables, and constants. We call the set of all symbols the primitives set. Optionally,
that set can be enriched with complexity constraints that tell the maximum allowed occurrences of
a symbol under another symbol (e.g., at most 0 cosine operations inside a cosine). This controls the
appearance of bizarre expressions and reduces the search space size. All considered expressions have
a syntactical tree structure and are implemented using prefix notation. This choice of implementation
allows for the fast generation, evaluation, and automatic differentiation of expressions.

Generation rules are defined in terms of the primitive symbols and their arities. One of the variables,
x, is considered to be the special symbol used for rule applications. The generation rules have one
of three forms: x +— osxx, x — o012, and x — 0. The o; indicate an operator with arity 7. og
can be a variable name, including x, or the constant placeholder, [J. Multiple appearances of [
represent independent constants. Tables 2] and [3] show examples of primitive sets, generation rules,
and expressions with prefix forms.

3.2 EXPRESSION ROLLOUTS AND CANONICAL DATASET

Instead of working with a static dataset, we find it better to synthesize the expressions during the
training of the heuristic model. The expressions are sampled in generation sequences, or rollouts
(see Figure[I)), where a source expression is first sampled from a static canonical dataset to then be
expanded into increasingly more complex forms. This strategy gives access to a very large set of
expressions, even when there are constraints for expression formation. (Kamienny et al.,2023)) uses
a mechanism similar to our rollouts in reverse order to generate expressions for training a mutation
generative model. This model helps the main GP procedure in the search. Like our method, it
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is a tree-search but uses MCTS instead of beam-search. Their method combines 3 parameterized
models: a mutation policy, a selection policy, and a critic network. Ours, instead, only has one
self-supervised model, trained for binary classification.

Figure 1: Example rollout from z to  + y/w. After the rollout is finished, 2 becomes like any other
variable.

The canonical dataset contains representatives of the numerical equivalence classes of expressions.
The representatives are the smallest elements of a class. We define smallest as having the least
number of primitive symbols and being the lexicographically smallest. If the constant placeholder
is fixed, computing such a dataset and storing it on disk is possible up to some expression size. This
limit also depends on the generation rules and on the primitives.

Uniformly sampling an entire set without considering complexity may underrepresent simpler ex-
pressions. We believe that such an imbalance makes the learning process harder. This is the main
motivation behind the use of the rollouts. Regarding how the starting points of the rollouts are
sampled, we see that sampling (uniformly on length) from canonical sets of different maximum
expression lengths shows no significant difference (see Appendix [A.2] Figure for an ablation).
However, the canonical set is important for the evaluation of the method, as the heldout datasets
come from it.

3.3 NUMERIC EVALUATION

We make extensive use of stack-based evaluation of the expressions in prefix form. Given the limited
scope of operations and the small number of variables, this solution is easy to implement and faster
than SymPy (Meurer et al., [2017) and isolated Python code calls. The evaluation in the leaves
involves variables and constants. The values attributed to the variables are the feature domain D[X]
- the part of the observed data D that is not the vector of target values D[y]. Constant placeholders
are sampled from a uniform random distribution or get a fixed value. Our ablation in Appendix[A.2]
Figure [TT] suggests that both choices result in very similar results. Operators get the result of being
applied to their arguments. This happens until the top operation is computed.

The numeric results of expressions can easily get out of hand. Common problems are nondetermined
(nan), overflow, underflow, and infinite values. To deal with values with large magnitude or that are
infinite, we clip at a fake infinite (e.g. +10'9). Overflows, underflows, and nondetermined results
are avoided by the design of safe operators. For instance, a safe division attributes a floating-point
number even if the result is not determined in the regular division. When the input domain is well
behaved, the safe operators give the exact same results as the regular ones.

When performing prefix-order evaluation, there is a choice between keeping just the final result and
also keeping the intermediary results of subexpressions. The last naturally distinguishes different
expressions that have equal final values. The first needs some extra information for the distinc-
tion, like expression embeddings. We find that training with the first option converges with fewer
iterations.

Constant optimization. The small number of numeric constants that might appear in the expres-
sions works well with second-order optimization methods like Levenberg-Marquardt, taking be-
tween 4 and 12 iterations when converging. This is considerably faster than using first-order gradient
methods like those based on SGD (Ruderl [2017). Using tools like Pytorch’s autograd (Paszke et al.,
2019), performing such inner optimizations is feasible. Because we implement all the evaluation
processes, we can differentiate it with PyTorch.
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3.4 THE HEURISTIC MODEL

Given an expression F and the observed data D, the heuristic models the probability that there is
an expression F' such that V(F'), the evaluation of F, matches D[y] and there is a rollout from E
to F'. In other words, the heuristic tries to tell if a given expression is in the way of generating (or
precedes) one expression that fits the data. The basic architecture (see Figure[2) has two parts: (i) an
encoder that takes numeric values and outputs latent representations, and (ii) a binary classification
module that takes a pair of outputs from the first module (plus some additional information about
the potentially preceding expression) to predict the probability that one element precedes the other.
The Sort-Diff and Digit transforms introduced in the following sections are performed in this order,
before the parametric part of the encoder.

Binary Classifier

Figure 2: The generic form of the neural networks for the heuristic model. FE represents the po-
tentially preceding expression, while V' (F') mocks the observed target data D[y]. The inputs to the
encoder are processed independently. V'* denotes the set of evaluations of all sub-expressions of F,
including E itself.

Sort-Diff transform. Motivated by the idea that information about the derivatives of the expression
value with respect to input variables is helpful to learn the heuristic task, we introduce the Sort-
Diff features. Those features consist of sorting V' (E) with respect to each input variable and then
performing a diff operation on the sorted vector. This is supposed to be a surrogate for differentiation
and can be applied to data that are not homogeneously sampled (e.g. there is no single step size).
Notice that the observed data D cannot be automatically differentiated. The transformed evaluation
vectors are concatenated with the original in a single vector. Equations|[T|and 2]define the transform.
We get better results when using Sort-Diff (see Appendix Figure 10| for an ablation).

Diff (V) := {Yiy1 — Yito <i < |v| €]

SOI‘tDiff(Y, JJ) = Diﬂ‘({yri}iEArgSOrt(x)) (2)

Digit transform. It is known that having high differences in value ranges from feature to feature
affects the stability and convergence of optimization during training. Because expression evaluations
in SR do suffer from such differences in range, we introduce a transformation that, for every single
number in the input data, outputs a vector. This vector contains what would be digits in a base b
representation. For a suitable value of b, each input feature can have a standardized and optimization-
friendly range. Equation [3|defines the transform. Here, a%b := a — |a/b] - b.

DigitTransform(z) := (z - b[_d"_‘“'l"'"d]) % b 3)

Common normalization techniques like Min-Max and Mean-Std lose scale information, which is
fundamental for the SR task. Transformations that try to make high values more amenable, like
taking the logarithm, might squeeze values from higher ranges into smaller intervals, making their
representations less useful. The input representation introduced in (Kamienny et al., |2022) and
commonly used by other works like (Yu et al., |2025), (Shojaee et al., [2023a) is token-based and
consists of three tokens: a sign, a mantissa, and an exponent. The mantissa represents 4 significant
positions using the tokens from 0 to 9999. The exponent tokens range from —100 to 100 and
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therefore the total of distinct input representations is in the order of 108, On the other hand, our
digit transform can give a representation for every floating point number, with roughly 7 significant
positions for 32-bit float and 16 for 64-bit float. Because SR explores a combinatorially vast space,
the more expressive digit transform can improve performance. We provide a comparison between
our digit transform and an adapted version of the sign-mantissa-exponent representation in Appendix
[A.2] Figure[9]

Binary classifier. Each pair of outputs from the encoder can be combined in different ways before
entering the classifier. In our experiments, the best approach was to take the difference between
the latent representations and then add positional encodings and expression embeddings. Since

precedence is antisymmetric, subtracting (not adding) the latent vectors better distinguishes input
order. The loss function is the binary cross-entropy.

Training with all-pairs mini-batches. During training, a set of rollouts is sampled such that the
starting points have an equal chance of having any length from 1 to the maximum length of the
canonical set. Only starting points are guaranteed to not have a smaller form, up to simplification
of constant sub-expressions. Then, when the collection of rollouts reaches a certain number of
expressions (e.g., 32), the binary labels (precedes or not) are computed for all ordered pairs of
elements. It is easy to do that for pairs of the same rollout, as the expressions that appear first
precede the ones that appear later. For pairs of different rollouts, the syntactic trees are compared.
We use the convention that any expression precedes itself.

Synthetic heldout datasets. For each number of variables 1., € {1,2, 3,4}, a set with 30 expres-
sions for each expression length fom 5 to 10 is created (except for 4 variables, which require at least
7 symbols). Each expression is sampled from the canonical set created with the respective number
of variables, but keeping the rest of primitives the same. Unlike rollouts, this sampling is uniform
given the number of variables and length. Also, cases where an expression simplifies to a simpler
one only happen when the canonical expression has a subexpression of composite constants (e.g.
- ™). When evaluating on these heldout sets, expressions that simplify are counted as having the
shorter length. Check Appendix [A.T0|to see the heldouts.

3.5 BEAM SEARCH

The search starts from x and keeps creating new expressions by expanding leaf nodes with z. These
expansions are exhaustive: for each combination of z leaf and generation rule, a new expression is
formed. It uses the same set of primitives and generation rules used to train the heuristic model.
Then, each expression is numerically evaluated and fed to the heuristic model. Then, a priority
queue receives the expressions with their respective priorities. Whenever an expression without
constants (purely operators and variables) is taken from the queue, it is evaluated and compared to
the observed values. If the relative squared error is less than some threshold (e.g. 10™%), it returns
the solution. In case the expression has at least one placeholder for constants, a subroutine optimizes
for the constants and, if converging, returns the parameter values. The main routine then applies the
same acceptance criteria. If a maximum number of expressions is visited, the search stops. The
pseudo-code for HTSSR is available in Appendix [A.5] Algorithm [} The acceptance criterion is
defined in terms of a relative tolerance and the relative squared error between the target y and the
expression evaluation y:

RSE(y,y) = Z%:;fy @)

4 EXPERIMENTS

Next, we first analyze HTSSR with respect to dataset size and scalability (Section {.I). Then,
we show the results of HTSSR on the ground-truth (Feynman and Strogatz) and black-box dataset
groups from SRBench (Section .2). The scalability experiments show how the Symbolic Solu-
tion Rate (SSR) changes given expression length and some other aspects, which are the number of
variables and the number of domains D. The evaluation datasets used in Section are the same
heldouts described in Section[3.4]and are integrally shown in Appendix[A.T0] The default domain is
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feynman_TI_34_1, appearing other domains only in the SRBench and domain scalability experi-
ments. More details about configuration can be found in Appendices

4.1 EFFICIENCY ON DATASET LENGTH AND SCALABILITY

Efficiency on dataset length. We investigate how search performance changes when changing the
availability of data points. The results in Figure [3] support the idea that, under similar conditions,
more data points produce better results. Increasing one order of magnitude from 10% to 10 data
points shows little to no gain, while increasing from 10! to 102 shows clear gains. Importantly,
HTSSR can find solutions with as few as 10 points, which supports the idea that the method has
potential in a data-scarce scenario. The dummy baseline shows the brute force of beam search, where
the heuristic is clueless but still can find some simple expressions under the imposed conditions. The
dummy trial also makes this experiment into an ablation of the heuristic model, indicating that the
model does make a difference.

1} ++ 10! |
0.75 | S 102 |
N - 3
% 05 - - . d10 .
N - 4- dummy
0.25 e < |
\\\*‘~-—_“_
0p | | | L - I |
5 6 7 8 9 10

Expression Length
Figure 3: SSR vs. expression length for sample sizes 10', 102, 10%, and a dummy model. 7,4, = 3.

Scalability: number of variables. Now we investigate the impact that n,,,,- has on the SSR. From
Figure[] it looks like the expression length plays a more important role in the decay of the SSR than
the number of variables. Only for n,,, = 4 versus n,,., < 4 is there a clear sign of degradation
for expression length greater than 7. Furthermore, it seems that the decay of SSR for ng,q, = 1
is slower at larger lengths. It could be that for n = 1 it is possible to find solutions larger than 10
symbols somewhat frequently. We invite the reader to look at the complementary scalability analysis

in Appendix

0.75 -
0.5
0.25 -

SSR

Expression Length

Figure 4: SSR versus expression length for 1 < nyq, < 4.

Scalability: number of domains. Figure |5 indicates that increasing the number of domains in
which a single heuristic model is trained (using learnable domain embeddings) degrades its quality
on the evaluation domain feynman_TI_34_1, also seen during training, at least for n,,, = 1
Versus ng,qr > 1. However, among n,,, > 1, the degradation of SRR is relatively small, if any.
This might indicate potential for reusability of the heuristic model, as one single model could be
used for many data domains.

4.2 SRBENCH

Feynman and Strogatz datasets. We run HTSSR on the Feynman (119 datasets) and Strogatz
(14 datasets) dataset groups under the constraints of SRBench for ground-truth problems. There
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Figure 5: SSR versus expression length for 1 to 16 domains in the same heuristic model. 1,4, = 3.

are training time limits of 36000 and 3600 seconds for each problem in Feynman and Strogatz,
respectively. Within the training time budget, model checkpoints at different epochs are used to
search.

HTSSR ranks among the top methods and its performance drops mainly at 0.1 noise in Strogatz, less
so in Feynman. The only noise level that visibly disturbs our method is 0.1. Except for SRAMDL
(on both dataset groups) and AIFeynman?2 (Udrescu et al.,2020) (on the Feynman datasets), HTSSR
with 0.1 noise level surpasses or is equivalent to the other methods with 0.0 noise. In addition, the
performance of HTSSR is consistent when changing dataset groups, as it does not make specific
assumptions about the problems. In principle, HTSSR could score higher if helped with problem
simplification or a divide-and-conquer approach, where a problem is decomposed into sub-problems.
Also, variations of HTSSR that replace the search algorithm are worth investigating.

Feynman Strogati SRAMDL
SR4MDL E 22— htssr *
htssr * T AlFeynman2 — —_—
AlFeynman?2 -+ == ———— AFP-FE
AFP-FE e —=— DSR _‘_"_“ _
DSR - $o= M
AFP o POSIES AFP ——
GPlearn > GPlearn ,
RSRM - - RSRM Xo—-
GP-GOMEA 'k =% - —— GP-GOMEA —-— —
SPL > SPL >
EPLEX — <% H— EPLEX L
E2ESR * = E2ESR —
Operon 1+ 9% - Operon i+ —

- * = . SBP-GP —— :
32525 . +— larget Noise NeurSR = Target Noise
SNIP % T SNIP = X 00
BSR ¢ ; * 0'11 BSR e + g.gl
FEAT ; : FEAT .

0 50 0 50 0 20 40 60
Solution Rate (%) Solution Rate (%) Solution Rate (%)
(a) SSR grouped by problem set. (b) Aggregated SSR results.

Figure 6: Comparison with the SRBench results of other methods.

Black-box datasets. The black-box results (122 datasets) reveal that HTSSR is able to find very
concise and moderately accurate results. It appears on the Pareto front of the R? versus model size
(see Figure and dominates the generative methods E2ESR (Kamienny et al.,[2022) and NeuralSR
(Biggio et al.,[2021)). It performs similarly to DSR (Petersen et al., 2021)), but using less time, Figure
Consider that DSR also needs to train from zero for every new dataset. In R? alone, HTSSR is
closer to MLP, but has more than two orders of magnitude smaller sizes. The conceptually close
SR4MDL (Yu et al., [2025) has around 25% higher R?, but almost 10x larger expressions.

5 CONCLUSION

This paper presents a new and simple method for SR with key advantages, making a shift from
common approaches in the literature that use fitness to data as training signal or that explore the
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Figure 8: R?, model size, and training time on the black-box datasets.

space of solutions on a token-by-token manner. It finds solutions with desired properties, such as
exactness, and simplicity, while being competitive with existing methods and less affected by noise.
We also analyze some aspects of scalability and efficiency in data scarcity, providing insight into
further investigations and improvements. We find that the major factors that affect the effectiveness
of the method seem to be the length of expressions and the number of data points. However, the
clean design and modular nature of the method is encouraging for adaptations and developments.

10



Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY

We plan to soon release a refactored version of the code and instructions to the public. As of
now, code and instructions are available as suplementary material for the reviewers in the reviewing
platform. Each experiment ran on a NVIDIA A100-80GB GPU with single process at a maximum
2.2 GHz processor core.

11
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A APPENDIX
A.l LLM USAGE

In this work, LLMs helped spot typos and suggest words in a few cases.

A.2 ABLATIONS

Digit Transform. Figure[9]compares the performances of the Digit Transform and SME input rep-
resentations. There is a clear pattern of dominance of Digit Transform over the expression lengths.

I A Digit Transform.
0.75 + j=3 SME .
&
2 05 .
0.25 + |
O L | | | | ]

) 6 7 8 9 10
Expression Length

Figure 9: Comparison between our digit transform and the sign-mantissa-exponent (SME) repre-
sentation. We adapted the SME version to comply with our numeric encoder such that both neural
networks have the same size specifications.

Sort-Diff. In Figure [10|there is a clear pattern that shows the superiority of applying the Sort-Diff
transform to input features versus not. The results show dominance of Sort-Diff across all expression
lengths.

1y -~ Sort-Diff. | |
4+ No Sort-Diff.

0.75 |- B
a1
a

0.5+ |
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| | | |
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Figure 10: Symbolic Solution Rate (SSR) versus expression length for model with and without the
SortDiff transform. n,,, = 3.

Evaluation of the constant placeholder. Figure |11|shows very close tendencies when compar-
ing the SSR resulting from heuristics trained with a fixed value v versus the sampled value
vg + U(—0.1,0.1). The motivation behind this experiment is to see if sampling (J improves the
ability of the heuristic model to perform well for expressions with constants that are not seen during
training. The results have only small, opposite differences at the lengths 9 and 10 and suggest that
no difference is revealed.

Maximum size in the canonical set. In Figure |12]there is a comparison between the SSRs result-
ing from heuristics trained by sampling the starting points of rollouts from canonical datasets of
different sizes. The idea of using canonical datasets to anchor the sampling is that it would make
the mini-batches more balanced with respect to expression length. This was expected to yield better
heuristics, but the results show no improvement. In part, this could be because the rollouts naturally
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Figure 11: Symbolic Solution Rate (SSR) versus expression length for [] sampled versus fixed
during training. 7,4, = 3.

create expressions with varying complexities, and the expressions that simplify are not sufficient to
impact the representation of larger expressions negatively. On the other hand, the larger number of
longer expressions do not affect the representation of smaller ones because of the nature of rollouts.

0.75

SSR

0.5

0.25

) 6 7 8 9 10
Expression Length

Figure 12: Symbolic Solution Rate (SSR) versus expression length for canonical sets with maximum
expression lengths 2, 4, and 8. 1,4, = 3.

A.3 COMPLEMENTARY SCALABILITY ANALYSIS

In order to have a broader idea about the power of the proposed heuristic, we perform simula-
tions where a simulated heuristic model is characterized by two parameters: the Recall at the
positive and negative classes. This is possible by taking the ground-truth precedence signal and
flipping it with some probability. We combine all pairs of Recall@0 and Recall@1 from the set
{0.75,0.80,0.85,0.90,0.95} for each of two search algorithms: the stochastic search (repeated ran-
dom rollouts based on probabilities) and the beam search (with fixed beam window of 32). We also
repeat for an additional parameter: the maximum allowed size of an expression in the search, which
can be 12 or 18. Every search run can visit up to 2 - 10 different expressions and an expression can
be visited multiple times counting as one. The result of each search is either the solution or nothing.

The expressions to be found are a subset of the expressions in the Feynman dataset. There are 73 of
size up to 12 and 96 with size up to 18. The number of variables ranges from 1 to 6. The distribution
of expression sizes can be seen in Figure [I3] and the distribution of number of variables in Figure
The set of primitives is the set in Table || but adding the operators arccos and arctan.

The aggregated SSR results are shown in Figure [[5] We see that for beam search the Recall@1
is a more important factor in success than Recall@0 and that the algorithm tends to get lost if not
pruned, as the results with maximum size 12 are much higher than those for 18. The results for beam
search start to get better when Recall@1 is around 0.95, if properly pruned. On the other hand, the
stochastic search seems less sensitive to the maximum allowed size and its quality is affected by
both Recall@( and Recall@1 more equally.
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Figures[I6]and[I7]shows how the SSR varies along expression lengths for different simulated heuris-
tic performances. While the stochastic search can find longer expressions and improves gradually
with the recalls, the beam search indeed seems to require pruning and a high value of Recall@1 to
perform well in the shorter range. The variations with respect to 7,4, are shown in Figures [I8]and
[T9} Knowing that more variables mean longer expressions, it is natural to expect a decrease in SSR
when the number of variables increases.

SSR

15
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Figure 13: Frequency of expression sizes in the chosen subset for the simulated heuristics.
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Figure 14: Frequency of n,,, in the chosen subset for the simulated heuristics.
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Figure 15: SSR versus Recall at the positive (precedes) class for each Recall at the negative class
(does not precede). The (12/18, S/B) annotations indicate two parameters: maximum allowed ex-
pression size in the search and if the search algorithm is the stochastic search or the beam search.
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Figure 16: SSR versus expression length for the stochastic search (S) with the simulated heuristic
with different Recall@0 and Recall@1.
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Figure 17: SSR versus expression length for the beam search (B) with the simulated heuristic with
different Recall@0 and Recall@1.

A.4 SET OF PRIMITIVES

Table [4] shows the set of primitive symbols. Table [5]shows the constraints used in the formation of
expressions for the experiments.

Table 4: Constants, variables, and operators used in the experiments. arcsin was used only in the
SRBench experiment (Section 4.2)).

Symbol | O

T Yy z w + /2 y/ sin cos e arcsin
Arity 0o 0 0 0 0 2 2

1 1 1 1 1 1

2 2

A.5 ALGORITHMS

Algorithm |1 synthesizes the high-level workings of the beam-search, given a trained heuristic hg.
Algorithm [2]is a simplified version of the implementation for creating canonical sets of expressions.

A.6  SETUPS FOR THE SCALABILITY AND SAMPLE EFFICIENCY EXPERIMENTS

Every heuristic model in that part of the experiments was trained for 1000 epochs of 50 iterations
each. The mini-batches were all-pairs of size 16 x 16. The beam search window is 128 and the limit
of visited states is 10240. Except for the multi-domain experiment, the default domain used is from
the problem feynman_I_34_1, with the extra fourth variable being sampled from U(1,5). D is
randomly sub-sampled from 10° to 103 data points (and to {102, 10'} in Section |4.1)). Details about
the neural net configuration are in Appendix
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Algorithm 1 HTSSR, based on beam-search.

Q < [(0,z)]
V{}
while length(V) < m do
if length(Q) = 0 then
return
end if
B + [Q.pop(), ..., Q.pop()]
for s, £ € Bdo
if 0 ¢ F and Accept(Eval(E), D) then
return I
else if [J € E then
§+ LM(E,D)
if Accept(Eval(E),D,€) then
return F, ¢
end if
end if
C < Expand(E)
S—1- O’(h@(C, D))
Q-push((S,C))
V.add(E)
end for
end while

> Initialize priority queue
> Set of visited states
> Maximum of m visited states

> No solution found

> Beam size pops while not empty
> Iterate through priority-expression pairs

> Constant-free solution found
> Run Levenberg-Marquadt optimization

> Solution with constant(s) found

> Get the set of children expressions

> Attribute priority scores with the learned heuristic, hg

> Update the priority queue

Algorithm 2 Creation of canonical set of expressions up to length n.

S O()
Ve{}
for2 <l <ndo
for o € O; do
for F € S;_1 do
E + o(F)
if Eval(E) ¢ V then
S.append(E)
V.add(Eval(E))
end if
end for
end for
for o € O, do
for1 <!t <n—2do
Ben—1-1L
for FL € S, do
for FI* € S;r do
E + o(FF FR)
if Eval(E) ¢ V then
S.append(E)
V.add(Eval(E))
end if
end for
end for
end for
end for
end for
return S

> Initialize canon set with zero-ary elements.

> Initialize visited values.
> Iterate from lengths 2 to n.
> For each unary operator

> For each expression in S with length [ — 1

> Create new expression of length [

> Add only if a smaller one is not equivalent.

> For each binary operator
> For each length of the left subtree
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0.75 -

0.5 |-A-(S, 18, 0.90, 0.90)
3-8, 18, 0.95, 0.90)
02511 & (s, 18,0.90, 0.95)
ol |—e—(s,18,0.95,0.95)

1 2 3 4 5 6

nvar

SSR

Figure 18: SSR versus n,,, for the stochastic search (S) with the simulated heuristic with different
Recall@0 and Recall@]1.

E i
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Figure 19: SSR versus n,,, for the beam search (B) with the simulated heuristic with different
Recall@0 and Recall@]1.

A.7 SETUPS FOR THE SRBENCH EXPERIMENT

The general process for searching for a solution of a given problem starts by training the heuristic
model. Training is interrupted at defined epochs ([2499] for Strogatz and [2499, 9999, 25999] for
Feynman) so that HTSSR uses the current checkpoint to search. The beam of the search is 16384.
The limit of visited states is 102400. The relative tolerance to accept a candidate solution and stop
the search is 2 - 10~%. If the threshold is not met but there is still time remaining, the checkpoint
goes back to training. The search ends if the threshold is met or if time is out, in which case the
expression with the lowest relative error is returned. Other configuration and neural net structure are
described in Appendix [A.§]

A.8 NEURAL NET ARCHITECTURE

Table [6] shows the main neural net configuration used across experiments. The main difference
between experiments is at the first layer, as the number of input units is different between dataset
groups (10, 100, 1000 for Feynman, 300 for Strogatz). In the Self-Attention layers, dpoqer = 1024
for all experiments except for the SRBench experiment, where d,,0q4¢; = 768. The “Linear” layers in
the numerical encoder have standard 2048 hidden-layer width, with final layer width being d,,ode;-
The exception is for the SRBench experiment, where those hidden Linear layers have width 1024.
In gl;e Di%i; Transform, all experiments use 67 digit equivalents in base 2, with position values from
2797 to 2°°.

A.9 TRAINING TIMES
Figure 20| compares the training times of HTSSR and two methods with similar performance: DSR

and BSR. Here, the most relevant comparison is between HTSSR and DSR, as both are learning-
based and dedicated to each given dataset and need to be trained from zero.
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Table 5: Constraints for the formation of expressions. Row elements can appear up to the specified
number of times under the column element in the expression syntactic tree. Empty cells indicate no
constraint.

[+ [~ [ | /] ]| sin | oos e [ orsin |
2] 2 2 2 2 2 2

N}
N}
NS}
N}
NS}
NS}
N}
[\)
\}
N}

[+ g8ln|<e|s O
[\
[\}
[N}
[\
[\}
[\&}
[\
[\
[\
[\

/

2 0] 0 0 0 1 0
Na 0 0 0 0 0
sin 0 0 0
cos 0 0 0 0

e 0 0 0 0

arcsin 0

Table 6: General Neural Net Configuration for the Experiments.

Module Submodules
SortDiff (optional)
Numeric Encoder Digit Transform
3x (Linear, RMSNorm, GELU)
Source-Target aggregation — (difference)
Final result or all-tree results
Positional Encoding + (padded to length 15)
Positional Encoding (parent symbol) + (optional)
Expression Embeddings + (optional)
Domain Embeddings + (optional)
4x Self-Attention (4 heads)
Classification Sequence aggregation (mean)
Linear

A.10 EXPRESSION HELDOUTS

The following Tables[7|8JOTOT T[T2J13][14] contain the heldout dataset groups used in the experiments
(except SRBench). Those are grouped by 744
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1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
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(a) Training time by number of features.
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(c) Training time by number of training samples.
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(b) Training time by number of dataset points.
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(d) Training time by number of total samples.

Figure 20: Training times comparisons with methods that perform similarly.
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Table 7: Heldout expressions for 71,4, = 1. Part 1.

(e* = VD) (- /sin(x)) ((z — cos(0)))?
(v/sin(0) — x) (O+ V) “@m
sin((O — x)) (cos(0J) — (x)?) (COS(I))
) = T
— e (- sin(0)))?
(@) — z) (z+ &) (v + cos(@-2)))
(Elfeﬂ) (37 cos((01- m))) O+ sm(;z;))
) (sin(@) — ) O+ ((@)? - )
(\/55)? ((0)2 — /sin(x)) (/@)% D)
] T 5 (e” — \/sin(0))
(x- cozg ) (x — cos(lil)) (sm( ) —|— cos(0J))
(S5 — e”) (()? = 2) T
(cos(z) Sin"’éx)) (O+ (x + (e2)?)) (e(B+2) _sin(x))
(v - ¥52) O /O- (@) e
((z-VO) = va) VO @ +sin(@) —
(O /(in(z) + 7)) (vsin(D) — =2m5) (525 +¢9))?
()2
oy (cos(z) — many) V/(sin(0) —sin((0- 2)))
((&m — 0 V=t (=)
(5 + )7 GECIE)S) s
(O- $659) (2 sin((0 — (0~ 2))) (5 + (VD))
(Vo + cos(i5) (gisf%z) (G — Va)°
(O + ) - €5) + cos(x)) (O /(7 —2) ((z+ /sin(0)) - vz))2
(((sin(0))? = sin(x)) — cos(x)) (a — VD) (z+ (2 + (z — /sin(0))))
(teostimye + Vo) (((2)%-sin(@)) +e@*) (2 (V& —sin((z + 2))))

L
Gin((@—0)—=z)
(= + (6%
(Ve —0)- (4)?)

(E - &) o+ (@ (VA +e))
\/(D (sm(m)JrCOS(D))) (D $+F COS
M (O (0 = (y/Tcos(@) = x))Z))

O B ~ (F)2+e”)
(=+/(=—(02))) @ (= (\F+\/€>))) m
z+x))2 e(D) —sin(x o
= H e (O 2))> + (7))
xr— w-i—eD S .
e Ccostwpreosl(@tal)) (3 +z) - (sin(0) — 0)) — @)
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Table 8: Heldout expressions for 71,4, = 1. Part 2

(cos(0)) — v/) (cxtel)2 (0 - Ver)
(@)?%-e") %((z)) (cos(z) + €M)
((z)? - sin(0)) (F—=) O+2)
(2 - \/cos(x)) /(O cos(x)) (((D . \/(?)jg)
O — cos(x)))?

(D + cosD(z))
O @+ 2)
(O 2) - sin(z))
(z + (z — V1))
B=v=)
(O+ y/(z —cos(0)))
(O)*
(EE)
(e” —sin(z))
cos(0J)
@-0)
o=
(O==2)-/(z+z))

(z - (z +sin((z + 2))))
(O=sin(g))

(- (O4+/(e7)?))
(D+(m§in(m)))
(O = V/((cos(0))? + cos(x)))
(\/i—,/:in(m))

]

—cos(x))

((eH)?
((e* — sin(D)) — e(®)%)
xT 2 xT
(z - (( )S\f))

(z—(Vz-e"))
cos(UJ)

(sinm(D) Y, %)

e
(@+(2)?)

(z+(z - 1))

(sin((O+0O)
(Ved

(sin(0))?
B
@ ((z)?=2))
((sin(z) - e®) — sin(O))

(siuazw) _(x)2)
0

) +e%)
&)

)
N (] &l
E [

_e%)

((cos(x))?
(O-2))?

cos(%)

V(D)2 —2) - (2)?)

@+ ./ mr=my)

((vO- Cos(z)) cos(z))
(O 225) + %)

si n(m)

(z = (@ + (Vz)?) - cos()))

((cos(z))? + sin(x))
sin(0)
(O-z)
(O—sin(z))
(O%2)
cos(x)
E -0

(V@ =) -sin(z))
((e=eos(@))>

O- /=2,

O+
(sin(z)—(0)?)

x

(x—((COS( ))? + sin(x)))

((v/(@ +sin(2)))? + VD)

(\/E-COS(D(EH-z)))
(D+co§((w+w)))

O = (z + (z - /sin(2))))
(V((cos(@))? — z) — (Vx)?)
(O++/(@—sin(x)))

cos(x)

ﬁ_’_/ 2

((D + cos(E(]ac+ac)) ))2
(VO =)~ ) (Ve =" — (@) (@ + @) 256)
(@) e") +sin(0-2)))  (/(Gin(z) — cos(@))2 — (0)%) (BFE )
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Table 9: Heldout expressions for 1,4, = 2. Part 1.

(cos(y) — ™) cos(¥) ‘/;T’
((1)? = sin(x)) (O+%) (e = /1)
e (v/cos(z) — ) (y—(0-2)
(O-2)-y) (y — v/cos(x)) (y + /cos(x))
( S l’) - y) (sm(yr)) (z%
(= +) (y — (z - sin(y))) n
= (V@ + /sin(y)) (VI + Ver)
(y- <) (o — ) e
y+ /(@ +2)) cos({Z4) ((z —y) - cos())
(O = (y + cos(x))) (4 —ev) (SIH(i)fy)
(sin(z) — (y - V) (@ + cos()) @O =)
(y+ (- v/sin(0))) ) (V)2 Ver)
() — @) (O + (y -sin(2)))? o=
o) (v - 2 ok
((y- (@O +=)—y) CIOESTE)) ((z)* +sin((y — 0)))
(Ve — (5)?) (v + (VO = e7))? (@ (z = (%))
(5 = vi)? Tl (ev — 57
e (B v9) + Va)? (V=2 - 5)
(cos((y - (O +2)) — 0) A (O + (= +sin(0 +9)))
((y +/(@)?) - e7) (B ETIE)) @
sin(y)+cos(CJ . 9 y—cos(z
CEEGEEL @ (@ )) Yot
sm((ﬁ-m)) fﬂ m \/» ((D+\/ﬁ) +em)
(sinm?i%s@» (s +eos(=) (o) +siny))
sin(@) m (Va2
(@ (@) (O /D) +sin(y)) (g - 22)
((y- (y = ) = @) ((+y) - 52) Wi
(”C‘e?) (z = (y-cos(O+ (y—2)))  (((y—e¥) -sin(a)) + )
3 Gaoteen VP
W@ (@ + (fcfs(li)(x))) (O+0) (g — )
(Cr(E R REET ) (@ —Visrent)) @+ (=4 /mmtr)
(s + (@9 e O+ (y- (/sin(9))?)
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Table 10: Heldout expressions for 1,4, = 2. Part 2.

-3 e
(V@ - /5) snz)
\/sié(x) el
o) (Vz = (9)*)
ey (@ +v®)?)
y (O-=)

\/m sin(y)
{y=cosle)) ((z-ev)—y)
nly)—) ((y - sin(x)))?

COS((.’L‘ _ ﬁ)) (COS(@;)—y)
(2 - cos(3)) ((z+y))? —2)
V(y = cos((0 + 2))) ((y + (sin(z) — 0)))?
(z = (O v5)?) o
x (z+e”)
(y+cos(y)) (y)?
Veos((z - (y+ ) (y+ 1/ <52)
((z) (y) ) (gxlj _!_ (Qy)2)
y B
(sin(y)-e*) @
((z-y) + cos(7)) (@O ((2)*-/(9)?)
(5~ W) (Sry)?
(525 — sin(y)) (y+ (L +(D)?)
(VY- cos(z)))2 ((COS(Z‘))2 —(z- \/@))
(/57 — V) ((z = /)
((z-y) - (\/5 sin(y)))  ((V/(¥)? = (0)?) = cos(x))
( e/ + \/87) co(saE(D\ﬁ-gw)))
(5 - W-vy) (@O () —ev))
(((sin(z) — y) —y) —€") ((y + (2= — )2
(EEn(Em=n) ey

cos(x)

(z+ (z+ ((z-y) =€) (sin((y — 2)) — =77)
(@ &5) - cos(D)) (TEET ()R
(@ + ((z057)? - sin(D))) ((z — (e +¢¥)) - sin())
((sin((a ) -&9) —cos(@)) (O~ 552))2 + cos(y)

((z)? - sin(y))

eT

((e")? —y)
(y-(z-0))
T
(z -sin(7))

cos((0+z))
Y

(sin(y) — +/sin(z))
(x + cos(%))

)2
(y ’ 51(n():r))

(VB - )
(V7 ~ Jr)

(@+ =02

cos(z)

[<

$

(Ote?)
(@y)
(2 + %)
sin(x)
(z—sin(y))

(y . (y . Slnw(fl,') ))
(cos(y)—L))
sin((0+x))

(O+0)-ev))?

((y - (z —y)) — (sin(0))?)

((v/z 4+ +/sin(y)) + sin(O))

(cos(y)— ( )?)

sin(z)

(IQ—i—\/ —cos
<¢*—>wmw

O
W+ srer)

(o))
()2 | O-2))
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Table 11: Heldout expressions for 1,4, = 3. Part 1.

W+ (1) (@29 =5
(@ + 1) w=2) (2 -2)
(@+(y-2)) (y-(z—2)) (y-2)
(2= (z-1)) vts) =
ﬁ =) @)
e (\/;_Z) (z-sin(%))
(z —sin((z + y))) ((£)° - 2) ((y - sin(z)) - 2)
(y- =) T weos@)
X ((y-e) = 2) (2
sin((z+ 2)) (x — (y +sin(2))) ((y + 2) - cos(x))
(Smi;%_y) (z+(achy)) (sin(¥) —sin(2))
(VT /(2 —9)) (x - =ty (VGE+em) —y)
(y*\/:os(w)) (z—y) — f(ac) ) (y\-;; )
(x+ (2 + +/cos(y))) (s(ljﬁyr))) (&ij))
((y @))2 (@ — cos(x)) CneED)
) (& — (= + cos((y + 1)) (2= — cos(2))
B ((2)? + ((z — cos(y)))?) (" — )
D) Vg (= + (O +2)- (1))
(V7 — (cos((x + 2)))?) TRz (VE+ V(=27
(C(E=y= (T )
(fesstzy = %) (2 £r) (V@ —2)— (z-(y)?)
(/geintz)—2) ((z- (y +sin(F >>>>2 ((z - cos((d = x))) +sin(y))
(z- %) +¢) (55 + V@ —1) (@3- (y/(cos(y) — @) - 2))
(& + (e — cos(y))) (y— (V@ —2)-€?)) T Gt
o=em) (2 - (cos(2) — zmy)) (@ ~ ErEnm)
(x4 (y-vsim@) —¢*) (D — /ly+ cos(2))) (" —O) +e¥) - V2)
o (((2)2 — sin(2)) + sin((D + y))) (G TN
v/ sin(z) (D)2 Ezy
(o+ /(z ) ((m + 7) . (33 - Z/)) /(y+((é?2))
) (y - 22D e )

VT

((((9)* = 2) + cos()) - V) ¥ cosmraan)
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Table 12: Heldout expressions for 1., = 3. Part 2.

(5 —2) W+2) (@ (2-y))
(- (y - 2)) (y—(x-2)) (z-2)
(z = (y+2)) (- (y+2)) (z=3)
(y - %) (zfy) (x - (y Z))
e (v—*) (z = (@ +))
(2 + (= = sin(y))) (-~ 2) (@~ 35)”
(- V) (z-2) +ev) 108
e@=3) sinlly=z)) ((w-v/2) — )
e (O (== 9) - (2)°)
((y - 2) + sin(x)) (y- sz(m)) —cos@))
(o + ) 5 == +1)
(= (sin(y) + cos(2)) (¢ e¥) &
(@~ (VD) e - om
(422 —2) (y- V=)
(@) —¢7) L (@) )
(" _ ) (= (5%7)?) ((y+ 22252) )?
((2)° + /o) S (O 22)

(Veos(y) — V/(z- 2)) V((z +sin(y)) - sin(z)) (z+(V(E+y)—2)

m (y-2) — =) O~ riym)
(- (= + sin(x))) — ) (@ +2)-¢7) ) e
- (@5 o ——
(((cos(@))? = sin(y)) - (2)?) o T
(- ((9)2 - ) + (2)2) (A=) ) Gtz
- (@+2)-6n®)?)  VE—@(@FD) (= (- + (cos()?))
(((4)? - cos(y)) — =) (resty ((z = (y - cos(£))))?
(5 (Vo (g (y+2)) (v— ) (% — (y- omD)))
(@ + qrme?) LSl (VR (22
(O (& + (x- “=2))) (e s v+ 25

(y—(z- @+ (x- D)) (Vz— (/%))
(z+ (Y52 +sin(y)))  (Veos(z) +sin((y - (z - 2))))
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Table 13: Heldout expressions for 1,4, = 4. Part 1.

ﬁ (w-(z+y)) —2) m
(2 -2) ((z- ) —x) (==
e (O] =)
(5% — ) (- (x— 1)) (G —v)
@t (y2) ez (Y- (2= (2 +w)))
(2= (w-en) ((w - cos(z)) + £) (e =) —y)
(= —w) (= + Lol CRCEEA)
ol t552) R . (w-((4)* ~2) =)
(o + Eeinlw))) (- ((z—w)- V) (y-
(we(@+cos((y—2)) (2 ((z—w)*) —y)
(1w = (5 — cos(u)))?) M
(2 — Vw) ((cos(2) — ) = ((z —w))?)
(y- (z + el Ceost) —2)
(w—((z — V+2))?) Ve )?)
S (5 (o -+ w) + =) (- et
e (=" wp) (=457
(O Gleoston, (=) (y+ (V@ w) — (@ 2)))
(y+ (2 w) = =) (5 = ) ((= = (& (V0)?)) - cos(y))
otz (VZ~ )2 - (@ w)?) ((+2) - <2
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Table 14: Heldout expressions for 1., = 4. Part 2.

(W (y+2)) (v (z—2) —w) (-2 -2)
(y — =) (G —2) (z—(y- 2))
(z—y) (5—2) z
(z-w) x (y : (z w))
(5 —v) (- (L -2) (w—(z+(y-2))
(z+(z-y)) (fu—]y) (w-(z— %))
sin((£22) T (- (y+ (sin(x) ~2)))
(i) (w: ("~ ) = 2) (e — w)
(- (z+em))) V@ + g (w—2))) ooty men)
oy (z+vw) (+((y-w)?)
(w—(z-2)) (z-y) z
oL i (((y - 2) — z) — cos(w)) v+ )
(:c+(w+%)) ((y,(xﬁ))—y) M
(W—Z) (e (w-(y—%) —v)
(45 -sin(y)) (w- (5= 2) T
(@ ()2 - cos()) — w) (w+e™) ((y - cos(2)) — ((z - w))?)
(y+cos(2)) (ETmERETEm) ((+ (COS(D) )
((((x = cos(y)))? sin(2)) —w) (O = 2) - cos(7%7)) (s — el
(=) y/(w+ BF)) (2 = 2) + Vo) (et 4 sin(a))
(\/(y + ((Z . w) - ZE)) - Z) (D—@) (snf:w)fcos(y))
Vo) (((y - 5n02))2. /) (- Y3
(v (L)% - 2) (O-( Vo) —w)  (2+/(z+e))’
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