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ABSTRACT

Multimodal Large Language Models (MLLMs) exhibit varying comprehension
levels in language and perception that complicate interacting with a diverse pop-
ulation of agents, similar to how miscommunication happens in humans, e.g.,
because intentions are not always known. In this work, we investigate whether
MLLMs can adapt to the perceptual weaknesses of the communication partners
in an online manner, i.e. change the way they describe their environment in a
way that is understandable to their partner while communicating with them, via
reinforcement learning. We experiment with two tasks: referring expression iden-
tification (REI) and referring expression segmentation (RES), where a speaker
agent has to describe an object, and a listener has to identify it. To be successful,
the speaker agent must discern the comprehension level of the listener and adapt
accordingly, especially when the listener suffers from perceptual weaknesses such
as color blindness or blurred vision. Unlike traditional offline alignment meth-
ods for LLMs, we fine-tune a Multimodal LLM (MLLM) online to adapt to other
agents’ conceptual understanding. Our experiments with four MLLMs on four
datasets show that online adaptation is feasible in both REI and RES settings.

1 INTRODUCTION

Large Language Models (LLMs) and by extension Multimodal Large Language Models (MLLM:s)
have demonstrated remarkable capabilities across a variety of tasks (Bubeck et al., [2023; [Piergio-
vanni et al.,|2023}; |Alayrac et al.} 2022; [Team) 2024; |Anil et al., 2023) When catering MLLMs with
different architectures, e.g. vision backbones, language backbones, trained with different datasets
etc, in our daily lives, we may notice the variability in their comprehension levels related to task-
specific concepts, i.e. what resonates with some MLLMs might not be clear to others. Disparities
may exist both in their natural language understanding, e.g., some might understand expert termi-
nology while another might require descriptive explanations, and in the perceptual understanding of
visual information, e.g., some might have disabilities such as blurred vision or color blindness.

In this work, we focus on enabling MLLMs to adapt to perceptual misunderstandings of their com-
munication partners, e.g., not perceiving colors correctly and therefore not responding to color at-
tributes presented to them. Specifically, we fine-tune the MLLM online, i.e. on-the-fly, while it is
interacting with another MLLM, based on its observed behavior. We model sequential interactions
between pairs of agents during a vision-language referring expression tasks which is used as an en-
vironment for both adaptation and evaluation. Given one or two images, the speaker agent needs
to describe the discriminating features of a target object, while the listener agent has to identify the
correct object based on this description. To enhance overall task performance, the speaker has to
learn which feature of the image allows the listener agent to discriminate the target object and adapt
its communication based on the visual concepts understood by the listeners. We consider a referring
expression identification (REI) task, where the listener has to identify one target image from a set of
two images, and a referring expression segmentation (RES) task, where the listener has to segment
the target object within a single image correctly. We present both settings in Fig.[T]

We employ several open-source MLLMs, namely LLaVA-7B, LLaVA-13B (Liu et al) 2023b),
Qwen (Bai et al., 2023), and PaliGemma (Beyer et al.| 2024) as the speaker and listener agents
where the difference in MLLM capabilities and pre-training datasets simulate significant diversity.
In addition, we introduce perceptual weaknesses to some listeners by providing them with blurred
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or grayscaled images to further increase listener variety. As the benchmark, we take inspiration
from |Corona et al.| (2019)), but create a more realistic setting by modeling the interactions as free-
form text, adding image transformations to simulate challenging adaptation scenarios, and scaling it
to MLLMs. We evaluate the REI task on CLEVR (Johnson et al., 2017), CUB (Wah et al., [2011)),
and ImageNet (Deng et al., 2009), while we use the RefCOCO (Kazemzadeh et al., 2014) dataset
to implement the RES task. We adapt the MLLMs on the fly using PPO (Schulman et al., |2017),
KTO (Ethayarajh et al.||2024), and NLPO (Ramamurthy et al.;2023)) developed originally as prefer-
ence learning methods for LLMs when fine-tuning the LoRA adapters (Hu et al.,2022). Contrary to
the typical use case of these algorithms for preference optimization (Ouyang et al.,|2022;|Ahmadian
et al.,|2024) where a carefully curated offline dataset of human preferences is collected, we test their
efficacy during online interactions which is a more realistic and noisier setting.

Our contributions are as follows: 1) We introduce a flexible framework for evaluating four MLLMs
and adapting them on the fly using four RL algorithms on natural-language-based communication
tasks on four datasets to test their efficacy in online adaptation to a diverse set of communication
partners. 2) We provide insights into the decision-making process of MLLMs finding that concepts
related to color and shape are most important for performing well on these tasks. 3) Through exten-
sive experimental results on two different communication tasks, four MLLMs, and four datasets, we
show that adaptation is possible both the REI and RES task.

2 RELATED WORK

A number of methods aim for parameter efficient adaption of large (language) models, which adapt
a subset or an additional set of the parameters. LoRA (Hu et al.||2022) and its variants (Zhang et al.,
2023; Lialin et al., 2023} [Liu et al., 2023a; |Wu et al.| [2024} Sheng et al., 2023 |yang Liu et al.| [2024)
add a trainable residual low rank adaption for each matrix in the network, potentially quantizing
it (Dettmers et al.l 2024} [Xu et al) 2024; [Li et al.| |2024). In contrast, sparse methods (Ben Za-
ken et al., [2022; |Ansell et al.l [2021) only adapt small subsets of the parameters. Adapter based
methods (Pfeiffer et al.,[2020) train adapter layers and yet another approach is to train a completely
separate ladder side networks (Sung et al.| [2022; Mercea et al., [2024). As we aim to adapt large
multimodal models online, we use LoRA (Hu et al.,|2022) for adaptation.

For adapting an MLLM to obtain a desired functionality, such as the ability to adapt to a listener
online, different RL methods (Snell et al.| [2023; [Ziegler et al.,|2019; Ramamurthy et al.| [2023) can
be used. Proximal policy optimization (PPO) (Schulman et al. 2017) is an on-policy actor critic
algorithm, which is extended by NLPO (Ramamurthy et al.| [2023). It restricts the action space to
a nucleus of most likely tokens. In contrast KTO (Ethayarajh et al. 2024)) directly optimizes the
LLM from binary preferences. On the other hand DPO (Rafailov et al.,[2024) requires positive and
negative pairs for the same context. All of the methods apart from DPO use a single reward per
generation making them suitable for our task, thus, we compare their performance. Similar to our
work (Guo et al.| 2024; Liu et al.| 2024) perform (online) adaption based on model feedback in the
context of generic model alignment, while we focus on personalization to individual conversational
partners and their misunderstandings.

Personalizing generative language models has been studied for a long time, often viewed in the
context of building an efficient conversational partner in dialogue systems (Serban et al.|[2015;[Song
et al.l |2019; Zhang et al., [2019). In contrast, (Ma et al., 2023) reviews several theory of mind
(TOM) based approaches to personalization, such as (Takmaz et al., 2023)) which proposes a plug-
and-play TOM based on an explicit simulator, that updates a copy of the model weights on the
fly. Similarly, (Raileanu et al., |2018)) internally models the behavior of the listener. In contrast, we
only update a small amount of parameters using LoRA and do not need to simulate the listeners
behavior. (Wang et al.l |2024a) adapts the speaker and listener differently, but studies the text-only
task, whereas we consider a multi-modal image reference game. We follow an online approach,
while (Ma et al., 2021} Zhong et al., 2022) personalizes chatbots by learning from large-scale user
dialogue history.

Image identification tasks have been studied in visual dialogue settings in (de Vries et al., 2016} N1
et al.| [2021; |Alaniz et al.l 2021} Das et al.| 2016)). Our work extends this, by incorporating impair-
ments in the communication. (Corona et al.| [2019) has studied conceptual image understanding
through a reference game, but we extend their attribute constrained setting to free text generation.
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Figure 1: The speaker tries to identify a target object, but its pre-trained policy is not aware of
misunderstandings of the listener agents, e.g., color blindness. Through interaction with the listener,
the speaker learns on-the-fly to mention the shape instead of color because the listener is color-blind.
The left interaction illustrates the REI task, while the right interaction shows the RES task.
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3 ADAPTING THE SPEAKER ON THE FLY IN REFERRING EXPRESSION TASKS

We present a framework for referring expression communication tasks (Figure [T) where a speaker
agent describes images to a listener agent using visual concepts. The “speaker” is a single learner
that participates in sequences of K episodes describing an image to a group of “listeners”.

Referring Expression Identification (REI) Task. In the REI task, each episode involves the
speaker 7(*) and listener (") being presented with a pair of images [, z§]. The speaker is assigned

one image as the target 2}, and the other as a confounding image z¢. The speaker then generates a

description mfcs)

m,(gl), i.e. left or right image. The speaker will observe whether its description led to a correct or

incorrect guess via a reward r, € {+1, —1} communicated for every episode.

as a message to the listener for it to make its guess regarding the target’s identity

Referring Expression Segmentation (RES) Task. In the RES task, the speaker 7(*) and listener

7 are presented with a single image x, in each episode. The speaker additionally receives the

bounding box of a target object o}, for which the speaker generates a description més) with the in-
tention to identify the object in the context of the image. Given the speaker’s message, the listener

generates a segmentation mask m,(f) as a guess regarding the target object in the image. The in-
tersection over union (IoU) metric between the predicted and the ground-truth segmentation masks

serves as a reward of the episode for the speaker.

Based on this feedback from the reward alone, the speaker’s goal is to change its policy 7(*)*,
i.e., adapt its image description, to maximize the success rate of the listener agent to solve the
referring expression task. To further increase the difficulty of each task, any listener may suffer from
a perceptual weaknesses, i.e., color blindness or blurry vision, which is unknown to the speaker.

Since the listener operates as a black box from the perspective of the speaker, pinpointing the source
of errors when they exhibit unexpected behavior can be challenging. When the listener makes an
incorrect guess, identifying the source of the error becomes difficult, e.g., it could be a lack of
comprehension in language, or the visual concepts used to describe the image.

When the listener fails to guess the correct object, the speaker should explore different descriptions
to find a policy tailored for the listener. In this work, we examine, whether LLM adaptation methods
can successfully find policies that maximize task performance for a diverse set of listener agents
solely from the reward signal in this multimodal, i.e. vision and language-based, framework.

3.1 ONLINE MLLM ADAPTATION

To perform well on the referring expression tasks, the speaker agent needs to adapt to the listener
in an online setting during ongoing interactions. After each episode the speaker can update its
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Figure 2: Speaker is asked to describe an object in the context of the REI or RES task. The descrip-
tion is passed to the Listeners which need to decide which image was described. Depending on the
correctness of the decision, the Speaker receives a sparse reward and updates its LORA weights to
maximize the reward. For each type of Listener, we have a distinct set of LORA weights.

weights based on the reward provided by the listener’s response. Through these rewards, the speaker
increases the likelihood of generating descriptions that are adapted to the capabilities of the listener.

Reinforcement learning from human feedback (RLHF) (Ouyang et al.,2022; Christiano et al., 2017;
Stiennon et al., [2020; /Ahmadian et al.| [2024)) is a popular technique to adapt LLMs to human pref-
erences. Typically, a dataset of human preferences is collected, before a RLHF algorithm is applied
either offline or through training a reward model to update the parameters of the LLM or MLLM for
better human alignment. In this work, we explore how well RLHF algorithms extend to an online
setting which is more challenging because the reward data is not carefully annotated and can be
noisy, e.g., when the listener misunderstands the description, but still guesses correctly.

Proximal Policy Optimization (PPO) (Schulman et al.,|2017) is an on-policy actor-critic algorithm
that treats language generation as Markov Decision Process (MDP) where at each state s; in the
sequence (current context), the next action a; is chosen (token), until at the end of the sequence 1" a
reward r is observed. As is typical in RL, the discounted expected reward of the policy is optimized
E, [Z,:T:o vir(s¢, ar)] with v as the discount factor. PPO starts from the initially pre-trained MLLM
my = mo and updates the policy using the following loss:

;Cppo(’frgk,ﬂgkil) = Eat’st,\,ﬂ.ek [min ( :Z:_lAﬁekfl,clip(qﬁ:Z:_l ,1—e€,1+ E)Aﬂ'ek—l))} (1)

o, 7oy (at|st)
where ¢ng71 - ‘ﬂ'ek_l(at\st)’

whether the current action is better than average.

€ is a hyperparameter and A™ is the advantage function that estimates

As suggested by Wu et al| (2021), a token-level penalty KL (m,||m,) = (logmy(as|s:) —
log m,(as|s;)) regularizes the reward function. This avoids large deviations from the pre-trained
MLLM, i.e. the initial policy my. The updated reward is computed as:

7(st, ar) = r(st, ar) — BKL (| |mo) @)
where the KL coefficient 3 is a hyperparameter.

Natural Language Policy Optimization (NLPO) (Ramamurthy et al., 2023) extends PPO by
restricting the action-space with a reduced number of tokens. This is achieved by freezing a masked
policy 7y, every p steps and sampling sentences during training from this masked policy. NLPO
employs top-p sampling for 7y, which limits the sampled tokens to the smallest subset of tokens
with cumulative probability greater than the probability p. This additional constraints restricts the
sampled sentences to be closer to the masked policy, a snapshot of a previous policy, preventing
large deviations and divergence.

Kahneman-Tversky Optimization (KTO) (Ethayarajh et all 2024) takes inspiration from
prospect theory and proposes to directly optimize the LLM from binary preferences similar to
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DPO (Rafailov et al.| [2024), instead of performing RLHF. In contrast to DPO, it does not require
paired preference data. The loss function is defined as:

Liro (70, m0) = Eay symmy [N (1 = 0(B(log @3 — Egrom, [KL(mo||m0)])))] ifr =41 (3)
Lro(mo,70) = Ea, symmg [N~ (1 = 0(B(Bsramy [KL(mg|m0)] —log ¢70)))] ifr= -1 (4)

that depends on whether a generated sentence produced a +1 or -1 reward. A/~ are hyperparame-
ters for the two loss terms respectively. Since we do not have a static dataset, we sample sentences
on-policy and shuffle the context, i.e. image input and prompt, within each batch for the KL term.

RL algorithms are known to be unstable (Ouyang et al.l [2022; (Christiano et al., |2017; /Ahmadian
et al.; 2024) which is why KL terms have been introduced for fine-tuning LLMs. Nonetheless, a
potential danger that can arise from this is that the policy of the speaker may diverge and start to
generate unusual sentences which exploit the listener agent. These sentences may not describe the
images correctly, or deviate from being grammatically correct, but enumerations of words instead.
Careful selection of hyperparameters is generally important for success with any of these algorithms.

3.2 EFFICIENT ADAPTATION OF THE SPEAKER AGENT

Online adaptation of an MLLM does not only require a suitable optimization algorithm, but it should
also be feasible in terms of update speed and flexibility as a common use-case may involve a speaker
agent interacting with several listeners in parallel. As full-fine-tuning MLLMs is computationally
expensive, we adapt these methods by using a parameter-efficient fine tuning method. Given the ver-
satility of LoRA (Hu et al.;[2022)) for both the visual domain and the text domain, and its simplicity,
we employ it in our architecture. We add LoRA adapters on each linear layer in the LLM-module
of the network. As a result, the total number of tuneable parameters are orders of magnitude smaller
than the total number of parameters in the MLLM. One can initialize one set of LoRA adapters for
each listeners and effortlessly swap out LoORA parameters when interacting with multiple listeners.

We employ LLaVA-7B as the speaker model for all experiments because it fits into the memory of a
single GPU while training with LoRA adapters. Since the listener runs in inference mode, we also
evaluate on LLaVA-13B, Qwen , and PaliGemma to increase listener diversity.

4 EXPERIMENTS

We first introduce our experimental setting, i.e. our datasets, the agents, the training, and evaluation
protocol. Then we present the weaknesses and strengths of current MLLMs when dealing with the
visual-language referring expression tasks. Finally, we provide extensive experiments into adapting
a speaker model to different listeners on four different datasets using three algorithms.

4.1 EXPERIMENTAL SETTING

Datasets. We propose a framework for referring expression tasks on four datasets: CLEVR (Johnson
et al., 2017), CUB (Wah et al., 2011), ImageNet(Deng et al., [2009) for REI, and RefCOCO
(Kazemzadeh et al.|[2014) for RES. CLEVR contains images with objects of varying attributes (size,
color, material), requiring fine-grained reasoning to distinguish between different CLEVR scenes.
CUB and ImageNet feature natural images with more conversationally relevant concepts. For REI
on these datasets, we sample two images, randomly select one as the target, and ask the speaker to
describe it in contrast to the other image. We shuffle their order when presenting the images to the
listener to avoid trivial solutions, such as “the left image is the target image”. Further, we ensure
the images come from different classes for CUB and ImageNet. For RES, we employ RefCOCO
which extends COCO (Lin et al., 2014) with human-annotated referring expressions and bounding
box/segmentation mask annotations. This task requires contrasting a specific detail within an im-
age’s context, posing a different challenge from REI. To visually prompt the speaker on the target
object, following [Shtedritski et al.|(2023) we use a red circle as big as the ground truth bounding
box.

Agents. Our experiments consider pairs of agents: a speaker and a listener. Specifically, we use
LLaVA-1.5-7B (Liu et al. 2023b) as the speaker across all adaptation experiments, providing a
good balance between its pre-trained capabilities to bootstrap from and a model size that allows us
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Figure 3: Performance for various

agents on ground-truth descriptions Figure 4: Example of ground-truth descriptions (right) on

with all attributes and with sets of CLEVR for the target image (left) with all attributes, and
three attributes for CLEVR. with sets of three attributes.

to fine-tune LoRA adapters on a single A100 40GB GPU. As listener agents, we employ LLaVA-
1.5-7B, LLaVA-1.5-13B, Qwen (7B)(Bai et al.| for REI, and PaliGemma (3B)
for RES, which is the only open model of reasonable size capable of producing segmentation
masks as output. Each listener model has distinct capabilities when it comes to image and lan-
guage recognition, with Qwen being the weakest one. This diversity in listener agents simulates a
population of agents, testing the speaker’s ability to adapt its language effectively.

To introduce an additional challenge, we induce perceptual weaknesses in the listener agents: ~’color
blindness” (grayscaled images) and “’blurred vision” (Gaussian blur). These weaknesses require the
speaker, which receives unaltered images, to adapt its language to account for concepts that are not
recognizable by the listener agent.

Training and evaluation. We train the speaker (LLaVA-7B) with LoRA adapters on all linear layers
of the LLM, keeping the vision module fixed. During online adaptation, we play three episodes
before updating the parameters using PPO, NLPO, or KTO algorithms, resulting in a batch size of 3
which maximizes our memory usage. The speaker is trained for 1800 interactions (600 update steps)
and evaluated on a held-out test set of 300 episodes per dataset. We use the average success rate
as evaluation metric for REI and mean IoU for the RES task. Each experiment combines a specific
speaker-listener pair either with or without perceptual weaknesses. We provide additional details
about the MLLM prompts in Supp.

4.2 EVALUATING LISTENERS WITH GROUND-TRUTH DESCRIPTIONS ON CLEVR

CLEVR’s detailed scene descriptions allow us to construct a ground-truth (GT) speaker agent for
the REI task that produces image descriptions with perfect perception and reasoning abilities. This
enables us to evaluate listeners given an ideal speaker. The produced descriptions mention all at-
tributes that appear at least once in the target image, but do not exist in the confounding image. We
also ablate the GT speaker by omitting one attribute type, measuring the importance of each attribute
for REL Examples of these image descriptions are shown in Fig. [4]

We evaluate our listener agents alongside GPT-4V, to obtain a reference for a state-of-the-art MLLM,
and present the results in Fig. 3] We observe that when all attributes are present, GPT-4V performs
best (0.99), followed by LLaVA-7B and LLaVA-13B (0.83 and 0.73), with QWEN being the weak-
est model (0.63) . Removing size and material attributes has little impact on performance, except
for a slight increase in LLaVA-13B and QWEN’s scores, indicating that size information is more
confusing than helpful for these models, possibly because of perspective. In contrast, omitting shape
information significantly affects GPT-4V’s performance (from 0.99 to 0.84), while the other listeners
are less affected, showing that GPT-4V is more sensitive to shape than other models.

Most notably, removing color information results in significant performance drops across all listen-
ers, highlighting its importance for solving the REI task on CLEVR. These findings demonstrate
that different MLLMs prioritize different attributes and have varying capabilities, as shown in Fig.
B] Even GPT-4V struggles to solve the task without color or shape information.
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Figure 5: Comparing NLPO, PPO, KTO, GT on CLEVR. ZSL: no training was involved. Normal:
no perceptual impairment, Blur: Blurry vision, Color blind: Vision with no color. P-value of statis-
tical significance test w.r.t. ZSL: . (< 0.1), * (< 0.05), ** (< 0.01), *¥** (< 0.001)
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Figure 6: Results on the CUB (Top) and ImageNet (Bottom) datasets (REI task). ZSL means that no
training was involved. Perceptual weakness refers to the visual impairment applied to the listener.
P-value of statistical significance test w.r.t. ZSL: . (< 0.1), * (< 0.05), ** (< 0.01), *** (< 0.001)

4.3 COMPARING LISTENERS AND ADAPTATION METHODS ON REI TASK

REI on CLEVR. As shown in Fig. [5| when we do not adapt the speaker in the zero-shot learning
(ZSL) setting, listener models achieve modest performance. The LLaVA-13B listener achieves the
highest performance with an accuracy of 0.58. Introducing color blindness decreases performance
for both LLaVA models, while blurred vision has little impact. Qwen performs weakest both with
and without perceptual weaknesses, i.e., it struggles to understand the descriptions of LLaVA-7B.

KTO-based adaptation significantly improves performance for LLaVA-7B and LLaVA-13B (peak-
ing at 0.69 and 0.67). Qwen also sees smaller improvements to 0.57. PPO-based adaptation yields
smaller gains, while NLPO shows little improvement over zero-shot learning, except when Qwen
is the listener. Testing these algorithms with perceptual weaknesses reveals reduced performance
increases due to the harder task for the speaker. Blurred vision is generally easier to handle than
color blindness, with KTO performing the best overall.

Compared to using GT descriptions for evaluating the listeners (0.67/0.82/0.85), there is a significant
gap to the best adaptation results with KTO (0.57/0.67/0.69) even with normal vision. This suggests
that the REI task is challenging enough for further research in online adaptation of MLLMs.



Under review as a conference paper at ICLR 2025

Speaker Description for Colorblind listener

ZSL A small bird with a and gray wings is standing on a rock.

The image shows a small bird standing in a shallow pool of water. The bird is
Adapted surrounded by rocks and appears to be drinking from the water. The scene is
captured in black and , giving it a classic and timeless feel.

ZSL A bird with a is perched on a wooden post.
Adapted A bird sitting on a wooden post.

A group of four geometric shapes, including a red cube, a blue cube, a green
ZSL sphere,and a , are arranged on a surface. The shapes are
placed in a way that they appear to be floating in the air.

Adapted A group of three cubes in a row.
A group of five different colored balls are placed on a surface. The balls

ZSL are arranged in a row, with one at the left end, one in the middle, and three on
the right side. The colors of the balls are red, blue, , green, and purple.

Adapted A group of five different colored balls are placed on a surface

Figure 7: Qualitative results on CUB and CLEVR when the speaker interacts with a colorblind
listener. We present the descriptions generated by the untrained agents (ZSL) and the descriptions
obtained after training (Adapted). After adaption, the speaker avoids color attributes.

REI on natural images. Fig. [6|presents the adaptation results on CUB and ImageNet using natural
images. We observe that all listeners perform well in ZSL, with LLaVA-13B achieving an accuracy
of 0.86 (CUB) and 0.87 (ImageNet). The MLLMs are likely more familiar with such natural images
making it easier for the speaker to pick out differences and the listener to recognize them. However,
there is still a large gap to Qwen with 0.63/0.73 for CUB/ImageNet.

In general, adaptation methods provide a boost in performance for all listeners. While KTO-based
adaptation excels on ImageNet, all three algorithms perform similarly well on CUB. Perceptual
weaknesses have a larger impact on CUB, with removing color having the highest effect on perfor-
mance. On ImageNet both weaknesses only slightly decrease the performance. This is consistent
across listeners and algorithms.

In conclusion, online adaptation is possible for every tested agent and algorithm on the REI task.
However, listener capabilities influence improvements, and different algorithms perform better on
different datasets and listeners. Overall, KTO seems to work best when considering all experiments.
At the same time, none of the existing algorithms are able to find a policy that achieves results close
to the of the GT agent leaving room for improvement. Moreover, we find that adaptation on blurred
or grayscale images can reach or surpass zero-shot learning performance on normal images, which is
a desirable outcome in scenarios where we want to avoid a disadvantage for agents with perceptual
weaknesses. This applies to a lesser degree on ImageNet, and was not generally true on CUB, where
achieving this target could be an promising direction within the REI task framework.

4.4 ADAPTING TO PALIGEMMA ON THE RES TASK

On the referring expression segmentation task, we adapt the LLaVA-7B speaker to PaliGemma as
listener on the RefCOCO dataset. In Fig. [9] we report the mean intersection over union (mloU) for
ZSL, PPO, NLPO, and KTO together with probing the PaliGemma listener with the ground truth
(GT) referring expressions created by humans that come with the dataset.

We find that the RES task poses a particular challenge to some adaptation algorithms, because neither
PPO or NLPO can significantly improve over the zero-shot descriptions in normal, blurred, and
grayscaled images. Only KTO manages to obtain an improvement from 0.34 to 0.44 for normal
images, from 0.28 to 0.41 in blurry images, and from 0.28 to 0.40 in grayscale images. At the same
time, the GT descriptions still outperform the KTO adapted speaker reaching 0.63/0.56/0.61 mIoU
in the three settings respectively. Thus, we conclude that there is still room for improvement for
online adaptation to reach closer to human performance.
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Speaker Image Speaker Description for IoU Segmentation
Colorblind Listener Before After

A man wearing a

ZSL b lue shirt,

Adapted Man in a suit and tie.

A baseball player
wearing a blue and 0

Laie uniform.

A baseball player in 0.39

a pgaitte uniform.

A red circle is drawn
around the zebra inthe 0
image.

Zebra on left. 0.77
A baseball player 0.02
holding a bat. ’

Catcher. 0.79

Figure 8: Qualitative results of the RES task on RefCOCO with a LLaVA-7B speaker and coloblind
PaliGemma listener.

PaliGemma
When inducing perceptual weaknesses on the ok ok
PaliGemma listener, ZSL performance degrades, but 0.6 -
to a lesser degree than for the REI task. This is ex- o . -
pected because objects that are contrasted in RES are % 0.4
often easier to identify by their relation in the scene, '
e.g., where it is located spatially rather than by color 0.2
or shapes. As aresult, PaliGemma can deal with blur
and grayscale relatively well in this context. Apart 0.0
from KTO being the best adaptation algorithm for Normal  Blur Color-blind
RES, we also find that KTO can adapt to perceptu- mmm ZSL Emm PPO  mmm GT
ally weakened listeners to improve over ZSL perfor- mmm NLPO = KTO

mance of the normal listener.

Figure 9: mIoU on RefCOCO for RES with
4.5 QUALITATIVE LLaVA-7B speaker and PaliGemma listener.
ANALYSIS ON COLORBLIND LISTENER P-value w.r.t. ZSL: . (< 0.1), * (< 0.05), **
(< 0.01), *** (< 0.001)
In Fig. [7] we show qualitative results on CUB, and
CLEVR, by contrasting generated descriptions before and after adaptation on the REI task when
interacting with a colorblind listener.

We observe that color attribute is mentioned predominantly before adaptation, and, apart from refer-
ring to “black” and “white”, completely avoided after adaptation. On CUB for instance, the speaker
mentions the “yellow chest” and “yellow beak” to discriminate the birds in the zero-shot setting,
and learns to focus the description more on the surrounding scene and action performed by the bird
to discriminate the two images after adaptation. On CLEVR, descriptions similarly contains many
references to the color attributes in the initial descriptions, but they do not mention colors after adap-
tation. In contrast, the adapted descriptions focus on the overall count of the objects and are more
concise than the original ones. Moreover, zero-shot descriptions sometimes mix objects from both
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images, e.g., description in the third row mentions “red cube” and “blue cube” from the left image,
and “green sphere” and “yellow sphere” from the right image. After adaptation this behaviour is
suppressed and the speaker focuses more on the target image.

In Fig.[8] we show examples of the adaptation on RefCOCO for the RES task, again when the listener
is colorblind. The first two rows exemplify how mentioning color can confuse the listener, e.g., in
the second row, where the listener segments the incorrect baseball player because it cannot attribute
the “blue” uniform to the correct one. After adaptation, not mentioning the colors and focusing on
other aspects, such as the “suit and tie” in the first example, allows the listener to more accurately
segment the target. Interestingly, there are a few examples where the visual prompting through the
red circle (Shtedritski et al., 2023)) can cause incorrect descriptions mentioning the circle which is
not visible to the listener. However, online adaptation can also correct for this failure case as seen in
the third row, where the speaker correctly refers to the “zebra on left”.

In conclusion, from these qualitative examples, we observe that the speaker learns to correctly iden-
tify the perceptual weakness of the listener, and adapts its description accordingly to be more effec-
tive in its communication.

5 LIMITATIONS

As it is widely known in the literature (Ouyang et al.|
2022; |Christiano et al.,[2017; |Ahmadian et al.,|[2024)), RL 0.66
algorithms tend to be unstable when the reward signal is
noisy, or the actions space immense. During this study,
we have observed that there is a divergence effect during  , 0.62
online adaptation. Fig. exemplifies this divergence

0.64

Ac

0.60
effect on CLEVR dataset for LLaVA-13B which is rep- /\—” 1
resentative of the observations on other datasets and with 0.58 = E;go
other listeners. For all our experiments, we report the per- 0.56 PPO
formance after 1800 episodes. However, Fig. [I0] shows ‘ ‘ | ;
. . . . 0 500 1000 1500
the peak performance is sometimes achieved at different Episodes

times during training due to the variance in online adapta-

tion. One potential reason for this is the online nature of Figure 10:  Divergence effect on
gathering training samples. The constantly changing pol- CLEVR for LLaVA-13B. The perfor-
icy during training affects the generated data, which in mance fluctuates instead of monotoni-
turn influences the future policy and exploration of possi- cally improving.

ble descriptions. With the large actions space of MLLMs,

it is challenging to keep these effects in check.

6 CONCLUSION

In this work, we introduce a framework for two referring expression tasks (REI/RES) involving com-
municating MLLM agents. On these tasks, we study how MLLM agents can adapt to one another
on-the-fly. Our online adaptation setting is significantly more challenging than aligning MLLMs on
carefully collected offline datasets, while opening up new applications that require individual per-
sonalization. Every communication partner understands language and concepts required to solve the
tasks at different levels and we introduce perceptual weaknesses to further control for agent variety.
The referring expression tasks pose a challenge to currently available MLLMs, especially for images
with fine-grained differences, and when precise segmentation is required. All the adaptation algo-
rithms we have tested could improve task performance on REI with KTO working the best overall
and being the only one achieving improvements on the RES task. These results show that, 1) it is
possible to improve over the initial pre-trained policy by learning about the listener capabilities, and
2) we can perform this learning in an online setting. However, we also observe that current methods
do not monotonically improve during the training process, and cannot find an “optimal” policy, since
we have demonstrated that better ones exist with our GT agent experiments. With our task setting,
we want to encourage further research on how to make online adaptation of MLLM effective and
practically viable to extend to real-world scenarios for MLLM personalization.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Arash Ahrpadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting REINFORCE style optimization for
learning from human feedback in llms. In ACL, 2024.

Stephan Alaniz, Diego Marcos, and Zeynep Akata. Learning decision trees recurrently through
communication. In CVPR, 2021.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford,
Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob L. Menick,
Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski,
Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo: a visual
language model for few-shot learning. In NeurIPS, 2022.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Jo-
han Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Slav Petrov, Melvin
Johnson, Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Tim-
othy P. Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Isard, Paul Ronald
Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, Ryan
Doherty, Eli Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
Goel, George Tucker, Enrique Piqueras, Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo Dani-
helka, Becca Roelofs, Anais White, Anders Andreassen, Tamara von Glehn, Lakshman Yagati,
Mehran Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski, and et al. Gemini: A
family of highly capable multimodal models. In arXiv preprint arXiv:2312.11805, 2023.

Alan Ansell, E. Ponti, Anna Korhonen, and Ivan Vulic. Composable sparse fine-tuning for cross-
lingual transfer. In ACL, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chenggiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuangqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan,
Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou,
Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. In arXiv preprint
arXiv:2309.16609, 2023.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In ACL, 2022.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
Paligemma: A versatile 3b vlm for transfer. In arXiv preprint arXiv:2407.07726, 2024.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with GPT-4. In arXiv preprint arXiv:2303.12712, 2023.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In NeurIPS, 2017.

Rodolfo Corona, Stephan Alaniz, and Zeynep Akata. Modeling conceptual understanding in image
reference games. In NeurIPS, 2019.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M. F. Moura, Devi
Parikh, and Dhruv Batra. Visual dialog. In CVPR, 2016.

Harm de Vries, Florian Strub, A. P. Sarath Chandar, Olivier Pietquin, H. Larochelle, and Aaron C.
Courville. Guesswhat?! visual object discovery through multi-modal dialogue. In CVPR, 2016.

11



Under review as a conference paper at ICLR 2025

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. In NeurIPS, 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. In arXiv preprint arXiv:2402.01306, 2024.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqgi Liu, Misha Khalman, Felipe Llinares-Lopez,
Alexandre Ramé, Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret, and Mathieu Blondel.
Direct language model alignment from online ai feedback. In arXiv preprint arXiv:2402.04792,
2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR, 2022.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In CVPR, 2017.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referitgame: Referring to
objects in photographs of natural scenes. In EMNLP, 2014.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. In ICLR, 2024.

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
training through low-rank updates. In NeurIPS workshops, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Liu, Jing Liu, Toshiaki Koike-Akino, Pu Wang, Matthew Brand, Ye Wang, and Kieran Parsons.
Loda: Low-dimensional adaptation of large language models. In NeurIPS workshops, 2023a.

Aiwei Liu, Haoping Bai, Zhiyun Lu, Xiang Kong, Simon Wang, Jiulong Shan, Mengsi Cao, and
Lijie Wen. Direct large language model alignment through self-rewarding contrastive prompt
distillation. In ACL, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023b.

Zhengyi Ma, Zhicheng Dou, Yutao Zhu, Hanxun Zhong, and Ji rong Wen. One chatbot per person:
Creating personalized chatbots based on implicit user profiles. In SIGIR, 2021.

Zigiao Ma, Jacob Sansom, Run Peng, and Joyce Chai. Towards a holistic landscape of situated
theory of mind in large language models. In EMNLP, 2023.

Otniel-Bogdan Mercea, Alexey Gritsenko, Cordelia Schmid, and Anurag Arnab. Time-memory-and
parameter-efficient visual adaptation. In CVPR, 2024.

Jinjie Ni, Tom Young, Vlad Pandelea, Fuzhao Xue, Vinay Vishnumurthy Adiga, and E. Cambria.
Recent advances in deep learning based dialogue systems: a systematic survey. In Artificial
Intelligence Review, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In NeurIPS, 2022.

Jonas Pfeiffer, Ivan Vulic, Iryna Gurevych, and Sebastian Ruder. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer. In EMNLP, 2020.

12



Under review as a conference paper at ICLR 2025

A.J. Piergiovanni, Isaac Noble, Dahun Kim, Michael S. Ryoo, Victor Gomes, and Anelia Angelova.
Mirasol3b: A multimodal autoregressive model for time-aligned and contextual modalities. In
arXiv preprint arXiv:2311.05698, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
NeurlPS, 2024.

Roberta Raileanu, Emily L. Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself
in multi-agent reinforcement learning. In ICML, 2018.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. In ICLR, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. In arXiv preprint arXiv:1707.06347, 2017.

Tulian Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C. Courville, and Joelle Pineau. Building
end-to-end dialogue systems using generative hierarchical neural network models. In AAAI, 2015.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez, and Ion Stoica. S-lora: Serving
thousands of concurrent lora adapters. In arXiv preprint arXiv:2311.03285, 2023.

Aleksandar Shtedritski, Christian Rupprecht, and Andrea Vedaldi. What does clip know about a red
circle? visual prompt engineering for vims. In ICCV, 2023.

Charles Burton Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for
natural language generation with implicit language q learning. In /CLR, 2023.

Haoyu Song, Weinan Zhang, Jingwen Hu, and Ting Liu. Generating persona consistent dialogues
by exploiting natural language inference. In AAAI 2019.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F. Christiano. Learning to summarize from human feedback. In NeurIPS,
2020.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. In NeurIPS, 2022.

Ece Takmaz, Nicolo’ Brandizzi, Mario Giulianelli, Sandro Pezzelle, and Raquel Fern’andez. Speak-
ing the language of your listener: Audience-aware adaptation via plug-and-play theory of mind.
In ACL, 2023.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. In arXiv preprint
arXiv:2405.09818, 2024.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Jian Wang, Chak Tou Leong, Jiashuo Wang, Dongding Lin, Wenjie Li, and Xiao-Yong Wei. Instruct
once, chat consistently in multiple rounds: An efficient tuning framework for dialogue. In ACL,
2024a.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024b.

Jeff Wu, Long Ouyang, Daniel M. Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, and
Paul F. Christiano. Recursively summarizing books with human feedback. In arXiv preprint
arXiv:2109.10862, 2021.

13



Under review as a conference paper at ICLR 2025

Yichao Wu, Yafei Xiang, Shuning Huo, Yulu Gong, and Penghao Liang. Lora-sp: Streamlined
partial parameter adaptation for resource-efficient fine-tuning of large language models. In arXiv
preprint arXiv:2403.08822, 2024.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhensu Chen, Xi-
aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. In ICLR, 2024.

Shih yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In ICML,
2024.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. In arXiv preprint arXiv:2308.03303,
2023.

Yizhe Zhang, Xiang Gao, Sungjin Lee, Chris Brockett, Michel Galley, Jianfeng Gao, and William B.
Dolan. Consistent dialogue generation with self-supervised feature learning. In arXiv preprint
arXiv:1903.05759, 2019.

Hanxun Zhong, Zhicheng Dou, Yutao Zhu, Hongjin Qian, and Ji rong Wen. Less is more: Learning
to refine dialogue history for personalized dialogue generation. In NAACL-HLT, 2022.

Daniel M. Ziegler, Nisan Stiennon, Jeff Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. In arXiv
preprint arXiv:1909.08593, 2019.

14



Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL

A BROADER IMPACT

In this work we study the capabilities of a speaker to adapt to a listener. We considered MLLMs
adapting to other MLLMSs, but one could apply these methods also for adapting MLLMs to hu-
mans. If such techniques were used to adapt MLLMs to humans, people with malicious intend
could purposefully teach the MLLMs to produce harmful or otherwise undesirable content. Online
adaptation could effectively overwrite previously learned safety measures of the alignment phase. A
possible solution could involve intertwining or following online adaptation with alignment training.
Additional research is require to measure both opportunities and risks in this scenario.

In the setting where we adapt an MLLM agent to another MLLM agent, malicious actors could try
to exploit systems employing MLLMs by programmatically learning to maximize a desired action
of the target MLLM. These “hacks” or “jailbreaks™ are a security concern for everyone deploying
MLLM, especially if they are deployed adapting to the users. As a result, research on defense
mechanisms is just as important as developing more advanced ways to enable personalization.

On the other hand, we believe that allowing MLLMs to adapt to the specific needs of a users can
enable new use cases and improve inclusion across diverse population groups. More effective com-
munication towards users with disabilities could lower the barrier of entry and learning curve to
bring MLLM technology and their advancement to a broad audience.

B MLLM PROMPTING DETAILS

The referring expression identification (REI) task starts with the speaker generating a description for
the target image. The prompt given to the speaker is:

Write a description for the left/right image, such that it can be
differentiated from the right/left image, but do not talk about
the right/left image. Do not name which image you are describing.

Subsequently, with the help of the speaker’s response, the listener generates a sentence containing
its guess. For LLaVA listener agents, we use the query template:

Does this sentence: ’{nﬁ”}’ describe the left image or the right
image? Do not explain your reasoning.

where {m(s)} is replaced with the description written by the speaker. On the other hand, Qwen gets
the prompt:

Which image does the sentence ’'{m(}’ describe? A. Picture 1 B.
Picture 2.

After receiving the listener’s answer, the reward is computed by looking for keywords, i.e. “left, A,
1” and “right, B, 2”, and comparing it with the ground truth label.

For the referring expression segmentation (RES) task, the prompt given to the speaker is:
Write a short description for the highlighted object.
The PaliGemma listener is then prompted with:
segment ' {m(*)}’
where “segment” is a PaliGemma specific keyword to induce its segmentation capabilites. The
model proceeds to output tokens that can be translated to a segmentation mask. We calculate the
intersection over union (IoU) between the predicted segmentation mask and the ground truth seg-

mentation mask as a reward for the speaker. Since KTO requires a binary reward, we binarize the
IoU values with a threshold of 0.5.
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LLaVA-7b (Blur) Lo LLaVA-7b (B&W)
—— LLaVA-13b (Blur) —— LLaVA-13b (B&W)
—— QWEN (Blur) —— QWEN (B&W)

w/o shape w/o color w/o shape wj/o color

w/o material wj/o size w/o material w/o size

Figure 11: Performance for ground-truth descriptions with blurred vision (left) and colorblindness
(right).

Since LLaVA models can only take a single picture as input, we concatenate the images horizontally
and add a white bar between them before feeding them to LLaVA-7B and LLaVA-13B. As a result
of this step, LLaVA refers to the images as left or right. No such processing is necessary with Qwen,
as it can handle multiple images in a single query. Qwen automatically labels them as picture 1 and
picture 2.

C GROUND-TRUTH DESCRIPTIONS WITH PERCEPTUALLY WEAKENED
LISTENERS

We present the evaluation of the GT speaker against listeners with perceptual weakness in Fig. [IT]
We observed that both blurry and grayscale images cause a significant drop in performance, with the
latter having the greatest impact.

When all attributes are mentioned, blurring decreases the scores of LLaVA-7B and Qwen from
0.83 and 0.63 to 0.74 and 0.53. LLaVA-13B maintains its accuracy of 0.73. When the speaker
additionally does not mention any color attributes in the description, the accuracy of all listeners
drop to near-random performance (i.e., 0.5), with LLaVA-13B performing best at 0.56 accuracy.
This result indicates that colors are vital for agents with blurry vision. Removing shapes from
the descriptions increases the scores by a small margin in all cases, which suggests this information
could be confusing in the presence of blur. Additionally, LLaVA models gain a few percent accuracy
when materials are not mentioned in the description. Finally, we would like to highlight that Qwen
achieves at most 0.55 score in this setup, which is very close to random guessing.

With grayscale images, LLaVA-7B achieves the lowest score of 0.55 when shape information is
lacking in the descriptions, and has the highest accuracy of 0.62 with colors removed. The worst
and best cases for LLaVA-13B are again without shape (0.51) and without color (0.65), which have
a larger difference compared to the smaller version of LLaVA. Those results show color information
starts to confuse the models as it is useless, and mentioning shape is more important in this case.
Similar to blurry images, Qwen has a very low performance, with a maximum score of 0.56. These
observations support our previous findings that shape and color are the most important attributes for
performing well on the REI task with CLEVR images.

C.1 ADDITIONAL QUALITATIVE RESULTS ON REI

In Fig. [[2) we show qualitative results for the REI task on CLEVR, CUB and ImageNet by contrast-
ing generated descriptions before and after adaptation. In CLEVR the original description is much
longer and even if the speaker is able to mention all the objects in the image, the associated shapes
and color are oftentimes incorrect. On the other hand, after adaptation, the descriptions are much
shorter, mentioning a subset but distriminative part of the scene. The adapted policy frequently men-
tioning shapes (“blocks”, “balls”) and colors (“yellow and silver”) provides additional evidence that
these attributes are important and easier to recognize for MLLM:s in this context.

The ZSL descriptions generated for CUB images are generic and long, often applying to both im-
ages. The speaker tends to confuse the confounding image into the description, for instance, when
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Target Confounder Speaker Description Result
A group of three different colored balls, one yellow, one red, and one
ZSL : &
blue, are placed on a white surface
~ Adapted A stack of yellow and silver blocks J
a 7SL A group of colorful balls, including blue, green, and purple, are arranged
d on a white surface. The balls are of various sizes and shapes, creating an
interesting and visually appealing display. %
Adapted A group of colorful balls on a table. (
7ZSL A black and yellow bird is perched on a tree branch. 82
m Adapted A black and white bird with a red head perched on a tree branch. /
=)
O - ZSL The image features a small bird perched on a branch. The bird is facing the
camera and appears to be looking at it. The branch is located in the middle  §¢
f of the image and the bird is positioned towards the left side of the frame
Adapted A small bird with brown and white feathers perched on a branch J
\ ZSL A bird standing in the water next to a sailboat. &
7 ke s Adapted nobody: Sailboat with a black and white sail. 4
én 8 | E 4 q 7SL image features a lizard with a long tail, sitting on a branch. image shows a
= = sailboat in the water, with a person on board. X
x Adapted image: A lizard is sitting on a branch with green leaves. J

Figure 12: Qualitative results for CLEVR, CUB and ImageNet datasets. We present the descriptions
generated by the untrained agents (ZSL) and the descriptions obtained after training (Adapted).

talking about the bird “facing the camera” and the “black and yellow” bird mixing the colors of
both birds. In contrast, the trained agent just mentions the essential distinguishable aspects of the
target images (“brown and white feathers” and “black and white bird with a red head”). Lastly, on
ImageNet, one failure case of the untrained speaker is that it describes both images without clearly
identifying the target. After training, it learns to focus on describing the content of the target image
by itself. In conclusion, from these qualitative examples, we observe that the model learns to be
more concise, focusing on the correct image and primarily mentions the relevant attributes, which
more frequently include color and shape.

D COMPUTATIONAL RESOURCES

For every experiment, we use 2x A100 40GB GPUs, where one GPU is used for the listener and
the other for the speaker. Since the speaker is trained, it requires more computational resources
than the listener. It is possible to fit a 13B parameter model into the memory of a single GPU in
inference mode for the listener. However, training MLLM only allows models up to 7B parameters
on a single GPU, even when using a parameter-efficient fine-tuning method such as LoRA. The
training time depends on the lengths of sentences LLaVA generates as the speaker. Longer token
sequences take more time to produce as well as to backpropagate through the model. While the
length of generations usually diminishes as the speaker adapts to the listener, we also observe the
the generated descriptions vary in lengths for the different dataset. Overall, a single experiment of
playing 1800 REI episodes and performing 600 update steps (batch size 3) takes around 5-6 hours
training time.

E HYPERPARAMETERS

For all experiments, we perform a grid search over a subset of hyperparameters and report the
results of the best set of hyperparameters. Generally, there was no single set of hyperparameters
that performed well across all experiment. The hyperparameters that we considered for grid search
are: the learning rate Ir, the rank r of the LoRA and the « parameters in LoRA. Depending on
the algorithms, datasets and models, the I was searched in the interval [le-7, le-8, 1-9], the r was
searched in the interval [32, 64, 128] and the o was searched in the interval [64, 128, 256, 512,
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Figure 13: Number of unique words produced by the LLaVA-7B speaker before (ZSL) and after
(NLPO, PPO, KTO) adaptation to different listeners.
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Figure 14: Average sentence length produced by the LLaVA-7B speaker before (ZSL) and after
(NLPO, PPO, KTO) adaptation to different listeners.

1024, 2048]. The remaining hyperparameters were kept fixed without performing a grid search.
Specifically, for 8 in KTO we used 0.1, and for PPO and NLPO we used 0.2. € in PPO was set to 1,
top-p sampling in NLPO was set to 0.9. A~ and A were set to 1.0.

F ANALYSIS OF ADAPTED LANGUAGE

We analyze the language of the LLaVA-7B speaker before and after adaptation. Figure [I3] shows
the number of unique words, i.e., the speaker’s vocabulary size when interacting with the different
listeners. We find that PPO consistently reduces the number of unique words the speaker uses.
However, when interacting with the LLaVA listeners, NLPO does not change the vocabulary size
of the speaker. Similarly, KTO also retains the number of unique words when interacting with
LLaVA-13B.

Figure [T4] shows the average sentence length of the LLaVA-7B speaker. The statistics follow a
similar trend to the unique words. Interestingly, NLPO and KTO can even increase the average
sentence length, especially when interacting with LLaVA-13B.

In this study, our goal is to adapt to a given listener which can include a change in language char-
acteristics, such as avoiding color words for the color-blind listener. This typically leads to a more
concise and effective communication between MLLMs. If language drift should be avoided as much
as possible, the hyperparameter for the KL term of each adapatation algorithm can be increased.

G QWEN2-VL EXPERIMENTS AND TASK DIFFICULTY

We extend our analysis to include Qwen2-VL-7B[Wang et al.|(2024D)) as a recent open MLLM which
is generally stronger than the models evaluated in the main paper. In Table [I] we report the ZSL
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Image Pairing Normal B&W Blur Occlusion
Random 0.96 0.69 092 0.78
Equal #obj. & overlap 0.95 0.56  0.89 0.68
Min. 8 objects 0.89 0.57 0.85 0.62

Table 1: ZSL performance of Qwen2-VL on the REI task as both speaker and listener on CLEVR
for all impairments. Different image pairing strategies alter the difficulty of the task. Normal: no
perceptual impairment, Blur: Blurry vision, B&W: Vision with no color, Occlusion: Part of image
not visible.

LLaVA-7B
Qwen2-VL  Normal Blur B&W
ZSL 0.71 0.66 0.54
KTO 0.72 0.66 0.56
PPO 0.74 0.66 0.56

Table 2: Results of the REI task on the CLEVR dataset. Qwen2-VL-7B is the speaker and LLaVA-
7B the listener. ZSL means that no training was involved. Normal: no perceptual impairment, Blur:
Blurry vision, B&W: Vision with no color.

performance of Qwen2-VL as both speaker and listener on the REI task. The first row (random) is
the standard evaluation setting where we randomly sample two images from the CLEVR dataset. We
observe that it performs significantly better than any other MLLLM reaching close to a perfect score
both without impairment and even with the blurry impairment. Additionally, we include experiments
on the occlusion impairment as described in Section [H] To increase the difficulty of our proposed
task, we can alter the sampling of the image pairs. For example, in the second row we only sample
images with an equal number of objects and, for every episode, pick one our of 1000 image pairs
for which there is the most overlap in identical objects in the scene. This increases difficulty such
that the results for the colorblind listener drops from 0.69 to 0.56. Another option is to always
sample images with at least 8 objects which is equally challenging for the colorblind listener and
also increases difficulty for all other settings, e.g., listener with occlusion impairment drops from
0.78 to 0.62. Overall, while strong MLLMs can often achieve a high zero-shot learning performance
on the REI task, we can increase its difficulty by sampling hard image pairs.

In Table 2] we adapt a Qwen2-VL speaker to a LLaVA-7B listener the REI task on CLEVR. We
observe that it is generally more challenging to adapt a strong MLLM, such as Qwen2-VL. There
are small improvements when adapting Qwen2-VL on a listener without impairment (+3%) or a
colorblind listener (+2%), but no improvement on a listener with blurry vision.

H OcCCLUSION IMPAIRMENT

To extend the number of impairments, we explore occlusion as another option. For this impairment,
we remove part of both images for the REI task on the listener side. Specifically, we black out the
left side of the image up to a given ratio. In Table[3] we report ZSL experiments with Qwen2-VL
and LLaVA-7B as both the speaker and listener. We observe that for Qwen2-VL as the speaker,
occluding half of the image already reduces performance while for LLaVA-7B this only happens
starting from 60% occlusion. As such, occlusion could be used as another type of impairment, for
which we leave adaptation experiments to future work.

I QUALITATIVE EXAMPLES OF FAILURE CASES

Figure [I3] shows examples of adaptation on REI tasks for the CUB and CLEVR datasets, where the
trained model fails to produce descriptions that help the colorblind listener make correct guesses
even after adaptation. Similar to Figure[7] we show descriptions before and after adaptation.

In the zero-shot setting, the captions include color information, which the listener cannot perceive.
After adaptation, the models often removes color references, but sometimes fails to make any other
adjustment to include supplementary information to make the images distinguishable. For example,
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Occlusion Ratio

Speaker / Listener 0 05 06 07 08 09
Qwen2-VL/Qwen2-VL 097 0.83 0.78 0.69 0.55 0.54
Qwen2-VL/LLaVA-7B  0.70 0.58 0.55 0.51 049 0.52
LLaVA-7B/Qwen2-VL 0.60 0.61 053 0.54 053 0.52
LLaVA-7B/LLaVA-7B 0.55 0.55 0.54 0.51 051 0.51

Table 3: ZSL performance of different speaker-listener pairs on the CLEVR dataset when occluding
the left half of each image in the REI task.

Target

Speaker Description for Colorblind listener

Confounder
' A bird with a black head and is perched on a tree branch.

T

A bird is perched on a branch in front of a green background.

ZSL
Adapted

A bird with a green and brown body perched on a tree branch.

A bird perched on a tree branch.

, are scattered on a

7L A ﬁroup of colorful balls, including red, green, and

surface.

Adapted A group of colorful balls on a surface.

A group of four different colored balls, including blue, green, red, and
are placed on a surface. The balls are arranged in a way that they are not
touching each other.

ZSL

Adapted A group of four different colored balls are placed on a surface.

Figure 15: Qualitative results on CUB and CLEVR when the speaker interacts with a colorblind
listener and the decision of the listener was wrong after adaptation.

in the first and third rows, both images match the adapted captions, making it hard for the listener to
choose the correct one. This suggests that while adaptation helps in some ways by removing color
information, the model cannot always introduce other relevant information.

J RESULT TABLES

all  w/oshape w/omaterial w/osize w/o color
Qwen 0.63 0.63 0.67 0.65 0.56
LLaVA-13b 0.73 0.74 0.82 0.81 0.65
LLaVA-7b  0.83 0.83 0.85 0.81 0.65
GPT-4V 0.99 0.84 0.96 0.95 0.78

Table 4: Performance for various agents on ground-truth descriptions with all attributes and with
sets of three attributes for CLEVR.

In Tables @] [B] [6] [7} and[8] we report the results from Figures[3] 5} [6} and [0} respectively.
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LLaVA-7B LLaVA-13B Qwen
LLaVA-7B  Normal Blur B&W Normal Blur B&W Normal Blur B&W
ZSL 0.55 0.57 0.1 0.58 0.57 0.52 0.51 0.50 0.51
NLPO 0.56 0.59 0.5 0.60 0.57 0.54 0.58 0.52 0.54
PPO 0.64 0.56 0.55 0.63 0.58 0.56 0.57 0.52 0.55
KTO 0.69 0.58 0.56 0.67 0.61 0.56 0.57 0.54 0.53
GT 0.85 0.80 0.62 0.82 0.79 0.65 0.67 0.55 0.56

Table 5: Results of the REI task on the CLEVR dataset. LLaVA-7B is the speaker. ZSL means that
no training was involved. Normal: no perceptual impairment, Blur: Blurry vision, B&W: Vision
with no color.

LLaVA-7B LLaVA-13B Qwen
LLaVA-7B  Normal Blur B&W Normal Blur B&W Normal Blur B&W
ZSL 0.83 075 0.72 0.86 0.80 0.78 0.63 0.59 054
NLPO 0.87 081 0.73 0.89 0.83 0.80 0.70 0.64 0.60
PPO 0.87 0.79 0.76 0.90 0.83 0.79 0.70 066 0.61
KTO 0.87 0.79 0.75 0.88 0.80 0.80 0.69 0.64 0.61

Table 6: Results of the REI task on the CUB dataset. LLaVA-7B is the speaker. ZSL means that no
training was involved. Normal: no perceptual impairment, Blur: Blurry vision, B&W: Vision with
no color.

LLaVA-7B LLaVA-13B Qwen
LLaVA-7B  Normal Blur B&W Normal Blur B&W Normal Blur B&W
ZSL 0.85 0.81 0.82 0.87 0.84 0.84 0.73 072 0.73
NLPO 0.86 0.82 0.83 0.87 0.84 0.83 0.81 076  0.77
PPO 0.85 0.82 0.83 0.87 0.84 0.85 0.81 0.75 0.80
KTO 0.89 0.84 0.88 0.92 094 0.96 0.81 0.75 0.76

Table 7: Results of the REI task on the ImageNet dataset. LLaVA-7B is the speaker. ZSL means
that no training was involved. Normal: no perceptual impairment, Blur: Blurry vision, B&W: Vision
with no color.

PaliGemma
LLaVA-7B  Normal Blur B&W
GT 0.63 0.56 0.61
ZSL 0.34 028 0.28
NLPO 0.34 029 029
PPO 0.34 028 029
KTO 0.44 0.41 0.40

Table 8: Results of the RES task on the RefCOCO dataset as IoU with target segmentations. GT
refers to providing human annotated referring expressions. For other experiments LLaVA-7B is the
speaker. ZSL means that no training was involved. Normal: no perceptual impairment, Blur: Blurry
vision, B&W: Vision with no color.
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