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Abstract

Large Language Models (LLMs) have recently been used to infer causal graphs,
often by repeatedly applying a pairwise prompt that asks about causal relationship
of each variable pair. However, we identify a key limitation of using graphs as the
output interface for the domain knowledge provided by LLMs and other imperfect
experts. Even perfect experts cannot distinguish between direct and indirect edges
given a pairwise prompt, leading to unnecessary errors. Instead, we propose causal
order as a more stable output interface that experts should be evaluated on. Causal
order is also a useful structure by itself; we show, both theoretically and empirically,
that causal order better correlates with effect estimation error than commonly used
graph metrics. We propose a triplet-based prompting method that considers three
variables at a time rather than a pair of variables. For both LLMs and human
annotators as experts, the proposed triplet method leads to more accurate causal
order with significantly fewer cycles. We also show how the estimated causal order
can be used to reduce error in downstream discovery and effect inference.

1 Introduction

Based on evidence that LLMs’ domain knowledge, even if imperfect, can be used to decide the
direction of causal relationship between a pair of variables Kıcıman et al. [2023], Willig et al.
[2022], LLMs have been used to infer the entire causal graph for a problem by invoking the same
pairwise prompt—does A cause B?—multiple times for different pairs of variables Long et al. [2022],
Antonucci et al. [2023], Kıcıman et al. [2023], Cohrs et al. [2023]. Others have used the graph or
edges obtained from LLMs as a prior Takayama et al. [2024] or constraint Long et al. [2023], Khatibi
et al. [2024], Ban et al. [2023a] for causal discovery algorithms and shown that the input graph from
LLMs can improve accuracy of graph discovery.

However, there is a key limitation of using graphs as the output interface for the domain knowledge
provided by LLMs and other imperfect experts. Obtaining the complete graph requires distinguishing
between direct and indirect effects among variables. Given only a pair of variables, it is impossible
to decide whether an edge exists or it is mediated by another variable, even for a perfect human
expert; because the existence of an edge depends on which other variables are considered to be a
part of the node set. For example, consider the true data-generating process, lung cancer→ doctor
visit→ positive Xray. If an expert is asked whether there should be a direct causal edge from lung
cancer to positive Xray, they would answer “Yes” (indeed, such an edge exists in the BNLearn
Cancer dataset [Scutari and Denis, 2014]). However, if they are told that the set of observed variables
additionally includes doctor visit, then the correct answer would be to not create a direct edge between
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lung cancer and positive Xray, but rather create edges mediated through doctor visit. In large graphs,
keeping track of the different variables that can affect a given pairwise decision can be cumbersome.

Instead, we propose causal order as a more stable interface between experts’ domain knowledge
and downstream causal algorithms. Causal order is defined as the topological ordering over graph
variables. Formally, we show that for an (optimal) perfect expert that is given only a subset of
observed variables at a time, the predicted causal graph can be incorrect but the predicted causal order
is always correct. As a result, the standard practice of obtaining a causal graph from imperfect experts
such as LLMs and crowd-sourced human annotators (using pairwise questions) may include many
errors in the inferred edges, leading to further errors in the downstream causal algorithms; which can
be alleviated using a causal order. Moreover, order is a more stable causal construct since it does not
depend on the existence of other variables, thus being more generalizable to new scenarios.

While the causal order is a simpler structure than the full graph, it is useful by itself, aiding downstream
tasks like effect inference and graph discovery. For example, correct causal order is sufficient for
identifying a valid backdoor set for any pair of treatment and outcome variables. Moreover, a
causal order-based metric, topological divergence (Dtop), correlates better with the effect estimation
accuracy than commonly used graph metrics such as structural hamming distance (SHD). Specifically,
Dtop = 0 if and only if the causal order provides a valid backdoor adjustment set. In contrast, there
exist predicted graphs where the identified backdoor set is accurate (and topological divergence is
zero), but their SHD can be arbitrarily high. In addition to effect inference, causal order can also
be used to improve the accuracy of graph discovery algorithms. To this end, we provide simple
algorithms for using causal order to improve existing causal discovery algorithms.

Hence, given the ambiguity in graph edges obtained from experts and the utility of causal order for
downstream tasks, we posit that causal order is more suitable for evaluating the quality of a causal
structure provided by experts than commonly used metrics on edge accuracy. In practice, however,
obtaining causal order from experts is still a challenge because we need to account for imperfect
experts such as crowd-sourced human annotators and LLMs. Using the standard method Kıcıman
et al. [2023], Long et al. [2022] of iterating with a pairwise prompt/question over a set of variables,
while a perfect expert would always predict the correct causal order, we find that using LLMs as
experts leads to many cycles. To reduce the number of cycles from LLM output, we propose a novel
triplet-based prompting strategy for obtaining causal order. Rather than asking questions about a
pair of variables, the triplet prompt asks about the causal relationship between three variables at once.
Since each variable pair occurs in more than one triplet, this results in multiple, possibly conflicting
predictions for each pair (A→ B,B → A, or no edge), which are then aggregated based on majority
vote. We theoretically show that given an imperfect expert with an error ϵ on each prediction, using
the triplet-based prompt results in an error less than ϵ, which is less than the error of the pairwise
prompt. For practical usage, we use the variance in votes for each pair to motivate a final edge
removal step that ensures that no cycles are present in the final output. Comprehensive experiments
using both LLMs and human annotators as imperfect experts demonstrate our contributions.

2 Causal Order: A Stable Output Interface for Experts’ Domain Knowledge

Let G(X,E) be a causal DAG with variables X = X1, . . . , Xn and directed edges E among them.
An edge Xi → Xj ∈ E indicates a direct causal influence of Xi on Xj . The parents of Xi, denoted
pa(Xi), are the set Xk | Xk → Xi, and its descendants, de(Xi), are the set Xk | Xk ← · · · ← Xi.
If Xk is a descendant of Xi but not directly connected, Xi has an indirect effect on Xk. The causal
(topological) order is then defined as a sequence (or ordered permutation) π of variables X is a
topological order iff for each edge Xi → Xj ∈ E, πi < πj .

To evaluate the quality of a causal order relative to a ground-truth graph, we use the topological

divergence metric Dtop(π̂, A), defined as Dtop(π̂, A) =

n∑
i=1

∑
j:π̂i>π̂j

Aij where Aij = 1 if there is

a directed edge from node i to j and 0 otherwise. This metric counts the edges that cannot be
recovered due to the estimated topological order π̂. While a perfect expert provides an accurate causal
order, the causal graph may still be inaccurate because determining an edge between two variables
requires knowledge of potential mediators. Our approach formalizes the idea that an LLM’s pairwise
answers can reflect the ancestor-descendant relationship between variables, demonstrating that causal
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order remains invariant to the presence of unobserved variables. Detailed proofs are provided in
Appendix E.

Proposition 2.1. Consider a Perfect Expert that infers causal relationships based on its (optimal)
domain knowledge. It is given only a subset of observed variables V to predict the causal structure.
Assuming that the Perfect Expert assumes causal sufficiency (the variables not given do not exist
in the system), the predicted causal structure by the Expert might be wrong whereas the predicted
causal order remains correct.

These observations suggest using causal order as the output structure for experts’ domain knowledge
instead of a graph. It facilitates local engagement and objective evaluation via topological divergence,
which is zero for a perfect expert, unlike Structural Hamming Distance (SHD) (see § 5 for examples).

3 Downstream Utility of Causal Order: Discovery and Effect Inference
While the causal order is a more stable measure of experts’ knowledge than the full graph, a natural
question is whether it is a useful measure by itself too. We now show the utility of causal order for
effect estimation and causal discovery, which are also supported strongly by our experimental results
in Sec 5. Specifically, we show that although backdoor adjustment is defined with respect to the
entire graph, causal order is sufficient to find a valid backdoor set. Moreover, the effect estimation
error correlates more with topological divergence than it does with SHD. Causal order is also useful
as a prior or constraint to increase accuracy of discovery algorithms.

Proposition 3.1. [Pearl, 2009, Cinelli et al., 2022] Under the no latent confounding assumption,
for a pair of treatment and target variables (Xi, Xj) in a DAG G, Z = {Xk|πk < πi} is a valid
adjustment set relative to (Xi, Xj) for any topological order π of G.

Proofs are provided in Appendix § E. Propn D.1 states, in simple words, that all variables that precede
the treatment variable in a topological order π of G constitute a valid adjustment set.

Note that the set Z may contain variables that are not necessary to adjust for (e.g., ancestors of only
treatment or target variables). For statistical efficiency purposes, ancestors of the target variable are
helpful for precise effect estimation, whereas ancestors of treatment variable can be harmful [Cinelli
et al., 2022]. However, asymptotically, as the number of data points increases, such variables do not
have any impact on the estimation. We now show that Dtop is an optimal metric to minimize for
effect estimation. That is, Dtop being 0 for a topological order is equivalent to obtaining the correct
backdoor adjustment set using Proposition D.1. And if Dtop ̸= 0, there exists some treatment-target
pair whose backdoor set is not correctly identified.

Proposition 3.2. For an estimated topological order π̂ and a true topological order π of a causal
DAG G with the corresponding adjacency matrix A, Dtop(π̂, A) = 0 iff Z = {Xk|π̂k < π̂i} is a
valid adjustment set relative to (Xi, Xj), ∀πi < πj .

Comparison with SHD. In comparison, the widely used metric for evaluating graphs, Structural
Hamming Distance (SHD), does not share such properties. Given a true causal DAG G and an
estimated causal DAG Ĝ, SHD counts the number of missing, falsely detected, and falsely directed
edges in Ĝ. Formally, Dtop acts as a lower-bound on SHD [Rolland et al., 2022]. However, SHD
is not an ideal metric for evaluating downstream effect estimation accuracy. Specifically, we show
that SHD can be high even when Dtop = 0 and a valid backdoor set can be inferred. This result is of
significance since most estimated graphs (including those that are LLM-generated [Ban et al., 2023b,
Long et al., 2023]) are evaluated using SHD.

Definition 3.1. Level Order. Given a causal DAG G(X,E), its level order refers to a systematic
assignment of levels to variables. This assignment begins with assigning level 0 to the set of variables
{Xi|pa(Xi) = ∅}. Subsequently, each of the remaining variables is assigned a level i such that all
variables within a given level i have a directed path of length i from one/more variables in level 0.

Proposition 3.3. In a causal DAG G with N levels in the level order of variables (level i contains ni

variables), ∃ Ĝ s.t. SHD(Ĝ,G) ≥
N−1∑
i=1

(ni ×
N∑

j=i+1

nj)− |E| and Dtop(π̂, A) = 0 ∀π̂ of Ĝ.

Fig 1 shows the results of a simple study that high-
lights the limitations of SHD in the context of our work.
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Figure 1: Variability of SHD
for various graph sizes with
Dtop = 0 within each graph.

Given a fixed number of nodes, we sample a graph at random as the
‘ground truth’ and then consider all graph orientations of the same size
(number of nodes) such that Dtop = 0 with respect to (w.r.t) the ground
truth graph. For this set of graphs, we compute SHD w.r.t the ground
truth graph. Notice the variance in SHD, despite Dtop being 0. For
graphs with six nodes, SHD can vary from 0 to 14 even as Dtop = 0
and backdoor set validity stays the same. The same pattern translates
to effect estimation error (shown in Table A3). For the same SHD,
increasing Dtop leads to an increase in estimation error; but if Dtop is
the same, increasing SHD has no effect on effect estimation error. The
correlation of Dtop with effect estimation is also shown in Appendix G with additional results.

Topological order can improve accuracy of graph discovery algorithms. Constraints implied by
the topological order can be used to reduce the search space for discovery algorithms. For instance, if
Xi ≺ Xj in the order, then Xi cannot be a descendant of Xj in the corresponding causal graph.

4 Obtaining a Causal Order from Imperfect Experts
While we assumed a perfect expert so far, obtaining causal order from an imperfect expert requires the
design of effective querying strategies. One naive way is to provide the expert with all nodes in the
graph and ask for the whole causal order in one go. But this might lead to information overload for
an expert and thus a suboptimal result. For e.g., if we use LLMs as an expert, they might hallucinate
with a large context size.

Prop 2.1 show that an expert predicts correct causal order even when given a limited set of observed
nodes. Hence, we resort to querying the order by giving partial information (local query) to the expert.
Going beyond existing pairwise querying strategies, we propose a novel triplet-based query strategy
that aids in mitigating cycles in the obtained causal graph and has provably better performance (see
Prop E.2).

Existing Efforts: Pairwise Queries. A natural way to elicit causal order from experts, also adopted
by recent work on inferring graph edges [Kıcıman et al., 2023, Ban et al., 2023b, Long et al., 2022],
is to ask about each pair of variables and aggregate the results. Beyond a basic prompt, we also
study augmented pairwise strategies with additional contextual information. We study four types of
pairwise query strategies, which are briefly summarized below and described in Appendix § I: Basic
query: This is the simplest technique. We directly ask the expert to identify the causal direction
between a given pair of variables [Kıcıman et al., 2023]. Iterative Context: Here we provide the
previously oriented pairs as context in the query while iteratively prompting for next pair. Markov
Blanket Context: Providing previously oriented pairs can become prohibitive for large graphs. As a
variable is independent of other nodes given its Markov Blanket [Pearl, 2009], we include the Markov
Blanket of the node pairs as additional context in the query.

Chain-of-Thought (+In-context Learning): Building on previous findings regarding in-context
examples in LLM prompts for various tasks [Brown et al., 2020], we present examples of the ordering
task (node pairs and their correct causal ordering) before posing the question about the given nodes.
Refer to Appendix § I for implementation details.

Proposed Triplet-based Queries. As we shall see, while pairwise prompts are conceptually simple,
they are prone to yielding higher number of cycles in the graph since they decide about each edge
separately. Taking inspiration from the PC algorithm that employs constraints over three variables,
we now describe a prompting technique based on iterating over all possible triplets given a set of
nodes. Once the LLM has provided subgraphs for each triplet, we determine causal order between a
pair by aggregating over all triplet LLM answers where the pair was included. The algorithm has
the following steps after generating all possible triplets from a set of nodes. 1) Generate subgraphs
over all triplets through LLMs by prompting them to orient the three causal edges for each triplet. 2)
Merge the resultant structure between any two nodes by aggregating the number of LLM answers for
the three orientations: (A→ B; B→ A; No connection) and choosing the majority answer. If there’s
a tie in edge orientation, GPT-4 is used with a CoT prompt to make the final decision. Then the causal
order is extracted from the graph. Our triplet queries additionally use in-context examples and the
chain-of-thought strategy from the pairwise setup. An example query is shown in Table A24. Now,
we analyze the triplet strategy for its impact on predicting incorrect edges. We begin by defining
(imperfect) ϵ-experts (inspired from Long et al. [2023]):

4



Definition 4.1 (ϵ-Experts). Given two nodes A and B of a graph and three options of the causal
relationship between them: (i) A→ B, (ii) A← B, and (iii) no edge between A and B (denoted as
[c1, c2, c3]), an expert E queried for the causal relationship between A and B is said to be an ϵ-expert
(denoted as Eϵ) if the probability of making an error in the prediction of the causal relationship
between A and B is ϵ, where ϵ ∈ (0, 1).

Referring E.2 and E.2, a querying strategy using triplets will have error probability < ϵ over
determining the causal relationship between A and B than a pairwise strategy (proof in Appendix E).
Still, some cycles may be produced, we hence use a cycle removal algorithm inspired from [Zheng
et al., 2018] as the last stage of our triplet method. We leverage triplet pipeline votes to establish
a probability distribution over edge orientations. We use this to compute entropy for each edge,
removing those with higher entropy (lower confidence). To minimize Dtop, we prune edges with
entropy below the mean of all entropies.

5 Experiments and Results
We performed a comprehensive suite of experiments across multiple benchmark datasets from the
BNLearn repository [Scutari and Denis, 2014]: Earthquake, Cancer, Survey, Asia, Asia modified
(Asia-M), and Child, to validate the usefulness of the proposed framework. Asia-M is derived from
Asia by removing the node either since it is not a node with a semantic meaning (see Appendix§ I for
details). We also used a medium-sized subset graph (see Appendix Fig A8) from the Neuropathic
dataset [Tu et al., 2019] used for pain diagnosis to explicitly study memorization in the context of
our experiments.We considered two types of imperfect experts in our empirical studies: LLMs and
human annotators.

Dataset Metric Pairwise (CoT) Triplet

Using LLM

Earthquake

Dtop 0 0
SHD 4 4

Cycles 0 0
IN/TN 0/5 0/5

Asia-M

Dtop - 1
SHD 13 11

Cycles 1 0
IN/TN 0/7 0/7

Child

Dtop - 1
SHD 138 28

Cycles »500 0
IN/TN 0/20 10/20

Using Human Annotators

Earthquake

Dtop 0 0
SHD 4.67 1.67

Cycles 0 0
IN 0 0.33

Asia-M

Dtop - 1.33
SHD 11.67 11.33

Cycles 3 0
IN 0 0

Table 1: (Top) Results using LLM (Bottom) Results
using human annotators (mean value across annotators re-
ported). Performance of triplet method vs best performing
pairwise query strategy (Chain of Thought) on multiple
benchmark datasets across diff metrics: Dtop, SHD, (Num
of) Cycles, IN (Isolated Nodes), TN (Total Nodes). When
num of cycles>0, π̂ cannot be computed, hence Dtop

is given by ‘-’. Triplet consistently outperforms the pair-
wise strategy across metrics & datasets, esp by significant
amounts on larger graphs like Child. Refer A5 for results on
other graphs

Our human studies used 15 annotators, each with
undergrad-level training in STEM but no formal experi-
ence in causality. Each annotator was randomly allotted
a graph for both pairwise and triplet query strategies
while ensuring no annotator got the same graph to query
with both strategies. For the triplet method, to get an es-
timate of the upper bound of human performance in such
studies, we used a ground truth-based oracle (proxy for
a human domain expert) to resolve conflicts in the triplet.
For LLM-based expert assessment, GPT-3.5 turbo was
used as the imperfect expert for causal order, and GPT-4
for tie-breaking. We first present the results of using
our triplet-based approach over other existing pairwise
query strategies. Subsequently, we present the results of
using the causal order obtained from imperfect experts to
downstream tasks including causal discovery and effect
inference.

Triplet vs Pairwise Query Strategies. Table A5 and 1
presents the experimental results of a direct comparison
between triplet and pairwise query strategies on multiple
benchmark datasets on different metrics: Dtop, SHD,
(Num of) Cycles, IN (Isolated Nodes), TN (Total Nodes),
using LLMs (top) and human annotators (bottom). Using
GPT-3.5 as the imperfect expert, the triplet query strat-
egy outperforms the best performing pairwise approach
(CoT) consistently across datasets (see Appendix G.3 for
full pairwise results), the difference is even more pro-
nounced, especially in the number of cycles. Results on
Neuropathic dataset presented in appendix G.4 further
corroborates this claim. Note that the triplet method prioritizes precision over coverage; it hence
obtains the lowest Dtop and zero cycles on Child but with isolated nodes as 10 out of 20. We believe
this is an appropriate tradeoff for the output of an expert, i.e. its output is aimed to be correct but it
may not cover all nodes. Similarly, even with human annotators, graphs like Survey and Asia-M result
in cycles when queried pairwise. However, no cycle formations were observed across annotators
when they were queried to orient causal graphs using the triplet strategy. Also, the triplet strategy
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Dataset PC SCORE ICA Direct NOTEARS CaMML Ours Ours Ours Ours
LiNGAM LiNGAM (PC+LLM) (CaMML+LLM) (PC+Human) (CaMML+Human)

Earthquake 0.16±0.28 4.00±0.00 3.20±0.39 3.00±0.00 1.80±0.74 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 1.00±0.00
Cancer 0.00±0.00 3.00±0.00 4.00±0.00 3.60±0.48 2.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Survey 0.50±0.00 3.00±0.00 6.00±0.00 6.00±0.00 3.20±0.39 3.33±0.94 0.00±0.00 3.33±0.94 0.00±0.00 0.00±0.00
Asia 2.00±0.59 5.00±0.00 6.20±0.74 7.00±0.00 4.00±0.00 1.85±0.58 1.00±0.00 0.97±0.62 N/A N/A

Asia-M 1.50±0.00 5.00±0.00 7.60±0.48 6.20±1.16 3.40±0.48 1.00±0.00 1.00±0.00 1.71±0.45 1.00±0.00 2.00±0.00
N

=
25
0

Child 5.75±0.00 8.80±2.70 12.8±0.97 13.0±0.63 15.0±1.09 3.00±0.00 4.00±0.00 3.53±0.45 N/A N/A
Neuropathic 4.00±0.00 6.00±0.00 13.0±6.16 10.0±0.00 9.00±0.00 10.4±1.95 3.00±0.00 5.00±0.00 N/A N/A

Earthquake 0.00±0.00 4.00±0.00 3.00±0.00 3.00±0.00 1.00±0.00 0.40±0.48 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Cancer 2.00±0.00 3.00±0.00 3.00±0.00 3.00±0.00 2.00±0.00 0.60±0.80 2.00±0.00 0.00±0.00 2.00±0.00 0.00±0.00
Survey 2.00±0.00 4.00±0.00 5.00±0.00 5.00±0.00 3.00±0.00 3.60±1.35 2.00±0.00 1.83±0.00 2.00±0.00 0.00±0.00
Asia 1.5±0.00 4.00±0.00 6.00±0.00 4.40±1.35 3.00±0.00 1.40±0.48 0.00±0.00 0.34±0.47 N/A N/A

Asia-M 1.00±0.00 4.00±0.00 8.00±0.00 4.80±0.39 3.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 3.00±0.00

N
=

10
00
0

Child 6.00±3.04 3.00±0.00 12.2±1.46 11.6±0.48 14.4±0.48 2.80±0.84 5.00±2.64 1.00±0.00 N/A N/A
Neuropathic 10.00±0.00 6.00±0.00 1.00±0.00 10.0±0.00 10.0±0.00 3.00±0.00 10.00±0.00 1.00±0.00 N/A N/A

Table 2: Comparison with causal discovery methods, showing mean and std dev of Dtop over 3 runs. (For the
Neuropathic subgraph (1k samples), PC Algorithm returns cyclic graphs in the MEC). Human experiments not
conducted for Child (due to feasibility issues), hence rows marked as N/A. Refer full table A10

Dataset Metric: ϵACE PC SCORE ICA Direct NOTEARS CaMML Ours Ours
(Treatment, Target) LiNGAM LiNGAM (PC+LLM) (CaMML+LLM)

Earthquake (JohnCalls,alarm) 0.00± 0.00 0.85± 0.02 0.63± 0.10 0.63± 0.10 0.21± 0.12 0.08± 0.03 0.00± 0.00 0.00± 0.00
Cancer (dyspnoea,cancer) 0.20± 0.01 0.30± 0.00 0.30± 0.01 0.30± 0.01 0.18± 0.02 0.06± 0.00 0.30± 0.00 0.00± 0.00
Survey (T,E) 0.02± 0.00 0.04± 0.00 0.05± 0.01 0.05± 0.01 0.03± 0.00 0.03± 0.00 0.02± 0.01 0.01± 0.01
Asia (smoke,dyspnoea) 0.10± 0.00 0.09± 0.00 0.27± 0.03 0.27± 0.04 0.14± 0.01 0.05± 0.00 0.02± 0.00 0.00± 0.00
Child (Lung Parench, 0.22± 0.01 0.02± 0.00 0.52± 0.00 0.52± 0.00 0.52± 0.07 0.01± 0.00 0.22± 0.00 0.00± 0.00

Lowerbody O2)

Table 3: Comparison of causal effect inference with existing methods, showing mean and std dev of error in
Average Causal Effect (ϵACE) of a variable on another, over 3 runs.

showed consistently low Dtop across all human outputs. Quality of the causal graph curated improves
when using the triplet strategy, and expectedly leads to better Dtop results than the pairwise strategy.
Performance on Downstream Applications: Causal Discovery. Table 2 presents the Dtop results
of using the causal order obtained from expert output (both using LLMs and humans) to assist causal
discovery methods. We compare our overall approach using triplet queries with well-known causal
discovery methods: PC [Spirtes et al., 2000], SCORE [Rolland et al., 2022], ICA-LiNGAM [Shimizu
et al., 2006], Direct-LiNGAM [Shimizu et al., 2011], NOTEARS [Zheng et al., 2018], and Causal
discovery via minimum message length (CaMML) [Wallace et al., 1996] across five different sample
sizes: 250, 500, 1000, 5000, 10000. Among the discovery algorithms, we find that PC and CaMML
perform the best, with the lowest Dtop across all datasets. We hence studied 4 variants of our
approach: PC+Human, CaMML+Human, PC+LLM, and CaMML+LLM.

The results show that using our approach improves Dtop across our experiments consistently. Specif-
ically, the improvement (reduction) in Dtop when using our approach is larger at lower sample
sizes. This indicates that obtaining causal order from imperfect experts like humans and LLMs can
help with causal discovery in limited sample settings. CaMML+Human/LLM yields benefits even
at higher sample sizes. At a sample size of 10,000, CaMML’s Dtop for Child and Asia surpasses
CaMML+LLM by three and fivefold respectively. In specific datasets like Survey where the variables
are better understood by humans, incorporating human priors to CaMML leads to consistently zero
Dtop, outperforming LLM output. Overall, these results show that expert output can significantly
improve the accuracy of existing causal discovery algorithms.

Performance on Downstream Applications: Causal Effect Inference. Table 3 presents results of
an experimental study that uses the causal order obtained from our LLMs to compute average causal
effect (ACE). Taking the output graph from the methods discussed above, we extract and use the
backdoor set from them along with the data, to implement causal effect estimation using the dowhy
package. We report the error in ACE ϵACE . The obtained causal order shows unanimous improvement
in performance across the studies, especially when using the causal order from CaMML+LLM.

6 Concluding Discussion
We presented causal order as a suitable output interface to elicit causal knowledge from imperfect
experts like LLMs and human annotators. Compared to the full graph, we showed that causal order is
a more stable quantity to elicit from imperfect experts since it avoids making a distinction between
direct and indirect effects. We also proposed a novel triplet-based method to query experts for
obtaining the causal order. Empirical results show the benefits of triplet method in avoiding cycles
in the causal order and how causal order helps in improving accuracy of downstream discovery and
effect inference tasks.
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Appendix
In this appendix, we include the following additional information, which we could not include in the
main paper due to space constraints:

• Appendix A: Related Work
• Appendix B: Illustration of Triplet Query Strategy
• Appendix C: Using Causal Order with Different Classes of Discovery Methods
• Appendix D: Relation of Causal Order with Backdoor Adjustment Set
• Appendix E: Proofs of propositions
• Appendix F: Algorithms to integrate causal order into existing discovery methods
• Appendix G: Additional results, including LLMs used in post-processing for graph discovery and a

discussion of triplet vs pairwise query strategies
• Appendix H: More details and examples of our query strategies
• Appendix I: Causal graphs used in our experiments of the datasets

A Related Work

Domain Expertise-aided Causal Discovery. Prior knowledge has been used in causal discovery
literature [Hasan and Gani, 2022, Constantinou et al., 2023, Heckerman and Geiger, 2013, Teshima
and Sugiyama, 2021, O’Donnell et al., 2006, Wallace et al., 1996]. These methods rely on domain
expert opinions and documented knowledge from randomized controlled trials (RCT). Various priors
have been studied in literature, such as edge existence, forbidden edge Meek [1995], ancestral
constraints [Constantinou et al., 2023, Ban et al., 2023b]. Recent advancements in LLMs have
led to more attention on how LLMs may act as imperfect experts and provide causal knowledge
based on metadata such as variable names [Kıcıman et al., 2023, Ban et al., 2023b, Long et al.,
2023, Willig et al., 2022]. Early methods [Kıcıman et al., 2023, Willig et al., 2022, Long et al.,
2022] rely on LLMs to predict the complete causal structure, which is evaluated using metrics for
full graph structure such as Structural Hamming Distance (SHD). Recent methods however use
LLM’s output to improve accuracy of graph discovery algorithms. The key idea is that LLM can
provide information about edges in the graph, which can then be added as a prior or constraint Long
et al. [2023], Jiralerspong et al. [2024] to reduce the search space for a causal discovery algorithm.
For example, [Long et al., 2023] use LLMs to improve output of a constraint-based algorithm for
full graph discovery by orienting undirected edges in the CPDAG. Most of these works, however,
depend on obtaining correct edge information from LLMs and evaluate LLMs’ quality by full graph
metrics Naik et al. [2023], Zhang et al. [2024] such as SHD Kıcıman et al. [2023], Long et al. [2023].
Instead, we argue that LLMs (or even humans) are incapable of providing edge information given
a pair (or subset) of variables. Hence, causal order may be a more appropriate causal structure to
elicit from experts. For the same reason, the quality of an imperfect expert’s output for such tasks are
better evaluated on the accuracy of causal order, rather than the full graph structure.

LLM-based Prompting Strategies. Existing LLM-based algorithms for graph discovery [Kıcıman
et al., 2023, Long et al., 2022, Ban et al., 2023b, Antonucci et al., 2023] use a pairwise prompt,
essentially asking “does A cause B?” with varying levels of prompt complexity. Going beyond
this line of work, we propose a triplet-based prompt that provides more accurate answers through
aggregation and provides an uncertainty score for each edge to aid in cycle removal. As a result, our
triplet-based prompt may be of independent interest for causal tasks.
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B Illustration of our Triplet Query Strategy

We present an intuitive illustration of our overall triplet querying framework to obtain causal order
from imperfect experts in Fig A1 below.

Figure A1: Leveraging Causal Order from Imperfect Experts. Our triplet-based querying method infers all
three-variable subgraphs from imperfect experts and aggregates them (using majority voting) to produce a causal
order. Ties in causal order are broken using a high-cost expert. Expert-generated causal order is integrated with
discovery algorithms, before estimating causal effect.

C Using Causal Order with Different Classes of Discovery Methods

Using causal order with Constraint-Based Discovery Methods. Constraint-based causal discovery
algorithms usually return a Completed Partially Directed Acyclic Graph (CPDAG), from which
a Markov equivalence class of graphs can be obtained. However, not all edges in a CPDAG are
oriented. Given a CPDAG from a constraint-based algorithm like PC [Spirtes et al., 2000], we use
the causal order π̂ obtained from experts to orient the undirected edges, similar to the algorithm
from Meek [1995]. Iterating over undirected edges, we first check if the nodes of that edge occur
in π̂. If yes, we orient the edge according to π̂. Since it is possible that the causal order obtained
from querying experts may not include some nodes (isolated nodes), if either (or both) nodes of
the undirected edge are not in π̂, we query a superior expert (e.g. oracle) (see Sec 4) to finalize a
direction between the pair. Algorithm 1 outlines the specific steps for this integration.
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D Relation of Causal Order with Backdoor Adjustment Set

Correct topological order is necessary and sufficient for finding a valid backdoor set.
Average causal effect [Pearl, 2009] (ACE) of a variable Xi on a variable Xj is defined as:
ACE

Xj

Xi
= E[Xj |do(Xi = xi)]− E[Xj |do(Xi = x∗

i )], where Xi is called the treatment, Xj is
called the target, and do(Xi = xi) denotes an external intervention to the variable Xi with the
value xi. If a set of variables Z satisfies the backdoor criterion (Defn. E.1) relative to (Xi, Xj),
E[Xj |do(Xi = xi)] can be computed as: E[Xj |do(Xi = xi)] = Ez∼ZE[Xj |Xi = xi,Z = z]
(Thm. 3.3.2 of [Pearl, 2009]). To ensure that all variables in Z are observed, we assume there are no
unobserved variables in the underlying causal graph. We now first show that a correct causal order is
sufficient for identifying a backdoor set.

Proposition D.1. [Pearl, 2009, Cinelli et al., 2022] Under the no latent confounding assumption,
for a pair of treatment and target variables (Xi, Xj) in a DAG G, Z = {Xk|πk < πi} is a valid
adjustment set relative to (Xi, Xj) for any topological order π of G.

Using causal order with score-based discovery methods. Score-based methods like CaMML Wallace
et al. [1996] allow the specification of prior constraints which are respected while obtaining the
complete graph. We hence utilize the causal order π̂ obtained from experts as a level order (Defn
3.1) prior to such methods. We handle any cycles in the expert’s output by assigning all nodes in a
cycle to the same level. Unlike a similar LLM-prior approach by Ban et al. [2023b], where the output
of LLM and a score-based method are combined using an ancestral constraint as a prior, ours is a
sequential approach where the score-based algorithm starts with the provided order-based constraint.
This approach also allows us to provide a prior probability to control the influence of prior on the
discovery method. Algorithm 2 outlines the specific steps for this integration.

E Proofs of Propositions
To estimate E[Xj |do(Xi = xi)] from observational data, the backdoor adjustment formula is used.

Definition E.1. Backdoor Adjustment [Pearl, 2009]. Given a DAG G, a set of variables Z satisfies
the backdoor criterion relative to a pair of treatment and target variables (Xi, Xj) if (i) no variable
in Z is a descendant of Xi; and (ii) Z blocks every path between Xi and Xj that contains an arrow
into Xi.

Proposition D.1. [Pearl, 2009, Cinelli et al., 2022] Under the no latent confounding assumption,
for a pair of treatment and target variables (Xi, Xj) in a DAG G, Z = {Xk|πk < πi} is a valid
adjustment set relative to (Xi, Xj) for any topological order π of G.

Proof. Before starting the proof, we define a confounding variable. A confounder is a variable
that should be casually associated with both the treatment and the target variables and is not on the
causal pathway between treatment and target. An unmeasured common cause can also be a source
of confounding the treatment→ target relationship. Coming to the proof, we need to show that the
set Z = {Xk|πk < πi} satisfies the conditions (i) and (ii) in Defn E.1. For any variable Xk such
that πk < πi, we have Xk ̸∈ de(Xi) and hence the condition (i) is satisfied. Additionally, for each
Xk ∈ pa(Xi) we have πk < πi and hence pa(Xi) ⊆ Z. Since pa(Xi) blocks all paths from Xi to
Xj that contains an arrow into Xi [Peters and Bühlmann, 2015], Z satisfies condition (ii).

Proposition E.1. Given two nodes A and B of an underlying causal graph, access to an ϵ-expert Eϵ
that doesn’t produce any cycles in the predicted causal graph (see Assm E.1 for formal statement) and
Assm E.2, let C ̸= A ̸= B be any other node in the graph. If Eϵ predicts causal relationship between
all pairs of nodes sequentially, the marginalized probability that Eϵ makes an error in predicting the
causal relationship between A and B, after it has already predicted the causal relationships between
(C,A) and (C,B), is less than ϵ, where marginalization is over all possible causal graphs that can
be formed between A,B and C, with each of such graphs being equally likely.

Definition E.2 (ϵ-Experts). Given two nodes A and B of a graph and three options of the causal
relationship between them: (i) A→ B, (ii) A← B, and (iii) no edge between A and B (denoted as
[c1, c2, c3]), an expert E queried for the causal relationship between A and B is said to be an ϵ-expert
(denoted as Eϵ) if the probability of making an error in the prediction of the causal relationship
between A and B is ϵ, where ϵ ∈ (0, 1).
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Proposition E.2. Given two nodes A and B of an underlying causal graph, access to an ϵ-expert Eϵ
that doesn’t produce any cycles in the predicted causal graph (see Assm E.1 for formal statement) and
Assm E.2, let C ̸= A ̸= B be any other node in the graph. If Eϵ predicts causal relationship between
all pairs of nodes sequentially, the marginalized probability that Eϵ makes an error in predicting the
causal relationship between A and B, after it has already predicted the causal relationships between
(C,A) and (C,B), is less than ϵ, where marginalization is over all possible causal graphs that can
be formed between A,B and C, with each of such graphs being equally likely.

Proposition 3.2. For an estimated topological order π̂ and a true topological order π of a causal
DAG G with the corresponding adjacency matrix A, Dtop(π̂, A) = 0 iff Z = {Xk|π̂k < π̂i} is a
valid adjustment set relative to (Xi, Xj), ∀πi < πj .

Proof. The statement of proposition is of the form A ⇐⇒ B with A being “Dtop(π̂, A) = 0”
and B being “Z = {Xk|π̂k < π̂i} is a valid adjustment set relative to (Xi, Xj), ∀i, j”. We prove
A ⇐⇒ B by proving (i) A =⇒ B and (ii) B =⇒ A.

(i) Proof of A =⇒ B: If Dtop(π̂, A) = 0, for all pairs of nodes (Xi, Xj), we have π̂i < π̂j

whenever πi < πj . That is, causal order in estimated graph is same that of the causal order in
true graph. Hence, from Propn D.1, Z = {Xk|π̂k < π̂i} is a valid adjustment set relative to
(Xi, Xj), ∀i, j.

(ii) Proof of B =⇒ A: we prove the logical equivalent form of B =⇒ A i.e., ¬A =⇒ ¬B,
the contrapositive of B =⇒ A. To this end, assume Dtop(π̂, A) ̸= 0, then there will be at least
one edge Xi → Xj that cannot be oriented correctly due to the estimated topological order π̂. i.e.,
π̂j < π̂i but πj > πi. Hence, to find the causal effect of Xi on Xl; l ̸= j, Xj is included in the
back-door adjustment set Z relative to (Xi, Xl). Adding Xj to Z renders Z an invalid adjustment set
because it violates the condition (i) of Defn E.1.

Proposition 2.1. Consider a Perfect Expert that infers causal relationships based on its (optimal)
domain knowledge. It is given only a subset of observed variables V to predict the causal structure.
Assuming that the Perfect Expert assumes causal sufficiency (the variables not given do not exist
in the system), the predicted causal structure by the Expert might be wrong whereas the predicted
causal order remains correct.

Proof. Let V = {V1, . . . , Vn} be the set of observed nodes and let U = {U1, . . . , Um} be the set
of unobserved variables. Let V1 and V2 be two observed variables and U1 be an unobserved node
(for the expert). Also, let the underlying true causal graph have edges V1 → U1 → V2 but no direct
edges between V1 and V2. Thus, node V1 comes before V2 in the true causal order. Now if we ask
any (optimal) expert that assumes causal sufficiency (i.e there is no unobserved variable) to predict
the causal relationship between them, it will predict there is an edge between V1 and V2 since V1 has
an indirect causal effect on V2 in the underlying true causal graph, thus making an error in causal
structure prediction. However, the predicted causal order between node V1 and V2 (i.e. V1 comes
before V2) is still unaffected by this unobserved variable U1. The same argument can be extended
to other subsets of nodes in the graph with more complicated sub-structures thus completing the
proof.

Corollary E.1. If an (optimal) algorithm is given only a subset of observed variables to predict the
causal structure, the predicted causal structure might be wrong whereas the predicted causal order
remains correct.

Proof. The proof of this corollary follows the proof of Prop 2.1 (see Proof E). Let V = {V1, . . . , Vn}
be the set of nodes present in the graph and let U = {U1, . . . , Um} be the set of unobserved variables.
Let VS be the subset of the variable given to the algorithm and VR = V \ VS be the rest of the
observed variable. Now define VS to be the observed variable for this proof and VR ∪ U to be
the unobserved variable for this proof and rerun the same arguments the proof of Prop 2.1 (see
Proof E).

Assumption E.1 (DAG Acyclicity). Given that ϵ-expert Eϵ is used to predict a causal graph between
a set of nodes, the predicted causal graph is acyclic.

Remark E.2. For ease of exposition, we define the ϵ-expert to have error probability exactly equal to
ϵ; this could however be generalized to have error probability at most ϵ.
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Assumption E.2 (Error Distribution and Probability Renormalization). Let [c1, c2, c3] be the three
choices for a causal relationship between node A and B (see Def E.2). Let P (c1), P (c2) and P (c3)
be the probability of selecting the corresponding three choices by the ϵ-expert Eϵ. We assume that the
probability for the two wrong options are equally likely i.e. equal to ϵ/2. If any constraint T renders
some of the choices as not possible i.e. P (cj |T ) = 0 for some j ∈ {1, 2, 3}, then Eϵ renormalizes the
posterior probability over the other choices i.e P (ci|T ) = P (ci)∑

j,P (cj |T )̸=0 P (cj)
where the denominator

is summed over j s.t. P (cj |T ) ̸= 0.

Proposition E.2. Given two nodes A and B of an underlying causal graph, access to an ϵ-expert Eϵ
that doesn’t produce any cycles in the predicted causal graph (see Assm E.1 for formal statement) and
Assm E.2, let C ̸= A ̸= B be any other node in the graph. If Eϵ predicts causal relationship between
all pairs of nodes sequentially, the marginalized probability that Eϵ makes an error in predicting the
causal relationship between A and B, after it has already predicted the causal relationships between
(C,A) and (C,B), is less than ϵ, where marginalization is over all possible causal graphs that can
be formed between A,B and C, with each of such graphs being equally likely.

Proof. Without any additional constraint, ϵ-expert (Eϵ) has “ϵ" probability of making incorrect
prediction. But in presence of additional constraint, e.g. DAG constraint (see Assm E.1), the
probability of error changes and is given by the following lemma:

Lemma E.3. Suppose we have two nodes A and B and three possible choices [c1, c2, c3] for causal
relationship between them i.e A→ B, B → A or no edge between them (not in any particular order).
Without loss of generality, let c3 be the ground truth causal relationship between node A and B. Thus,
without any additional constraint, let the probability assigned to each of the three choices by ϵ-expert
(Eϵ) is P (c1) = ϵ1, P (c2) = ϵ2 and P (c3) = 1− ϵ1 − ϵ2 respectively where ϵ = ϵ1 + ϵ2. If due to
additional constraint (e.g. acyclicity Assm E.1), one of the incorrect choice gets discarded, say c1,
then the new probability of selecting the wrong choice (c2 given by ϵ

′
) is always less than ϵ. However

if the correct/ground truth choice is discarded due to this additional constraint the new probability of
selecting the wrong choice (c1 or c2) is 1. In case, no options are discarded the new probability of
choosing the wrong choice remains same i.e ϵ as before.

Proof. For the case when the correct/ground truth choice i.e c3 is discarded due to some constraint,
the only left out choices are wrong choices i.e. c1 and c2. Thus the probability of making error in
selecting the correct choice is 1. Next, for the case when one of the incorrect choice (here c1 w.l.o.g)
is discarded, we are left with one incorrect (c2) and one correct choice (c3). From Assm E.2 once a
particular option is discarded, the ϵ-expert renormalizes the probability proportional to their initial
probability. Thus the new probability (P̃ (c2)) of choosing wrong option c2 is:

P̃ (c2) =
ϵ2

1− ϵ1 − ϵ2 + ϵ2
=

ϵ2
1− ϵ1

=
ϵ/2

1− ϵ/2
=

ϵ

2− ϵ
(1)

where ϵ1 = ϵ2 = ϵ/2 from Assm E.2. Next, we can show that P̃ (c2) < ϵ completing our proof. To
have P̃ (c2) < ϵ we need:

P̃ (c2) =
ϵ2

1− ϵ1
< ϵ = ϵ1 + ϵ2

=⇒ ϵ2 < ϵ1 + ϵ2 − ϵ21 − ϵ1ϵ2
=⇒ ϵ1(ϵ1 + ϵ2 − 1) < 0

(2)

which is always true since from Assm E.2 we have ϵ1 > 0, ϵ2 > 0 and 1− ϵ1 − ϵ2 > 0.

Now, give any three nodes A,B and C, Table A1 summarizes all possible partially completed graph
(henceforth partial graph) possible between those nodes. Each partially-completed DAG in Table A1
generated more DAG based on the orientation of the node A and B. Specifically, each of the partial
graph 1, 2, 3, 4, 5, 7 and 9 generated three graphs (A → B, B → A or no edge between A and
B) and partial graph 6 and 8 will give two DAG (one option is not possible to maintain acyclicity
constraint). Thus overall we have 25 possible graphs. Our next goal is to show that the marginal
probability of choosing the wrong causal relationship for node (A,B) when oriented last among is
less than ϵ, where marginalization is over all the causal graph depicted in Table A1 (assuming all
graphs are equally likely). The expert Eϵ finds the causal relationship sequentially for all the pairs
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in {(C,A), (C,B), (A,B)}. We are interested in the case when Eϵ finds the causal relationship for
pair (A,B) in the end. Let F, S, T (called first,second and third) be three binary random variable and
the value 0 represent whether the causal relationship discovered by Eϵ for first, second or last/third
pair respectively is incorrect and 1 represent it is correct. So the probability of error when finding the
causal relationship between node A and B when oriented last/third (denoted by P (T )) is given by:

P (T = 0) =
∑
G∈G

∑
S,T∈{0,1}×{0,1}

P (G)P (F, S|G)P (T = 0|F, S,G)

=
1

25
·
∑
G∈G

∑
S,T∈{0,1}×{0,1}

P (F, S|G)P (T = 0|F, S,G)
(3)

where G denotes the set of graphs generated by orienting the causal relationship between A and B for
all partial graphs in Table A1, |G| = 25 and all the graphs are equally likely, different configuration
of (F, S) shows whether the causal relationship between first two pairs (C,A) and (C,B) are correct
or not. When orienting the first two pair of nodes i.e (C,A) and (C,B) there is no DAG constraint
thus we have:

P (F, S) =


ϵ2 when S = 0, T = 0

ϵ(1− ϵ) when S = 0, T = 1

ϵ(1− ϵ) when S = 1, T = 0

(1− ϵ)2 when S = 1, T = 1

(4)

Now based on the graph G ∈ G and the setting of S, T , P (T = 0|F, S,G) takes different values.
Suppose that the causal relationship between the first two pairs (C,A) and (C,B) are already
predicted by the expert. We observe that the DAG acyclcity constraint (Assm E.2) will only change
the probability of error for orienting nodes (A,B) (P (T = 0|F, S,G) given by Lemma E.3) when
the predicted causal graphs is either B → C → A or A → C → B after orienting (C,A) and
(C,B). For all the other predictions of (C,A) and (C,B), they don’t enforce any acyclicity constant
for finding the causal relationship between (A,B), thus, P (T = 0|F, S,G) = ϵ (from Lemma E.3).
Table A2 summarizes of error probability for all the partial graphs in Table A1 (P (F, S|G) and
P (T |F, S,G)). The first column shows different partial graphs from Table A1. The second column
then shows different causal relationships that are possible between the nodes A and B for a particular
partial graph. Given one true orientation between node A and B we get a final ground truth graph.
Thus the third column shows the probability of prediction of structure A← C → B for a particular
true graph and the fourth column shows the probability of making an error in predicting the third
causal relationship i.e between (A,B) given the first and second pair (C,A) and ((C,B)) is already
predicted. Similarly, the fifth and sixth columns show the same thing for the predicted structure
A→ C → B for each of the ground truth graphs. The partial-graph number 4, 7, 8 is not depicted in
the table but the entries for 4th graph is the same as 2nd, 7th is the same as 3rd and 8th is same as
6th due to symmetry in the partial-structure. The value of ϵ

′
= ϵ

2−ϵ in 4th and 6th column is given
by renormalized probability Eq. 1 in Lemma E.3. Substituting the values from Table A2 in Eq. 3
and using the value P (T |F, S,G) = ϵ for the rest of the predicted structure not mentioned in the
Table A2 we get:

P (T = 0) =
1

25
·

{
2 ∗ ϵ

2

4

[
2ϵ

′
+ 1
]
+
[
1− 2 ∗ ϵ

2

4

]
ϵ

+

([ϵ2
4

+
ϵ(1− ϵ)

2

][
2ϵ

′
+ 1
]
+
[
1− ϵ2

4
− ϵ(1− ϵ)

2

]
ϵ

)
∗ 4

+

(
2 ∗ ϵ(1− ϵ)

2

[
2ϵ

′
+ 1
]
+
[
1− 2 ∗ ϵ(1− ϵ)

2

]
ϵ

)
∗ 2

+

(
(1− ϵ)2

[
2ϵ

′
]
+

ϵ2

4

[
ϵ
′
+ 1
]
+
[
1− (1− ϵ)2 − ϵ2

4

]
ϵ

)
∗ 2

}

=
1

25
·

{
ϵ(3ϵ2 − 30ϵ+ 52)

4− 2ϵ

}

(5)
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1.

A

C

B

2.

A

C

B

3.

A

C

B

4.

A

C

B

5.

A

C

B

6.

A

C

B

7.

A

C

B

8.

A

C

B

9.

Table A1: All possible causal graph between three variables A,B and C. The dashed arrow represented
undecided causal relationship between node A and B. So, the dashed arrow can take one of three choices
A→ B, A← B or no edge between A and B. To ensure that the graph is acyclic, some of the graphs above
might not allow all three choice for causal relationship between node A and B. Hence the causal-graph 1, 2, 3, 4
and 7 each have three possible graphs and 5, 6, 8 and 9 each have two possible graphs based on the valid choice
of causal relationship between A and B that preserves acyclicity constraint. So overall there are 25 possible
different causal graph between three variables A, B and C.

Now we want to show that the error probability for the third pair (A,B) given by the above equation
is less than ϵ. For that, we need:

1

25
·

{
ϵ(3ϵ2 − 30ϵ+ 52)

4− 2ϵ

}
< ϵ

3ϵ2 + 20ϵ− 48 < 0

(6)

The above inequality is always satisfied since ϵ ∈ (0, 1) and 3ϵ2 + 20ϵ− 48 is always less than 0 in
the allowed range of ϵ since the roots of the quadratic equation are −10/3− 2

√
61/3 = −8.5 and

−10/3 + 2
√
61/3 = 1.87. Thus P (T = 0) < ϵ for all values of ϵ ∈ (0, 1) completing our proof.
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Predicted Orientation in first two steps (F, S)
True Orien-

tation
A← C ← B A→ C → B

Partial True Graph (A,B) P (F, S|G) P (T |F, S,G)P (F, S|G) P (T |F, S,G)

A

C

B

1. no edge (
ϵ
2

)2 ϵ
′ (

ϵ
2

)2 ϵ
′

A→ B 1 ϵ
′

A← B ϵ
′

1

A

C

B

2. no edge (
ϵ
2

)2 ϵ
′ (

ϵ
2

)
(1− ϵ)

ϵ
′

A→ B 1 ϵ
′

A← B ϵ
′

1

A

C

B

3. no edge (
ϵ
2

)
(1− ϵ)

ϵ
′ (

ϵ
2

)2 ϵ
′

A→ B 1 ϵ
′

A← B ϵ
′

1

A

C

B

5. no edge (
ϵ
2

)
(1− ϵ)

ϵ
′ (

ϵ
2

)
(1− ϵ)

ϵ
′

A→ B 1 ϵ
′

A← B ϵ
′

1

A

C

B

6. no edge
(1− ϵ)2

ϵ
′ (

ϵ
2

)2 ϵ
′

A← B ϵ
′

1

A

C

B

9. no edge (
ϵ
2

)
(1− ϵ)

ϵ
′ (

ϵ
2

)
(1− ϵ)

ϵ
′

A→ B 1 ϵ
′

A← B ϵ
′

1

Table A2: Summary of Error Probability for all the partial graphs in Table A1 (P (F, S|G) and P (T |F, S,G)):
The first column shows different partial graphs from Table A1. The second column then shows different
causal relationships that are possible between the nodes A and B for a particular partial graph. Given one
true orientation between node A and B we get a final ground truth graph. Now we observed in the proof of
Proposition E.2 (see Proof E), that the error probability for the prediction of causal relationship for the pair
(A,B) will only change when the ϵ-expert predicts the the structure A← C → B or A→ C → B for the pair
of nodes (C,A) and (C,B) for any ground truth graph. For the rest of the possible predictions of a pair of nodes
(C,A) and (C,B) in any ground truth graph, the error probability for (A,B) remains ϵ ( see Lemma E.3). Thus
the third column shows the probability of prediction of structure A← C → B for a particular true graph and
the fourth column shows the probability of making an error in predicting the third causal relationship i.e between
(A,B) given the first and second pair (C,A) and ((C,B)) is already predicted. Similarly, the fifth and sixth
columns show the same thing for the predicted structure A→ C → B for each of the ground truth graphs. The
partial-graph number 4, 7, 8 is not depicted in the table but the entries for 4th graph is the same as 2nd, 7th is
the same as 3rd and 8th is same as 6th due to symmetry in the partial-structure. The value of ϵ

′
= ϵ

2−ϵ
in 4th

and 6th column is given by renormalized probability Eq. 1 in Lemma E.3.
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Algorithm 1 Integrating π̂ in constraint-
based methods

1: Input: Noisy expert topological order-
ing π̂, Expert E , CPDAG Ĝ

2: Output: Estimated topological order
π̂final of {X1, . . . , Xn}.

3: for (i− j) ∈ undirected-edges(Ĝ) do
4: If both nodes i and j are in π̂ and if

π̂i < π̂j , orient (i− j) as (i→ j) in
Ĝ.

5: Otherwise, use expert E to orient the
edge.

6: end for
7: π̂final = topological ordering of Ĝ
8: return π̂final

Algorithm 2 Integrating π̂ in score-based methods
1: Input: Dataset D, Variables {X1, . . . , Xn}, Ex-

pert E , Score-based method S , Prior probability p.
2: Output: Estimated topological order π̂final of
{X1, . . . , Xn}.

3: Ĝ = E(X1, . . . , Xn)

4: L = level order of Ĝ
5: for cycle C ∈ Ĝ do
6: for node ∈ C do
7: L(node) = min(level(c) ∀c ∈ C)
8: end for
9: end for

10: Ĝ = S(D, L, p) //L is provided as prior
11: π̂final = topological ordering of Ĝ
12: return π̂final

F Algorithms for Integrating Causal Order in Existing Discovery Methods

In continuation to the discussion in Sec 3, the algorithms for integrating causal order into exist-
ing constraint-based and score-based discovery methods are summarized in Algorithms 1 and 2
respectively.

G Additional Results

G.1 Dtop vs SHD: Better Measure of Effect Estimation Error

Cancer

Dtop = 0 SHD = 2
SHD ϵACE Dtop ϵACE

0 0.00 0 0.00
2 0.00 1 0.25
4 0.00 2 0.50

Asia

Dtop = 0 SHD = 3

SHD ϵACE Dtop ϵACE

0 0.00 1 0.14
6 0.00 2 0.22

10 0.00 3 0.57

Survey

Dtop = 0 SHD = 2

SHD ϵACE Dtop ϵACE

0 0.00 0 0.00
2 0.00 1 0.25
4 0.03 2 0.50

Table A3: ϵACE vs SHD given Dtop (& Dtop

given SHD)

As discussed in Sec 3 of the main paper, we show herein
that Dtop has a strong correlation with effect estimation
error and hence is a valid metric for effect inference.

Specifically, we study how the error in causal effect, ϵACE ,
changes as values of the metric Dtop change. Fig A2 shows
results on Asia and Child datasets. When Dtop is zero,
ϵACE is also zero; and ϵACE of a feature on other features
increases as Dtop increases. We use the DoWhy library
for evaluating causal effects given a set of backdoor set of
variables (we take number of samples N = 10000). Figure
A2 shows a comparison of various methods w.r.t ϵACE vs
Dtop. Results show that ϵACE increases as Dtop increases,
aligning with theoretical observations. Table A3 shows that
for the same SHD, increasing Dtop leads to an increase in
estimation error; but if Dtop is the same, increasing SHD
has no effect on effect estimation error.

G.2 LLMs
used in post processing for graph discovery

We conducted some experiments where we utilised discov-
ery algorithms like PC for creating skeletons of the graph and employed LLMs for orienting the
undirected edges. The idea was to utilise LLMs ability to correctly estimate the causal direction while
leveraging PC algorithm’s ability to give a skeleton which could be oriented in a post processing
setup. We saw that LLM ended up giving improved results as compared to PC alone.

G.3 Triplet vs Pairwise Query Strategies

In continuation to the discussion in Sec 5 of the main paper, we include Tables A4 for more details.
The pairwise strategy also shows flaws when LLMs are used as noisy experts. In many cases, pairwise
querying yields cycles due to which Dtop cannot be computed. In particular, for the Child dataset
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Figure A2: Dtop vs. ϵACE . ϵACE increases as Dtop increases, aligning with theoretical observations.

with 20 nodes, pairwise querying of LLMs yields an extremely high number of cycles (see Table A4).
LLM output tends to overconnect, resulting in high SHD. Overall, among the prompting strategies,
the chain of thought prompt performs the best: it has the lowest number of cycles for Child and
Neuropathic datasets. This indicates that in-context examples and chain-of-thought reasoning help to
increase the accuracy of causal order output, but other contextual cues do not matter.

Dataset Dtop SHD IN/TN Cycles

Base Prompt

Earthquake 0 7 0/5 0
Cancer 0 6 0/5 0
Survey 3 12 0/6 0
Asia - 21 0/8 1

Asia-M - 15 0/7 7
Child - 177 0/20 >>3k

Neuropathic - 212 0/22 >>5k

All Directed Edges

Earthquake 1 9 0/5 0
Cancer 1 7 0/5 0
Survey 2 11 0/6 0
Asia - 21 0/8 6

Asia-M 0 13 0/7 0
Child - 139 0/20 >>300

Neuropathic - 194 0/22 >>1k

Markov Blanket

Earthquake 0 8 0/5 0
Cancer 0 6 0/5 0
Survey 3 12 0/6 0
Asia - 21 0/8 1

Asia-M 0 14 0/7 0
Child - 167 0/20 >>400

Neuropathic - 204 0/22 >>4k
Table A4: Comparison of various querying strategies for only LLM-based setups, providing different contextual
cues in each setup about the graph. IN: Isolated Nodes, TN:Total Nodes.
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Dataset Metric Pairwise (CoT) Triplet

Using LLM

Earthquake

Dtop 0 0
SHD 4 4

Cycles 0 0
IN/TN 0/5 0/5

Survey

Dtop 1 0
SHD 9 9

Cycles 0 0
IN/TN 2/6 0/6

Cancer

Dtop - 1
SHD - 6

Cycles - 0
IN/TN - 0/5

Asia

Dtop - 1
SHD 18 14

Cycles 1 0
IN/TN 0/8 0/8

Asia-M

Dtop - 1
SHD 13 11

Cycles 1 0
IN/TN 0/7 0/7

Child

Dtop - 1
SHD 138 28

Cycles »500 0
IN/TN 0/20 10/20

Using Human Annotators

Earthquake

Dtop 0 0
SHD 4.67 1.67

Cycles 0 0
IN 0 0.33

Survey

Dtop - 0
SHD 6.33 3.67

Cycles 0.67 0
IN 0.67 0

Cancer

Dtop 0 0
SHD 4.33 3.67

Cycles 0 0
IN 0.67 0

Asia-M

Dtop - 1.33
SHD 11.67 11.33

Cycles 3 0
IN 0 0

Table A5: (Top) Results using LLM (Bottom) Results using human annotators (mean value across
annotators reported). Performance of triplet method vs best performing pairwise query strategy
(Chain of Thought) on multiple benchmark datasets across diff metrics: Dtop, SHD, (Num of) Cycles,
IN (Isolated Nodes), TN (Total Nodes). When num of cycles>0, π̂ cannot be computed, hence Dtop

is given by ‘-’. Triplet consistently outperforms the pairwise strategy across metrics & datasets, esp
by significant amounts on larger graphs like Child.

Dataset Dtop SHD IN/TN Cycles

Chain of Thought

Earthquake 0 4 0/5 0
Survey 1 9 2/6 0
Asia - 18 0/8 1

Asia-M - 13 0/7 1
Child - 138 0/20 >>500

Neuropathic - 64 0/22 5

Triplet Query

Earthquake 0 4 0/5 0
Cancer 1 6 0/5 0
Survey 0 9 0/6 0
Asia 1 14 0/8 0

Asia-M 1 11 0/7 0
Child - 138 0/20 391

Child (+ Cycle Remover) 1 28 10/20 0
Neuropathic - 151 0/22 772

Neuropathic(+ Cycle remover) 3 24 13/20 0
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Table A6: Triplet query output using variable names with their descriptions (Cancer not included since CoT
prompt has examples from this graph). IN: Isolated Nodes, TN:Total Nodes. Since calculating total number of
cycles in a DAG is computationally challenging (NP Hard), we find a lower bound of cycles present in each
graph based on total k lenght cycles in each setting, where k=5. If k is scaled up, the number of such unique
cycles in the LLM output will also scale significantly. Lower bound helps us make a comparison with number of
cycles in outputs like in Triplet strategy, where numbers are comparatively smaller and can be calculated easily.

Graph Sample size Before LLM prior After LLM Prior

Child

250 18 16
500 16 15
1000 14 13
5000 13.5 12

10000 9.66 6

Earthquake

250 3.83 3
500 3.6 3
1000 3.6 3
5000 1.16 0.66

10000 0 0

Cancer

250 1 0
500 3.83 3.83
1000 2.6 2.6
5000 2.3 2.3

10000 2 2

Asia

250 7.5 7
500 6 5
1000 7 7
5000 2 1

10000 2 1

Asia-M

250 4.5 4
500 4 4
1000 5.5 5
5000 4 4

10000 4 4

Neuro

250 27 26
500 31 29
1000 41 40
5000 55 53

Table A7: Comparison of SHD Values Before and After Incorporating LLM Priors Using the PC
Algorithm Across Various Graphs

Finally, the triplet prompt provides the most accurate causal order. For small-scale graphs, it produces no cycles
and consistently produces minimal Dtop (ranging from 0 to 1) while also producing no isolated nodes. Even for
medium-size graphs like Child and Neuropathic, the LLM output includes significantly fewer cycles than the
pairwise strategy, which were removed leading to a significant and accurate causal order used further as prior.
That said, we do see that isolated nodes in the output increase after cycles are removed for medium graphs (all

graphs are connected, so outputting an isolated node is an error). Considering LLMs as virtual experts, this
indicates that there are some nodes on which the LLM expert cannot determine the causal order. This is still a
better tradeoff than providing the wrong causal order, which can confuse downstream algorithms. Overall, we
conclude that the triplet query strategy provides the most robust causal order predictions. Additional results

showing the error introduced by the LLM with respect to a ground truth order are shown in two different settings
in Tables A11 and A12.

G.4 Neuropathic Results
Studying Memorization: Results on Neuropathic Dataset. The datasets we considered from BNLearn are
popular ones. To study if our framework’s performance is limited to popular datasets where there could have

been memorization, we consider another dataset, a medium-sized subset graph from the Neuropathic dataset [Tu
et al., 2019] used for pain diagnosis. This dataset is relatively less popular and harder to access on the web. The
results shown in Tables A14 and A13 show similar trends as before – that obtaining causal order using triplet
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Graph Sample size Before LLM prior After LLM Prior

Child

250 18 16
500 16 15
1000 14 13
5000 13.5 12

10000 9.66 6

Earthquake

250 2 0
500 1 0
1000 1 0
5000 1 0

10000 1 0

Cancer

250 4 2
500 3 4
1000 3 2
5000 2 0

10000 3 0

Asia

250 4 4
500 4 2
1000 2 2
5000 2 2

10000 2 2

Asia-M

250 6 3
500 2 1
1000 2 2
5000 2 1

10000 2 1

Neuro

250 27 26
500 31 29
1000 41 40
5000 55 53

Table A8: Comparison of SHD Values Before and After Incorporating LLM Priors Using the CamML
Algorithm Across Various Graphs

1000 samples

Context Base prompt Past iteration Markov Blanket PC
orientations (Avg. over MEC)

Dtop 8.0 5.3 6.6 9.61
SHD 14.33 12.66 14.0 17.0

10000 samples

Dtop 6.33 9.66 6.0 7.67
SHD 9.0 13.33 8.33 12.0

Table A9: PC + LLM results where LLM is used to orient the undirected edges of the skeleton PC returns over
different data sample sizes. We show how LLMs can be used in a post processing setup for edge orientation
besides having the capability of acting as a strong prior for different discovery algorithms.

method leads to low Dtop, and then using this for causal discovery improves the performance of both PC and
CaMML algorithms.

PC SCORE ICA Direct NOTEARS CaMML Ours Ours
LiNGAM LiNGAM (PC+LLM) (CaMML+LLM)

N = 250 4.00±0.00 6.00±0.00 13.0±6.16 10.0±0.00 9.00±0.00 10.4±1.95 3.00±0.00 5.00±0.00
N = 10000 10.00±0.00 6.00±0.00 1.00±0.00 10.0±0.00 10.0±0.00 3.00±0.00 10.00±0.00 1.00±0.00

Table A13: Performance on causal discovery for the Neuropathic dataset subgraph (1k samples), showing mean
and std dev of Dtop over 3 runs.
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Dataset PC SCORE ICA Direct NOTEARS CaMML Ours Ours Ours Ours
LiNGAM LiNGAM (PC+LLM) (CaMML+LLM) (PC+Human) (CaMML+Human)

Earthquake 0.16±0.28 4.00±0.00 3.20±0.39 3.00±0.00 1.80±0.74 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 1.00±0.00
Cancer 0.00±0.00 3.00±0.00 4.00±0.00 3.60±0.48 2.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Survey 0.50±0.00 3.00±0.00 6.00±0.00 6.00±0.00 3.20±0.39 3.33±0.94 0.00±0.00 3.33±0.94 0.00±0.00 0.00±0.00
Asia 2.00±0.59 5.00±0.00 6.20±0.74 7.00±0.00 4.00±0.00 1.85±0.58 1.00±0.00 0.97±0.62 N/A N/A

Asia-M 1.50±0.00 5.00±0.00 7.60±0.48 6.20±1.16 3.40±0.48 1.00±0.00 1.00±0.00 1.71±0.45 1.00±0.00 2.00±0.00

N
=

25
0

Child 5.75±0.00 8.80±2.70 12.8±0.97 13.0±0.63 15.0±1.09 3.00±0.00 4.00±0.00 3.53±0.45 N/A N/A
Neuropathic 4.00±0.00 6.00±0.00 13.0±6.16 10.0±0.00 9.00±0.00 10.4±1.95 3.00±0.00 5.00±0.00 N/A N/A

Earthquake 0.75±0.25 4.00±0.00 3.20±0.39 3.40±0.48 1.20±0.40 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Cancer 0.16±0.28 3.00±0.00 3.40±0.48 3.00±0.00 2.00±0.00 1.00±0.00 0.33±0.57 1.00±0.00 0.00±0.00 0.00±0.00
Survey 1.25±0.00 4.00±0.00 6.00±0.0 6.00±0.00 3.40±0.48 3.39±0.08 1.00±0.00 3.33±0.94 1.00±0.00 0.00±0.00
Asia 3.06±0.00 5.00±0.00 5.60±0.48 7.00±0.00 3.20±0.39 3.81±0.39 1.00±0.00 0.97±0.62 N/A N/A

Asia-M 2.00±0.00 6.00±0.00 7.60±0.48 5.00±0.00 3.80±0.39 2.00±0.00 1.00±0.00 0.17±0.45 1.33±0.57 3.00±0.00

N
=

50
0

Child 8.09±0.00 6.20±1.32 12.2±0.74 10.6±1.35 15.4±0.48 2.00±0.00 5.00±1.73 2.00±0.00 N/A N/A
Neuropathic 7.50±0.00 6.00±0.00 9.00±1.41 13.0±0.00 11.0±0.00 5.32±0.57 8.00±0.00 7.49±0.64 N/A N/A

Earthquake 1.33±0.57 4.00±0.00 3.00±0.00 3.00±0.00 1.00±0.00 0.00±0.00 0.66±0.57 0.00±0.00 0.66±0.57 0.00±0.00
Cancer 1.33±0.57 3.00±0.00 3.00±0.00 3.00±0.00 2.00±0.00 1.60±0.48 1.33±0.57 0.00±0.00 1.33±0.57 0.00±0.00
Survey 1.00±0.00 4.00±0.00 5.80±0.39 5.40±0.48 3.20±0.39 2.71±0.27 1.00±0.00 2.83±0.00 1.00±0.00 0.00±0.00
Asia 5.00±0.00 4.00±0.00 6.20±0.74 6.60±0.48 3.40±0.48 1.75±0.43 5.00±0.00 0.97±0.62 N/A N/A

Asia-M 1.50±0.00 4.00±0.00 8.00±0.00 5.20±0.39 3.40±0.48 2.04±0.51 1.00±0.00 0.65±0.47 1.33±0.57 3.00±0.00

N
=

1
00
0

Child 8.25±0.00 3.80±0.74 12.2±1.72 11.8±0.74 15.2±0.97 2.00±0.00 7.00±0.00 2.00±0.40 N/A N/A
Neuropathic - 6.00±0.00 4.00±0.81 12.0±0.00 12.0±0.00 5.54±0.75 - 10.1±2.12 N/A N/A

Earthquake 0.50±0.86 4.00±0.00 2.80±0.39 3.00±0.00 1.00±0.00 0.80±0.97 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Cancer 1.33±0.57 3.00±0.00 3.00±0.00 3.00±0.00 2.00±0.00 2.00±0.00 1.33±0.57 0.00±0.00 1.33±0.57 0.00±0.00
Survey 2.00±0.00 4.00±0.00 5.00±0.00 5.00±0.00 3.00±0.00 3.33±0.69 2.00±0.00 2.60±0.00 2.00±0.00 0.00±0.00
Asia 1.00±0.00 4.00±0.00 6.60±0.79 4.40±1.35 3.40±0.48 1.75±0.43 0.00±0.00 0.97±0.62 N/A N/A

Asia-M 2.00±0.00 4.00±0.00 7.60±0.48 4.60±0.48 3.20±0.39 1.68±0.46 2.00±0.00 0.00±0.00 2.00±0.00 2.00±0.00

N
=

5
00
0

Child 8.25±0.00 3.00±0.00 12.6±0.79 10.8±1.72 14.2±0.40 3.00±0.00 7.00±0.00 3.00±0.00 N/A N/A
Neuropathic 8.62±0.00 6.00±0.00 9.33±0.94 10.0±0.00 10.0±0.00 4.20±0.96 9.00±0.00 1.23±0.42 N/A N/A

Earthquake 0.00±0.00 4.00±0.00 3.00±0.00 3.00±0.00 1.00±0.00 0.40±0.48 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Cancer 2.00±0.00 3.00±0.00 3.00±0.00 3.00±0.00 2.00±0.00 0.60±0.80 2.00±0.00 0.00±0.00 2.00±0.00 0.00±0.00
Survey 2.00±0.00 4.00±0.00 5.00±0.00 5.00±0.00 3.00±0.00 3.60±1.35 2.00±0.00 1.83±0.00 2.00±0.00 0.00±0.00
Asia 1.5±0.00 4.00±0.00 6.00±0.00 4.40±1.35 3.00±0.00 1.40±0.48 0.00±0.00 0.34±0.47 N/A N/A

Asia-M 1.00±0.00 4.00±0.00 8.00±0.00 4.80±0.39 3.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 3.00±0.00

N
=

10
00
0

Child 6.00±3.04 3.00±0.00 12.2±1.46 11.6±0.48 14.4±0.48 2.80±0.84 5.00±2.64 1.00±0.00 N/A N/A
Neuropathic 10.00±0.00 6.00±0.00 1.00±0.00 10.0±0.00 10.0±0.00 3.00±0.00 10.00±0.00 1.00±0.00 N/A N/A

Table A10: Comparison with causal discovery methods, showing mean and std dev of Dtop over 3 runs. (For
the Neuropathic subgraph (1k samples), PC Algorithm returns cyclic graphs in the MEC). Human experiments
not conducted for Child (due to feasibility issues), hence rows marked as N/A.

Dataset Samples LLM Ground Truth PC (Average over MEC)

250 1.00±0.00 0.00±0.00 2.00±0.00
Asia 1000 3.00±0.00 2.00±0.00 3.00±0.00

10000 3.00±0.00 3.00±0.00 3.00±0.00

250 5.00±0.00 5.00±0.00 6.50±0.00
Child 1000 6.00±0.00 6.00±0.00 8.43±0.00

10000 9.00±0.00 9.00±0.00 9.75±0.00
Table A11: Comparing Dtop of final graph using LLM order vs Ground truth order as prior to PC algorithm for
Child and Asia graph, averaged over 4 runs

Dataset Samples ϵATE(S1) ϵATE(S2) ϵATE(S3) ∆12 ∆13

250 0.70±0.40 0.70±0.39 0.69±0.39 0.00±0.00 0.00±0.00
500 0.64±0.39 0.64±0.39 0.64±0.38 0.00±0.00 0.00±0.00

Asia 1000 0.59±0.32 0.59±0.32 0.59±0.32 0.00±0.00 0.00±0.00
5000 0.59±0.30 0.59±0.30 0.59±0.29 0.00±0.00 0.00±0.00

10000 0.49±0.00 0.49±0.00 0.49±0.00 0.00±0.00 0.00±0.00
Table A12: Results on Asia dataset. Here we test the difference in the estimated causal effect of lung on
dyspnoea when the causal effect is estimated using the backdoor set S1 = {smoke} vs. the causal effect estimated
when all variables in two topological orders as backdoor sets: S2 = {asia, smoke}, S2= {asia, tub, smoke}.
∆12,∆13 refers to the absolute difference between the pairs ϵATE(S1), ϵATE(S2) and ϵATE(S1), ϵATE(S3)
respectively. From the last two columns, we observe that using the variables that come before the treatment node
in a topological order as a backdoor set does not result in the deviation of causal effects from the ground truth
effects.
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Dataset Number of Number of Description
Nodes Edges (used as a context)

Asia 8 8 Model the possible respiratory problems
someone can have who has recently visited
Asia and is experiencing shortness of breath

Cancer 5 4 Model the relation between various variables
responsible for causing Cancer and its possible
outcomes

Earthquake 5 5 Model factors influencing the probability of a burglary

Survey 6 6 Model a hypothetical survey whose aim is to investigate
the usage patterns of different means of transport

Child 20 25 Model congenital heart disease in babies

Neuropathic Pain
Diagnosis (subgraph) 22 25 For neuropathic pain diagnosis

Table A15: Overview of datasets used

Metric Pairwise Triplet
Dtop - 3
SHD 64 24

Cycles 5 0
IN/TN 0/22 13/20

Table A14: Results using LLM for triplet vs pairwise query strategies on the Neuropathic dataset subgraph
(metrics/values follow same procedure as Table A5)

H Cost Estimation Analysis

While the number of total API calls to LLM for triplet-based prompt is higher than the standard pairwise setup,
our method still ensures scalability by optimizing majority of API calls to cheaper and lower version model

(GPT-3.5-Turbo) while ensuring better performance. Our triplet pipeline further optimizes on performance by
utilizing multiple context switch (varying third node across all triplets) for orienting each pair of nodes, which

further leads to higher confidence and accuracy in its final orientation. Moreover, strategically deploying
advanced language models such as GPT-4 only for conflict resolution enhances effectiveness, streamlines costs
and enables scalability. Our analysis also suggests that an estimated cost of using a 100 node graph for Pairwise
orientation using GPT-4 will lead to a total cost of 574 USD, whereas using our triplet strategy which leverages
GPT-4 calls while optimizing performance of weaker models like GPT-3.5-turbo, will cost an estimated total of
55 USD. Pairwise analysis of a 100 node graph using GPT-3.5-turbo on the other hand will lead to an estimated
cost of 10 USD. Therefore while our proposed triplet pipeline uses more calls, but is able to use GPT-4 more
optimally because of inbuilt error correction thus leading to cost optimization while improving performance

significantly over pairwise orientation using GPT-3.5-turbo.

I Causal Graphs used in Experiments

Figures A3-A7 show the causal graphs and details we considered from BNLearn repository [Scutari and Denis,
2014].
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Figure A3: Earthquake Bayesian network. Abbreviations/Descriptions: Burglary: burglar entering, Earthquake:
earthquake hitting, Alarm: home alarm going off in a house, JohnCalls: first neighbor to call to inform the alarm
sound, Marycalls: second neighbor to call to inform the alarm sound.

Figure A4: Cancer Bayesian network. Abbreviations/Descriptions: Pollution: exposure to pollutants, Smoker:
smoking habit, Cancer: Cancer, Dyspnoea: Dyspnoea, Xray: getting positive xray result.
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Figure A5: Survey Bayesian network. Abbreviations: A=Age/Age of people using transport, S=Sex/male
or female, E=Education/up to high school or university degree, O=Occupation/employee or self-employed,
R=Residence/the size of the city the individual lives in, recorded as either small or big, T=Travel/the means of
transport favoured by the individual.

Figure A6: Asia Bayesian network. Abbreviations/Descriptions: asia=visit to Asia/visiting Asian countries
with high exposure to pollutants, smoke=smoking habit, tub=tuberculosis, lung=lung cancer, either=either
tuberculosis or lung cancer, bronc=bronchitis, dysp=dyspnoea, xray=getting positve xray result.
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Figure A7: Child Bayesian network. Abbreviations: BirthAsphyxia: Lack of oxygen to the blood during the
infant’s birth, HypDistrib: Low oxygen areas equally distributed around the body, HypoxiaInO2: Hypoxia
when breathing oxygen, CO2: Level of carbon dioxide in the body, ChestXray: Having a chest x-ray, Grunting:
Grunting in infants, LVHreport: Report of having left ventricular hypertrophy, LowerBodyO2: Level of oxygen
in the lower body, RUQO2: Level of oxygen in the right upper quadricep muscle, CO2Report: A document
reporting high levels of CO2 levels in blood, XrayReport: Report of having a chest x-ray, Disease: Presence
of an illness, GruntingReport: Report of infant grunting, Age: Age of infant at disease presentation, LVH:
Thickening of the left ventricle, DuctFlow: Blood flow across the ductus arteriosus, CardiacMixing: Mixing of
oxygenated and deoxygenated blood, LungParench: The state of the blood vessels in the lungs, LungFlow: Low
blood flow in the lungs, Sick: Presence of an illness
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Figure A8: For Neuropathic dataset, we consider a sub-graph induced by one of the root nodes, contain-
ing the following 22 nodes and corresponding edges taken from https://observablehq.com/@turuibo/
the-complete-causal-graph-of-neuropathic-pain-diagnosis: ‘right C7’, ‘right elbow trouble’,
‘left shoulder trouble’, ‘left bend of arm problem’, ’right shoulder trouble’, ‘right hand problem’, ‘left medival
elbow problems’, ‘right finger trouble’, ‘left neck problems’, ‘left wrist problems’, ’left shoulder problem’, ‘right
neck’, ‘right wrist problem’, ‘right shoulder problem’, ‘discoligment injury C6 C7’, ‘left hand problem’, ‘left
C7’, ‘right arm band’, ‘left lower arm disorders’, ‘neck pain’, ‘left finger trouble’, ‘left arm’. We did not use
descriptions for the nodes of Neuropathic graph.
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Question: For a causal graph used to model relationship of various factors and outcomes related to cancer
with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’],
Which cause-and-effect relationship is more likely between nodes ’smoker’ and ’cancer’?

A. changing the state of node ’smoker’ causally affects a change in another node ’cancer’.

B. changing the state of node ’cancer’ causally affects a change in another node ’smoker’.

C. There is no causal relation between the nodes ’cancer’ and ’smoker’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: The causal effect of "smoker" directing to "cancer" is based on the strong evidence from epidemi-
ological studies linking smoking to an increased risk of developing cancer. Smoking introduces harmful
substances into the respiratory system, leading to cellular damage and mutation, which significantly
raises the likelihood of cancer development in the lungs or respiratory tract, subsequently impacting the
occurrence of respiratory problems like shortness of breath. Therefore answer is ⟨Answer⟩A⟨/Answer⟩

Question: For a causal graph used to model relationship of various factors and outcomes related to cancer
with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’], Which cause-and-effect
relationship is more likely between nodes ’xray’ and ’dyspnoea’?

A. changing the state of node ’xray’ causally affects a change in another node ’dyspnoea’.

B. changing the state of node ’dyspnoea’ causally affects a change in another node ’xray’.

C. There is no causal relation between the nodes ’xray’ and ’dyspnoea’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: Reasoning behind the lack of causal relation between X-ray and dyspnoea is that X-ray and
dyspnoea are both effects of having cancer, but they do not directly cause or affect each other. X-ray is a
diagnostic test that can help detect cancer in the lungs or other organs, while dyspnoea is a symptom of
cancer that involves feeling short of breath. Therefore, X-ray and dyspnoea are not causally related, but
they are both associated with cancer. Therefore answer is ⟨Answer⟩C⟨/Answer⟩

Question: For a causal graph used to model relationship of various factors and outcomes related to cancer
with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’], Which cause-and-effect
relationship is more likely between nodes ’xray’ and ’cancer’?

A. changing the state of node ’xray’ causally affects a change in another node ’cancer’.

B. changing the state of node ’cancer’ causally affects a change in another node ’xray’.

C. There is no causal relation between the nodes ’xray’ and ’cancer’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Table A16: Chain of Thought Prompt
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Answer: The causal effect of cancer on X-ray is that X-rays are often used to diagnose or detect cancer
in different parts of the body, such as the bones, lungs, breasts, or kidneys123. X-rays use low doses of
radiation to create pictures of the inside of the body and show the presence, size, and location of tumors.
X-rays can also help monitor the response to treatment or check for signs of recurrence. Therefore,
having cancer may increase the likelihood of getting an X-ray as part of the diagnostic process or
follow-up care. Therefore answer is ⟨Answer⟩B⟨/Answer⟩

Question: For a causal graph used to model relationship of various factors and outcomes related to
cancer with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’], Which
cause-and-effect relationship is more likely between nodes ’pollution’ and ’cancer’?

A. changing the state of node ’pollution’ causally affects a change in another node ’cancer’.

B. changing the state of node ’cancer’ causally affects a change in another node ’pollution’.

C. There is no causal relation between the nodes ’pollution’ and ’cancer’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal
graph within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: The causal effect of pollution on cancer is that air pollution contains carcinogens (cancer-
causing substances) that may be absorbed into the body when inhaled and damage the DNA of cells.
Another possible reasoning is that particulate matter (tiny dust-like particles) in air pollution may cause
physical damage to the cells in the lungs, leading to inflammation and oxidative stress and eventually
cell mutations. A third possible reasoning is that air pollution may create an inflamed environment in
the lungs that encourages the proliferation of cells with existing cancer-driving mutations. These are
some of the hypotheses that researchers have proposed to explain how air pollution may cause cancer,
but more studies are needed to confirm them. Therefore answer is ⟨Answer⟩A⟨/Answer⟩

Question: For a causal graph used to model relationship of various factors and outcomes related to
cancer with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’], Which
cause-and-effect relationship is more likely between nodes ’pollution’ and ’smoker’?

A. changing the state of node ’pollution’ causally affects a change in another node ’smoker’.

B. changing the state of node ’smoker’ causally affects a change in another node ’pollution’.

C. There is no causal relation between the nodes ’pollution’ and ’smoker’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal
graph within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: Reason behind the lack of causal relation between pollution and smoker is that pollution
and smoking are both independent risk factors for respiratory problems, but they do not directly cause or
affect each other. Pollution and smoking both contribute to air pollution, which can harm the health of
people and the environment. However, pollution is mainly caused by human activities such as burning
fossil fuels, deforestation, or industrial processes, while smoking is a personal choice that involves
inhaling tobacco smoke. Therefore, pollution and smoker are not causally related, but they are both
associated with respiratory problems. Therefore answer is ⟨Answer⟩C⟨/Answer⟩.

Table A17: Chain of Thought Prompt (continued..)
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Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Family Disease’ and
’Gene’?

A. changing the state of node ’Family Disease’ causally affects a change in another node ’Gene’.

B. changing the state of node ’Gene’ causally affects a change in another node ’Family Disease’.

C. There is no causal relation between the nodes ’Family Disease’ and ’Gene’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: Reason behind the causal effect of family disease on gene is that family disease is a term that
refers to diseases or health conditions that run in the family, meaning that they are influenced by genetic
factors. Gene is a term that refers to the basic unit of heredity that carries information for a specific trait
or function. Family disease can affect gene by altering the type or frequency of genes that are inherited
by the offspring from their parents. For example, some family diseases are caused by deterministic
genes, which are genes that guarantee the development of a disease if they are present in a person’s
genome. Other family diseases are influenced by risk genes, which are genes that increase the likelihood
of developing a disease but do not guarantee it. Therefore, family disease can causally direct to gene by
changing the genetic makeup of a person or a population. Therefore answer is ⟨Answer⟩A⟨/Answer⟩.

Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Coronary Heart Disease’
and ’Gene’?

A. changing the state of node ’Coronary Heart Disease’ causally affects a change in another node
’Gene’.

B. changing the state of node ’Gene’ causally affects a change in another node ’Coronary Heart Disease’.

C. There is no causal relation between the nodes ’Coronary Heart Disease’ and ’Gene’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: Possible reasoning behind the causal effect of gene on coronary heart disease is that gene is
a term that refers to the basic unit of heredity that carries information for a specific trait or function.
Gene can affect coronary heart disease by influencing the structure and function of the blood vessels,
the metabolism and transport of lipids (fats) in the blood, the inflammation and clotting processes, or
the response to environmental factors such as smoking or diet. For example, some genes code for
proteins that regulate the cell cycle and growth of the cells that line the arteries, which can affect their
susceptibility to damage or plaque formation. Other genes code for proteins that control the synthesis
and clearance of cholesterol or other lipids, which can affect their levels and deposition in the arteries.
Therefore, gene can causally direct to coronary heart disease by modifying the biological pathways that
contribute to the development or progression of the disease. Therefore answer is ⟨Answer⟩B⟨/Answer⟩

Table A18: Chain of Thought Prompt (continued..)
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Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Blood Pressure’ and
’Smoking’?

A. changing the state of node ’Blood Pressure’ causally affects a change in another node ’Smoking’.

B. changing the state of node ’Smoking’ causally affects a change in another node ’Blood Pressure’.

C. There is no causal relation between the nodes ’Blood Pressure’ and ’Smoking’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: Possible reasoning behind the causal effect of smoking on blood pressure is that smoking is
a habit that involves inhaling tobacco smoke, which contains nicotine and other harmful chemicals.
Smoking can affect blood pressure by activating the sympathetic nervous system (SNS), which is the part
of the nervous system that controls the body’s response to stress or danger. When the SNS is activated, it
releases hormones such as adrenaline and noradrenaline, which cause the heart to beat faster and harder,
and the blood vessels to constrict. This results in a temporary increase in blood pressure, which can
last for 15 to 20 minutes after each cigarette. Therefore, smoking can causally direct to blood pressure
by stimulating the SNS and increasing the cardiac output and vascular resistance. Therefore answer is
⟨Answer⟩B⟨/Answer⟩.

Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Headache’ and ’Smok-
ing’?

A. changing the state of node ’Headache’ causally affects a change in another node ’Smoking’.

B. changing the state of node ’Smoking’ causally affects a change in another node ’Headache’.

C. There is no causal relation between the nodes ’Headache’ and ’Smoking’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: One possible reasoning behind the lack of causal relation between headache and smoking is
that headache and smoking are both associated with various health conditions, but they do not directly
cause or affect each other12. Headache is a term that refers to pain or discomfort in the head, scalp, or
neck, which can have many possible causes, such as stress, dehydration, infection, injury, or medication.
Smoking is a habit that involves inhaling tobacco smoke, which contains nicotine and other harmful
chemicals, which can increase the risk of diseases such as cancer, heart disease, stroke, and lung disease.
Therefore, headache and smoking are not causally related, but they are both linked to different health
problems. Therefore the answer is ⟨Answer⟩C⟨/Answer⟩

Table A19: Chain of Thought Prompt (continued..)
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Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Headache’ and ’Smok-
ing’?

A. changing the state of node ’Headache’ causally affects a change in another node ’Smoking’.

B. changing the state of node ’Smoking’ causally affects a change in another node ’Headache’.

C. There is no causal relation between the nodes ’Headache’ and ’Smoking’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: One possible reasoning behind the lack of causal relation between headache and smoking is
that headache and smoking are both associated with various health conditions, but they do not directly
cause or affect each other. Headache is a term that refers to pain or discomfort in the head, scalp, or
neck, which can have many possible causes, such as stress, dehydration, infection, injury, or medication.
Smoking is a habit that involves inhaling tobacco smoke, which contains nicotine and other harmful
chemicals, which can increase the risk of diseases such as cancer, heart disease, stroke, and lung disease.
Therefore, headache and smoking are not causally related, but they are both linked to different health
problems. Therefore the answer is ⟨Answer⟩C⟨/Answer⟩

Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Coronary Heart Disease’
and ’Smoking’?

A. changing the state of node ’Smoking’ causally affects a change in another node ’Coronary Heart
Disease’.

B. changing the state of node ’Coronary Heart Disease’ causally affects a change in another node
’Smoking’.

C. There is no causal relation between the nodes ’Coronary Heart Disease’ and ’Smoking’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: Possible reasoning behind the causal effect of smoking on coronary heart disease is smoking
damages the heart and blood vessels by raising triglycerides, lowering HDL, increasing blood clotting,
and impairing blood flow to the heart. This can lead to plaque buildup, heart attacks, and death. Therefore
answer is ⟨Answer⟩A⟨/Answer⟩.

Question: For a causal graph used for context with the following nodes: nodes, Which cause-and-effect
relationship is more likely between nodes X and Y?

A. changing the state of node X causally affects a change in another node Y.

B. changing the state of node Y causally affects a change in another node X.

C. There is no causal relation between the nodes X and Y.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Table A20: Chain of Thought Queries (continued..)
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Which cause-and-effect relationship is more likely?

A. changing the state of node which says X causally affects a change in another node which
says Y.

B. changing the state of node which says Y causally affects a change in another node which
says X.

C. There is no causal relationship between node X and Y.

Make sure to first output a factually grounded reasoning for your answer. X and Y are nodes
of a Causal Graph. The causal graph is sparse and acyclic in nature. So option C could be
chosen if there is some uncertainity about causal relationship between X and Y.

First give your reasoning and after that please make sure to provide your final answer within
the tags ⟨Answer⟩A/B/C⟨/Answer⟩.
It is very important that you output your final answer between the tags like
⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your response will not be processed.

Table A21: Base Queries

For the nodes X and Y which form an edge in a Causal Graph, you have to identify which
cause-and-effect relationship is more likely between the nodes of the edge. This will be used
to rearrange the nodes in the edge to create a directed edge which accounts for causal relation
from one node to another in the edge.

A. changing the state of node X causally affects a change in another node Y.

B. changing the state of node Y causally affects a change in another node X.

C. There is no causal relation between the nodes X and Y.

You can also take the edges from the skeleton which have been rearranged to create a directed
edge to account for causal relationship between the nodes: directed_edges.
Make sure to first output a factually grounded reasoning for your answer. First give your
reasoning and after that please make sure to provide your final answer within the tags
⟨Answer⟩A/B/C⟨/Answer⟩.
It is very important that you output your final answer between the tags like
⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your response will not be processed.

Table A22: Iterative orientation Queries
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For the following undirected edge in a Causal Graph made of nodes X and Y, you have to
identify which cause-and-effect relationship is more likely between the nodes of the edge.
This will be used to rearrange the nodes in the edge to create a directed edge which accounts
for causal relation from one node to another in the edge.

A. changing the state of node X causally affects a change in another node Y.

B. changing the state of node Y causally affects a change in another node X.

C. There is no causal relation between the nodes X and Y.

You can also take the other directed edges of nodes X: X_edges and Y: Y_edges of the Causal
graph as context to redirect the edge to account for causal effect.
Make sure to first output a factually grounded reasoning for your answer. First give your
reasoning and after that please make sure to provide your final answer within the tags
⟨Answer⟩A/B/C⟨/Answer⟩.
It is very important that you output your final answer between the tags like
⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your response will not be processed.

Table A23: Markov Blanket Queries

Identify the causal relationships between the given variables and create a directed acyclic graph
to {context}. Make sure to give a reasoning for your answer and then output the directed graph
in the form of a list of tuples, where each tuple is a directed edge. The desired output should be in
the following form: [(‘A’,‘B’), (‘B’,‘C’)] where first tuple represents a directed edge from Node

‘A’ to Node ‘B’, second tuple represents a directed edge from Node ‘B’ to Node ‘C’and so on.

If a node should not form any causal relationship with other nodes, then you can add it as an
isolated node of the graph by adding it seperately. For example, if ‘C’ should be an isolated node
in a graph with nodes ‘A’, ‘B’, ‘C’, then the final DAG representation should be like [(‘A’,‘B’),
(‘C’)].
Use the description about the node provided with the nodes in brackets to form a better decision
about the causal direction orientation between the nodes.

It is very important that you output the final Causal graph within the tags <An-
swer></Answer>otherwise your answer will not be processed.

Example:
Input: Nodes: [‘A’, ‘B’, ‘C’, ‘D’];
Description of Nodes: [(description of Node A), (description of Node B), (description of Node
C), (description of Node D)]
Output: <Answer>[(‘A’,‘B’),(‘C’,‘D’)]</Answer>
Question:
Input: Nodes: {Triplet Nodes Input}
Description of Nodes: {Description of Each Node from the Triplet}
Output:

Table A24: The triplet query template, which includes a concise context of the graph, the input triplet nodes
and their respective descriptions. As an example, for the Child graph, the context is "to model congenital
heart disease in babies", the three nodes may be (‘HypoxiaInO2’, ‘Grunting’, ‘GruntingReport’); and their
node descriptions are ["hypoxia when breathing oxygen", "grunting in infants", "report of infant grunting"]
respectively.
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Input: (‘HypDistrib’, ‘LowerBodyO2’)

Answer: Low oxygen areas equally distributed around the body can affect the level of oxygen in
the lower body by reducing the amount of oxygen available for circulation. Therefore, the answer is
⟨Answer⟩A⟨/Answer⟩.

Input: (‘Disease’, ‘LungFlow’)

Answer: Infant methemoglobinemia is a condition where the blood is unable to carry enough oxygen,
which can lead to low blood flow in the lungs. Therefore, the answer is ⟨Answer⟩A⟨/Answer⟩.

Input: (‘CardiacMixing’, ‘HypDistrib’)

Answer: Mixing of oxygenated and deoxygenated blood is a common cause of congenital heart disease
in babies. This mixing can occur due to structural defects in the heart, such as a hole between the heart
chambers or abnormal connections between the blood vessels. This mixing can lead to low oxygen areas
equally distributed around the body. Therefore, the answer is ⟨Answer⟩B⟨/Answer⟩.

Table A25: Example LLM (GPT-3.5-turbo) outputs for estimating the causal direction between a given pair of
nodes (with their descriptions) using the CoT Prompt (refer Table A16 in Appendix for the prompt). Given a
pair (X,Y), Option A refers to X causing Y, option B refers to Y causing X, and option C refers to no causal
relationship between the variables. The pairs shown are from the Child graph from BNLearn repository [Scutari
and Denis, 2014], that is used for modeling Congenital Heart Disease in infants.

Input: (‘Right C7’,‘Discoligment injury C6-C7’)

Answer: Discoligment injury C6-C7 can cause compression of the nerve roots that exit the
spinal cord at the C7 level, which can lead to symptoms such as pain, numbness, and weakness
in the right C7 dermatome. Therefore, the answer is ⟨Answer⟩B⟨/Answer⟩.

Input: (‘Right C7’, ‘Left C7’)

Answer: Right C7 and left C7 are both parts of the cervical spine and are not known to directly
influence each other. Therefore, the answer is ⟨Answer⟩C⟨/Answer⟩.

Input: (‘Right elbow trouble’, ‘Left shoulder trouble’)

Answer: There is no direct causal relationship between right elbow trouble and left shoulder
trouble. They may both be symptoms of a larger underlying condition, but they do not directly
cause or affect each other. Therefore the answer is ⟨Answer⟩C⟨/Answer⟩.

Table A26: Example LLM (GPT-3.5-turbo) reasoning outputs for estimating causal directionality
between different pairs of nodes using CoT queries (refer Table A16 for the query) for Neuropathic
subgraph (used for pain diagnosis).
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