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Abstract— Mobile ground robots lacking prior knowledge
of an environment must rely on sensor data to develop a
model of their surroundings. In these scenarios, consistent
identification of obstacles and terrain features can be difficult
due to noise and algorithmic shortcomings, which can make it
difficult for motion planning systems to generate safe motions.
One particular difficulty to overcome is when regions of the
cost map switch between being marked as obstacles and free
space through successive planning cycles. One potential solution
to this, which we refer to as Valid in Every Hypothesis
(VEH), is for the planning system to plan motions that are
guaranteed to be safe through a history of world models.
Another approach is to track a history of world models, and
adjust node costs according to the potential penalty of needing
to reroute around previously hazardous areas. This work
discusses three major iterations on this idea. The first iteration,
called Per-Edge Hypothesis (PEH), invokes a sub-search for
every node expansion that crosses through a divergence point
in the world models. The second and third iterations, called
Goal-Edge Hypothesis (GEH) and Goal-Edge Graph Revision
Hypothesis (GEGRH) respectively, defer the sub-search until
after an edge expands into the goal region. GEGRH uses an
additional step to revise the graph based on divergent nodes
in each world. Initial results showed that, although PEH and
GEH find more optimistic solutions than VEH, they are unable
to generate solutions in less than one-second, which exceeds
our requirements for field deployment. Analysis of results from
a field experiment in an unstructured, off-road environment
on a Clearpath Robotics Warthog Unmanned Ground Vehicle
(UGV) indicate that GEGRH finds lower cost trajectories and
has faster average planning times than VEH. Compared to
single-hypothesis (SH) search, where only the latest world model
is considered, GEGRH generates more conservative plans with
a small increase in average planning time.

I. INTRODUCTION

Robots navigating through unstructured, partially observed
environments are often tasked with generating their own
models of the world during traversal. These models are used
to inform motion planners of environmental hazards, so they
can generate safe trajectories. Traditionally, motion planners
that operate to or beyond the perception horizon build a
graph in which edge costs are influenced by the most recent
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Fig. 1: Top: UGV in an unstructured, off-road environment. Bottom:
Three successive planning problems, with the colored cost map
overlaid on a faded image of the previous. Relying on the most
recent cost map causes the planned trajectory (magenta) to oscillate
around the central obstacles (shaded yellow, circled in black).

world map. Search algorithms such as A∗ [8] or Anytime
Repairing A∗ (ARA∗) [12] are then used to generate feasible
motions. By relying on the most recent world representation,
the planner attempts to ensure that its output reflects the most
accurate approximation of the environment.

In practice, these maps are subject to uncertainty from
sensor noise, occlusions, state estimation errors, and in-
complete observations, particularly in complex and partially
observable environments [11]. This uncertainty results in
inconsistencies between successive world models, undermin-
ing the assumption that the most recent map is the most
accurate. The differences in these maps lead to inconsistent
plan generation from deterministic motion planners. This
effect was highlighted during a field test on a Clearpath
Robotics Unmanned Ground Vehicle (UGV). Figure 1 is an
illustration from the experiment that shows the variation in
perception output by overlaying three successive world maps
[14]. Even in near-field regions where sensor confidence is
typically higher, inconsistencies exist in what is classified
as lethal in the cost maps. These inconsistencies introduce
deviations between successive planner outputs, leading to
undesirable behaviors such as abrupt trajectory changes or
oscillations around obstacles. This oscillatory behavior, also
shown in Figure 1, is described in a topological sense in [15],
where trajectories oscillate back and forth due to changes



in the cost map. Such oscillations arise when the planner
repeatedly generates trajectories that diverge from previous
plans, leading to instability in robot motion.

The planner used for this work leverages the Kinodynamic
Efficiently Adaptive State Lattice (KEASL) search space
with heuristic based search [3]. Figure 1 shows the oscillatory
plans generated by KEASL. This behavior, where alternating,
topologically distinct trajectories (shown in magenta) are
generated through the most recent world map, is due to
differences in the successive inputs to the motion planner.
The deterministic properties of KEASL mean the outputs are
predictable, and the behaviors can be explained algorithmi-
cally. Additionally, the discrete environment representations
mean there is a consistent output with a consistent input. The
oscillatory problems arise because the opposite can be true,
where noisy inputs tend to result in noisy outputs. Stochastic
processes can take the uncertainty into account, but often
require training models or carefully tuning parameters. Par-
tially Observable Markov Decision Processes (POMDP), for
example, can handle uncertainty in observations, but require
updating a policy for each new map.

Since mapping uncertainty can significantly impact plan-
ning performance, we propose a more robust approach to
edge cost computation that uses multiple temporally sampled
environment maps. By considering prior perception decisions
and integrating them into the search process, the planner
can reason about prior world observations and make more
informed decisions. We characterize each successive world
map as an evolving hypothesis about the true state of the
environment. Divergence points between these hypotheses
correspond to regions where the perception system’s inter-
pretation of the environment has changed, often leading to
inconsistencies in the plans generated by motion planning
algorithms. Each map in Figure 1 can be viewed as the
accumulation of prior hypotheses, each modifying previous
interpretations of the environment. In this work, the most
recent map is treated as the primary hypothesis, where there
cannot be any collisions in the final solution. The additional
hypotheses are used to guide the search process. Figure
2 shows the output from our multi-hypothesis planning
methodology with the same environment map representations
as in Figure 1. The Single-Hypothesis (SH) plan (magenta)
oscillates around a central clustering of obstacles, while
the multi-hypothesis plan (blue) remains consistently to one
side. While our approach does not completely eliminate this
behavior, it mitigates the impact by making decisions with
consideration of prior world observations.

This work presents two main contributions aimed at ad-
dressing the challenges posed by perceptual uncertainty in
the environment representation:

1) A search algorithm for mobile robot motion plan-
ning in off-road environments that considers multiple
temporally sampled world model hypotheses when
computing edge costs.

2) An analysis of the algorithm’s performance with exper-
iments conducted on data collected from field-testing
on a UGV in an unstructured, off-road environment.

(a) t = 0 (b) t = 1 (c) t = 2

Fig. 2: Three successive planning problems, with the colored cost
map overlaid on a faded image of the previous. Using only the
most recent cost map causes the planned trajectory (magenta) to
oscillate around the central clustering of obstacles (shaded yellow,
circled in black). The multi-hypothesis plan (blue) is consistently
to one side of the cluster. Note that at t = 0 the trajectories are
identical because only one world hypothesis exists at this point.

II. RELATED WORK

There is a large body of research addressing the challenge
of overcoming environmental uncertainty in motion planning.
However, most of the work is in mitigating the impacts of
uncertainty in localization and action response. There is an
open research area regarding the gap between inconsisten-
cies in environment map representations and the results of
deterministic planners.

The Markov Decision Process (MDP) framework has been
extensively used to model decision-making under uncertainty
when the system’s current state is fully observable [19]. In an
MDP, a policy is computed to maximize expected rewards
over time, accounting for probabilistic transitions between
states caused by the agent’s actions. MDPs have been widely
applied in motion planning tasks where action outcomes
are stochastic but the environment can be reliably sensed,
allowing planners to handle uncertainty without requiring a
full belief state representation.

The POMDP is an extension of the MDP, and is used for
handling uncertainty in world models [1], [22]. POMDPs
account for incomplete or noisy observations by maintaining
a belief over possible system states and updating it based on
incoming sensor data. To optimize decision-making in par-
tially observed environments, value iteration methods have
been extensively explored to determine optimal policies [18],
[10]. These approaches enable a robot to reason about the
probabilistic outcomes of actions, but require predictions of
the uncertainty of the world. While POMDP frameworks are
robust to observation noise, they are often computationally
infeasible for field deployment due to the high dimensionality
of long-range, kinodynamic motion planning [20], [9]. Policy
computation is costly, and in noisy and partially observed
environments, the policy may need frequent updates to reflect
changes in the map.

Another effective approach to managing uncertainty is
belief space planning, where motions are generated based
on the robot’s predicted ability to localize and reduce
uncertainty at each decision point. Belief space planning
considers a probability distribution over the possible states
of the environment, enabling the robot to choose actions that
maximize information gain or minimize uncertainty [2], [7],
[17]. This method is particularly useful in situations where
maintaining localization accuracy is important, at the expense



of traditionally suboptimal plans.
In dynamic and partially observed environments, consid-

ering multiple possible outcomes can significantly improve
motion planning performance. One such approach solves
multiple plans conditioned on the possible actions of dy-
namic agents and collapses them into a final solution once
the true behavior is observed [4]. Similarly, [6] propose
a motion model for tracking and predicting the behavior
of multiple objects, generating plausible plans for each
object in the scene to ensure safe and effective navigation.
Additionally, work by [16] demonstrates advancements in
predicting potential obstacle trajectories, further refining the
application of probabilistic models to motion planning in
dynamic scenarios.

Another class of approaches aims to eliminate uncertainty
by filling in missing or ambiguous information at the percep-
tion level. One way to do this is by incorporating hysteresis
into the traversability estimates like in [23], where the cost
map cells with the highest cost were only removed from the
map after a certain amount time. Another way to handle the
uncertainty is by using predictive methods which fill in un-
certain areas. These methods use prior knowledge or learned
models to infer the structure of the environment where sensor
data is sparse or noisy. Work by [14] uses a model to
generate world models in unstructured environments, and
[5] demonstrates an approach where hallway shapes are
predicted and reconstructed during simulated robot traversal,
allowing the robot to make informed navigation decisions
in partially mapped environments. Although such predictive
techniques enhance the planner’s confidence in unobserved
regions, overconfidence by the models can lead to inconsis-
tent classification of hazardous regions.

Other work has addressed the problem of planning with
inconsistent world models by generating individual motions
over a posterior of map observations, and selecting the
final trajectory based on the lowest aggregate cost of those
motions in each world sample [21]. While this approach does
consider multiple map representations during path selection,
it guarantees relative optimality in only one world. In con-
trast, our method considers multiple maps during search to
generate an optimal motion based on the potential cost of
rerouting around inconsistently identified hazards.

Our work differs from prior methods by encoding incon-
sistent environment predictions into a deterministic graph,
where edge costs are computed from temporally sampled
world hypotheses. This enables deterministic, kinodynamic
planners like KEASL to maintain efficient and accurate
search without relying on parameter tuning or model training
to compensate for environmental noise. Additionally, we
differentiate between modeling uncertain regions as hazards
and assigning them costs that reflect the potential risk of
incorrect assumptions.

III. TECHNICAL APPROACH

The KEASL search space was developed to perform
kinodynamic motion planning with consistent velocity con-
straints. With traditional KEASL (herein referred to as

Single-Hypothesis (SH) planning), a library of motion primi-
tives is used to generate feasible expansions. Each expansion
is validated against the most recent world map by first
checking for obstacle collisions and then applying velocity
constraints. Expansions that satisfy both conditions are added
to the recombinant graph, where nodes maintain a history of
expansions leading back to the start. For context, the f-cost
refers to the sum of the heuristic estimate to the goal and
the total estimated time it would take to reach a node. The
open list contains nodes available for expansion, while the
closed list contains nodes that have already been expanded.

To develop the contributions in this paper, we explored
four different methods of searching over a recombinant,
multi-world-hypothesis search space. The first method, and
our baseline, ensures motion viability across all world rep-
resentations, expanding an edge only if it is collision-free
in every hypothesis. The second checks for motion validity
on a per-expansion basis and invokes a sub-search to reroute
edges around obstacles in corresponding worlds. The third
method implements a “lazy search” method [13] by deferring
the acknowledgement of multiple hypotheticals until after
an edge expands to the goal. After such an expansion,
the candidate solution is checked for collisions in each
hypothesis and rerouted from the corresponding divergence
based on the considered world. The final method builds on
the third method by incorporating a graph-revision step after
performing the rerouting in each world. In methods two,
three, and four, edges are expanded if they are valid in at
least one of the worlds. It is not until the final step in each
process that the solution must be valid in the most recent
hypothesized world.

A. Multi-World-Hypothesis Search Space

We build upon the KEASL search space by considering
multiple hypothetical world models when computing edge
costs. Each node in the graph has a backpointer, which is
a reference to its parent, and a list of the expansions from
the prior nodes in its history. For this work, the backpointers
remain consistent with KEASL, but we reformat the node’s
expansion history data structure to include one history per
world hypothesis. This allows expansions to occur through
cost map cells that contain obstacles in some hypotheses, and
do not in others, while tracking the points of divergence in
the node histories. By formulating the search space this way,
we can detect and bridge through inconsistently observed
regions of the world.

B. Valid in Every Hypothesis (VEH)

The first approach ensures that expanded edges are valid
in every hypothetical world in the graph. This is done by
checking expansion validity against every world representa-
tion during search. Although searching in this way ensures
obstacle consideration in inconsistent world models, the
generated plans are often overly conservative. Pseudocode
for VEH is shown in Algorithm 1.

Figure 3 shows the result of this method, where the
trajectory from VEH (blue) is far more conservative than



Algorithm 1: VEH
1: OPEN ← start node
2: CLOSED ← ∅
3: while OPEN not empty do
4: n← OPEN .pop()
5: CLOSED ← n
6: if n is goal then
7: return extractSolution(n)
8: end if
9: for all n′ in Expand(n) do

10: if n′ is valid in every hypothesis then
11: UpdateCost(n, n′)
12: OPEN .insert(n′)
13: end if
14: end for
15: end while

Fig. 3: The solution generated by VEH (blue) avoids all obstacles
in all three hypothesized worlds. The solution from SH (red) only
accounts for the most recent world hypothesis (green cost map).

the trajectory generated when using only the most recent
world hypothesis (red). This occurs because VEH is unable
to generate motions through areas of the map that were
previously determined to have obstacles present.

C. Per-Edge Hypothesis (PEH)

To overcome the highly cautious planning of VEH while
also considering safety, PEH was developed to compute edge
costs that reflect the potential risk of incorrect assumptions
without avoiding every obstacle in every world. To do this,
we implement a sub-search process into the search space,
herein referred to as a Rerouter. The Rerouter generates a
trajectory from one position to another as in normal planning,
but this trajectory is assigned as an edge between nodes
where applicable. We also allow expansions to occur if they
are valid in at least one hypothetical world, although the
final solution must be valid in the primary hypothesis. This
constraint is satisfied naturally when the final solution is
extracted from the node history corresponding to the primary
hypothesis. Pseudocode for PEH is shown in Algorithm 2.

Figure 4 shows an example where a hypothetical obstacle
exists between nodes n0,0 and n1,0. In the primary hypothesis
where the obstacle does not exist, an edge is generated
through the free space connecting the nodes. In the secondary
hypothesis where the obstacle does exist, the Rerouter gen-
erates a trajectory connecting the nodes, and the cost of n1,0

is updated as the average of the two hypothetical expansions.

Algorithm 2: PEH
1: OPEN ← start node
2: CLOSED ← ∅
3: while OPEN not empty do
4: n← OPEN .pop()
5: CLOSED ← n
6: if n is goal then
7: return extractSolution(n)
8: end if
9: for all n′ in Expand(n) do

10: if n′ valid in any hypothesis then
11: for all hypotheses where n→ n′ invalid do
12: n′ ← Reroute(n, n′, hypothesis)
13: end for
14: UpdateCost(n, n′)
15: OPEN .insert(n′)
16: end if
17: end for
18: end while

n0,0 n1,0

Node Inconsistent Obstacle Hypothesis 1 Expansion Hypothesis 2 Expansion

Fig. 4: Case 1: An inconsistent obstacle (gray checkerboard) does
not exist in the primary world hypothesis, but does in the secondary
world hypothesis. It falls within one edge expansion between nodes
n0,0 and n1,0. The “Hypothesis 1” expansion assumes the region
is free-space, and the “Hypothesis 2” expansion assumes the region
is lethal.
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Fig. 5: Case 2: An inconsistent obstacle (gray checkerboard)
does not exist in the primary world hypothesis and does in the
secondary world hypothesis. The “Hypothesis 1” and “Hypothesis
2” trajectories generated between nodes n0,3 and n5,3 assume the
region is safe and lethal respectively.

Figure 5 shows the second case, where a hypothetical
obstacle exists through multiple node expansions. In the first
case, rerouting between successive nodes is comparatively
simple, but in this scenario, the Rerouter must be aware of
the history of expansions for each node in every hypothesis.
This is because there is no way for an edge to be generated
from n1,3 to n2,3 or n3,3 in the secondary hypothesis. It is not
until an expansion is performed to n4,3 that the Rerouter can
look back through the node expansion history and generate
an edge around the hypothetical obstacle between n1,3 and
n4,3.



In theory, this methodology of PEH is effective in updating
edge costs and maintaining consistency across hypotheses.
Although the rerouted solution costs are guaranteed to be no
greater than those generated by VEH (assuming optimal sub-
search and infinite planning time), the added computational
cost associated with performing reroutes for every edge
rendered PEH impractical for our field experiments.

D. Goal-Edge Hypothesis (GEH)

To overcome the long planning times of PEH, we devel-
oped GEH which defers the notion of multiple hypothetical
worlds until after an edge expands into the goal. At that
point, the Rerouter generates an edge from the first point of
divergence in each hypothesis to the goal. The goal-edge cost
is updated as the average of the new rerouted trajectories, the
node is reinserted into the open list, and search continues.
The final trajectory may not fully avoid obstacles in non-
primary hypotheses, but it remains conservative, favoring
motions that pass through the edges of obstacles rather than
cutting straight through their centers. Pseudocode for GEH
is shown in Algorithm 3.

Algorithm 3: GEH
1: OPEN ← start node
2: CLOSED ← ∅
3: while OPEN not empty do
4: n← OPEN .pop()
5: CLOSED ← n
6: if n is goal then
7: for all hypotheses do
8: if path invalid then
9: Reroute from divergence point to goal

10: Update goal-edge cost
11: end if
12: end for
13: Reinsert goal node into OPEN
14: continue
15: end if
16: for all n′ in Expand(n) do
17: if n′ valid in any hypothesis then
18: UpdateCost(n, n′)
19: OPEN .insert(n′)
20: end if
21: end for
22: end while

Figure 6 depicts the process, where the final trajectory
is influenced by adjusting the cost of the expansion from
n4,3 to n5,3 with the rerouted edge from n1,3 to the goal,
n5,3. After n4,3 expands to the goal, a reroute is performed
from the node corresponding to the first divergence point
(n1,3), generating the “Hypothesis 2 trajectory”. The cost
of the expansion from n4,3 to n5,3 is updated by averaging
the original primary hypothesis expansion to the goal with
the rerouted trajectory to the goal. After search is finished,
the resulting “Final Trajectory” is one that expands n0,3 to
n1,2, and cuts through the very edge of the obstacle in the
secondary hypothesis. When search is complete, the final
trajectory balances between going through the center of the
uncertain area and completely avoiding it.

Figure 7 illustrates the result of this process with an
example from the field data, where the GEH solution is
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Fig. 6: An inconsistent obstacle (gray checkerboard) exists between
the start and goal states (dark gray nodes). A route (“Hypothesis
1 Trajectory”) is found directly to the goal because the expansions
are valid in at least one hypothesis - in this case, the primary. The
final trajectory is a result of considering the cost of rerouting in the
secondary hypothesis.

Primary Hypothesis Secondary Hypothesis

Fig. 7: GEH search space from field data for a primary and
secondary hypothetical. Expansions are shown in black. GEH final
solution is shown in green, the primary-hypothesis solution is shown
in red, and the secondary-hypothesis reroute is shown in magenta
in the map on the right.

a compromise between the primary-hypothesis solution and
the secondary-hypothesis rerouted solution. This figure also
demonstrates the primary issue with this method, particularly
for long-range planning. Because the cost of the goal-
expanded edge is the only one updated by the Rerouter,
graph expansions are concentrated at the final state as search
continually updates and reinserts the candidate terminal node
back into the open list. This effect is magnified with the
inflated heuristic of ARA∗ because edges closer to the goal
are more likely to be expanded than those further away. GEH
is more likely to succeed if divergence points only occur near
the goal, or if the goal is close to the robot starting state. It is
important to note that the final plan generated by GEH is a
result of multiple consistent trajectory branches, where each
world hypothesis may diverge from the primary solution at
different points in the graph. Rather than a single common
trajectory across all hypotheses, GEH maintains n partially
consistent paths, each used to update node costs and balance
obstacle avoidance with exploration in uncertain regions.



E. Goal-Edge Graph Revision Hypothesis (GEGRH)

This final method solves the goal-expansion issue in GEH
by including a graph revision step after updating the goal-
expansion cost. The first step of the revision is to step
back through the history of node expansions and determine
the node corresponding to the first divergence point of all
hypothetical worlds. This is performed using the restructured
node-history described in Section III-A. Following the diver-
gence point identification, the graph revision steps are shown
in Algorithm 4. As in normal A∗ search, if the reinserted
node has the lowest f-cost on the open list, search is
complete, or as in ARA∗, the heuristic is deflated and search
resumes. This allows the graph to retain prior candidate
solutions as independent edges and focus expansions at the
divergence points of the hypotheses. Pseudocode for GEGRH
is shown in Algorithm 5.

Algorithm 4: Graph Revision
1: ne = goal expanded node
2: nd = divergence node
3: ne.backPointer = nd.backPointer
4: nd.RemoveNodeDescendents(OPEN ,CLOSED)
5: OPEN ← ne

6: nd.MarkInvalid()

Algorithm 5: GEGRH
1: OPEN ← start node
2: CLOSED ← ∅
3: while OPEN not empty do
4: n← OPEN .pop()
5: CLOSED ← n
6: if n is goal then
7: for all hypotheses do
8: if path invalid then
9: Reroute from divergence point to goal

10: Update goal-edge cost
11: end if
12: end for
13: Perform the graph revision step
14: continue
15: end if
16: for all n′ in Expand(n) do
17: if n′ valid in any hypothesis then
18: UpdateCost(n, n′)
19: OPEN .insert(n′)
20: end if
21: end for
22: end while

Primary Hypothesis Secondary Hypothesis

Fig. 8: GEGRH search space from field test data for a primary and
secondary hypothetical. Expansions shown in black. GEGRH final
solution shown in green, primary-hypothesis solution shown in red,
and secondary-hypothesis reroute is shown in magenta in the map
on the right.

Figure 8 shows the resulting search space after adding
the graph revision step. Note the difference in where the
graph expansions are concentrated compared to in Figure
7. Focusing expansions on the divergence points rather than
around the goal allows solutions to be found more effectively.

GEGRH is also able to find solutions when GEH should
perform well. In theory, GEH has marginally less computing
overhead when the divergence point is very close the goal,
but the efficiency increases of GEGRH throughout the rest
of search minimize the impact of these cases.

IV. EXPERIMENTAL DESIGN

To evaluate the impact of different methods for incor-
porating multiple hypothetical versions of the world into
KEASL, experiments were conducted using data collected
from testing on a UGV. During testing, environment maps
were generated online by the perception system. These maps,
along with recorded start and goal states, formed the basis
of 221 planning problems. For each planning problem, two
experimental conditions were tested:

1) Planning with two successive environment maps.
2) Planning with three successive environment maps.

In all experiments, ARA∗ was used as the underlying search
algorithm, with a maximum allowable planning time of
1-second, and an initial heuristic inflation factor of 2.0.
Each planning problem was solved using three planning
modes - SH, VEH, and GEGRH. For each version of the
search space, we recorded both the planning time and the
resulting trajectory duration. We focus our analysis on VEH
and GEGRH, as preliminary evaluations indicated that PEH
incurred impractical runtimes for field use, and that GEH
was superseded by GEGRH. SH is included for context of
solutions generated by normal search. VEH is considered
the baseline because it represents the most conservative
method of planning through multiple maps and uses the
same KEASL framework to enable a fair comparison of the
algorithmic effects.

(a) (b) (c)

Fig. 9: Sample of three planning problem worlds from the ex-
periments, with the primary hypothesis (green) overlaid on the
secondary hypothesis (red), overlaid on the tertiary hypothesis
(blue). Visual fading is applied between layers for contrast.

An example of the experiment representations is shown in
Figure 9, where inconsistencies between successive environ-
ment maps can be observed despite high confidence levels
from the perception and state estimation systems. These
inconsistencies come because of updated observations, as
well as errors in state estimation which cause obstacles to
appear slightly shifted or rotated in successive maps.



V. RESULTS & DISCUSSION

Two Hypotheses
Average SH VEH GEGRH
Planning Time (s) 0.12± 0.01 0.26± 0.03 0.22± 0.02
Path Duration (s) 33.55±1.70 38.56±2.06 36.00±1.87

Three Hypotheses
Average SH VEH GEGRH
Planning Time (s) 0.12± 0.01 0.41± 0.04 0.29± 0.03
Path Duration (s) 33.55±1.70 44.87±2.91 36.47±1.98

TABLE I: Planning performance of VEH, GEGRH, and SH
across 221 planning problems. Average values are shown
with a 95% confidence interval. SH is included as context to
planning without multiple world models.

The experiment shows the performance of GEGRH com-
pared to VEH, with added context from SH planning. Table
I shows the average planning times and path durations of
the methods based on a 95% confidence interval. GEGRH
showed a 15.4% (.04-second) decrease in planning time for
two-hypothesis planning and a 29.27% (.12-second) decrease
in planning time for three-hypothesis planning compared to
VEH. This is likely due to GEGRH allowing search through
areas that are not valid in all hypotheses, causing search to
reach the goal faster. The path duration was also improved by
GEGRH when compared to VEH, which saw a 6.64% (2.6-
second) decrease for two-hypothesis and an 18.72% (8.4-
second) decrease for three-hypothesis. This is because VEH
must plan through the sum of all environment maps, and
the graph becomes more difficult to navigate with additional
worlds. The gap in performance between GEGRH and VEH
widens with the addition of one hypothetical world, and
exploring the impact on this gap of adding more hypotheses
is a research task of future interest. The performance of SH is
included for context of normal KEASL behavior. Both VEH
and GEGRH have higher planning times, which is expected
because of the additional computation involved in processing
multiple environment maps. Additionally, the increased path
durations indicate more conservative trajectory generation
from the consideration of prior perception output.

Fig. 10: Path duration and planning time data for VEH and GEGRH
from the field experiment data. Gray boxes: 25th to 75th percentile,
Red lines: Median value (50th percentile), Whiskers: Data range
(excluding outliers).

Figure 10 illustrates the path duration and planning time
metrics of GEGRH, and VEH. They perform the same
when operating with one map, because they both default to
SH planning. The data ranges are similar for 2-hypothesis
planning, with GEGR slightly outperforming VEH based on
the median values for both path duration and planning time.
The gap widens with 3-hypothesis planning, likely due to
the highly cluttered maps that VEH must plan through. The
range of VEH planning time data extends to one second,
indicating a substantial number of planning cycles that take
the full time constraint during ARA∗ search.

To give further context to the field experiments, we present
two case studies which give qualitative comparisons of the
outputs of VEH and GEGRH. The first is one where GEGRH
outperforms VEH and generates a more direct trajectory
through the world. In the second case, VEH outperforms
GEGRH, highlighting points for possible future refinement.

A. Case Study One

This case study illustrated by Figure 11 presents a planning
problem where GEGRH can generate a solution with a lower
traversal time than VEH. In this case, there is a specific choke
point in the map (circled in green in the figure) that VEH
cannot expand through because of an obstacle present in the
secondary hypothesis. VEH plans a very cautious trajectory
that avoids all obstacles in all world models and instead
finds a route that is free of inconsistency. Although there
is a possibility of an obstacle existing at the choke point,
GEGRH determines that the risk of needing to reroute around
the choke point is worth exploring because of the potential
decrease in path duration. By tracking previous observations
of the world in the search space, GEGRH can generate
trajectories that are cautious of potential obstacles without
being too optimistic about the true state of the world.

Fig. 11: The first case study with solutions from GEGRH (cyan)
and VEH (magenta) on a two-hypothesis map, with the primary
hypothesis in blue and secondary in red. GEGRH produces a plan
with lower cost than VEH. The region of interest is circled in green.



B. Case Study Two

The second case study shown in Figure 12 shows a
planning problem where VEH outperforms GEGRH by
generating a trajectory with a lower traversal time. This is
because the rerouting sub-search procedure added too much
time in this obstacle configuration and GEGRH was only
able to find a suboptimal solution with an inflated heuristic
within the one-second time constraint. VEH likely generated
a lower cost plan because it was forced to expand through
the open area of the graph, which also led to a direct route
to the goal. The direct routing allowed it to find a path after
deflating the heuristic during the ARA∗ search. The winding
motion present toward the bottom of the GEGRH solution
(circled in green) is because of the shifted obstacle in the
secondary hypothesis compared to the primary hypothesis.
In this case, the Rerouter in the primary hypothesis had
to abruptly turn back and find a path around the obstacle.
Because it was unable to find an optimal solution within the
one-second time limit (it was only able to find a suboptimal
solution with an inflated heuristic), this path was the final
solution because of the constraint that all final plans must be
valid in the primary hypothesis.

Fig. 12: The second case study with solutions from GEGRH (cyan)
and VEH (magenta) on a two-hypothesis map, with the primary
hypothesis in blue and secondary in red. VEH produces a plan
with a lower cost than GEGRH. The area of interest is circled in
green.

VI. CONCLUSION, & FUTURE CONSIDERATIONS

In environments where the world model is incomplete
or uncertain, traditional single-hypothesis planning can lead
to inconsistent plans that vary significantly under slight
environmental changes. By shifting from the assumption
of uncertainty as hazardous to assigning edge costs that
reflect potential risk of incorrect assumptions, planning can
become more robust to inconsistencies in perception and
state estimation. The four methods explored in this work rep-
resent a progression in how to balance caution, computational
efficiency, and adaptability to updated world information.

VEH guarantees validity across all hypotheses but can be
overly conservative. PEH relaxes this caution at the expense
of high computational costs. GEH improves efficiency by
delaying constraint checking until a node expands to the
goal, and GEGRH further improves with an additional graph-
revision step. These methods illustrate that it is possible to
explicitly reason about perception uncertainty during deter-
ministic graph search.

A future avenue of research is to increase the number of
environment hypotheses incorporated into each search space,
to better handle environments with frequent and severe per-
ceptual inconsistencies. Along with this, exploring ways to
consider the divergence of non-binary map information like
ground height or semantics is of high interest because of the
complexity of the target environments. Another potential di-
rection is to explore the use of different cost functions when
recalculating the g-cost of nodes after rerouting, rather than
weighting the costs from all hypotheses evenly. Additionally,
incorporating an estimate of hypothesis certainty could allow
a more nuanced adjustment of node costs and constraints,
further improving planning efficiency and robustness.
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