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Abstract
In machine learning (ML), it is common to ac-
count for multiple objectives when, e.g., selecting
a model to deploy. However, it is often unclear
how one should compare, aggregate and, ulti-
mately, trade-off these objectives, as they might
be measured in different units or scales. For ex-
ample, when deploying large language models
(LLMs), we might not only care about their per-
formance, but also their CO2 consumption. In this
work, we investigate how objectives can be sens-
ibly compared and aggregated to navigate their
Pareto front. To do so, we propose to make incom-
parable objectives comparable via their CDFs, ap-
proximated by their relative rankings. This allows
us to aggregate them while matching user-specific
preferences, allowing practitioners to meaning-
fully navigate and search for models in the Pareto
front. We demonstrate the potential impact of
our methodology in diverse areas such as LLM
selection, domain generalization, and AutoML
benchmarking, where classical ways to aggregate
and normalize objectives fail.

1 Introduction
When evaluating machine learning (ML) models, one often
has to account for many objectives at once. For example,
in model selection for classification, we typically look for
a compromise among objectives such as accuracy, sensit-
ivity, or specificity (Japkowicz & Shah, 2011) and, as ML
becomes widely adopted, other objectives beyond perform-
ance are considered as well. For example, the deployment
of large language models (LLMs) at scale has opened new
challenges regarding their robustness (Yuan et al., 2023),
fairness (Huang et al., 2023), and CO2 emissions (Coignion
et al., 2024; Luccioni et al., 2023).
Consider the Open LLM Leaderboard (Fourrier et al., 2024)
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Figure 1: The proposed COPA meaningfully navigates
the performance-emissions trade-off of the Open LLM
Leaderboard (Fourrier et al., 2024), uniformly mapping the
importance of CO2 cost, α, to the Pareto front. In contrast,
existing approaches are biased toward one of the objectives.
This is reflected in the retrieved LLMs where, for α = 1/2,
COPA finds a top-18% model for both objectives, while all
other approaches select either a high-performing but CO2-
demanding model, or vice versa.

as an example, where LLMs are compared in terms of their
performance across 6 benchmarks and inference CO2 cost.
How could we select the “best” LLM among the 2148 sub-
mitted models, if there are 7 objectives to consider? Among
all LLMs, 487 present non-trivial trade-offs, i.e., for every
pair of them, one is better in an objective but worse in
another, see Fig. 1. Now, if a practitioner were to select
an LLM that equally balances performance and CO2 cost:
How should they proceed? Should they manually inspect
all of them? This simple scenario highlights two important
limitations in multi-objective ML evaluation:

L1. Objectives with different semantics and domains, such
as average performance score and CO2 cost in Fig. 1,
are not directly comparable, and thus cannot be prop-
erly aggregated nor traded-off. In physics, this would
be akin to comparing metres and grams.
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L2. When we deal with many objectives (7 in our example),
it is challenging for humans to translate their prefer-
ences into a concrete decision, as the number of plaus-
ible trade-offs quickly becomes overwhelming.

These limitations reinforce the idea that we need automatic
tools to navigate the Pareto front (i.e., the set of optimal
trade-offs) in high dimensions, tuning their parameters ac-
cording to the user preferences. However, as we show in
Fig. 1, directly aggregating the objectives (Naive), or nor-
malizing them first using existing approaches (Norm. and
Delta, see §2), fails to make objectives comparable and to
uniformly explore the Pareto Front. In other words, they
map most of the values of the objective importance weights
α to a small region of the front. To overcome these issues,
prior works had to devise heuristic approaches tailored to
their specific problem instance (Nazabal et al., 2020; Caru-
ana & Niculescu-Mizil, 2004). To this day, there is a lack of
a general and systematic approach to compare, aggregate
and, ultimately, trade-off ML objectives.

Contributions. In this work, we first motivate and es-
tablish the incomparability problem in multi-objective se-
lection, highlighting why previous approaches fail (§2).
Next, we introduce COPA �,1 a novel approach to multi-
objective ML evaluation that allows practitioners to navig-
ate the Pareto front in a meaningful way, so that they can
compare and select models that reflect their preferences (§3).
COPA accomplishes this goal with two components: i) a
normalization function that universally makes all objectives
comparable via the probability integral transform, which we
approximate using relative rankings; and ii) a criterion func-
tion with two easily interpretable parameters controlling
both the aggregation and the importance of each objective.

Finally, we discuss related works (§4), and demonstrate
the potential impact of COPA (§5) in diverse and timely
application domains such as domain generalization, multi-
task learning, fair ML, AutoML benchmarking, and LLM
selection as illustrated in Fig. 1. This figure demonstrates
that COPA enables meaningful exploring the Pareto front
via the importance of the CO2 cost, controlled by α and
uniformly distributed along the front. For instance, a practi-
tioner equally interested in the performance and CO2 emis-
sions of the LLM, could use COPA with α = 1/2 to pick the
model in the middle of the Pareto front (last row in Fig. 1),
which is ranked top-18% for both objectives.

2 Problem Statement

We are given a population of models H, typically obtained
by changing hyperparameters, where each model h ∈ H is
associated a vector of K metrics assessing its performance
w.r.t. different evaluation objectives. In addition, we assume

1In Spanish, copa means trophy.

each objective to be a continuous random variable for which
we have sampled observations in H.

Without loss of generality, we assume that each individual
objective has to be minimized, and we can thus frame the
problem as a multi-objective optimization (MOO) problem
of the following form:

min
h∈H

y(h) := [y1(h), y2(h), . . . , yK(h)] , (1)

where y(h) is the objective vector of model h, and yk(h) its
performance on the k-th objective. For ease of notation, we
omit the argument from here onwards, and write y and yk

directly when it is clear from the context.

How can we minimize a vector? A fundamental prob-
lem of Eq. 1 is that minimizing the vector y is not well-
defined, as there is no canonical total order in high dimen-
sions. Therefore, two models could yield objective vectors
where one might not always be better than the other for
all objectives. In the MOO literature, the set of all these
optimal trade-off solutions is known as the Pareto front and,
more formally, an objective vector y∗ is in the Pareto front
(and called Pareto-optimal) if there exists no other feasible
vector y such that yk ≤ y∗k for all k ∈ {1, 2, . . . ,K} , and
yk < y∗k for at least one of the objectives.

While the Pareto front is theoretically appealing, in practice,
the decision maker (DM) usually needs to navigate the
Pareto front and, eventually, select one single model. That
is, the DM needs to specify a total order in Eq. 1, which
implies either: i) taking a total order directly in RK , e.g., the
lexicographic order where y < y∗ iff yk < y∗k and yi = y∗i
∀i < k ; or ii) defining a criterion function C: RK → R
to rewrite Eq. 1 as a scalar-valued problem:

min
h∈H

C(y(h)) . (2)

One remarkable example of the latter are global-criterion
methods (Zeleny, 1973), which map DM preferences to the
problem geometry by interpreting Eq. 2 as selecting the
model closest to the ideal one, i.e.,

min
h∈H

∥y(h)− yideal∥∗ , (3)

where ∥·∥∗ is typically a p-norm, and yideal is the ideal
solution, yideal := [minh y1,minh y2, . . . ,minh yK ]. How-
ever, naively solving Eq. 3 (and, more generally, Eq. 2) is
well-known to be sensitive to the scaling of the objectives
(Branke et al., 2008) (see L1 in §1), and thus prevents us
from properly accounting for DM preferences (L2).

In this work, we argue that the criterion function C should
fulfil the following desiderata:

D1. It should reflect the DM preferences, translating their
model expectations into an optimization problem.

D2. It should provide a simple way to tune its parameters
to meaningfully explore the Pareto front.

2
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Figure 2: As we explore a synthetic Pareto front with dif-
ferent normalization functions to solve Eq. 5, only COPA
meaningfully navigates it as we change α, and its min-max
solution agrees with our prior expectations of a robust one.

When are objectives incomparable? Similar to dimen-
sional analysis in physics (Barenblatt, 1987)—which argues
that we cannot combine incommensurable quantities, e.g.,
kilograms and meters—we argue that a second fundamental
issue that we face in Eq. 2 is semantic incomparability,
i.e., whether it is sensible to compare (and thus aggregate)
the values of two different objectives.

For example, if objectives differ in their semantics they are
hardly comparable in general, e.g.: despite both accuracy
and ROC AUC lying in the unit interval, it does not make
immediate sense to compare their values. There are, how-
ever, other aspects that are more subtle. To illustrate these,
Fig. 2 presents a synthetic Pareto front from §5.1 where
both objectives quantify prediction error in significantly
different domains, namely, within the intervals [0, 0.2] and
[0.5, 3.0]. We navigate the Pareto front solving a weighted
Tchebycheff problem (Bowman, 1976) of the form

min
h∈H

max {α|y1|, (1− α)|y2| } , (4)

which is a particular case of Eq. 2 where C is a ∞-norm
weighted by 0 ≤ α ≤ 1. Intuitively, Eq. 4 looks for robust
solutions that account for the importance of solving the
first objective over the second, seemingly satisfying our
desiderata D1-2. However, the naive implementation using
the original objectives in Eq. 4 clearly highlights how we
are biasing model selection in favour of Objective 2, as it
can be seen in Fig. 2.

How can we make objectives comparable? As shown
above, even if we use a well-designed criterion function,
semantic incomparability can hinder our goal of meaning-
fully exploring the Pareto front. Historically, this has been
addressed in the MOO literature by applying component-
wise transformations to the objectives to normalize them
(Miettinen, 1999), turning Eq. 2 into

min
h∈H

C(ϕ(y)) := C ([ϕ1(y1), . . . , ϕK(yK)]) . (5)

Two classic examples of these transformations are

∆k(yk) :=
yk − yideal

k

yideal
k

, and (6)

normk(yk) :=
yk − yideal

k

ynadir
k − yideal

k

, (7)

where ynadir
k := [maxh y1,maxh y2, . . . ,maxh yK ] is the

worst plausible solution. Intuitively, ∆k represents the dif-
ference relative to the ideal solution, and normk reweighs
the objective to lie in the unit interval. Prior works have
extensively used ∆k, often replacing yideal

k with a reference
vector, as computing it can be challenging (Miettinen, 1999;
Maninis et al., 2019; Liu et al., 2023).

Back to our synthetic scenario, we now want to solve

min
h∈H

max {α|ϕ1(y1)|, (1− α)|ϕ2(y2)| } . (8)

By testing different ϕk (see Eqs. 6 and 7), we can understand
why classic approaches fail to make objectives comparable.
More specifically, note that: i) using ∆k biases the problem
toward the first objective instead, since minh y1 ≈ 0; and
ii) using normk alleviates these problems, as the denomin-
ator is now bigger than the numerator, yet the differences
between distributions (that of y2 being heavy-tailed) still
bias the optimization towards the first objective. Instead, we
seek to explore the Pareto front with a more meaningful use
of α, spreading it uniformly along the curve.

The main goal of the functions ϕk : R → R is therefore to
make the objectives semantically comparable, so that we
can seamlessly aggregate them with the criterion function.
To this end, we argue that the functions ϕk should be:

D3. Objective-agnostic, so that we can normalize any ob-
jective irrespectively of its specific nature.

D4. Order-preserving (e.g., strictly increasing), so that it
preserves the Pareto-optimality of the models.

In summary, to meaningfully explore the Pareto front, it
is important to design a a normalization function ϕ that
makes objectives semantically comparable (D3-4), and a
criterion function C that translates well DM preferences
into an optimization problem (D1-2).

These desiderata will blend in COPA, discussed in the next
section. In the synthetic experiment above, COPA maps the
value α = 1/2, which induces a regular min-max problem
in Eq. 8, to the flat region of the curve in Fig. 2, matching
the intuition of what a robust solution should represent.

3 Methodology

Next, we introduce the proposed normalization and criterion
functions fulfilling the desiderata D1-4 described in §2. We
refer to the problem resulting of solving Eq. 5 with the

3
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proposed functions as cumulative-based optimization of the
Pareto front or, in short, COPA �.

3.1 Designing a Universal Normalization Function
We argued in §2 that the function ϕ should fulfil desiderata
D3 and D4, i.e., it should make any objectives semantically
comparable, while preserving their Pareto-optimality. Tak-
ing advantage of our probabilistic perspective, we propose
to design ϕ such that the resulting variables are all equally
distributed and, w.l.o.g., uniformly distributed in the unit
interval. That is, we propose to use u := [u1, u2, . . . , uK ]
instead of y, where

uk := Fk(yk) ∼ U(0, 1) ∀k ∈ {1, 2, . . . ,K} , (9)

and ϕk = Fk is the marginal cumulative distribution func-
tion (CDF) of the k-th objective. Indeed, this transformation
is known in statistics as the probability integral transform
(Casella & Berger, 2021, Example 5.6.3), and uk is guaran-
teed to follow a standard uniform if yk is continuous.

Remarkably, Eq. 9 makes all criterion functions marginal-
distribution-free in the sense of Kendall & Sundrum (1953),
i.e., strips away all individual properties of the marginal
distributions (e.g., the domain) of the individual objectives
(D3). We note here that normalizing random variables this
way is one of the fundamental building stones of copulae in
statistics (Sklar, 1959; Geenens, 2024), ensuring that copula
functions learn only the relationship between variables.

How can we interpret the values of u? One important
advantage of using u in place of y in Eq. 5 is that it provides
a common framework to think about all objectives, since all
their values all are now framed as elements within a popu-
lation. In practice, this means that the DM has a common
language to express their expectations on the model. For
example, a value u = 1/2 corresponds for all objectives
to the the median value, which divides H into two halves
comprising the best and worst performing models.

However, there is one caveat we need yet to address: we
have no access to the marginal CDF of each objective, but
to samples of the joint distribution in H. Next, we show
how to robustly approximate uk using relative rankings.

3.2 Rankings as Finite-Sample Approximations
As mentioned above, while we have no access to the CDFs
themselves, we have samples from the joint distribution over
the objectives, i.e., over, p([y1, y2, . . . , yK ]). Namely, we
can consider each model h ∈ H as a sample from the joint
distribution and, by looking at each objective individually,
as a sample from the marginal distributions.

Let us now focus on the k-th objective, yk, and drop the
subindex in the following paragraphs to ease notation. Say
that we have |H| = N i.i.d. realizations of the objective, i.e.,
{y1, y2, . . . , yN} i.i.d.∼ Pk . Then, we can approximate Eq. 9

for the i-th sample, ui = F (yi), by computing its order stat-
istic, i.e., the random variable representing its relative rank-
ing within the population,2 R(i) :=

∑N
j=1[ yj < yi ] , where

Iverson brackets denote the indicator function, such that
yR(1) ≤ yR(2) ≤ . . . ≤ yR(N) . Specifically, since the
empirical CDF is the fraction of samples smaller than the
input, it is direct to show that

ûi = F̂(i) :=
1

N

N∑
j=1

[ yj < yi ] =
1

N
R(i) (10)

enjoys the following properties (Casella & Berger, 2021):

Proposition 3.1. ûi = F̂(yi) is an unbiased estimator of
the CDF at yi, ui = F(yi) , with variance ui(1− ui)/N .
The variance of ûi decreases linearly with N , and has a
maximum value of 0.25/N at the median.

Proof. First, note that [ yj < yi ] ∼ Bern(ui). Then, we
have R(i) ∼ Bin(N, ui) with mean Nui and variance
Nui(1 − ui) . Hence, ûi has mean 1

N E[R(i)] = ui, and
variance 1

N2 V[R(i)] = ui(1− ui)/N which, by taking de-
rivatives w.r.t. ui, ∂ui V[ûi] = 1 − 2ui = 0 ⇒ ui = 1/2,
which is a maximum since ∂2

ui V[1/2] < 0 .
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In other words, we can use the rel-
ative rankings of each objective to
build an unbiased3 estimator of the
CDF, ûi, whose variance rapidly de-
creases as we increase the size of
H, i.e., V[ûi]

N→∞−−−−→ 0 . Indeed,
the inset figure shows the variance
of ûi as a function of the sample size for three different val-
ues of ui. Note that the relative ranking is strictly increasing,
i.e., if yi < yj , then F̂(yi) < F̂(yj) for any H containing
both samples (D4). While this is an approximation of the
true CDF, which would retain instead all the information
about the joint distribution, it works egregiously well in
our experiments (§5). Furthermore, by storing the original
values, we can always invert the transform and project our
rankings to the original space.

3.3 Incorporating Preferences into the Optimization
Now that we can effectively approximate our normalization
function, we introduce a criterion function to translate DM
preferences into an optimization problem (D1).
To do so, we start by looking back at global criterion meth-
ods, since plugging in our transformation u = ϕ(y) sim-
plifies the problem in Eq. 3 to minh ∥u∥∗ as the ideal point
becomes the origin, i.e., uideal = 0 . Then, by using the ap-
proximation described in §3.2, the problem simply becomes

min
i∈{1,2,...,N}

∥ûi∥∗ . (11)

2When there is a tie, both elements get the minimum ranking.
3In fact, it is known to be a consistent estimator (Tucker, 1959).
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That is, we have reduced our problem to finding the model
whose ranking vector is closest to the origin. Using this
marginal-free global-criterion method, mapping the DM
preferences now boils down to selecting an appropriate norm
for the problem in Eq. 11. To this end, we propose to use
a criterion function C a norm with parameters p ≥ 1 and
ω ∈ RK

+ defined as

∥u∥p,ω :=

(
K∑

k=1

|ωk · uk|p
)1/p

, (12)

where
∑

k ωk = 1. This norm can be interpreted as a regular
p-norm on a space with coordinates scaled by ω. However,
note that this differs from the usual weighted p-norm, as the
weights are inside the absolute value. We justify this choice
given that the values of uk lie in the unit interval, and the
power would often make them vanish too quickly.

How can we interpret the parameters? Fortunately, the
parameters of the proposed criterion function, p and ω,
provide an easy and interpretable way for the DM to nav-
igate the Pareto front (D2). Regarding the interpretation
of ω, as we apply them in Eq. 12 before taking the power,
we can provide a clear interpretation of ω in terms of ra-
tio trade-offs. For example, if we had two objectives with
ω = [0.75, 0.25], then we see by equating the weighted
objectives that minimizing the first objective to a value of u1
is worth the same as minimizing the second objective to a
value of u2 = ω1/ω2u1 = 3u1 , i.e., u1 is three times more
important than u2. If we combine this with the interpretation
of u given in §3.1 we could say, e.g., that we value being in
the top-25% of the models for the first objective the same
as being in the top-75% for the second objective.

For the interpretation of the p-norm, we can use the same
intuition as in ML (Goodfellow et al., 2016): the models

p-balls

p

1

2

4
∞

selected in Eq. 11 will be the first
ones intersecting an ever-expanding
p-ball centred at the origin, whose
shape depends on p as depicted in
the inset figure. Higher values of
p lead to denser objective vectors,
while smaller values lead instead to sparser ones. Moreover,
specific values of p have clearer interpretations, e.g.: p = 1
is the average rank; p = 2 is the Euclidean distance we use
in our daily life; and p = ∞ turns Eq. 11 into a min-max
problem, typically used to formulate robust optimization
problems (Verdu & Poor, 1984).

Does Eq. 12 enjoy theoretical guarantees? Finally, given
the similarity with commonly-used norms, it is natural to
wonder whether we can leverage existing results from the
MOO literature and adapt them to the proposed norm. This
is indeed the case, and we can easily guarantee, e.g., that the
solutions found using Eq. 12 with 1 ≤ p < ∞ are always
Pareto-optimal (Miettinen, 1999, Thm. 3.4.1). However, it

might not reach all optima. Similarly, note that Eq. 12 with
p = ∞ reduces Eq. 11 to a weighted Tchebycheff problem
which reaches any Pareto-optimal solution (Miettinen, 1999,
Thrm. 3.4.5), but also weakly optimal ones.

In practice, using a weighted Tchebycheff problem (p = ∞)
can be a good practice when we have few objectives and
a large budget on the weights ω to explore. Instead, when
interested in finding a particular model (i.e., solving Eq. 5
once), we suggest setting p based on the level of robustness
desired (lower values of p lead to higher tolerance to bad
performance on individual objectives), and ω based on the
importance of solving each objective given by the DM.

4 Related Works

Our work is nicely connected with other scientific domains,
e.g., the notion of semantically incomparability is akin to
that of incommensurability in dimensional analysis (Baren-
blatt, 1987). Similarly, using relative rankings to make better
comparisons has been previously explored in microeconom-
ics (Piggins, 2019), MOO (Kukkonen & Lampinen, 2007;
Ibrahim et al., 2024), and in statistics, designing methods
that avoid the normality assumption, e.g., the Friedman test
(Friedman, 1937), Wilcoxon signed-rank test (Wilcoxon,
1945), or Kendall’s τ coefficient (Kendall, 1938). Finally,
as mentioned in §2, copulas exploit the probability integral
transform to become marginal-distribution-free (Geenens,
2024), and the proposed criterion functions share similarit-
ies with weighted Lp-problems in MOO (Miettinen, 1999).

In ML, the closest work to ours is Park et al. (2024), which
exploits a joint CDF, approximated through learned copu-
lae, to recover a partial order for multi-objective Bayesian
optimization. Differently from them, we employ marginal
CDFs and provide a principled way to translate the DM
preferences. ROC curves (Flach, 2010) provide a further
connection, since their axes can be understood as the CDFs
of the target classes (Hand, 2009). Many works proposed ad-
hoc approaches to normalize and aggregate objectives using,
e.g., normalized RMSEs (Nazabal et al., 2020)—we refer
to §8.3 of Japkowicz & Shah (2011) for other references.
Notoriously, some works in multitask learning (Navon et al.,
2022; Liu et al., 2023) and domain generalization (Ramé
et al., 2022) use rank averages to aggregate objectives, yet
the standard is to use the average of ∆k-normalized object-
ives (see Eq. 6). COPA can benefit these two areas, along
any others accounting for several objectives such as fair
ML (Martı́nez et al., 2020), federated learning (Kairouz
et al., 2021), probabilistic ML (Javaloy et al., 2022), and
multimodal learning (Baltrušaitis et al., 2018).

5 COPA in Action

In this section, we motivate the use of COPA by showing
a range of practical scenarios which would benefit from

5
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Figure 3: Using COPA with p = 1, the extrema are selected
for most values of α. As we increase p, the distribution of
solutions spreads out to reach denser solutions with different
values of α. Here, circles represent selected solutions, and
their darkness the amount of times they were selected.

adopting the proposed methodology. We defer additional
details and results to App. A.

5.1 Synthetic Evaluation
To qualitative assess COPA, we first consider a synthetic
experiment in which we parametrically simulate a Pareto
front of the following form:

y2 = 0.25 cos(39y0.85
1 )− log(y1)− 0.46 , (13)

where y1 ∼ U(0.02, 0.2) . The above formula results in a
non-convex Pareto front with a flat area around y1 = 0.1,
and two objectives with significantly different distributions.

Does the parameter p match our intuitions? We cor-
roborate the insights from §3.3 by showing in Fig. 3 the
distribution of solutions found taking different values of p.
First, note that since Eq. 13 is strictly increasing except
in [0.083, 0.091], we have that u1 ≈ 1 − u2. As a result,
we see that p = 1 finds only solutions on the extreme and
middle points, most solutions being concentrated on the
former. When we increase p, the distribution of solutions
better spread along the curve and, as the p-balls become
more squared, we gain finer control on the solution found by
tuning α. It is however important to stress that the finer con-
trol of p = ∞ can be problematic at times: as we increase
K, finding a proper ω could prove challenging.

5.2 Case 1: Model Selection
First, we explore how the norm proposed in §3.3 can help
us explore the Pareto front more meaningfully, i.e., how
sensibly it maps the DM preferences to Eq. 5.

1. The performance-emissions trade-off. Despite LLMs
recently showing outstanding performance (Naveed et al.,
2023), their CO2 emissions can be concerning and needs to
be taken into account (Coignion et al., 2024). Next, we show
how practitioners can leverage COPA to better navigate this
crucial trade-off in the LLM space.
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Figure 4: With COPA, we can meaningfully navigate the
Pareto-front of the Open LLM Leaderboard (Fourrier
et al., 2024). We use COPA with p = ∞ on all 7 objectives,
and highlight some models selected as we change α.

We gather the results of 2148 LLMs submitted to the Open
LLM Leaderboard (Fourrier et al., 2024), and take as object-
ives their CO2 cost and performance on 6 different datasets:
IFEval (Zhou et al., 2023), BBH (Suzgun et al., 2023),
MATH (Hendrycks et al., 2021), GPQA (Rein et al., 2023),
MuSR (Sprague et al., 2023), and MMLU-Pro (Wang et al.,
2024). Then, we use COPA with p = ∞ to select an LLM,
changing ω as we vary the importance given to their CO2
emissions, denoted by α, as ω := [α, 1−α

6 , . . . , 1−α
6 ] .

We highlight the selected LLMs in Fig. 4, which groups
all benchmarks into one dimension as their ∞-norm for
visualization purposes. We observe that the proposed norm
enables the meaningful exploration of the Pareto front, with
the values of α being uniformly spread-out across the front.
Furthermore, not only can we sensibly explore the LLM
space, but COPA enables interpreting these models in terms
of the original objectives and the population they live in.
For example, we can say that GPT-2 is Pareto-optimal as
it consumes the least, but it only achieves a 6% average
performance score, or that Phi-3.5-mini is a top-10%
model in both aspects, consuming 0.53 kg of CO2 vs. the
13 kg consumed by the best-performing model.

2. The fairness-accuracy trade-off. Moving to a more
classic example, we consider how a DM could use COPA
to choose a trade-off between accuracy and fairness in a
classification problem, two objectives which are defined in
completely different ways (Zafar et al., 2017).
We reproduce the CelebA (Liu et al., 2015) experiment from
Maheshwari & Perrot (2022) using FairGrad—an algorithm
whose hyperparameter ϵ upper-bounds the unfairness of the
classifier—and create a population of models by sweeping
through values of ϵ and five random initializations.
Fig. 5 (left) shows the Pareto-front in the accuracy-fairness
space, as we navigate it by changing α, clearly showing
the difference between both objectives. Note that solving
Eq. 3 directly would lead to the solution with maximum
accuracy, as in §5.1. Instead, using COPA we can uniformly
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Figure 5: COPA can be used to meaningfully explore the
Pareto front between accuracy and fairness (equal oppor-
tunity) in the CelebA experiment from Maheshwari & Per-
rot (2022) in unconstrained (left) as well as user-constrained
scenarios (right).

navigate the Pareto front where, e.g., the robust min-max
solution (α = 1/2) lies precisely in the middle of the front.
As a result, COPA offers a more reliable interpretation of
its parameters than the upper-bound given by ϵ, which is
clear by observing that, e.g., a value of ϵ = 1 or 0.25 yields
relatively similar solutions in Fig. 5.

In addition, we consider a more realistic scenario where
DMs bargain on acceptable values for the objectives, e.g., a
regulatory body could demand equal opportunity to never
exceed 0.02 (MacCarthy, 2017). Despite constraining the
Pareto front to consider only valid solutions,4 COPA stills
provides a sensible way to navigate the space of valid mod-
els, proving that we can easily combine rules on the original
and CDF-transformed objective spaces.

5.3 Case 2: Comparative Model Analysis
Previously, we have explored how DMs can meaningfully
explore the Pareto front. Now, we focus on a related but dif-
ferent question: How much could semantic incomparability
alter our analyses and conclusions?

1. Incomparable objectives. First, we consider a multi-
task learning (MTL) setting, where the heterogeneity of the
tasks to solve makes it prone to face incomparable object-
ives. In fact, it is common to aggregate objectives with the
average relative performance, as discussed in §4.

To clearly showcase the issue, we look at the multi-SVHN
experiment from Javaloy & Valera (2022), which uses a
modified version of SVHN (Netzer et al., 2011) with a
digit on each side of the image, and where we solve three
classification tasks: i) left digit; ii) right digit; and iii) parity
of their product; and two regression tasks: iv) sum of digits;
and v) number of active pixels in the image.

Fig. 6 shows the ranking of the 14 MTL methods considered
by Javaloy & Valera (2022), if we were to use different
criterion functions, namely: COPA with different values of

4We still use invalid models to approximate the CDF.

MSEdensity ∆ p = 1 p = 2 p = 4 p = 8 p =∞

GradDrop

Single

MGDA-UB

COPA

best

worst

Figure 6: Ranking of MTL methods using different criterion
functions to evaluate them. Those methods whose rankings
change drastically with ∆ are highlighted in colour.

avg norm p = 1 p = 2 p = 4 p = 8 p =∞

SagNet
HGP

Mixup
RSC

COPA

best

worst

Figure 7: Ranking of domain generalization methods as
we change the criterion function. Remarkably, the average
accuracy is inconsistent with every COPA instance.

p and equal weights, the average relative performance, ∆,
and the regression error over the density task. The first two
columns of the plot make extremely clear how much the
density task dominates the average relative performance,
perfectly matching its ranking. Again, this is a result of the
reference method having nearly zero regression error on this
task, greatly magnifying its relative performance, ∆k.

As expected, the outlined issue has a tremendous impact
on the conclusions drawn, e.g.: i) the worst method for
all COPA instances, MGDA-UB (Sener & Koltun, 2018), be-
comes the best one w.r.t. ∆; or ii) the best one for every
COPA, GradDrop (Chen et al., 2020), becomes the 6th best.
Fig. 6 also shows that the reference method (Single) is
among the least robust models (p = ∞), and slowly im-
proves as we prefer sparser solutions (p = 1).

It is worth-noting that the authors were aware of the issue
and left the density task out when aggregating objectives,
reporting both ∆ and density MSE as a pair.

2. Seemingly comparable objectives. Sometimes, se-
mantic incomparability can arise in unexpected scenarios.
We take domain generalization as an example and, in partic-
ular, the DomainBed (Gulrajani & Lopez-Paz, 2021) experi-
ment from Hemati et al. (2023). Here, the authors compare
different methods by training them on some domains, and
testing them on 4 unseen ones, reporting the average domain
accuracy as commonly done in the literature.

Fig. 7 shows the ranking of the considered methods as we
use different criterion functions, with the average accuracy
in the first column. For two of the highlighted methods,

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

� COPA: Comparing the Incomparable to Explore the Pareto Front

Table 1: Different effective ranges explain the differences in
rankings of the domain generalization experiment. The table
shows the effective range of each domain accuracy, and the
performance of Mixup and HGP for the raw and normalized
(Eq. 7) domain accuracies, respectively.

VLC PACS OfficeHome DomainNet Avg

Min. acc. 76.30 78.80 60.20 23.40 -
Max. acc. 79.30 84.80 68.50 41.40 -

A
cc

. Mixup 77.70 83.20 67.00 38.50 66.60
HGP 76.70 82.20 67.50 41.10 66.88

N
or

m
. Mixup 46.67 73.33 81.93 83.89 71.45

HGP 13.33 56.67 87.95 98.33 64.07

RSC (Huang et al., 2020) and SagNet (Nam et al., 2020),
we observe their performance deteriorate and improve, re-
spectively, as we consider less robust criteria, in accordance
with the average accuracy. However, we see a different story
with HGP (Hemati et al., 2023) and Mixup (Wang et al.,
2020), whose rankings are consistent for all COPA instances,
but drastically change when we average accuracies. This
leads to significantly different analyses concluding, e.g.,
that Mixup is worse than SagNet and HGP, in disagreement
with every other criterion function.
In fact, accuracies present significantly different ranges
across domains, as we show in Tab 1, and differences in
domains with the less variance are less important in the aver-
age. If we normalize the results using normk (Eq. 6), we see
that Mixup significantly outperforms HGP in these domains,
swapping their rankings. This can also be observed in Fig. 7,
where norm aligns much better with COPA.

5.4 Case 3: Benchmarking
Finally, we motivate the use of COPA and CDF-normalized
objectives in general benchmarking where, in contrast with
the previous use cases, objectives are not necessarily aggreg-
ated into a scalar value, but plotted together.
We take the AutoML Benchmark (AMLB) (Gijsbers et al.,
2024) as an example as it “follows best practices and avoids
common mistakes when comparing frameworks.” We repro-
duce all figures from the original publication, comparing
15 AutoML methods evaluated on 104 different objectives.
Since objectives are incomparable, the authors scale them us-
ing normk (Eq. 7) with a random forest as reference model,
providing different plots and analyses from this dvslrf ob-
jectives. It is worth-noting that the authors also encourage
the use of CD diagrams and Friedman tests, two methods
that are based on relative rankings.
A natural step is therefore to replace scaled objectives with
CDF-normalized ones. As an example, we show in Fig. 8 the
same AMLB boxplot using scaled and CCDF performance,
i.e., 1 − Fk(yk). We find that using CCDFs comes with
several benefits, e.g.: i) there are no outliers to report, unlike
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Figure 8: Comparison of different AutoML methods on
AMLB (Gijsbers et al., 2024) using scaled performance,
norm, with a default random forest as reference method
(red line) to normalize objectives (top); and using CCDF-
transformed performance instead (bottom). Brackets indic-
ate the number of off-view outliers.

in the original plot; ii) all values lie in [0, 1]; iii) there is
no need for an arbitrary reference model; and iv) we can
provide clear population-based interpretations, e.g., “on
average, AutoGluon(B) (Erickson et al., 2020) yields over
top-10% performance on the considered objectives.”

As we report in App. A.5, these benefits extend to all AMBL
plots, demonstrating that the proposed CDF transformation
is a sensible way of normalizing objectives in general.

6 Concluding remarks

In this work, we have shown the importance of meaningfully
navigating the Pareto front in multi-objective ML evaluation,
allowing DMs to perform better-informed decisions regard-
ing the trade-off they commit to. We have highlighted how
crucial is to properly normalize all objectives—making them
semantically comparable—and to have an interpretable cri-
terion function that sensibly reflects DM preferences into an
optimization problem—making managing multi-objective
trade-offs feasible, especially in high dimensions. Finally,
we have implemented these insights in COPA, and extens-
ively shown the impact that it can have in areas as funda-
mental as model selection and benchmarking.

Our work opens many intriguing venues for future research.
For example, we would be excited to see COPA adapted
to active scenarios with humans-in-the-loop, criterion func-
tions that parametrize other preference types, a systematiza-
tion of model selection enabled by COPA, or the adoption of
COPA in applications such as the Open LLM Leadearboard
(Fourrier et al., 2024) with which we motivated this work.
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Impact Statement

This paper presents work whose goal is to improve the way
we evaluate machine learning models in multi-objectives
scenarios. There are many potential societal consequences
of our work inherent from the field itself, none of which we
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Özgür, A., Pagh, R., Qi, H., Ramage, D., Raskar, R.,
Raykova, M., Song, D., Song, W., Stich, S. U., Sun,
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A Experimental details and additional results

In this section, we provide all details to reproduce the experiments presented in the manuscript, as well as additional results
which were omitted from the main paper due to space constraints.

A.1 Synthetic evaluation
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Figure 9: Synthetic Pareto front showing the Pareto front us-
ing COPA with p = ∞ as we change the number of sampled
points. While it can be observed a deterioration on the es-
timated Pareto front (see quantized colours as we reduce N ),
COPA offers a robust estimator even with 12 datapoints.

As we describe in the main text, for the synthetic exper-
iment we consider the following parametric curve:

y2 = 0.25 cos(39y0.851 )− log(y1)− 0.46 , (14)

where y1 ∼ U(0.02, 0.2) . As a result, we end up with a
non-convex Pareto front with a flat area around y1 = 0.1,
and two objectives with significantly different distribu-
tions. Moreover, the distribution of both objectives are
significantly different. Specifically, the first objective is
uniformly distributed, while the second one is precisely
the plotted curve (if we flipped it to have the second ob-
jective as the x-axis), therefore being heavy tailed with
most density lying in the [0, 0.2] interval. The uneven
and long-stretch of the domain of the second objective
thus explains why, despite applying normk, we still get a
biased optimization problem in Fig. 2, as discussed in the
main text.

A.1.1 ADDITIONAL RESULTS

How robust are we to sample size? Despite having a
closed-form expression for the variance of our estimator uk in §3.2, we empirically show in Fig. 9 the estimated Pareto front
using COPA with p = ∞ as a function of the first-objective importance, α, as we change the total number of points sampled
to estimate it, N . We can observe that, despite considerably reducing the number of samples from 240 to 12 datapoints, the
estimate given by COPA remains perfectly consistent.

A.2 Navigating the LLM Pareto front
Dataset details. In order to conduct our experiments, we retrieved the publicly available results from the Open LLM
Leaderboard (Fourrier et al., 2024) using Huggingface’s dataset Python package and, for reproducibility purposes, saved a
local copy with the state as of the 9th-th of January 2025. From the 2929 total LLMs, we discard those which were not
publicly available on Huggingface’s hub. This leave us with a total of 2148 models, which we use to conduct the experiments
described in this work.

13
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Experimental details. As explained in the main text, we consider all reported values as objectives. Namely, we take as
objectives the CO2 emissions and all 6 benchmark performance scores computed on the following datasets: IFEval (Zhou
et al., 2023), BBH (Suzgun et al., 2023), MATH (Hendrycks et al., 2021), GPQA (Rein et al., 2023), MuSR (Sprague et al.,
2023), and MMLU-Pro (Wang et al., 2024). Then, we use COPA with p = ∞ to produce both Figs. 1 and 4, setting the
values of ω according to the importance given to CO2 emissions, α, as ω := [α, 1−α

6 , . . . , 1−α
6 ] . To create these figures, we

take 1000 values of α evenly-spaced in the unit interval and, since different values of α can provide us with the same model,
use their range-average (Fig. 1) or maximum (Fig. 4) as the value to colour the selected LLMs in the figures. There are two
more details worth-discussing. First, in Fig. 1 we use COPA over two objectives (the average score and CO2 emissions) just
so that the models selected by all criterion functions lied exactly in the plotted Pareto front, since Pareto-optimal models
selected with all K = 7 objectives may not be Pareto-optimal when considering this bidimensional representation. Second,
we use as y-axis for Fig. 4 the CDF of the p-norm computed using the CDF-transformed performance criteria (i.e., of the
vector used with COPA, excluding the CO2 dimension), since this represents much more closely the CDF-space that COPA
navigates.

A.2.1 ADDITIONAL RESULTS

Complementing Fig. 4, we present here the quantitative results of those LLMs selected with COPA. In the table we report the
reported benchmark scores, a summary of their benchmark performance and CO2, the CDF values found by COPA (same as
in Fig. 4), and the value of α used to select these models. As it can be observed, COPA allows us to meaningfully navigate
the performance-cost trade-off in the LLM space. Answering the initial question we posed in §1, if we were a practitioner
trying to select a balanced LLM in terms of its performance and cost without further prior expectations, we would proceed
in this case by using COPA with p = ∞ and α = 0.5, which would yield us a model, unsloth/Phi-3-mini-4k-instruct, in the
top-9% of LLMs in terms of benchmark performance, and top-8% in terms of CO2 emissions.

Table 2: Quantitative results of the LLMs highlighted in Fig. 4 from the Open LLM Leadearboard (Fourrier et al., 2024)
using COPA with p = ∞, as we change the importance of CO2 consumption. Rather than using the average, the CDF value
for the performance computes the weighted ∞-norm of the CDF-transformed benchmark results (i.e., the value used with
COPA but separating CO2 from the rest of objectives).

Benchmarks scores Summary CDF values

IFEval BBH MATH GPQA MUSR MMLU-PRO Average CO2 cost Perf.
(p = ∞)

CO2
costFull model name (%) (%) (%) (%) (%) (%) (%) (kg) α

dfurman/CalmeRys-78B-Orpo-v0.1 81.63 61.92 40.71 20.02 36.37 66.80 51.24 13.00 0.95 0.00 0.01
maldv/Qwentile2.5-32B-Instruct 73.93 57.21 38.07 17.90 19.96 54.21 43.55 3.53 0.87 0.01 0.02
sometimesanotion/Qwen2.5-14B-Vimarckoso-v3 72.57 48.58 34.44 17.34 19.39 48.26 40.10 1.93 0.79 0.01 0.03
hotmailuser/FalconSlerp3-7B 60.96 36.83 27.42 9.17 15.90 34.75 30.84 0.61 0.19 0.05 0.21
unsloth/Phi-3-mini-4k-instruct 54.40 36.73 15.41 9.73 13.12 33.68 27.18 0.47 0.09 0.08 0.50
icefog72/Ice0.37-18.11-RP 49.72 31.04 6.42 8.28 12.21 23.81 21.91 0.41 0.07 0.21 0.66
h2oai/h2o-danube3.1-4b-chat 50.21 10.94 2.11 4.70 10.20 19.10 16.21 0.30 0.03 0.60 0.82
postbot/gpt2-medium-emailgen 14.92 3.67 0.00 1.34 6.89 1.63 4.74 0.08 0.00 0.86 0.97

A.3 Navigating the fairness-accuracy trade-off
Experimental details. We reproduce the CelebA (Liu et al., 2015) experiment from (Maheshwari & Perrot, 2022) using
their proposed FairGrad algorithm, which code is publicly available at github.com/saist1993/fairgrad, and run this experiment
with 10 random initializations and 24 different values of ϵ (the hyperparameter of FairGrad that represents the desired
fairness upper-bound). Namely, we consider the following values for ϵ:

{0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009,
0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,

0., 0.1, 0.2, 0.3, 0.5, 1.}

This leave us with a total of 240 models. To produce Fig. 5, we use COPA with p = ∞ and 50 values of α evenly-spaced in
the unit interval. For the constrained case, we simply drop those points that do not match the requirements for accuracy
(being larger than 0.845) and fairness (having an equal opportunity value smaller than 0.02) before selecting any models
with COPA. Of course, to compute the rankings of the accuracy, we take into account that it needs to be maximized and
used the opposite order relation. Similarly, when we applied other normalization functions (see below), we employ the error
rate (rather than the accuracy), so that it has to be minimized.
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(a) Naively using the objectives.
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(b) Using ϕk = ∆k.
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(c) Using ϕk = normk.
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(d) Using COPA.

Figure 10: We reproduce the fair ML experiment from §5.2 using different normalization functions. We can observe that
only COPA meaningfully navigates the Pareto front, with all other approaches being biased towards one of the extreme
solutions. Indeed, ∆k only reaches the two extreme solution despite sampling 50 evenly-spaced values for α.

A.3.1 ADDITIONAL RESULTS

We show in Fig. 10 the same plot as in Fig. 5, but using all the considered normalization functions. Similarly to what we
observed in the introductory example in Fig. 1, all other methods are biased towards minimizing one of the objectives.

A.4 Comparative model analysis experiments

Experimental details. For the figures shown in §5.3, we retrieved the results reported by the two selected works. In
particular, we took the values reported in the second half of Table 5 from the work of Javaloy & Valera (2022) for the MTL
experiment, and values reported in Table 4 of Hemati et al. (2023) for the domain generalization experiment of the main text.
From these values, we simply re-rank them using the different criterion functions discussed in the main paper, and highlight
those which we consider are interesting for the discussion we carry out in the main manuscript. We use equal weights for all
versions of COPA. One important detail is that, for the domain generalization case, we kept only the top methods, as the rest
do not add anything more to the discussion and make the plot more difficult to read.

A.4.1 ADDITIONAL RESULTS

As mentioned just above, we discarded some methods in the domain generalization figure of the main text (i.e., Fig. 7). For
completeness, we show in Fig. 11a the full figure with all methods included, and highlighting Hutchinson, the second
method proposed by the authors, along HGP. Also, we show in Fig. 11b the same figure but using as data the one reported
in Table 9 from Hemati et al. (2023) (instead of Table 4). This table was reported in the supplementary material, and the
difference between both tables is the method used to select hyperparameters, with all methods but those proposed by this
particular work (i.e., HGP and Hutchinson) improving their performance. More crucially, we show once again the huge
discrepancies in ranking between using the average accuracy and any of the COPA versions. This time, we also report
Hutchinson, which is the best method for all criterion functions in Fig. 11a, and the fourth to worst method in Fig. 11b.
We can again observe how much our final conclusions can change in Fig. 11b, where the fourth to worst method in terms of
average domain accuracy, VREx (Krueger et al., 2021), is better than Hutchinson in all instances of COPA. To finalize, we
consider important to report that, in both figures, the first gray line (i.e., the second-best and best methods, respectively)
correspond to the domain generalization method named CORAL (Sun & Saenko, 2016).
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avg norm p = 1 p = 2 p = 4 p = 8 p =∞

Hutchinson

RSC
Mixup

SagNet
HGP

COPA

best

worst

(a) Table 4 from Hemati et al. (2023).

avg p = 1 p = 2 p = 4 p = 8 p =∞

HGP

MLDG

VREx

Hutchinson

COPA

best

worst

(b) Table 9 from Hemati et al. (2023).

Figure 11: Ranking of the domain generalization methods considered by Hemati et al. (2023) as we use different criterion
functions to rank them. We can appreciate a significant change of rankings, and the average accuracy in particular being
highly inconsistent with all versions of COPA. We highlight those methods used for the discussion in the text.

A.5 AutoML Benchmarking (AMLB) experiment
Experimental details. To demonstrate the out-of-the-box utility of COPA and its two components, we reproduce some of
the plots from the AutoML Benchmark from Gijsbers et al. (2024). To achieve this, we simply modify the Jupyter notebook
publicly available at github.com/PGijsbers/amlb-results, and add a few lines of code to compute COPA as proposed in this
work.

A.5.1 ADDITIONAL RESULTS

To complement Fig. 8 from the main text, we provide here side-by-side comparisons of more figures reported by Gijsbers
et al. (2024), further reinforcing the argument of broadly adopting CDF-transformed objectives for general cases.
In particular, we show in Fig. 12 the same three figures as Figure 3 from the original work, where the same advantages when
using the proposed CDF transformation, as those discussed in the main text (see §5.4), can be observed here. Furthermore,
we show in Fig. 13 Figure 4 from the original work, where all 104 objectives are used, further showcasing the benefits of the
proposed transformation.
Finally, we also reproduce Figure 7 from the original publication in Fig. 14, where different Pareto plots are generated
according to the type of tasks, showing the performance-speed trade-off, similar in spirit to Fig. 1 in this work. Here, we
use COPA with p = 2 and equal weights. We can observe that, while some of the figures are quite similar, e.g., binary
classification in the top row, some others differ significantly, e.g., regression in the bottom row, where COPA reports two less
Pareto-optimal models. Beyond the differences in using scaled vs. CDF-transformed objectives, which we have extensively
discussed during this paper, and showed the significant advantages of employing the latter, the differences in the number of
Pareto-optimal models is due to the fact that the Pareto front is computed after aggregating the performance metrics. This is
in stark contrast with the approach taken in this work (except for Fig. 1 for visualization purposes, see App. A.2), where we
compute Pareto-optimal points on the space of all objectives. As we have been arguing during this work, COPA allows us to
meaningfully navigate the Pareto front, enabling the creation of plots such as those reported in this work (e.g., Figs. 1, 4
and 5), which are significantly more informative than those reported before our work, as it can be clearly observed in Fig. 14.
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Figure 12: We reproduce Fig. 3 from Gijsbers et al. (2024) in (a) using their proposed scaled performance, and we show the
same figure in (b) but using complementary CDF values (CCDF, one minus the CDF value). The same advantages as those
discussed in §5.4 can be observed here.
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(a) Using scaled performance.
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Figure 13: We reproduce Fig. 4 from Gijsbers et al. (2024) in (a) using their proposed scaled performance, and we show the
same figure in (b) but using complementary CDF values (CCDF, one minus the CDF value). The same advantages as those
discussed in §5.4 can be observed here.
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Figure 14: We reproduce Fig. 7 from Gijsbers et al. (2024) in (a) using their proposed scaled performance, and we show the
same figure in (b) but using complementary CDF values (CCDF, one minus the CDF value).
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