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Abstract

Information on images should be visually understood to anyone, including the color1

weakness. However, it is not recognizable if color that seems distorted to the color2

weakness meets an adjacent object. We suggest CUD-NET1 based on convolutional3

deep neural network to generate color universal design (CUD) images that satisfy4

both color preservation and distinguishment of color for input images. CUD-NET5

regresses the node point of the piecewise linear function based on information of6

input images and comprises a specific filter per image. We present the following7

methods to generate CUD images for the color weakness. First, we refine the CUD8

dataset on specific criteria by color experts. Second, the input image information9

is expanded through the pre-processing specialized on the color weakness vision.10

Third, we suggest a multi-modal feature fusion architecture that combines features11

to process expanded images. Finally, we suggest a deformable loss function by the12

composition of the predicted image through the model to avoid the one-to-many13

problems of the dataset.14

1 Introduction15

1.1 Motivation16

The green and red color blindness are made up of 8% of males and 0.5% of females in Northern17

European descent[Won11], which is almost up to rate of one person in 20 people. Green and red18

blindness is the most common pattern, followed by blue, yellow, and total color blindness. In this19

paper, we generate Color Universal Design (CUD) images, which are color weakness friendly design20

forms, through deep learning around the aspect of the red color weakness (protanopia) and green21

color weakness (deuteranopia) vision. Protanopia is insensitive to red color and deuteranopia is22

insensitive to green color, although it varies depending on individual color weakness extent.23

There are studies that help color discrimination to the color weakness, including wearable devices24

and surgeries[VZCR20]. However, since these research require time and cost, we simply generate25

CUD images with an image enhancement method based on deep learning to make the corresponding26

color visible for the color weakness. For an example of the left-above image I in Figure 1, the people27

who are not color weakness can distinguish the letter ‘5’ in the image. But as a deuteranopia vision in28

left-below image Id, the surrounding color and the letter ‘5’ are very analogous, making it ambiguous29

to distinguish the bound of adjacent object. The right-bottom target image T d, refined image by color30

expert designers, shows that the letter ‘5’ appeared well at the deuteranopia vision. Here, we define31

the non-CUD objects as the letter ‘5’ and surroundings invisible to deuteranopia vision in the image32

I , and define the CUD objects as the letter ‘5’ and surroundings visible to deuteranopia vision in the33

image T . In other words, CUD object means that adjacent objects are distinguishable on both the34
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Figure 1: Comparisons of the non-CUD image, our CUD-NET’s predicted image, and CUD image.
The above row is represented in normal vision, and below row is represented in deuteranopia vision.

normal vision and the color weakness vision. The non-CUD object means that adjacent objects are35

distinguishable on normal vision but not the color weakness vision. Consequently, we generate Î that36

satisfies CUD with a specific filter to the image I .37

We want to apply as weak filter as possible to CUD objects to preserve color, which requires a38

certain level of object comprehension mechanism to do so. There are various studies from classic39

PCA[WEG87] to machine learning-based object segmentation methods[TSC20, ZGL∗20] to define40

specific objects or areas in image. The research on semantic segmentation, which even provides labels41

between objects, seems that deep learning still does not have a complete comprehension of all objects42

in the real-world. The visual question answering to arbitrary questions about object’s interactions,43

the most general issue on comprehension of object, does not have high transmission power to be44

practical uses[AHB∗18, KZG∗17, LYL∗20]. Therefore, we expand feature of the input image around45

the information of color weakness vision and define the robust neural filter. In summary, we suggest46

a CUD-NET that generates an image suitable for CUD, while complying with the color preservation47

for the source image.48

In this paper, we suggest the Color Universal Design Network (CUD-NET) to satisfy both color49

preservation and contrast of non-CUD objects (CUD suitability). We introduce 4 core contributions50

of CUD-NET.51

• Dataset refinement criteria for CUD image We refine training data into two groups, the52

one with a simple color tone image based on H and V in the HSV color space, the other with53

two or more non-CUD objects that must be distinguished in publications.54

• Image pre-processing for CUD-NET We carry out pre-processing to expand the infor-55

mation of the input image. Input image I is reconstructed with three expanded feature56

information with noise removed.57

• Multi-modal feature fusion architecture We define a feature layer, the fusion layer, and58

a regression layer to handle pre-processed images. The three features from the feature59

extracting layer are combined into the one fusion feature, and finally a filter is constructed60

by regressing the node point of the piecewise linear function, or indicator of filter.61

• Variational loss function We suggest a deformable loss function by the composition of the62

predicted image through the model. Our data have a problem of one-to-many, where the63

specific color in input image I is mapped into multiple colors in target image T .64

1.2 Related Works65

Image-to-Image translation based on GAN GAN is used in various image translation areas,66

including image generation, style transfer, and colorization[KWK21, IZZE17]. In a preliminary67

experiment, Cycle-GAN[PEZZ20] has reached the best performance in maximizing the contrast of68
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Figure 2: The ideal color conversion of predicted image between contrast and color preservation.
Non-CUD object a should increase the gap compared to the input image and preserve its original
color, while the CUD object b maintain both contrast and color.

non-CUD objects. However, our goal is to keep the color preservation of the input image as well,69

so in the case of black color, which has lost all its color of the input image, it is considered the70

worst case for color preservation. Enlighten-GAN[JGL∗21] complements those instability, enabling71

them to generate more stable results on color preservation. But since most of the GAN-based image72

translation fixes the size of the predicted image, reshaping a high-resolution image causes information73

loss of source image. Also, it is difficult to reconstruct the complete geometry for the source image74

as it generates images through the dilated convolution layer.75

Image enhancement based on neural filter estimation Unlike GAN, there are researches that76

scale the pixel values of images based on neural filter estimation[WZF∗19, DLT18, BCPS19]. Zero-77

DCE[GLG∗20] is a low-light image enhancement research that provides a brighter visual display78

of input image. It estimates pixel-wise and high-order filter for dynamic range adjustment of input79

images with lightweight deep network, DCE-Net. DeepLPF[MMM∗20] tried to solve the problem by80

using a graduated filter, elliptical filter, and polynomial filter. The authors not only tried to visually81

enhance the contrast of images but also to comprise stable filters that are easy to understand for82

the spectators while keeping the color preservation. In our problem, however, the contrast factor is83

almost same results as the input image in both visions, while complying the high color preservation,84

resulting over-stable filter. It is assumed that the inability in comprehension of object’s interaction85

leads to over-stable filter.86

2 Methodology87

We define the ideal predicted image as an increase in the contrast between non-CUD objects and the88

color preservation for the input image. The non-CUD object a should be mapped into á and CUD89

object b should preserve its color and contrast like an ideal example of Figure 2. However, as our90

neural filter affects the whole pixels throughout the image, we have the constraint of applying the91

same filter to objects a and b. It is very hard to make the contrast and color of object b exactly the92

same as before the filter adjustment while maximizing the contrast of object a. Therefore, we propose93

a deep learning-based regression to comprise the specific filter per image that maximizes the contrast94

of object a while minimizing the adjustment of features on object b.95

First, we propose a solution to maximize the contrast of the L channel values in CIELab color96

space[RG19]. We empirically confirmed that protanopia and deuteranopia, which account for the97

most proportion of color weakness, can distinguish the difference by L channel values in common98

when the non-CUD objects are adjacent to each other. To illustrate Figure 1 again, the L channel99

value of letter ‘5’ in image I is 61 and the surrounding color is 61. The distinguishment between100

the two objects is easy to normal vision, however the image Id, the deuteranopia vision, is very101

ambiguous. On the contrary, the CUD target image T and T d have a difference of L channel value 75102

for the letter ‘5’ and 45 for the surroundings, making it easy to distinguish between the normal and103

the deuteranopia vision. Due to the characteristics of these data, we refine a data pair by defining a104

criterion that separates two invisible non-CUD objects by L channel values.105

Secondly, we propose a variational loss function and multi-modal feature fusion network for color106

preservation. It can be said that the increase in the contrast of L channel values between non-CUD107
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objects is quantitatively superior, but not in the case of increasing the differences in color preservation108

of input images. When non-CUD objects exist, as a simple example, the most likely way to maximize109

contrast is to polarize the color of the object black and white. But it is the result of complete ignorance110

for color preservation, so just enabling to distinguish between non-CUD objects is not always a good111

answer. A strong filter must be applied to distinguish non-CUD object, but its impact should not be112

too extensive to leading the loss of information in CUD objects. In this paper, we solve this problem113

by taking an appropriate trade-off of color preservation and contrast of L channel value.114

2.1 Dataset refinement criteria for CUD image115

The training data is refined by two groups. The one is vectorized image with two colors divided116

by value V and hue degree H in HSV color space[HMKO19], and the other is image with two117

or more objects that must be distinguished while preserving the color of non-CUD objects. The118

training data is grouped about 1,600 color combinations into the same V and then simulates them119

with the deuteranopia vision, converting to the adjacent color family to comply color preservation.120

All conversions are scaled within only S and V in HSV color space to increase at least 15 difference121

in the L channel value of selected non-CUD objects. The colors are combined with the 10 essential H122

and tones, and the similar color simulated with the deuteranopia vision was converted. Consequently,123

the key part of refining training data is preservation of color, allowing the models to comply with the124

same approach on learning.125

2.2 Image pre-processing126

Our model regresses node points of piecewise linear function, which will be described in the model127

architecture section, and the final filter is a multiplication operation for the input image. Therefore,128

the multiplication operations of less than the number 1 tend to fade the color saturation. The image129

without color inversion converges the white color value to 1, so if the multiplying value is in the [0,130

1] range, the white color is shifted to the black. By inverting the color of input image, it ignores the131

multiplication operations for white value with 0.132

We generate the map image Im based on original RGB input images calculating the difference value133

between the image with an aspect of normal vision and the image with an aspect of deuteranopia vision.134

Recent studies have been conducted to augment the information or expanded the models’ perspective135

through transformer models[JSZK16, RFB15]. In our experiment, however, the transformer model136

tends to generate the predicted image ignoring the source color, which result in the polarized color to137

black and white like Cycle-GAN’s.138

Im =
∣∣ invert(In)− invert(Id)

∣∣ (1)

I = δ
(
catchannel

(
In, Id, Im

))
(2)

After applying color inversion from the original RGB input image In, we generate the image Id with139

an aspect of deuteranopia vision in equation 1. From these two generated images, we can get the140

absolute difference value to compose the map image Im. In equation 2, the final input I concatenated141

with 9×H ×W dimensions passes through the model. The δ(.) clips output to a range of [0, 1].142

2.3 Model Architecture143

CUD-NET regresses the node points of piecewise linear filter function from the input. The value144

of each node points computes the multiplication operation and generates the predicted image. The145

input I is compressed into 3 feature blocks matching each input through convolution layer, pooling146

layer, and global pooling layer. The input with 9 channels is separated into 3× 3 channels before147

passing the model. The first 3 channels are literally used as the main inputs, where the multiplication148

operation takes place, while the remaining 6 channels are used as features.149

First of all, we use multi-modal fusion architecture for three separate inputs to extract expanded150

features. The three inputs converted to the HSV color space pass through a weights-sharing convolu-151

tion layer to extract a feature block corresponding to the inputs. Each convolution layer consists of152

kernel size=3, stride=1, and padding=1, reducing dimension through average pooling. We empirically153
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Figure 3: Overview structure of CUD image generation

noticed that the most values of output feature have distribution within the range of [-1, 1] with valid154

values for constructing the node points, so we use hyperbolic tan for activation function. Since we155

use inputs with unstructured image size, the last global pooling block holds the size of the feature156

instead of the average pooling block[LCY14].157

The three feature blocks are combined through the multi-modal compact bilinear pooling gate158

(MCB)[FPY∗16], following the fusion process shown in Figure 3. The MCB gate allows both159

features to interact in a multiplicative way with low memory consumption and computation160

times. The fusion features are complemented to enhanced feature through the split attention161

mechanism[ZWZ∗20]. At the beginning of the experiment, we have applied the convolutional162

block attention mechanism[WPLK18] of each MCB gate, but we found that it does not make sense163

of understanding the feature itself, so we apply only one attention block to the last fusion feature.164

The enhanced feature pass through the fully-connected regression layer. We picked the 64 points165

to be regressed to compose the piecewise linear function, which is empirically confirmed to the166

optimized number of points in this research. The first half of the values construct the node points of167

the S channel and the other half comprise the V channel in HSV color space. Finally, node points168

become the scaling factors to generate predicted image in equation 3[MMS19].169

S (Is,vi ) = k0 +

M−1∑
m=0

(km+1 − km) δ ( MIs,vi −m) (3)

The total number of node point M , each pixel values of S, V channel in input image Is,vi are170

multiplicated with the slope of actual regressed value km, the m − th generated node point. The171

specific node points M is scaled through a multiplication operation to pixel value of the input image172

according to each node point.173

2.4 Loss function174

Our dataset has one-to-many problems between input and target data. In dataset pair175

(I1, T1), (I2, T2), . . . , (In, Tn), for example, the red color in I1 can be targeted to purple color in176

T1, and the red color in I2 can be targeted to orange color in T2. With these one-to-many dataset177

structures, we design the loss function L that expresses the potential and the diversity of predicted178

image in equation 4.179

L =

N∑
i=1

Labloss

(
V
(

Φ
(
Îi

)))
+ Hloss

(
Φ
(
Îi

))
(4)

Stencil Masking As explained in the dataset refining criteria, we do not proceed with color180

conversion for all areas in the target images, but only for areas with color combinations that are181
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invisible to the deuteranopia (non-CUD object). For this reason, the input image has color regions of182

converting color and unconverting color, which also can be referred to as non-CUD object and CUD183

object. To imply the color bound to model, the stencil masking method is introduced.184

Φ
(
Îi

)
= Îij || (Iij · T ij) (5)

We consist a stencil maps through the logical and operations ’·’ of each pixel value Iij , Tij . Stencil185

map can specify the non-CUD area and be computed with predicted image Îij of logical or operation186

’||’in equation 5. Consequently, CUD object of the image adjusted with a stencil mask does not carry187

out the neural filter computation, such as the same way we refine the target image. This refined image188

is calculated on the loss function.189

CIELab Loss We use the CIELab channel loss function to maximize the contrast of color on190

deuteranopia vision. To stabilize the contrast and brightness of the predicted image, we calculate the191

MS· SSIM(multi-scale structural similarity[WSB03]) of L channel.192

Labloss =
∥∥∥Lab(Îrgbi

)
− Lab

(
T rgb
i

)∥∥∥
1

+MS·SSIM
(
Lab

(
ÎLi

)
, Lab

(
TL
i

))
(6)

The Lab (.) expression in equation 6 returns the CIELab channel corresponding to the RGB channel,193

and all calculations are made only on the L channel.194

Histogram Loss We use the histogram loss function to comply with the color preservation of the195

image. The RGB channel is used to preserve its color, contrary to using only the L channel in other196

loss functions. Handling the RGB channel as a loss function rather than using Lab’s ab channels has197

shown better results on color preservation.198

Hloss = −ωhist

∫
N
(
Îrgbi ; σ

)
− N

(
T rgb
i ; σ

)
(7)

When simply designing a loss function with the L1 distance of the RGB channel pixel values, it was199

very sensitive to certain values and the gradients are diverged, resulting in an untrainable experiment.200

Therefore, we used a gaussian expansion method[SAC∗17] denoted by N(.) to infer a differentiable201

histogram loss function in equation 7. We compute the difference of the RGB channel of the202

differentiable histogram function, which can be altered to mean squared error or cosine similarity.203

The scaler ωhist is determined in inverse proportion to the size of the input image. By maintaining204

the RGB similarity between the predicted image and the target image, we can comply with the color205

preservation.206

Variational Prediction There are various ways to maximize difference of the L channel in the207

image. And the target image is converted at least two colors compared to the input image. However,208

the predicted image of the model is generated by the neural filter, so it is unpredictable which area209

of color is modified. Therefore, if the color in predicted image is over-shifted or in the color value210

of opposite shifts to the target, the loss will rather increase. In addition to one-to-many problem211

that the data pair itself does not matches one-to-one in a particular color, it is necessary to generate212

alternative predicted image with the same aspect of the data pair. We calculate the loss function with213

a variational prediction based on the predicted image for potential color shifts.214

The first potential is the case of excessive shifts. Assume that ILi = {74, 41, 79}, ÎLi = {97, 10, 70},215

TL
i = {50, 41, 80} in L channel value. The first and third components of each image is non-CUD216

objects, and second component is CUD object. Therefore, we refined data paired with a difference of217

15 on L channel. Here, we clip the excessive L channel value in ÎLi by equation 8. Up to this point,218

no calculation is made as no value is exceeded in this example. The second potential is the case of219

opposite shifts. It can be said that a complete neural filter has been proceeded for value 97, 10, 70220

where L channel difference is 27. However, if we actually calculate the mean square error between221

ÎLi and TL
i , it will be an large value over 1k. Here we can generate alternative predicted image from222

equation 9 and 10.223
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clip
(
Îij

)
=

max
(
Îij , Tij

)
, Iij > Tij

min
(
Îij , Tij

)
, Iij ≤ Tij

(8)

R1 = 2Iij − Îij , R2 = Îij (9)

V
(
Îij

)
= argmin

(
‖clip (R1,2)− Tij‖2

)
(10)

As mentioned above, we define thresholds by the maximum and minimum value of each corresponding224

pixel position of ÎLi and TL
i . By computing a difference of residual map and the input image, we225

induce the alternative two images R1, R2. As a result, ÎLi with a smaller L2 distance is selected to226

alternative predicted image in equation 10, and it is finally computed with loss function compared to227

the TL
i . The above equation establishes V

(
Φ
(
Îi

))
= {54, 41, 80} and the mean square error to the228

target image is approximately 5, which is agreeable loss value respect to ÎLi itself.229

Identity Loss[ZPIE17, TPW16] We use Lidentity (Ti) to apprehend the CUD object to the model.230

In the case of target image that already satisfy the CUD, the filter should be relatively weakly applied231

than input image. The input of identity loss is target image Tij instead of input image Iij , and the232

reference of the loss function is also target image Tij to maintain the value itself. In computing233

identity loss, we do not require variational prediction as we cannot judge the potential region by234

equation 10.235

3 Experiments236

The experiment was performed with Tesla V100 SXM2 and Intel Xeon Gold 5120 and the computation237

speed was about 40 images per minutes. We refined a dataset with Adobe Photoshop to maximize238

contrast in the L channel by adjusting saturation and brightness for areas that require color conversion239

based on deuteranopia vision simulation. Color experts has refined about 1,500 vectorized image for240

the training data and 300 publication images for the validation data. All the comparative experimental241

models used the same train, test, validation data in this paper. We used the inference data in242

publications, which is almost composed of vectorized images, as colors often appear distorted in a243

gradation-rich image. The Figure 4 is arranged in descending order of the number of combinations in244

colors from the top image.245

Both structure similarity (SSIM)[ZBSS04] and peak signal to noise ratio (PSNR) in Table 1 can246

indicate whether the image is suitable for CUD or not. As a notable aspect, the result has shown that247

comparative models with lower metrics are sensitive to high-gradation input images, which generated248

color-heterogeneous image. SSIM and PSNR itself can determine the increase in contrast compared249

to the target image but do not determine whether the color preservation complied. Therefore, we250

evaluated SSIM and PSNR with three references, inputs images I , predicted images Î , and target251

images T . The higher the estimation of the Î and I , the more color preservation factor worked.252

The higher the estimation of the Î and T , the more increase in contrast can be considered. We also253

define SSIM mean absolute error, PSNR mean absolute error to measure the extent of the conversion254

between the F : I → T and F : I → Î in equation 11 and 12, respectively. The N is total number255

of inference data.256

SSIM ·MAE =
1

N

N∑
i=1

∣∣∣ SSIM (
Îi, T i

)
− SSIM (Ii, Ti)

∣∣∣ (11)

PSNR·MAE =
1

N

N∑
i=1

∣∣∣ PSNR( Îi, T i

)
− PSNR (Ii, Ti)

∣∣∣ (12)
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Figure 4: Comparisons of predicted images in deuteranopia vision. The color experts selected the
validation data that do not satisfy the CUD in publications.

Architecture SSIM
(
Î, I

)
SSIM

(
Î, T

)
PSNR

(
Î, I

)
PSNR

(
Î, T

)
SSIM·MAE PSNR·MAE

Cycle-GAN 0.630 0.634 13.28 13.83 0.3191 8.4430

Zero-DCE 0.924 0.888 21.95 18.67 0.0661 3.7300

DeepLPF 0.850 0.831 26.31 20.34 0.1220 2.0566

Enlighten-GAN 0.820 0.808 21.85 19.58 0.1470 3.9983

Enlighten-GAN(scaled) 0.966 0.921 24.86 21.36 0.0392 3.4937

CUD-NET(low bottle-neck feature) 0.897 0.866 27.77 21.01 0.0901 2.0826

CUD-NET 0.962 0.924 29.54 21.19 0.0312 1.4760

Table 1: Evaluation table of comparison experiment. The CUD-NET with a low bottle-neck feature
achieves better results in the experiment of the deuteranopia and the protanopia subjects(Figure 5),
although the evaluation metrics are lower than that of CUD-NET.

Cycle-GAN and Zero-DCE showed worse result than others. Cycle-GAN model had difficulty257

reconstructing a geometry of a particular object, and overall color had low saturation and brightness,258

resulting in color conversion into an almost grey scale image. Zero-DCE is faded in color, and the259

contrast was not much different from the input image. The overall image lost its color preservation,260

which we focused to solve in this paper.261

DeepLPF meets both the color preservation and contrast that we deal with for. However, DeepLPF262

tends to color be over-stably filtered for the images with fewer color combinations. Although the263

color preservation has complied better than other experiments, there were many failed results from264

the perspective of contrast, which the over-stable filter leads to by DeepLPF.265

Remarkably, predicted images of Enlighten-GAN showed reasonable results. However, simple color266

combinations or the images with already satisfying the CUD often showed results degenerated with267

low CUD suitability. Enlighten-GAN was able to generate the results we targeted, but its deviation of268

filter is so high that it sometimes failed to satisfy the contrast even on simple images or decreased269

the contrast. As the problem of GAN-based method including Enlighten-GAN, moreover, model270

fixes the width and height of the predicted image. If width and height of T and I down-scaled271
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to size of Enlighten-GAN Î(approximately 25K pixels in this experiment), the SSIM
(
Î , I

)
and272

PSNR
(
Î , T

)
showed higher estimation in some metrics than CUD-NET. In the opposite case of Î273

up-scaled to size of T and I , the significantly low estimation was recorded due to the information274

loss of up-scaling problem.275

CUD-NET showed stable and robust predicted images in both color preservation and increase in276

the contrast compared to other experiments. In comparing the values in the same region of I and277

Î , the model scaled two L channel values with opposite side in the most of case, the one goes up278

and the other goes down. When we reduced the number of bottle-neck feature of model, it tends to279

record relatively high deviation of filter scales according to the number of combinations of colors. In280

summary, the CUD-NET showed the highest estimations for 4 evaluation metrics. Moreover, as our281

model adopted a neural filter unlike generation models, there is no loss of information regarding the282

scaling of predicted images.283

Figure 5: The box bar is ordered to the left side, input image I , Enlighten-GAN, DeepLPF, CUD-
NET. The y position of box bar represents a mean and length of the box bar represents a deviation of
each experiment. The lower the graph is, the higher the rank is.

The figure 5 shows the evaluation of the deuteranopia and the protanopia. The evaluation metrics284

consist of object distinguishability and color harmony in order of input image I, predicted image285

of Enlighten GAN, DeepLPF, and CUD-NET. User study has tested upon the total of 6 subjects, 4286

deuteranomaly and 2 protanomaly. The subjects were asked to list the ranks of object distinguishability287

and color harmony of 4-paired-image for each model-blinded item. As the experimental results,288

the deuteranopia subject ranked the 1-st in the object distinguishability of CUD-NET at an average289

rank of 1.821, followed by Enlighten-GAN at an average rank of 2.512. Similarly, the protanopia290

subject also ranked the 1-st in CUD, followed by Enlighten-GAN, DeepLPF, and input images. The291

evaluation of color harmony showed that the subjects tend to assume that the image with a good292

object distinguishability has good color harmony preferentially. For a total of six subjects, the five293

subjects chose the CUD-NET, with the exception of one who ranked Enlighten-GAN by a subtle gap294

4 Conclusion295

In this paper, we proposed deep network to generate CUD images from non-CUD input images. The296

pre-processing and multi-modal fusion layer could comprehend the information for color weakness,297

and the variational loss function makes the model further adapt to CUD dataset. Compared to other298

research, we are able to maintain high-resolution images and both stable color preservation and299

contrast with neural filter per images.300

Our current research shows a robust filter for a single color, such as vectorized images, but it is301

difficult to expect stable results in the case of a real-world image with high gradation in hues. We302

consider the same limitation of our work when the certain pixel values react sensitively, making noise303

appear more prominent in the predicted image. In the future, we plan to create additional datasets304

with gradation on the vectorized image and focus on the fusion layer to improve performance of the305

model.306
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