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Abstract

Stochastic-gradient sampling methods are often used to perform Bayesian inference on neural
networks. It has been observed that the methods in which notions of differential geometry
are included tend to have better performances, with the Riemannian metric improving
posterior exploration by accounting for the local curvature. However, the existing methods
often resort to simple diagonal metrics to remain computationally efficient. This loses some
of the gains. We propose two non-diagonal metrics that can be used in stochastic-gradient
samplers to improve convergence and exploration but that have only a minor computational
overhead over diagonal metrics. We show that for fully connected neural networks (NNs)
with sparsity-inducing priors and convolutional NNs with correlated priors, using these
metrics can provide improvements. For some other choices the posterior is sufficiently easy
also for the simpler metrics.

1 Introduction

Bayesian methods are increasingly being used for large-scale models, especially deep neural networks, with
significant literature on both sampling-based algorithms (Welling & Teh, 2011; Chen et al., 2014; Zhang
et al., 2020; Vono et al., 2022) and distributional approximations (Graves, 2011; Blundell et al., 2015; Huix
et al., 2022; Nazaret & Blei, 2022). Even though sampling-based methods are often considered inefficient in
the general Bayesian inference literature, they are highly practical for neural networks due to the stochastic-
gradient sampling methods following closely the process of stochastic optimization (Wenzel et al., 2020). In
effect, we get efficient samplers by relatively minor modification of optimization algorithms. There are two
prominent families of stochastic-gradient sampling methods, based on Langevin dynamics (Welling & Teh,
2011) and Hamiltonian dynamics (Chen et al., 2014). We build on the former that has the advantage of
ease of implementation and fewer hyper-parameters, but our contributions focusing on accounting for local
curvature could likely be used also in Hamiltonian dynamics.

The samplers based on Langevin dynamics operate by numerical integration of a particular stochastic differ-
ential equation (SDE) (Ma et al., 2015). Our starting point is the Stochastic Gradient Riemannian Langevin
Dynamics (SGRLD) method where the underlying SDE is defined on a manifold characterised by a metric
tensor G(θ) ∈ RD×D (for a problem of D parameters) and the integration is carried along the manifold. This
formulation allows improved sampling by careful choice of the metric (Ma et al., 2015). Perhaps the optimal
choice is to use metrics that accurately capture the local curvature of the target distribution and e.g. Giro-
lami & Calderhead (2011) have demonstrated that using the Fisher information matrix as the metric tensor
provides advantages in exploration for sufficiently small problems where it is technically feasible. However,
this comes with a substantial computational challenge: Already constructing the Fisher information matrix
is computationally costly and the samplers need to repeatedly compute its inverse and inverse square root.

For large-scale problems the practical methods sacrifice flexibility for computational efficiency by using
simplified metrics. The early works used constantG that was further restricted to be diagonal, resulting in the
basic SGLD method (Welling & Teh, 2011). More recent methods use position-dependent G(θ) but assume
it to be diagonal to retain computational efficiency. In a suitably chosen diagonal metric the computational
overhead is negligible as element-wise operations can be used throughout the algorithm. Furthermore, the
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metric is typically not formed using differential geometric arguments, and is often adaptively tuned during
optimization. For example, Li et al. (2016) used G(θ) motivated by the RMSprop preconditioner used
commonly for optimization, and Wenzel et al. (2020) constructed a diagonal G(θ) with separate scaling
for each layer of a neural network. These methods remain the standard choices for inference for general
cases. Some attempts of using non-diagonal metrics have been done, but all of the current solutions are
structure-dependent and only applicable for specific scenarios. Marceau-Caron & Ollivier (2017) and Nado
et al. (2018) provide computationally more efficient approximations for the Fisher information metric in form
of quasi-diagonal approximations and the K-FAC approximation, respectively, but they still incur a higher
computational cost and require explicit construction of the approximation for a specific network structure.
Recently, Lange et al. (2023) constructed a non-diagonal preconditioner that accounts for the curvature
induced by the batch normalization operation and showed that it improves efficiency for networks using that
operation, but they do not provide a general recipe for forming the metric for all other structures.

Currently there are no stochastic-gradient samplers with non-diagonal G(θ) applicable for training an arbi-
trary deep neural network with large D. In this work we provide two such metrics that – when implemented
in a suitable manner – still result in computationally efficient SGRLD algorithms. The first builds on the
Monge metric Hartmann et al. (2022) introduced in the context of Lagrangian Monte Carlo (Lan et al.,
2015). This metric is a combination of a diagonal and a rank-one matrix that depends only on the gradients,
taking the form ID +α2∇ℓ∇ℓ⊤ with ℓ the log posterior, having a differential geometric justification. Despite
being of full-matrix form, the metric is fast to compute and has efficient inverse. We incorporate the metric
into SGRLD and show that we can implement many operations in element-wise manner just as in the case
of diagonal metrics. The sampler is generally applicable as the metric does not rely on e.g. the structure of
a neural network, but it is found to be quite sensitive to a tuning parameter α2 controlling the metric.

The second metric builds on the Shampoo method Gupta et al. (2018) proposed for optimization. They
construct a full matrix preconditioner G(θ) by using Kronecker products of layer-wise matrices that can be
efficiently updated during optimization. We incorporate their preconditioner as a metric tensor in SGRLD.
The updates are considerably more efficient than direct inversion of the full matrix but the sampler still has
some computational overhead compared to diagonal metrics, in our experiments around factor of 1.3 − 2.4.
We argue that such small overhead is justified by consistent good performance in our experiments.

We evaluate the metrics in problems of varying complexity. We observe that for fully connected neural
networks with Gaussian priors the metric may not be that important. For heavy-tailed priors often recom-
mended for these networks (Fortuin et al., 2022), such as the horseshoe prior (Carvalho et al., 2009) used by
Ghosh et al. (2019) and Popkes et al. (2019), the posterior is more challenging and the choice of the metric
is more important. For convolutional neural networks, we also observe differences between the metrics.

2 Background

We denote by θ ∈ RD the parameters of a model, here a neural network, and want to infer the posterior

p(θ |X) = exp(−U(θ)/τ)
Z

(1)

expressed in terms of log-potential U(θ) = − log p(X,θ) to facilitate usage of gradient-based algorithms.
Here Z is the intractable normalization constant and τ is a temperature parameter that is sometimes used
to improve predictive performance (Wenzel et al., 2020). We write the equations in this general form but
use τ = 1 corresponding to standard Bayesian inference in all experiments. We use the notation x̂ for a
stochastic estimate for a quantity x, estimated from a subsample of observations. In particular, ˆ∇θU(θ) is
the estimate of the full gradient ∇θU(θ) and we refer to the estimate as the stochastic gradient.

Stochastic Gradient Riemannian Langevin Dynamics (SGRLD) (Girolami & Calderhead, 2011; Patterson &
Teh, 2013; Ma et al., 2015) builds on the Stochastic Differential Equation (SDE) (Särkkä & Solin, 2019)

dθ = −G(θ)−1∇θU(θ)dt+
√

2τG(θ)− 1
2 dW + τΓ(θ)dt, (2)
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where

Γj(θ) =
D∑

k=1

∂

∂ θk
(G(θ)−1)jk.

Here W is Brownian motion, G(θ) ∈ RD×D is a metric tensor characterising the manifold we are operating
on, and the remaining parameters correspond to those of equation 1. The SDE has a differential geometric
justification, as it can be seen as performing sampling on the manifold (Girolami & Calderhead, 2011).
With G(θ) = ID, we recover the original SGLD proposed by Welling & Teh (2011). Under some mild
conditions, it can be proven that we obtain approximate samples from the posterior distribution by following
the trajectories induced by the SDE (Ma et al., 2015). In principle any integrator could be used, but in
practice the Euler-Maruyama integrator is used throughout the SGLD literature. The SDE is discretized
with step-size ht > 0 and the samples are obtained by iterating the update rule using stochastic gradients

θt+1 = θt −G(θt)−1∇θt
Û(θt)ht +

√
2τhtG(θt)− 1

2 Rt + τΓ(θt)ht, (3)

where Rt ∼ N (0, ID). The total integration time becomes ST =
∑T

t=1 ht where T is the number of iterations.

This integrator has two core computational challenges. The second and third terms require computing
the metric’s inverse and square root of the inverse, which in general has O(D3) complexity. The other
fundamental challenge is that in the last term Γ(θ) involves derivatives of the inverse and is challenging
even if the inverse itself could be obtained efficiently. However, that term can luckily be omitted in practical
algorithms. Girolami & Calderhead (2011) showed that the term naturally disappears with the assumption
that the metric tensor does not depend on the model parameters but is constant G(θ) = M . Moreover, Li
et al. (2016) provides the following theorem that indicates we get bounded estimation error for quantities
of interest even if completely ignoring the term, and consequently we can derive practical samplers by not
considering Γ(θ) explicitly as long as we verify we have a similar bound for any given metric we consider.
The proof using our notations is replicated in the Appendix.
Theorem 2.1. Denote operator norm as ∥·∥. With assumption on smoothness and boundedness as provided
in the Appendix, for any quantity ϕ estimated as the empirical expectation over the posterior samples, the
mean-square error of the estimate for a general SGRLD sampler after ignoring the Γ(θ) terms is bounded as

E
(
ϕ̂− ϕ̄

)2
≤ C

∑
t

h2
t

S2
T

E∥∆Vt∥2 + 1
ST

+
(
∑T

t=1 h
2
t )2

S2
T

+

∥∥∥∥∥
T∑

t=1

ht

ST
τΓ(θt)

∥∥∥∥∥
2

for some constant C > 0 independent of {ht}, where ∆Vt is an operator. Details are given in the Appendix.

2.1 Previous SGLD methods

Most previous SGLD methods build on Euler-Maruyama integration as in equation 3, only differing in the
choice of the metric. Next we briefly explain the key methods commonly used in practice from the perspective
of the metric, always presenting both the metric and the inverses required for performing the integration
to highlight their computational properties. Importantly, all of these use diagonal metrics. To simplify
notation, we will use ĝ to denote ∇θÛ(θ) divided by the number of data points in the training set.

SGLD Welling & Teh (2011) used constant metric

G(θt) = G(θt)−1 = G(θt)− 1
2 = ID. (4)

This is highly efficient, but the metric is completely naive.

pSGLD Li et al. (2016) constructed G(θ) inspired by the RMSprop preconditioner as

G(θt) = diag (v(θ)) ,
G(θt)−1 = diag (1 ⊘ v(θ)) ,

G(θt)− 1
2 = diag

(
1 ⊘

√
v(θ)

)
,

3



Under review as submission to TMLR

where V (θ) is initialized as a zero vector and updated with exponential moving average (EMA) with suitable
λ as

V (θt) = λV (θt−1) + (1 − λ)ĝ2,

v(θt) =
√
V (θt) + ϵ.

The notation diag(·) denotes the operation that generates a diagonal or block-diagonal matrix from an
arbitrary number of scalars or matrices, and ϵ is a small constant added mainly for numerical reason. Here
the square ·2, square root

√
· and division ⊘ are all performed element-wise and hence the algorithm has

linear cost; we consistently use the notation where
√

· refers to element-wise operation and the matrix square
root is denoted by G1/2.

Wenzel’s SGLD Wenzel et al. (2020) constructed a layer-wise metric. The implementation by Fortuin
et al. (2021) follows

G(θt) = diag
(

{σ̃(θt)lIDl
}L

l=1

)
,

G(θt)−1 = diag
(

{(1/σ̃(θt)l) IDl
}L

l=1

)
,

G(θt)− 1
2 = diag

({(
1/
√
σ̃(θt)l

)
IDl

}L

l=1

)
,

where L is the number of layers and Dl the number of parameters for the lth layer, and

σ(θt)l =
√
ϵ+ mean(V ([θt]l)),

σ̃(θt)l = σl/min({σ(θt)l}L
l=1),

where the update rule of V ([θt]l) is similar to above, but initialized to be a vector full of ones. ϵ has a similar
role to above and the operations are element-wise. The preconditioner is updated periodically, in practice
after every epoch.

3 SGRLD in Non-diagonal metrics

For more efficient exploration of the posterior, for instance when the parameters are strongly correlated or
the posterior involves areas of strong curvature, we should be using full matrix G(θ), rather than a diagonal
one that can only scale the dimensions. Even though the computation for arbitrary metrics is prohibitively
expensive, we can construct specific metrics of low cost that still capture the correlations.

Next we introduce two such metrics that lead to efficient SGRLD samplers without assuming the metric
to be diagonal. The first is based on a metric derived from the perspective of differential geometry that
has efficient inverses due to being a combination of a diagonal matrix and a rank-one term, proposed by
(Hartmann et al., 2022) for sampling algorithms with exact gradients. The latter uses efficient Kronecker
products to construct a metric that is sufficiently efficient to compute for large neural networks, originally
proposed in the optimization context (Gupta et al., 2018; Anil et al., 2021) and generalized here for sampling.

3.1 SGRLD in Monge metric

Hartmann et al. (2022) recently proposed a metric named Monge metric induced by the embedding of the
target probability distribution in a higher-dimensional Euclidean space as M = ξ(Θ) where θ

ξ−→ (θ, αU(θ)),
which yields a first fundamental form on M. For the specific case of probabilistic models, i.e. U(θ) =
− log πY (y| θ), Fisher information matrix can be used to characterize the local curvature. As shown by
Hartmann et al. (2022), Monge metric relates to the Fisher information matrix in expectation (with respect
to Y ), such that its expected value is identity matrix plus α2 times the Fisher information matrix. However, it
avoids the costly computations needed for forming the Fisher information matrix and the metric has desirable
computational properties. Figure 1 illustrates the geodesics induced by the metric for the funnel distribution,
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Figure 1: Illustration of how the Monge metric captures the local curvature of the target density, here the
funnel distribution (see Section 4.2). The two plots illustrate the local metric around two separate parameter
settings, in form of geodesic paths (red arrows) for different initial velocities sampled from a Euclidean ball
and the surfaces of the final positions (solid red line). The metric helps in reaching the narrow funnel in
y-direction (left) and is similar to Euclidean metric in the flat areas (right).

demonstrating how it characterises the local curvature. See Section 4.2 for details of the distribution and
empirical validation of how SGRLD in the Monge metric, as described later, also improves sampling.

The metric is given by G(θ) = I + α2∇θU(θ)∇θU(θ)⊤ and hence has the inverse (dropping dependence on
θ for lighter notation) G(θ)−1 = I − α2

1+α2∥∇U∥2 ∇U∇U⊤ and equally easy square root of that. Hartmann
et al. (2022) used it in the context of Lagrangian Monte Carlo (Lan et al., 2015) and showed that the metric
helps to achieve good exploration of complex target distributions, but their sampler does not scale for large
problems due to requiring exact gradients and determinants for rejection checks.

Here we use that metric in the context of SGRLD, which requires some additional development. Even
though the expressions above are efficient compared to direct matrix inversion, the cost of Sherman-Morrison
inversion could still be a challenge for large scale models, and we naturally need to extend the metric to
support stochastic gradients. Next we show that we can use the metric within SGRLD so that many
operations are element-wise, matching the computational cost of diagonal approximations, and that standard
exponential moving average of stochastic gradients is applicable for forming the metric tensor.

To derive the efficient element-wise operations, we start by defining helper functions to simplify notations:

f−1(x) = − α2

1 + α2∥x∥2 ,

f− 1
2
(x) = 1

∥x∥2

(
1√

1 + α2∥x∥2
− 1
)
.

We can then express the metric G(θ), its inverse and inverse square root as

G(θt) = ID + α2∇lt∇l⊤t ,
G(θt)−1 = ID + f−1(∇lt)∇lt∇l⊤t , (5)

G(θt)− 1
2 = ID + f− 1

2
(∇lt)∇lt∇l⊤t ,

where ∇l0 is initialized to zero and updated based on the stochastic gradient using standard EMA as

∇lt = λ∇lt−1 + (1 − λ)ĝt.

Observe that all computations required by the integrator are of the form G(θ)nx for some vector x and
either n = −1 or n = −1/2. Using this notation, the lth entry of the required product can be computed
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using

[G(θt)nx]l = [x+ fn(∇lt)∇lt⟨∇lt, x⟩]l
= [x]l + fn(∇lt)[∇lt]l⟨∇lt, x⟩,

where ⟨·, ·⟩ is the inner product that combines the last element of equation 5 with x. Since f(·) only depends
on the current moving average of gradients, we can implement the exact updates for a batch by iterating
through all the parameters once to calculate the needed quantities, followed by individual updates for each
of the parameters. In practice, all operations are still computed with standard tensor operations.

Both the memory and computation complexity is linear in D, which is the same as using diagonal precon-
ditioners like RMSprop as in Li et al. (2016). However, it is important to note that the metric does not
correspond to a diagonal approximation. As shown by equation 5, the effect of the metric is additive instead
of multiplicative. For all diagonal samplers the G(θ)nx terms in equation 3 take the forms where elements
of the gradient are multiplied by a scaling factor, whereas here we retain the gradient itself and add a scaled
version of moving average to it.

We will later observe that the performance depends on the choice of α2 and hence the metric introduces a
new hyper parameter that needs to be selected carefully. When α2 = 0 the metric reduces to identity and
differs increasingly more from the Euclidean one for larger values. Note that α value here does not have the
same interpretation as in Lagrangian Monte Carlo, as there is an implicit scaling depending on the number
of data points in the training set. The validity of the sampler for all α2 ≥ 0 is shown by the following
theorem, with the proof provided in the Appendix.
Theorem 3.1. For SGRLD in the Monge metric, we can bound the approximation error as defined in
Theorem 2.1 after ignoring the Γ(θ) terms as

E
(
ϕ̂− ϕ̄

)2
≤ C

(∑
t

h2
t

S2
T

E∥∆Vt∥2 + 1
ST

+
(
∑⊤

t=1 h
2
t )2

S2
T

)
+O(α8τ2(1 − λ)2).

We can clearly see the role of α in the above bound. It is worth noting, however, that the large exponent
in α8 is not necesssarily problematic. Already a small α can dramatically change the metric and we can get
improved sampling also with values for which the last term of the bound is not dominating.

3.2 SGRLD in Shampoo metric

An alternative to using a metric with efficient inverses is to use a metric for which the inverses can be
efficiently updated iteratively during the sampling process. Shampoo (Gupta et al., 2018; Anil et al., 2021)
shows how to do this in the context of optimization, deriving a preconditioner possessing a close relationship
with full-matrix Adagrad (Duchi et al., 2011). They additionally provide details for a version related to
full-matrix RMSprop. We build on that version.

We denote the tensor rank of the lth parameter as dl, and the individual shapes of the lth parameters as
{(nl)1, . . . , (nl)dl

}. We can then expressed the metric as

G(θt) = diag({⊗dl
i=1[Hi

t ]
1

2dl

l }L
l=1),

G(θt)−1 = diag({⊗dl
i=1[Hi

t ]
− 1

2dl

l }L
l=1),

G(θt)− 1
2 = diag({⊗dl

i=1[Hi
t ]

− 1
4dl

l }L
l=1),

where [Hi
0]l = ϵIDl

and
[Hi

t ]l = λ[Hi
t−1]l + (1 − λ)[ĝt](i)

l .

Here H(i)
j,j′ :=

∑
α−i

Hj,α−i
Hj′,α−i

, where α are all possible indexes. We used a slight abuse of notation here,
by using [ĝt]l to denote the gradients with respect to the corresponding parameter but reshaping them here
to match the shape of the parameter that is now a tensor.
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Next, we will show how this metric can be used in the context of SGRLD. In the original Shampoo, each
[Hi

t ]
− 1

2dl

l is calculated numerically after adding a small constant ϵ to avoid numerical issues. For SGRLD we

also need access to [Hi
t ]

− 1
4dl

l , and hence we first compute [Hi
t ]

− 1
4dl

l numerically, and then compute [Hi
t ]

− 1
2dl

l

by taking the square. The Kronecker product formulation allows efficient updates with standard tensor
operations (Anil et al., 2021).

The computational cost is then C(
∑L

l=1
∑dl

m=1(nl)3
m) and the memory cost is C(

∑L
l=1
∑dl

m=1(nl)2
m), for some

positive constants C. These costs are strictly larger than those of the diagonal metrics or the Monge metric,
but in practice the metric is updated only periodically (typically after hundreds of steps), and hence the
computation remains manageable. To further reduce computational complexity, we can divide the tensors
into smaller blocks and treat them as individual tensors instead (Anil et al., 2021).

The following theorem shows the validity of the sampler, with the proof in the Supplement. The bound
depends on the EMA parameter λ in the same way as the bound for the Monge metric and otherwise follows
that of Theorem 2.1.
Theorem 3.2. For SGRLD in the Shampoo metric, we can bound the approximation error as defined in
Theorem 2.1 after ignoring the Γ(θ) terms as

E
(
ϕ̂− ϕ̄

)2
≤ C

(∑
t

h2
t

S2
T

E∥∆Vt∥2 + 1
ST

+
(
∑⊤

t=1 h
2
t )2

S2
T

)
+O(τ2(1 − λ)2).

4 Experiments

These experiments characterise the behavior of the proposed samplers and additionally provide information
about the nature of the posteriors of some network architectures.

4.1 Experimental setup

Comparison methods We evaluate the two proposed metrics against other general-purpose SGLD al-
gorithms applicable for arbitrary network structures explained in Section 2. We refer to these methods by
their metrics, using Identity for Welling & Teh (2011), RMSprop for the pSGLD method of Li et al. (2016)
and Wenzel for Wenzel et al. (2020).

Experimental details The code for all experiments is provided in the supplementary material and will
be made openly available upon publication. Concerning neural network experiments, our implementations
for all methods are built on top of Fortuin et al. (2021). For RMSprop, Wenzel and Shampoo we use λ = 0.99
and ϵ = 1e−8, matching the choices of Fortuin et al. (2022), whereas for Monge we use λ = 0.9 based on
good performance in preliminary experiments. For all methods we select constant learning rate based on
performance (log-probability) on a separate validation set, and for Monge we additionally select α2 that
controls the metric within the same process. For all methods we use a fixed schedule for learning rate to
isolate the effect of the metric. For instance Zhang et al. (2020) showed that cyclical rates can improve
sampling, but since the interaction between such schedules and the underlying metric is unknown we do not
employ them here. We use no data augmentation to isolate its effect on likelihood tempering (Kapoor et al.,
2022).

We run the samplers for a total of 400 epochs using a batch size of 100. The first 1000 steps are treated as
burn-in, and the actual samples used for evaluation are collected after that with a thinning interval of 100
steps. Each setup is repeated for 10 independent runs. Additional details, like the learning rates for each
case, are provided in the Appendix.

Evaluation measures Except for the funnel experiment where we compare against a known ground truth,
we evaluate the samplers using the log-probability log p(y|X) and classification accuracy computed as the
ensemble average over the posterior samples. We compute both for test data not used during inference or
validation, averaging the measures over ten independent runs, and also report the running times.
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Identity RMSprop Monge

Figure 2: Funnel distribution in three metrics. The better metrics explore the funnel clearly better, though
even the best one has difficulties reaching the very end. The right subplots show the challenging marginal of
the 2D distribution (left subplot), indicating the true marginal with blue line and the samples with yellow
histograms.

We also use a measure that quantifies the curvature of the posterior. Srinivas et al. (2022) proposed a
notion, denoted by C(θ), that measures the model’s curvature with respect to the data distribution by
quantifying how much the local space deviates from Euclidean. It can be efficiently computed for arbitrary
neural networks and they proposed it for training models of lower curvature, but we use their measure for
estimating the average curvature of the regions the samplers visit during inference as the expected value of
C(θ) over the posterior samples.

We use this measure for two purposes. It is primarily used as an approximation of the inference complexity.
It is not an exact measure as the samplers are not guaranteed to perfectly sample from the true posterior,
but still gives indication of how complex the posterior is for different architectures. We also use the average
curvature of different samplers as additional indication of their differences. Lower or higher average curvature
does not directly indicate a sampler to be more correct since a poor sampler could equally well be unable to
reach areas of high curvature or to get stuck there, but differences between methods are still informative.

4.2 Funnel

The funnel distribution N (θ1,...,D−1 |µ, sp(θD)ID−1)N (θD |0, σ2), where sp(x) = log(1+ex) is known to have
difficult geometry for sampling and has been used e.g. by Hartmann et al. (2022) and Neal (2003) for sampler
evaluation. We consider a funnel distribution with D = 2. In Figure 1 we already used this distribution for
visual demonstration of how the Monge metric captures local curvature of the target distribution. In the
following, we show how SGRLD in identity, RMSprop and Monge metrics behaves in this task. When the
gradient is a tensor of one dimension, as it is here, the Shampoo metric coincides with full matrix RMSprop
and is hence not shown separately.

We draw 2e6 samples from the funnel, using well chosen hyperparameters for each method. The gradients –
that here are known analytically – available for the samplers are corrupted by noise of standard deviation
of one, to emulate a scenario where stochastic gradients are used. Figure 2 shows that the identity metric is
unable to reach the area of high curvature. The better metrics clearly help, but even the Monge metric that
is here the best may not be sampling from the exact correct distribution. Hartmann et al. (2022) showed
that LMC can solve the problem nearly perfectly in this metric in combination with exact gradients, but
SGRLD is not a perfect algorithm for the problem with stochastic gradients.

4.3 Fully-connected networks

We use a fully connected neural network of size 784-N -N -10 on MNIST dataset, where we use N ∈
[400, 800, 1200], with setup inspired by Li et al. (2016) and Korattikara et al. (2015). We evaluate all
samplers in problems of varying difficulty by (a) changing the prior distribution of the weights and biases
and (b) changing the network size by modifying N . Tables 1 (log-probability and accuracy) and 2 (average
curvature and time) report the results for the commonly used Gaussian prior θ ∼ N (0, σ2ID) and for the
horseshoe prior θ ∼ N (0, σ2λ2ID) where λ follows half Cauchy distribution with mean 0 and variance 1, as
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Gaussian prior Horseshoe prior
N Metric log p(y|X) Acc. log p(y|X) Acc.

400

Identity [-0.1310, 0.0004] [0.9685, 0.0005] [-0.0750, 0.0004] [0.9823, 0.0003]
Wenzel [-0.1315, 0.0002] [0.9686, 0.0003] [-0.0768, 0.0009] [0.9807, 0.0003]
RMSprop [-0.1307, 0.0005] [0.9689, 0.0004] [-0.0678, 0.0011] [0.9798, 0.0008]
Monge Identity (α2 = 0) is optimal [-0.0629, 0.0009] [0.9831, 0.0005]
Shampoo [-0.1286, 0.0003] [0.9689, 0.0004] [-0.0641, 0.0009] [0.9820, 0.0006]

800

Identity [-0.1667, 0.0004] [0.9587, 0.0003] [-0.0798, 0.0003] [0.9818, 0.0004]
Wenzel [-0.1667, 0.0004] [0.9583, 0.0005] [-0.0839, 0.0008] [0.9789, 0.0003]
RMSprop [-0.1643, 0.0003] [0.9614, 0.0003] [-0.0656, 0.0013] [0.9800, 0.0005]
Monge Identity (α2 = 0) is optimal [-0.0612, 0.0014] [0.9834, 0.0008]
Shampoo [-0.1620, 0.0004] [0.9605, 0.0003] [-0.0603, 0.0011] [0.9824, 0.0004]

1200

Identity [-0.1932, 0.0004] [0.9514, 0.0004] [-0.0809, 0.0004] [0.9814, 0.0002]
Wenzel [-0.1933, 0.0004] [0.9519, 0.0003] [-0.1006, 0.0009] [0.9746, 0.0005]
RMSprop [-0.1886, 0.0005] [0.9568, 0.0003] [-0.0631, 0.0011] [0.9808, 0.0007]
Monge [-0.1780, 0.0005] [0.9560, 0.0005] [-0.0694, 0.0005] [0.9833, 0.0004]
Shampoo [-0.1854, 0.0003] [0.9559, 0.0004] [-0.0564, 0.0007] [0.9834, 0.0005]

Table 1: Inference accuracy for MNIST with fully connected networks of varying size N and prior, marking
the best metric for each configuration. Each entry is given as mean followed by standard deviation.

Gaussian prior Horseshoe prior
N Metric Curv. Time Curv. Time

400

Identity 5.93 8.1 14.65 8.3
Wenzel 5.82 7.7 14.79 9.5
RMSprop 6.30 8.8 25.76 10.7
Monge α2 = 0 is optimal 15.08 12.9
Shampoo 6.28 18.8 17.84 20.1

800

Identity 4.69 19.9 15.01 24.8
Wenzel 4.68 20.3 14.45 26.2
RMSprop 4.67 24.2 20.09 29.3
Monge α2 = 0 is optimal 12.09 32.1
Shampoo 4.53 46.5 12.74 53.3

1200

Identity 4.16 43.5 15.28 56.3
Wenzel 4.10 49.1 11.41 58.2
RMSprop 4.11 56.9 16.96 58.3
Monge 6.92 59.2 16.78 60.1
Shampoo 3.93 92.9 10.07 89.1

Table 2: Curvature and computational efficiency for MNIST with fully connected networks of varying size
N and prior. The time is given as seconds per epoch.

implemented in Fortuin et al. (2021). Following Fortuin et al. (2022), the prior scale σ is adjusted based on
network structure.

The gist of the results is that one of the non-diagonal metrics is the best in terms of log-probability in all
cases, the horseshoe prior is clearly better, and the non-diagonal metrics help more when the posterior is
challenging. Even though the numerical differences are somewhat small, the standard deviations (computed
over 10 runs) are even smaller and the differences between samplers are reliable. Next we analyse the results
in more detail from different perspectives.

Effect of prior For the Gaussian prior the posterior is easy, shown by the low average curvature for all
methods. For these cases the choice of the metric is not particularly critical, but the proposed Shampoo

9



Under review as submission to TMLR

Figure 3: Log-probability (top) and accuracy (bottom) of different samplers on MNIST with hidden layer
size 400 and horseshoe prior. Shaded areas show + − 1.96 standard deviations computed over 10 replicates.

metric is still generally the best. For the Monge metric when hidden unit size is 400 or 800 the optimal
α2 = 0 and hence the metric reduces to G(θ) = ID, but with the largest network it reaches an overall best
performance with α2 = 0.75.

For the Horseshoe prior the posterior is considerably more challenging, with average curvature around 3 − 4
times higher, and we see that there is clear benefit in using this prior – the log-probabilities are clearly
better than using the Gaussian prior. For this more challenging case, both of the proposed metrics provide
substantial improvement over the baselines, especially in terms of log-probability, and the optimal Monge
metric always has α2 > 0, with 1.25, 0.5 and 0.075 being the optimal values for the three sizes. We also see
clear differences between the samplers in terms of the average curvature C(θ), revealing that the pSGLD
sampler using the RMSprop metric behaves in a different manner than the others. For N = 1200 with some
learning rate the Wenzel metric had high variance over the ten runs, with some bad runs explaining the poor
final performance.

Effect of network size In terms of the network size the results between the samplers are relatively
consistent, but an important observation is that with Gaussian priors the smallest networks are the best
whereas with the horseshoe the largest ones outperform the smaller ones – but only if using the better
samplers. A practitioner using the identity metric might conclude that the best they can do for this data is
horseshoe prior with N = 400, but in the better metrics we can effectively use also larger networks.

Convergence Figure 3 illustrates convergence of the samplers (averaging predictions over samples col-
lected thus far) for the case of N = 400 and the horseshoe prior, showing that all metrics result in similar
convergence. This plot is shown as a function of the iteration. The Shampoo metric takes around 1.5 − 2.5
times longer per iteration, but all other metrics share roughly the same cost.

The RMSprop metric that was earlier seen to have clearly different C(θ) compared to others is here revealed
to overfit – it quickly reaches good log-probability but the accuracy does not increase monotonically –
confirming that unusual average curvature can be a sign of poor sampling.

Monge metric parameter Figure 4 shows how the Monge metric depends on its tuning parameter α for
N = 400 with the horseshoe prior. For α2 = 0 it matches identity but for α2 > 0 we see clear improvement
over the diagonal metric. For α2 > 1.25 the performance starts to degrade possibly due to numerical issues,
and the curve suggests it may be possible to further improve the performance if these issues could be better
avoided. As noted earlier, in some other cases α2 = 0 is the best choice and the metric becomes identity.

4.4 ResNet architecture

As another common network architecture we consider the ResNet (He et al., 2016), known to have relatively
easy optimization landscape (Li et al., 2018). We consider two alternative prior choices to inspect the
potential effect on the samplers: (a) independent Gaussian priors θ ∼ N (0, σ2) and (b) correlated normal
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Figure 4: Log-probability (left) and accuracy (right) in Monge metric with varying α2 on MNIST with hidden
layer size 400 and horseshoe prior, in comparison to other metrics. Shaded areas show + − 1.96 standard
deviations computed over 10 replicates.

Independent Gaussian prior
Metric log p(y|X) Acc. Curv. Time
Identity [-0.4627, 0.0039] [0.8591, 0.0015] 10.18 7.6
Wenzel [-0.4869, 0.0047] [0.8533, 0.0023] 9.12 7.5
RMSprop [-0.4751, 0.0023] [0.8566, 0.0014] 10.27 8.8
Shampoo [-0.4606, 0.0043] [0.8596, 0.0018] 10.63 11.4

Correlated normal prior
Metric log p(y|X) Acc. Curv. Time
Identity [-0.4437, 0.0040] [0.8641, 0.0025] 9.91 11.6
Wenzel [-0.4615, 0.0050] [0.8614, 0.0021] 8.91 11.8
RMSprop [-0.4500, 0.0041] [0.8642, 0.0018] 9.94 14.1
Shampoo [-0.4365, 0.0034] [0.8668, 0.0023] 10.39 15.4

Table 3: CIFAR10 with ResNet architecture. The best Monge metric always matches the identity metric
and is not shown separately. Boldface indicates the best metric. For log-probability and accuracy, each
entry is given as mean followed by standard deviation. The time is given as seconds per epoch.

prior proposed by Fortuin et al. (2022). We use the CIFAR10 data (Krizhevsky & Hinton, 2009) and Google
ResNet-20 as implemented by Fortuin et al. (2021).

The experimental results are shown in Table 3. Similar to the previous experiments, the Shampoo metric is
the best in both cases and the computational overhead over the alternatives is manageable. For the Monge
metric the optimal choice is here always to resort to identity metric with α2 = 0 and hence no improvement is
observed. In terms of posterior difficulty, we observe that switching to correlated priors makes the curvature
slightly lower, matching the hypothesis of Fortuin et al. (2022), while also improving the log-probability and
accuracy in terms of all metrics. Shampoo results in the best performances in both cases, while Wenzel and
RMSprop are worse than using identity metric. While the standard deviations are larger than the MNIST
case, Shampoo still yields consistent improvements over identity especially when using correlated Gaussian
prior, with log-probability roughly equal to that of identity metric plus two times the standard deviation.

5 Discussion

We used relatively small data and models for evaluation in interest of manageable overall computation.
SGLD-based methods have previously been applied on larger problems as well (Zhang et al., 2020), and we
showed that the computational overhead of the new metrics is small, with the Monge metric being essentially
as fast as the diagonal ones. We see no reason why the methods could not be applied also for larger networks,
and we could also take into use various other tricks for maximal scaliability, e.g. only doing posterior inference
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over the last few layers (Lazaro-Gredilla & Figueiras-Vidal, 2010; Ober & Rasmussen, 2019; Watson et al.,
2021) or using proper metrics only within individual layers (Gupta et al., 2018; Anil et al., 2021). Our
metrics could most likely also be combined with various sampler advances, like the adaptive drift by Kim
et al. (2020).

The Shampoo metric performed well in all of our experiments and is currently our practical suggestion. The
Monge metric is equally fast as the diagonal ones and in some cases worked extremely well, but requires
careful choice of α2 and for the easier posteriors α2 = 0 was actually the best. This is in part caused by
numerical stability issues; the method appears in principle to work well with larger values but often has
issues with gradient explosion already before failing completely shows degraded accuracy. This is seen also
in Figure 4 where the performance suddenly drops after α2 = 1.25. It is likely that better normalization
or adaptive control of possibly element-wise α2 will resolve these issues, but we do not have good solutions
ready yet.

We note that in the main experiments we purposefully ignored the samplers’ different running times to ensure
that they have equal storage cost and computational cost during evaluation, without requiring method-
specific thinning intervals or other tricks that would make the interpretations of the results harder. As
shown by Tables 2 and 3, the Shampoo metric takes, depending on the case, 1.3-2.4 times longer to compute
than the identity metric. In the Appendix we provide additional empirical results where all samplers are
restricted to use the same total computation time, to provide an alternative perspective for sampler efficiency
in terms of wall-clock time. We observe that despite some differences, the Monge and Shampoo metrics still
retain the advantages over the previous methods.

Our focus was more in demonstrating that it is possible to have computationally efficient metrics that avoid
making the diagonal assumption to encourage further research into this direction, instead of arguing that
these specific metrics would necessarily be optimal in any specific sense. We used two metrics derived from
different perspectives and Lange et al. (2023) recently provided an additional example of constructing a
computationally efficient non-diagonal metric specific to the batch normalization operation (Ioffe & Szegedy,
2015), demonstrating that the design space of possible choices is broad. It is likely that other metrics,
possibly derived from still different perspectives, can also be made computationally more efficient but the
practical design process remains largely manual.

6 Conclusion

Sampling should be done using a metric that somehow accounts for the curvature of the posterior distribution.
Current stochastic-gradient samplers usually do this with diagonal metrics to retain computational efficiency
and use adaptive metrics motivated by the optimization literature. We showed that it is possible to use non-
diagonal metrics while retaining the same or almost the same computational cost, providing two practical
metrics that can improve sampling. One metric was consistently good but has some computational overhead.
The other worked extremely well in some cases but is sensitive to a tuning parameter.

Despite theoretical advantages, Riemannian samplers are not commonly used today. For instance, none of
the leading probabilistic programming environments supports them. In deep learning approximate second-
order optimization methods are already widely used and the interest is typically in predictive performance
that is easier to evaluate compared to verifying reliability of parameter estimates that can be difficult for
Riemannian samplers. This suggests – somewhat counter-intuitively – we might see Riemannian methods
entering practice faster in problems of higher dimensionality, now that scalable approaches are available.

Finally, we showed that the need for improved sampling algorithms depends on the model architecture and
in particular the prior distribution. Much of the literature has considered networks with simple priors, in
particular normal distributions, and for those priors already simple metrics are sufficient. For more advanced
priors we can see larger benefits with better metrics.
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A Appendix

This Appendix provides proofs for the theorems presented in the paper in Sections A.1-A.3, additional
technical details concerning the experiments in Sections A.4-A.5, and additional empirical results in Section
A.6.

A.1 Convergence analysis

The proof is based on Chen et al. (2015) and Li et al. (2016). We impose the same mild assumption of
smoothness and boundedness from their paper.
Assumption A.1. ψ and its up to 3rd-order derivatives, Dkψ, are bounded by a function V, i.e. ∥Dkψ∥ ≤
Ck for k = (0, 1, 2, 3), Ck, pk > 0. Furthermore, the expectation of V on {θt} is bounded: supt E Vp(θt) ≤ ∞,
and V is smooth such that sups∈(0,1) Vp(sθ +(1 − s)Y ) ≤ C(Vp(θ) + Vp(Y )), ∀ θ, Y, p ≤ max{2pk} for some
C > 0.

Consider a test function of interest ϕ(θ). The posterior average with respect to the invariant measure ρ(θ)
related to the Stochastic Differential Equation (SDE) is defined as ϕ̄ :=

∫
χ
ϕ(θ)ρ(θ)dθ.

Our geometric MCMC samplers give us samples (θt)T
t=1. We approximate ϕ̄ with ϕ̂ := 1

T

∑T
t=1 ϕ(θt).

Consider the SDE for SGRLD with exact gradients:

dθ = −G(θ)−1∇θU(θ)dt+
√

2τG(θ)− 1
2 dW + τΓ(θ)dt,

its local generator can be written as, where a · b := a⊤b and A : B := tr(A⊤B),

Lt =
(
−G(θt)−1∇θtU(θt) + τΓ(θt)

)
· ∇θt + τG(θt)−1 : ∇θt∇⊤

θt
.

We define a functional ψ that solves the following Poisson Equation,

Lψ(θt) = ϕ(θt) − ϕ̄. (6)
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According to the assumptions, ψ exists.

Consider the SDE for Riemannian SGLD after ignoring Gamma:

dθ = −G(θ)−1∇θŨ(θ)dt+
√

2τG(θ)− 1
2 dW,

its local generator can be written as

L̃t = −G(θt)−1∇θtŨ(θt) · ∇θt + τG(θt)−1 : ∇θt∇⊤
θt
.

Let Lt be the generator of the SDE with exact gradients. Observe that

L̃t = Lt +∆Vt + ∆Lt, (7)

where ∆Vt =
(
−G(θt)−1(∇θtŨ(θt) − ∇θtU(θt))

)
· ∇θt and ∆Lt = −τΓ(θt) · ∇θt .

We use Euler-Maruyama integrator, which is a first order integrator. We have

E (ψ(θt)) = ehtL̃tψ(θ(t−1)) +O(h2
t )

= (I + htL̃t)ψ(θ(t−1)) +O(h2
t ).

Sum over t and plug in Equation 7, we have

T∑
t=1

E(ψ(θt)) =
T∑

t=1
ψ(θ(t−1)) +

T∑
t=1

ht Lt ψ(θ(t−1)) +
T∑

t=1
ht∆Vtψ(θ(t−1)) +

T∑
t=1

ht∆Ltψ(θ(t−1)) + C

T∑
t=1

h2
t .

Divide both side by St, plug in Equation 6 and re-arrange the terms,

ϕ̂− ϕ̄ = 1
ST

(E(ψ(θT )) − ψ(θ0)) + 1
ST

T −1∑
t=1

(E(ψ(θt)) − ψ(θt))

− 1
ST

T∑
t=1

ht∆Vtψ(θ(t−1)) − 1
ST

T∑
t=1

ht∆Ltψ(θ(t−1)) + C

∑T
t=1 h

2
t

ST
.

Therefore, there is a positive constant C > 0 satisfying

(
ϕ̂− ϕ̄

)2
≤ C

 1
S2

T

(E(ψ(θT )) − ψ(θ0))2︸ ︷︷ ︸
A1

+ 1
S2

T

T −1∑
t=1

(E(ψ(θt)) − ψ(θt)︸ ︷︷ ︸
A2

)2+

T∑
t=1

h2
t

S2
T

E∥∆Vt∥2 +

∥∥∥∥∥
T∑

t=1

ht

ST
τΓ(θt)

∥∥∥∥∥
2

︸ ︷︷ ︸
A3

+
(∑T

t=1 h
2
t

ST

)2

 .

A1 is bounded according to assumptions, A2 is bounded by O(
√
ht) because of the added Gaussian noise.

Based on these observations, after simplifications, we obtain the following theorem.
Theorem A.2. Denote operator norm as ∥ · ∥. The MSE of the algorithm can be bounded as

E
(
ϕ̂− ϕ̄

)2
≤ C

∑
t

h2
t

S2
T

E∥∆Vt∥2 + 1
ST

+
(
∑T

t=1 h
2
t )2

S2
T

+

∥∥∥∥∥
T∑

t=1

ht

ST
τΓ(θt)

∥∥∥∥∥
2

for some C > 0.
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A3 term can be further relaxed as

A3 ≤

(
D∑

i=1

∣∣∣∣∣
T∑

t=1

ht

ST
τΓi(θt)

∣∣∣∣∣
)2

.

As step sizes are non-zero, it follows that
ht

ST
= O( 1

T
)

for any t. Since D is bounded by definition, if each τΓi(θ) term is bounded by a relatively small quantity,
we can have a reasonably good estimate of ϕ̄.

A.2 Derivations for Gamma term in Monge metric

Assume first and second order gradients are bounded. Use the following to simplifying notations,

∇̃l = λ∇̄l + (1 − λ)∇̂l,

where ∇̃l is the moving average after the current update and used to form the metric, ∇̄l is the moving
average before the current update and ∇̂l is the current stochastic gradients. Further, denote individual
entries of the second order derivative for the stochastic estimate of gradients as ∂2

i,j l, or in matrix form as
∇2l. Since it is a weighted average of bounded terms, it is also bounded.

The derivations follow that

∂

∂ θj
(G(θ)−1)ij = ∂

∂ θj
(ID − α2 ∇̃l∇̃lT

1 + α2∥∇̃l∥2 )ij

= −α2 (1 − λ)∂2
i,j l∇̃lj + (1 − λ)∇̃li∂2

j,j l

1 + α2∥∇̃l∥2 + 2α4 ∇̃li∇̃lj(1 − λ)
∑D

d=1 ∇̃ld∂2
d,j l

(1 + α2∥∇̃l∥2)2 ,

Γi(θ) =
D∑

j=1

∂

∂ θj
(G(θ)−1)ij

= −α2 (1 − λ)∇̃l⊤(∇2l)i + (1 − λ)∇̃li
∑D

j=1(∇2l)j,j

1 + α2∥∇̃l∥2 + 2α4 ∇̃li∇̃l⊤(1 − λ)
∑D

j=1 ∇̃lj(∇2l)j

(1 + α2∥∇̃l∥2)2 .

Then the Γ(θ) term in matrix form can be written as

Γ(θ) = (1 − λ)
(

−α2 ∇2l∇̃l + S1∇̃l
1 + α2∥∇̃l∥2 + 2α4 S2∇̃l

(1 + α2∥∇̃l∥2)2

)
,

where

S1 =
D∑

j=1
(∇2l)j,j ,

S2 = ∇̃l⊤
D∑

j=1
∇̃lj(∇2l)j .

That is, the Γ(θ) term for the Monge metric is tractable and can be expressed in matrix form.

Since first order gradients ∇l are bounded and ∇̃l is exponential moving average of ∇l, it follows
that ∇̃l is also bounded. Since second order gradients are also bounded, we can conclude that
(∇2l∇̃l + S1∇̃l)/(1 + α2∥∇̃l∥2) and S2∇̃l/(1 + α2∥∇̃l∥2)2 are bounded. Therefore,

Γi(θ) = O(α4(1 − λ))
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for all indexes i.

We have for the Monge metric

E
(
ϕ̂− ϕ̄

)2
≤ C

(∑
t

h2
t

S2
T

E∥∆Vt∥2 + 1
ST

+
(
∑⊤

t=1 h
2
t )2

S2
T

)
+O(α8τ2(1 − λ)2).

A.3 Derivations for Gamma term in the Shampoo metric

To simplify notation, drop dependencies on time and write

H̃i = λH̄i + (1 − λ)ĝ(i),

G(θ)−1 = diag({⊗dl
i=1[H̃i]

− 1
2dl

l }L
l=1).

Observe that every entry in every ĝ(i) is some combination of the gradients. Since the gradients are bounded
according to assumptions, every entry in every ĝ(i) is bounded. Therefore, every Hi

t−1 is also bounded, and
for any indexes x, y

∂

∂ θk
(Hi

t)x,y = O(1 − λ).

Recall the Gamma term is,

Γj(θ) =
D∑

k=1

∂

∂ θk
(G(θ)−1)jk.

We have

G(θ)−1
x,y =

k∏
i=1

(
(H̃i)− 1

2d

)
x%(
∏i

j=1
nj),y%(

∏i

j=1
nj)

,

where x% n is the modulo of x on n.

Use M(θ) to denote G(θ)2d, then we have

M(θ) = diag({⊗d
i=1[H̃i]l}L

l=1).

We can see that each M(θ)jk is the product of d individual terms. It follows that

G(θ)−1 = M(θ)− 1
2d ,

and
∂

∂ θk
M(θ)jk = O(1 − λ),

since it is the sum of product of O(1 − λ) and some bounded terms.

Then each ∂
∂ θk

(G(θ)−1)jk can equivalently be expressed as

∂

∂ θk
(M(θ)− 1

2d )jk =
∑

l,m,n,o

∂(M(θ)− 1
2d )jk

∂(M(θ) 1
2d )lm

∂(M(θ) 1
2d )lm

∂M(θ)no

∂M(θ)no

∂ θk
.

M(θ) is a positive definite matrix, therefore M(θ)− 1
2d and M(θ) 1

2d are also positive definite and unique.

Recall ∂(X−1) = −X−1(∂X)X−1 (Petersen & Pedersen, 2012), so ∂(M(θ)− 1
2d )jk

∂(M(θ))
1

2d )lm

are bounded.

It also holds that (Petersen & Pedersen, 2012)

∂(Xn)kl

∂Xij
=

n−1∑
r=0

(Xr)ki(Xn−1−r)jl,
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therefore, ∂(M(θ))
1

2d )lm

∂M(θ)no
has closed-form expression, and is bounded.

To summarize,
∂(M(θ)− 1

2d )jk

∂(M(θ) 1
2d )lm

∂(M(θ) 1
2d )lm

∂M(θ)no

∂M(θ)no

∂ θk
= O(1 − λ),

and it trivially follows that
Γj(θ) = O(1 − λ),

for all indexes j.

Thus, we have for the Shampoo metric

E
(
ϕ̂− ϕ̄

)2
≤ C

(∑
t

h2
t

S2
T

E∥∆Vt∥2 + 1
ST

+
(
∑⊤

t=1 h
2
t )2

S2
T

)
+O(τ2(1 − λ)2).

A.4 Experimental details for Sampling from Funnel

We use SGRLD with metrics given by identity, RMSprop and Monge, collecting a total of 2e6 samples.

Concerning hyperparameters, for identity we employ a constant step size of 0.001. For RMSprop metric, we
employ a constant step size of 0.0025, λ = 0.995 and ϵ = 0.0. For the Monge metric, we employ constant
step size 0.003, α2 = 0.1 and λ = 0.7.

We observe that when using Monge metric, the sampler might suffer from numerical issues when reaching
the bottom of the funnel. When using identity metric or RMSprop metric, the samplers do not seem to
reach those locations. In order to resolve the numerical issue, we resort to identity metric up to a scaling
when the norm of the preconditioned gradients is larger than 1000.0.

For the scatter plot, 1000 random samples from all the samples are chosen and plotted.

A.5 Experimental details for neural network experiments

Following the practice of Wenzel et al. (2020), we use a bijection between learning rate ℓ and timestep h as
ℓ = hn, and use h as the tuning parameter to be validated. We use a separate validation set to tune the
hyperparameters. The learning rates are tuned based on a grid in the form of [1×10x, 2.5×10x, 5.0×10x, 7.5×
10x] for different integers x. If in at least one run for a given learning rate a sampler completely breaks down
such that it cannot finish sampling, we conclude that the learning rate is not applicable. Concerning α2 for
Monge, we first try α2 = 1.0, α2 = 0.5 and α2 = 0.1. If all these choices result in worse or nearly identical
performances as identity and the performance generally becomes better as α2 decreases, we conclude that
the optimal choice is α2. Otherwise, we employ grid search in terms of potentially better α2 values.

For fully connected neural networks, following Ghosh et al. (2019), we place horseshoe prior on both the
weights and biases.

We report the best learning rates of each sampler in each experimental setup in Table 4 and Table 5.

For the Shampoo metric, we employ an update interval of 100 steps.

The running time of the algorithms are estimated by separate 3 runs of the algorithm for 20 epochs each,
using a variant of our code base that yields minimal computational workload for training. For MNIST
experiments, the code was run on a single Intel® Xeon® Gold 6230 CPU @ 2.10GHz core. For CIFAR10
experiments, the code was run on a single NVIDIA® Tesla® V100-SXM2-32GB GPU with 10 Intel® Xeon®

Gold 6230 CPU @ 2.10GHz cores. We measure the time per step, and use that to estimate time per epoch.

A.6 Experiments for equal computation time

Using non-diagonal metrics typically results in small increase in running time, as observed in Tables 2 and
3. To ensure the slower algorithms are not given an unfair advantage, we here report the results for a setup
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Gaussian prior Horseshoe prior
N Metric Step size Step size

400

Identity 0.05 0.25
Wenzel 0.075 0.75
RMSprop 0.00025 0.0005
Monge Identity (α2 = 0) is optimal 0.25
Shampoo 0.0025 0.005

800

Identity 0.05 0.5
Wenzel 0.05 0.5
RMSprop 0.0005 0.0005
Monge Identity (α2 = 0) is optimal 0.25
Shampoo 0.0075 0.005

1200

Identity 0.025 0.25
Wenzel 0.05 0.25
RMSprop 0.0005 0.0005
Monge 0.025 0.25
Shampoo 0.0075 0.005

Table 4: Learning rates of MNIST experiments

Gaussian prior Correlated normal prior
Metric Step size Step size
Identity 0.1 0.1
Wenzel 0.5 0.75
RMSprop 0.0005 0.0005
Shampoo 0.01 0.01

Table 5: Learning rates of CIFAR10 experiments

where each sampler is constrained to have equal total running time, matching the time it took to run the
faster sampler in the main experiments. We note that this may result in worse performance for the samplers
which take longer to run than they really are, since they are effectively using fewer samples to form the
ensemble, and remark additionally that the exact computation time naturally depends on implementation
details and hence not all differences in terms of efficiency are caused by the algorithm details.

In previous experiments, we recorded evaluation metrics after every epoch. Since the time points that the
samplers finish running may be different, the best learning rate may also change. We therefore further
tune the learning rates of the samplers based on performances on the validation set, assuming that the
running times of the samplers under different learning rates are always given by the times reconstructed
from the estimated times from before. In most cases the best learning rate coincide with the learning rates
as reported in Table 4. The exceptions for fully connected neural networks are: Gaussian prior, N = 400, the
best learning rate for Shampoo is 0.005; N = 800, the best learning rate for Shampoo is 0.0025; N = 1200,
the best learning rate for Shampoo is 0.0025. Horseshoe prior, N = 400, the best learning rate for RMSprop
is 0.00075. The exceptions for ResNets are: Gaussian prior, the best learning rate for RMSprop is 0.00075
and the best learning rate for Shampoo is 0.025. Correlated normal prior, the best learning rate for RMSprop
is 0.00075 and the best learning rate for Shampoo is 0.025. The final results are again reported for the test
set.

Table 6 reports the results for the MNIST data, and in general the results are in line with the main results
reported in Table 1. That is, we still have either Monge or Shampoo metric with the best log-probability
for all cases, for horseshoe prior also the best accuracy is obtained by the Monge metric in all cases, and the
Shampoo metric for the largest network with the horseshoe prior remains among the best overall result.
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Gaussian prior Horseshoe prior
N Metric log p(y|X) Acc. log p(y|X) Acc.

400

Identity [-0.1311, 0.0004] [0.9684, 0.0005] [-0.0750, 0.0004] [0.9823, 0.0003]
Wenzel [-0.1315, 0.0002] [0.9686, 0.0003] [-0.0777, 0.0009] [0.9806, 0.0003]
RMSprop [-0.1310, 0.0005] [0.9689, 0.0006] [-0.0680, 0.0013] [0.9792, 0.0007]
Monge Identity (α2 = 0) is optimal [-0.0650, 0.0006] [0.9826, 0.0006]
Shampoo [-0.1304, 0.0002] [0.9684, 0.0004] [-0.0691, 0.0009] [0.9812, 0.0008]

800

Identity [-0.1667, 0.0004] [0.9587, 0.0003] [-0.0798, 0.0003] [0.9818, 0.0004]
Wenzel [-0.1668, 0.0004] [0.9583, 0.0004] [-0.0842, 0.0008] [0.9787, 0.0002]
RMSprop [-0.1648, 0.0002] [0.9612, 0.0003] [-0.0656, 0.0013] [0.9801, 0.0007]
Monge Identity (α2 = 0) is optimal [-0.0628, 0.0010] [0.9835, 0.0007]
Shampoo [-0.1635, 0.0003] [0.9596, 0.0004] [-0.0663, 0.0009] [0.9819, 0.0006]

1200

Identity [-0.1932, 0.0004] [0.9514, 0.0004] [-0.0809, 0.0004] [0.9814, 0.0002]
Wenzel [-0.1935, 0.0004] [0.9519, 0.0003] [-0.1009, 0.0009] [0.9745, 0.0005]
RMSprop [-0.1894, 0.0006] [0.9566, 0.0003] [-0.0630, 0.0011] [0.9808, 0.0007]
Monge [-0.1785, 0.0005] [0.9560, 0.0005] [-0.0699, 0.0005] [0.9832, 0.0005]
Shampoo [-0.1878, 0.0003] [0.9541, 0.0003] [-0.0599, 0.0005] [0.9831, 0.0003]

Table 6: MNIST with fully connected networks of varying size N and prior for setup where each algorithm
is constrained to use the same total computation time, marking the best metric for each configuration.
Each entry is given as mean followed by standard deviation.

Independent Gaussian prior
Metric log p(y|X) Acc.
Identity [-0.4634, 0.0039] [0.8589, 0.0013]
Wenzel [-0.4869, 0.0047] [0.8533, 0.0023]
RMSprop [-0.4828, 0.0041] [0.8562, 0.0018]
Shampoo [-0.4858, 0.0047] [0.8595, 0.0023]

Correlated Gaussian prior
Metric log p(y|X) Acc.
Identity [-0.4437, 0.0040] [0.8641, 0.0025]
Wenzel [-0.4624, 0.0050] [0.8612, 0.0020]
RMSprop [-0.4594, 0.0030] [0.8631, 0.0026]
Shampoo [-0.4506, 0.0023] [0.8697, 0.0015]

Table 7: CIFAR10 with ResNet architecture for setup where each algorithm is constrained to use the same
total computation time. The best Monge metric always matches the identity metric and is not shown
separately. Boldface indicates the best metric. Each entry is given as mean followed by standard deviation.

Table 7 reports the results for the CIFAR10 data. The Shampoo metric that has the slowest per-iteration
computation remains as the metric with the best classification accuracy for both priors, but in terms of
log-probability the identity metric overtakes all compared methods. However, it is worth noting that it was
close to being the best already in the main experiments.
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