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Abstract

Latent representations are critical for the perfor-
mance and robustness of machine learning mod-
els, as they encode the essential features of data
in a compact and informative manner. How-
ever, these representations are often affected by
noisy or irrelevant features, which can degrade
the model’s performance and generalization ca-
pabilities. This paper presents a novel approach
for enhancing latent representations using unsu-
pervised Dynamic Feature Selection (DFS). For
each instance, the proposed method identifies and
removes misleading or redundant information, en-
suring that only the most relevant features con-
tribute to the latent space. By leveraging an un-
supervised framework, our approach avoids re-
liance on labeled data, making it broadly appli-
cable across various domains and datasets. Ex-
periments conducted on image datasets demon-
strate that models equipped with unsupervised
DFS achieve significant improvements in gener-
alization performance across various tasks, in-
cluding clustering and image generation, while
incurring a minimal increase in the computational
cost.

1. Introduction
Feature selection and feature extraction are two essential
techniques in machine learning and data analysis, both
aimed at improving the efficiency and effectiveness of pre-
dictive modeling (Zebari et al., 2020). While both ap-
proaches share the goal of reducing the dimensionality
of datasets, they diverge significantly in their fundamen-
tal strategies and objectives.

Feature selection aims to identify a subset of relevant fea-
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tures from a larger set of available features that are most in-
formative for a given task (Dhal & Azad, 2022). Traditional
feature selection methods typically rely on static criteria,
selecting a fixed set of features during model training (Balın
et al., 2019; Roffo et al., 2020; Cancela et al., 2023). How-
ever, in dynamic and evolving data environments, where
the relevance of features may change over different sam-
ples, static feature selection may not be optimal. Dynamic
Feature Selection (DFS) (also referred as Instance-based or
Instancewise Feature Selection (Yoon et al., 2018; Panda
et al., 2021; Liyanage et al., 2021)) represents a paradigm
shift in feature selection by recognizing the variability of
feature importance (Chen et al., 2018; Arik & Pfister, 2021)
between each sample. Unlike traditional static methods,
DFS algorithms adaptively adjust the feature subset during
model training or deployment, accommodating changes in
data characteristics and task requirements.

Moreover, feature extraction techniques transform the orig-
inal feature space into a new space by creating a set of
derived features that capture essential information from the
original data. These methods, such as Principal Compo-
nent Analysis (PCA), Linear Discriminant Analysis (LDA),
or any deep features derived from a deep learning model,
seek to maximize the discriminative power or variance of
the transformed features (Perera & Patel, 2019; Tang et al.,
2022; Izmailov et al., 2022). In doing so, they often create
a smaller, more compact representation of the data, po-
tentially enhancing model performance but hindering its
interpretability.

While both feature extraction and feature selection enhance
the quality of input data for machine learning models, they
differ fundamentally in their approach. Feature extraction
generates entirely new features, potentially altering the in-
terpretability of the data, while feature selection retains the
original features, preserving the original meaning and con-
text. In this context, DFS arises as a technique that tries to
merge the versatility of feature extraction techniques with
the interpretability of feature selection approaches.

This work presents a novel DFS method to provide an alter-
native to the classic data representation using deep features.
The main contributions of this paper are the following:
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Using Unsupervised Dynamic Feature Selection to Enhance Latent Representations

Figure 1. Proposed method. The DDS module is prepended to an existing architecture (an autoencoder in this case), substituting its input
with an equally shaped masked version that retains only the most relevant features. DDS is in charge of selecting, for each sample, the
most relevant features for the downstream architecture to solve the unsupervised task (in this particular example, data reconstruction).

• We present Dynamic Data Selection (DDS), a novel
unsupervised dynamic feature selection algorithm. To
our knowledge, this is the first attempt to provide a
DFS solution for unsupervised scenarios.

• Contrary to previous supervised approaches like (Chen
et al., 2018), DDS’s memory consumption is minimal,
and invariant to the maximum number of selected fea-
tures.

• DDS can be easily adapted to a variety of problems
and architectures, and it enables the architect designer
to use complex networks since it preserves the position
of the selected features. Fig. 1 shows, as an example,
how to attach the DDS architecture to solve a data
reconstruction task.

• We report extensive tests of DDS in two different un-
supervised scenarios: clustering, and representation
learning for world models. These experiments show
DDS’s adaptability to enhance the quality of latent
representations, as well as its ease of use.

2. Related Work
DFS is a recent field of study, with almost no contributions
before the rise of deep learning architectures. Three works
stand out among the rest: Learning to Explain (L2X) (Chen
et al., 2018), INVASE (Yoon et al., 2018), TabNet (Arik &
Pfister, 2021) and LSPIN (Yang et al., 2022). However, it is
worth noting that these algorithms were entirely developed
for supervised learning.

L2X (Chen et al., 2018) (and variants like Greedy (Covert
et al., 2023)) consists of an autoencoder-like architecture
that is attached before the classification model. Its output is
of the form RN×F×M , with M being the maximum number
of features to be selected. Then, each input sample is trans-
formed by performing a matrix multiplication. Although
this solution provides remarkable results in supervised sce-
narios, it suffers from two major drawbacks: first, it has

high memory requirements, as the output size of the model
is dependent on the number of maximum features to be se-
lected, forcing M to have smaller values; and second, the
matrix multiplication procedure forces the input data to be
one dimensional, preventing the use of complex layers like
2D convolutions in the classification model.

INVASE (Yoon et al., 2018) consists of 3 different networks:
a selector, a predictor, and a baseline. Inspired by the actor-
critic method (Peters & Schaal, 2008), the predictor and
the baseline output classification scores but using different
input data: the baseline receives all input features, but the
predictor only uses a small subset of the input features. The
selector algorithm determines the most suitable subset of
input features. Compared to L2X, the main advantage of this
algorithm is that it can preserve the spatial information of
the input data. A major drawback is that it cannot be adapted
to unsupervised scenarios, since it requires supervised data
to train.

Moreover, TabNet (Arik & Pfister, 2021; Shah et al., 2022)
and LSPIN (Yang et al., 2022) use sequential attention to
select the most important features per sample. They were
specially designed to be used in microarray scenarios, where
the number of features is far greater than the number of sam-
ples. The main advantage of these approaches is their inher-
ent explainability: they facilitate investigating the relevant
features for each classification. However, their computa-
tional cost is too high for big data environments, and their
accuracy is lower than L2X and INVASE.

3. Problem Formulation
Let X ∈ RN×F be our input data, where N is the number
of instances and F is the total number of different features.
We aim to select, for each instance, a maximum number of
features, denoted by M . Formally speaking, our algorithm
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aims to solve the following minimization problem:

minimize
ΘS ,ΘU

L(f(g(X;ΘS) ◦X;ΘU ))

subject to g(X;ΘS) ∈ [0, 1]N×F ,

∥g(X;ΘS)
(i)∥0 ≤ M, ∀i ∈ {1..N}.

(1)

where L is the unsupervised loss function, M is the maxi-
mum number of features to be selected, g(·;ΘS) is the DDS
network, and f(·;ΘU ) is the unsupervised task to solve. For
the sake of simplicity, initially f(·;ΘU ) will be considered
as an autoencoder that aims to reconstruct the initial fea-
tures, including those that are masked by g(·;ΘS). Section
4 shows how this approach can be adapted to solve other
unsupervised tasks. The key idea is simple: an autoencoder
architecture (f ) is trained while introducing an extra net-
work (g), tasked with selecting, at most, M relevant features
per sample and masking the rest. After that, those features
will be passed to the autoencoder model to reconstruct the
whole unmasked input data.

In this paper, a novel DDS algorithm is proposed, with a
RN×F output. The size of this output is not dependent on
the maximum number of selected features. Note that this
method is easily applicable to existing architectures solving
unsupervised problems, as long as they can be trained by
using gradient descent. DDS is defined as a module to
be inserted before the existing architecture, replacing its
input with masked input data. After training the whole
architecture, the output of the DDS layer will contain only
the most relevant features of each input.

3.1. DDS Implementation

As depicted in Eq. 1, two constraints have to be addressed
to solve the minimization problem. To get a differentiable
approach, we propose to reformulate the problem as

minimize
ΘS ,ΘU

L(f(τ(g̃(X;ΘS) + δ)⊙ ΓM ⊙X;ΘU ))

subject to τ(g̃(X;ΘS) + δ) ∈ [0, 1]N×F ,

ΓM ∈ {0, 1}N×F ,

∥ΓM∥0 ≤ M,∀i ∈ {1..N}.
(2)

where

τ(x) = min

(
1,max

(
0, σ

(
x

β

)
(ζ − γ) + γ

))
, (3)

where σ is the sigmoid function. τ(x) is the hard concrete
gate presented in (Louizos et al., 2018), and δ is a hyper-
parameter to ensure non-zero values at the beginning of the
training.

The idea is to split the DDS model g into two different terms.
In the first place, g̃(·;ΘS) is implemented in the same way

as g was previously defined, without the 0-norm constraint.
This constraint is now placed to a different matrix, called
ΓM . ΓM is a binary matrix with all zeroes but the top-M
scores of each sample of g̃(·;ΘS). During all the experi-
ments reported in Section 4, the hyper-parameters were set
to β = 2

3 , δ = 1, ζ = 1 and γ = 0.

3.2. Hacking the Training Procedure

The training procedure is similar to the one used in (Louizos
et al., 2018), with three slight variations.

First, the l0-norm regularization term is not included. As the
Γ matrix already removes F −M features, it is unnecessary
to use a regularization term to force some features to drop
their importance to 0. For the same reason, γ < 0 values
are not needed. Our ablation study (Section 4.3) shows that
using the default ζ = 1.1 and γ = −0.1 values results in a
performance drop in the performance.

Second, an additional hyperparameter is used to control the
binary concrete distribution. The hard binary concrete dis-
tribution presented in (Louizos et al., 2018) aims to increase
the probability mass near 0 and 1, to either force some fea-
tures to be discarded, or to increase the feature probability
to near 1. Using the original distribution is also counterpro-
ductive, as it could unadvisedly force the model to remove
more features than the target M , causing a degradation in
performance. A variation of this distribution is presented to
avoid this problem, and a hyperparameter is included in the
formulation. This distribution is defined as

τu(x) = min (1,max (0, σ̃u(x)(ζ − γ) + γ)) , (4)

where

σ̃u(x) = σ

(
κ(log(u)− log(1− u)) + x

β

)
, u ∈ U(0, 1),

(5)
and κ ∈ (0, 1]. By default, all experiments were performed
using κ = 0.1 during the training procedure, and κ = 0 for
testing.

Finally, early experiments suggest that the algorithm strug-
gles with initialization when using low M values (M <<
F ). To solve this problem, M is dynamically changed,
during training, by using the following variation:

M
(i)
t =

{
M p

(i)
t > ϵ, p

(i)
t ∈ U(0, 1)

F otherwise
(6)

For each training instance i, at any given epoch t, the DDS
mask ΓM selects, instead of M features, all F features, with
a probability lower than ϵ. By default, ϵ is set to 0.1.
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4. Experiments
The experimental section of this paper explores two main
tasks. First, the DDS model is attached to a state-of-the-art
clustering technique, to show how its inclusion can dramati-
cally increase its performance; Second, DDS is used to learn
a representation to be used by an agent in a World Model.
Results show that DDS increases agent performance and the
visual quality of the reconstructions. All algorithms, scripts,
and results are accessible via GitHub1

4.1. Clustering

First, we explored the use of DDS in a clustering scenario.
Our model was integrated into a state-of-the-art architecture
without any calibration or hyperparameter tuning.

Over recent years, contrastive learning has boosted the qual-
ity of unsupervised image clustering. Techniques like Con-
trastive Clustering (CC) (Li et al., 2021) or its upgrade, the
Twin Contrastive Clustering (TCL) (Li et al., 2022) achieved
remarkable results nearing those obtained by supervised
techniques. However, some of these works perform image
resizing, changing the initial CIFAR-10 image size 32×32
to a much bigger one (224 × 224 for TCL, for instance).
Therefore, it makes no sense to perform a dynamic feature
selection over an artificially enlarged image.

To make a fair experiment, DDS should be attached to a
clustering model that does not require image resizing to
achieve state-of-the-art results. Over these solutions, ProPos
(Huang et al., 2022) stands out from the rest. Therefore, the
DDS module g(·;ΘS) was attached to the ProPos model
f(·;ΘU ), without any hyperparameter tuning. The same
training procedure presented in (Huang et al., 2022) was
applied, although the number of epochs was increased to
2000 for Tiny-Imagenet and 4000 in the other datasets.
The U-Net model (with C = 16) was used as the DDS
architecture, and two values of M were tested: 10% and
25% of the total image pixels. As in (Huang et al., 2022), a
ResNet-18 architecture will be used as the backbone for the
Tiny-Imagenet dataset, whereas a ResNet-34 will be used
for the others.

As baselines, we used SCAN (Van Gansbeke et al., 2020),
NMM (Dang et al., 2021), GCC (Zhong et al., 2021),
TCC (Shen et al., 2021), SimSiam (Chen et al., 2020),
BYOL (Grill et al., 2020), IDFD (Tao et al., 2020) and
PCL (Li et al., 2020) in addition to the aforementioned
CC, TCL, and ProPos. Table 1 shows the clustering re-
sults obtained over four different datasets: CIFAR-10,
CIFAR-20 (Krizhevsky et al., 2009), ImageNet-10
(Russakovsky et al., 2015) and ImageNet-Dogs (Khosla
et al., 2011). The results show that DDS significantly re-

1URL will be included upon acceptance.

duced the number of input features without hindering the
performance on small images. Furthermore, for larger im-
ages(ImageNet-10 and ImageNet-Dogs models use
224 × 224 images), DDS achieved state-of-the-art results
when selecting, per sample, only one-quarter of their fea-
tures.

Table 2 presents the results obtained on the
Tiny-ImageNet dataset. In this case, 64 × 64
images served as input for the model, reaching new
state-of-the-art results and surpassing ProPos in the three
metrics by a margin greater than 15%. We also show the
result obtained when doubling the number of epochs, which
increases this improvement up to an impressive 80% in the
ARI score. These results suggest that removing unnecessary
information, such as background details, can enormously
help the clustering algorithm.

4.2. World models

The reinforcement learning problem of constructing agents
that learn to interact with a dynamic environment has re-
cently been tackled using world models. These models serve
as generative frameworks for simulating environments inter-
nally and enable agents to predict and act based on imagined
scenarios rather than relying on direct interactions with their
surroundings. The usual architecture of these agents (Ha
& Schmidhuber, 2018) relies on a separately trained vision
model to construct a compact and structured latent repre-
sentation of the environment which the agent then uses to
determine the actions to be taken. A complete description is
provided in Appendix A.

The vision model was originally solved by using a Varia-
tional Autoencoder (VAE) (Kingma, 2013), which is known
to produce reconstructions that are blurry (Tomczak &
Welling, 2018). We propose to maintain the architecture
in (Ha & Schmidhuber, 2018) but enhance the Vision model
(V), which obtains the latent representations of the envi-
ronment, with our DDS model. The goal is to improve
the efficacy of the obtained representations both in terms
of agent performance and the visual quality of the gener-
ated images. The DDS architecture introduced in Fig. 1 is
adapted by introducing a VAE to learn latent interpretations
for the agent to use in the process of learning to reconstruct
the mask selected by DDS. Changing the goal of the VAE
to reconstructing the masked input (mask = g(X) ◦ X))
instead of the original input (X) simplifies the task of the
VAE by removing noise, which allows it to obtain better
representations. Fig. 2 describes the new architecture.

The training procedure has two steps: First, everything but
the VAE is trained. To train as much of the network as pos-
sible in this first stage, the VAE is split into three functions
mask’ = fup(fV AE(fdown(mask))) and fV AE is removed
in this training step. The function to be learned is, therefore,
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Table 1. Clustering results on four different datasets. The best and second-best results are shown in bold and underlined, respectively. The
DDS+ProPos model maintains similar results to those obtained by the original ProPos, even when using much fewer selected features.

Method CIFAR-10 CIFAR-20 ImageNet-10 ImageNet-Dogs
NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

SCAN (Van Gansbeke et al., 2020) 79.7 88.3 77.2 48.6 50.7 33.3 - - - - - -
NMM (Dang et al., 2021) 74.8 84.3 70.9 48.4 47.7 31.6 - - - - - -
CC (Li et al., 2021) 70.5 79.0 63.7 43.1 42.9 26.6 85.9 89.3 82.2 44.5 42.9 27.4
GCC (Zhong et al., 2021) 76.4 85.6 72.8 47.2 47.2 30.5 84.2 90.1 82.2 49.0 52.6 36.2
TCL (Li et al., 2022) 81.9 88.7 78.0 57.9 53.1 35.7 87.5 89.5 83.7 62.3 64.4 51.6
TCC (Shen et al., 2021) 79.0 90.6 73.3 47.9 49.1 31.2 84.8 89.7 82.5 55.4 59.5 41.7
SimSiam (Chen et al., 2020) 78.6 85.6 73.6 52.2 48.5 32.7 83.1 92.1 83.3 58.3 67.4 50.1
BYOL (Grill et al., 2020) 81.7 89.4 79.0 55.9 56.9 39.3 86.6 93.9 87.2 63.5 69.4 54.8
IDFD (Tao et al., 2020) 71.1 81.5 66.3 42.6 42.5 26.4 89.8 95.4 90.1 54.6 59.1 41.3
PCL (Li et al., 2020) 80.2 87.4 76.6 52.8 52.6 36.3 84.1 90.7 82.2 44.0 41.2 29.9
ProPos (Huang et al., 2022) 88.6 94.3 88.4 60.6 61.4 45.1 89.6 95.6 90.6 69.2 74.5 62.7
DDS(10%)+ProPos 80.2 86.3 75.7 54.4 50.5 37.2 91.8 96.7 92.8 74.4 76.0 66.5
DDS(25%)+ProPos 87.6 93.9 87.2 62.2 58.4 46.6 90.8 96.2 91.7 75.9 78.6 69.5

Table 2. Clustering Results (%) on Tiny-ImageNet. The best
and second-best results are shown in bold and underlined, respec-
tively. The Long version was trained by doubling the number of
epochs.

Method NMI ACC ARI
CC (Li et al., 2021) 34.0 14.0 7.1
GCC (Zhong et al., 2021) 34.7 13.8 7.5
PCL (Li et al., 2020) 35.0 15.9 8.7
SimSiam (Chen et al., 2020) 35.1 20.3 9.4
BYOL (Grill et al., 2020) 36.5 19.9 10.0
ProPos (Huang et al., 2022) 40.5 25.6 14.3
DDS(10%) + ProPos 43.8 27.1 16.0
DDS(25%) + ProPos 47.0 30.5 18.9
DDS(25%) + ProPos (Long) 54.6 40.3 26.3

funet(fup(fdown(g(X) ◦X))). The main idea is to learn to
select the relevant features, as well as a lower resolution rep-
resentation h = fdown(g(X) ◦X) representing key points
of the image structure and texture. The primary optimization
objective is to minimize a pixel-level reconstruction loss,
typically implemented as the mean squared error (MSE)
between the input image x and its reconstruction x̂. The
second step begins once both U-Nets (g and funet) and the
downscaling/upscaling modules (fdown and fup) have been
fully trained and frozen. We train the VAE to reconstruct
mask = (g(X) ◦X). In this process, it learns a more com-
pact latent vector z ∈ Rd. Unlike standard VAEs (Kingma &
Welling, 2022) that directly compress high-resolution inputs
(often requiring large, deep networks), our VAE leverages
the frozen fdown and fup, and trains only fV AE . With this
approach, the reconstruction loss approaches a perceptual
loss (Hou et al., 2017) without requiring supervised pre-
trained models: it computes the MSE between the output of
each layer of fup when applied to either the latent represen-

tation h and its reconstruction ĥ.

Finally, a known drawback of VAEs is that strict adherence
to the N (0, 1) prior can lead to dimensional collapse: a few
latent dimensions carry most of the information, while oth-
ers remain dormant. To address this, we adopt the free bits
method (Kingma et al., 2016), which modifies the VAE loss
to allow each dimension a small “budget” of KL divergence.

Formally speaking, the VAE loss function is defined as:

LVAE = Lperceptual + αmax
(
λ,DKL

(
q(z|h) ∥ p(z)

))
,
(7)

where

Lperceptual =
1

|fup|

|fup|∑
k=1

∥fup(ĥ)k − fup(h)k∥2, (8)

fup(X)k is the output of the k-th layer of the upscaling
module, and α = 1 and λ = 0.02 are some regularization
terms for the free bits penalization.

In our study, we followed the same procedure for dataset
collection, model training, and evaluation, ensuring that our
experiments remained consistent with the original (Ha &
Schmidhuber, 2018) methodology, ensuring that any ob-
served differences in performance and image fidelity could
be attributed solely to the changes in the latent space con-
struction method. We use the same latent dimension size
(z ∈ R32) for both the original VAE in (Ha & Schmidhuber,
2018) and for our method. We tune hyperparameters so
that our approach does not exceed the baseline’s parameter
budget. While the Controller and Memory models are un-
changed, the number of parameters for the Vision Model is
reduced from 4,348,547 in (Ha & Schmidhuber, 2018) to
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Figure 2. Adaptation of the DDS architecture to the World Model problem. The previously presented DDS architecture (green and blue) is
augmented to yield a structured latent space with the addition of a Variational Autoencoder (red) that aims to reconstruct the masked
inputs (i.e. the relevant features of the input image). The training procedure is divided in two steps: (1) the DDS is trained to learn
to select the relevant features of each image without the VAE section (i.e. h = ĥ), and then (2) the VAE is trained to compute the ĥ
reconstruction of h.

4,039,089 in our approach. This shows that substantial gains
in reconstruction fidelity and downstream RL performance
can be achieved with a smaller model.

Image quality experiment: To assess the quality of the
reconstructed images, we measured the reconstruction er-
ror of the different models. The results shown in Table
3 highlight that our DDS+VAE approach yields a notice-
ably lower reconstruction error than the baseline VAE, even
when DDS selects as few as 4–8% of the input pixels. This
indicates that DDS successfully pinpoints crucial image re-
gions—capturing objects, textures, and boundaries—thus
enabling the model to more accurately reconstruct the en-
vironment. For a qualitative illustration of the intermediate
representations of our model, refer to Appendix B.

After training the Memory model using our new latent repre-
sentation z, we can generate dream sequences that simulate
future states of the environment without direct interaction.
Figure 3 shows the contrast between the baseline’s results
and our method’s. The images dreamed by the baseline
model are often blurry and show artifacts that make them
visually dissimilar from the real environment. Furthermore,
although the predicted dynamics remain loosely consis-
tent with real motions, these generated states sometimes
diverge significantly from the appearance and dynamics of
the actual environment (particularly when the agent exe-
cutes sharp turns or accelerates rapidly). In contrast, our
approach yields dream sequences that retain more detail
and exhibit smoother transitions between frames. This en-
hanced internal simulation capability can facilitate more
effective training of downstream policies as shown in the

next experiment.

We evaluate the proposed DDS+VAE model’s ability to gen-
erate dream sequences compared to the baseline architecture
proposed by Ha et al. (Ha & Schmidhuber, 2018). We gen-
erate and analyze three sets of sequences, each containing
100 sequences with 1,000 frames. The first set consists
of real environment sequences. The second set comprises
dream sequences generated using the baseline. The third
set includes dream sequences produced with the proposed
DDS+VAE model.

To assess the quality of the generated sequences, we use two
standard metrics: Fréchet Inception Distance (FID)(Heusel
et al., 2017), which measures image distribution similarity
using features from a pre-trained Inception V3 model, and
Fréchet Video Distance (FVD)(Unterthiner et al., 2018),
which extends FID to evaluate temporal coherence using a
pre-trained I3D model. Lower FID and FVD scores indi-
cate higher visual fidelity and better sequence consistency,
respectively. As shown in Table 4, the DDS+VAE model
achieves significantly lower FID and FVD scores compared
to the baseline world model, demonstrating improved image
reconstruction quality and enhanced temporal coherence in
the generated sequences.

Agent performance: Finally, we examine the agent’s
performance when deciding its policy using the latent rep-
resentations obtained by the original and proposed Vision
models. Figure 4 shows that the latent representations lead
to superior performance, although the agent learns slightly
slower. The evaluation, conducted over 100 episodes for
each controller, highlights the advancements of the new
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Table 3. Reconstruction MSE over 10.000 random rollouts (10 million images) from the CarRacing-v3 environment using different
M values. DDS configuration is the same as provided for Fig. 2, except for the values included in each row.

Vision model architecture 2% 4% 8% 16% 32% 100%
Baseline (VAE) - - - - - 0.00165
Proposed (DDS + VAE) 0.00134 0.00039 0.00042 0.00047 0.00051 -

Figure 3. Comparison of dream sequence generation by the World Model. a) Original Vision model with a VAE architecture. b) Proposed
(VAE+DDS) as Vision model.

Table 4. Comparison of FID and FVD between baseline Vision
model (VAE) and the proposed DDS+VAE over 100 sequences.
Lower is better.

Metric Baseline (VAE) DDS+VAE

FID 59.46 25.35
FVD 239 176

model. The original 2018 architecture achieved an average
reward of 734.96 ± 162.75, whereas the new model reached
818.58 ± 147.05, confirming its enhanced performance.

4.3. Ablation Study

Multiple configurations were tested to determine both the
correct model hyperparameters and the limitations of the
architecture. We measured changes in performance for dif-
ferent configurations using the CIFAR-10 dataset.

Table 5 shows the results of different MSE reconstruction
configurations when using an autoencoder-like configura-
tion (see Fig 1). The first and most important insight from
this experiment is that the most advanced architecture of the
model plays a pivotal role in the accuracy of the solution.
DFS outperforms the naive AutoEncoder by preserving spa-
tial information while maintaining a compact representation
with fewer variables. This enables the use of advanced
networks with residual links, whereas traditional feature se-
lection methods require a latent representation comparable
in size to the original input to leverage such architectures.
Another insight is that using the hard sigmoid configuration
provided in (Balın et al., 2019) drops the performance by a
slight margin, specially when selecting low M values. This

Figure 4. Average reward of the best-performing individual in the
population. Two curves are shown: one representing the evolution
of the original 2018 world model architecture and the other show-
ing the improvement brought by the new vision.

phenomenon is caused by the zero gradient obtained when
the feature importance is cropped (values higher than 1 or
lower than 0) in early training stages, causing a limitation in
the ability of the model to adapt. This validates the change
proposed in Section 3.1.

Lastly, the use of the Binary Concrete distribution was tested.
Using the classic configuration (κ = 1) resulted in a drop in
performance. Since the reconstruction task is a regression
problem, it was found that high variations in the output of
the DDS model result in the inability of the reconstruction
model (ΘU ) to achieve good generalization. However, when
setting κ = 0 the results are comparable with the ones
obtained by our default configuration, suggesting that, for
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Table 5. Reconstruction MSE over CIFAR-10 retaining different M features.
M 64 128 256 512 1024
Naive AE 0.01820 0.01264 0.00806 0.00526 0.00449
DDS w/o Residual Links 0.03129 0.01804 0.01302 0.00844 0.00817
DDS Hard Sigmoid (ζ = 1.1, γ = −0.1) 0.01838 0.00861 0.00397 0.00126 0.00030
DDS classic Binary Concrete (κ = 1.) 0.03759 0.01771 0.01415 0.00320 0.00064
DDS w/o Binary Concrete (κ = 0.) 0.01641 0.01145 0.00484 0.00148 0.00024
DDS w/o Dynamic M (ϵ = 0) 0.01609 0.00778 0.00385 0.00088 0.00017
DDS 0.01636 0.00945 0.00469 0.00119 0.00025

Figure 5. DDS(10%) + ProPos clustering NMI over CIFAR-10,
using a ResNet-18 as backbone.

this reconstruction task, the Binary Concrete distribution is
useless. A similar effect occurs when removing the dynamic
M variation provided in Eq. 6 (ϵ = 0). In this case, the
results suggest that using it may be counterproductive.

In contrast, Fig. 5 shows the NMI clustering results when
training DDS(10%) + ProPos over 1000 epochs, using a
ResNet-18 as the backbone. In this case, the default config-
uration achieves the best results. The result when removing
the dynamic M variation is of special interest, since not only
obtain the worst results, but also provide a more unstable
output. The same problem arises when no Binary Concrete
distribution is included in the training procedure (κ = 0).

Since the aim of this work to provide a single set of useful
hyperparameters, no matter which type of problem needs
to be solved, the default configuration κ = 0.1, ϵ = 0.1,
ζ = 1, γ = 0 obtains good solutions in both experiments.
However, the results can be improved if it is carefully tuned
for a specific task.

5. Discussion
This paper presents a general recipe for Dynamic Feature
Selection in unsupervised scenarios. The presented DDS
module can be attached to the input of any architecture
tackling an unsupervised task. The module consists of an
autoencoder-like architecture that outputs the selection of, at

most, M relevant features with their respective score, with
M being a fixed parameter tuned by the operator. Our exper-
iments show that DDS can perform data compression with
better results than the alternatives, even when accounting
that extra memory is needed for saving the feature selec-
tion indexes. This improvement is caused by two factors:
first, the information provided by the selected features is
extremely discriminative; and second, DDS allows the use
of more complex downstream architectures since the input
data structure is always preserved. Finally, we show that
the DDS architecture can be attached to two different ar-
chitectures tackling very different problems improving the
performance in both cases.

5.1. Limitations.

When using the DDS module on an existing architecture, the
training procedure must be adapted. The number of epochs
often needs to be doubled (compared to training the same
architecture without the DDS module).

It is worth noting that the output of the DDS architecture is
not forced to be binary. In fact, preliminary studies show
that the feature importance score rarely reaches the perfect
score of 1. This reduces explainability, as the stored com-
pressed data is modified from the original. However, this
can be solved by storing the input data and their importance
scores separately, although this almost doubles the memory
requirements. If a small memory footprint is a requirement,
the DDS output can be forced to be binary by introducing
more restrictions into the model, although initial tests show
significant degradation in performance.

5.2. Future Work.

As feature work we plan to take advantage of the ability of
the DDS architecture to preserve the input data structure.
Novel contrastive learning loss functions can be derived
from this idea, as the selected pixels of an image should
be similar no matter how many geometrical operations are
applied to perform data augmentation over them. Finally, it
would also be interesting to extend this architecture to the
supervised scenario, as in previous DFS algorithms.
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Impact Statement
Our Dynamic Feature Selection framework enhances the in-
terpretability of machine learning models by identifying the
most relevant components of each input sample. This capa-
bility can deepen trust in data-driven solutions, as decision
pathways become more transparent and directly traceable
to their most essential inputs. In addition, the method’s flex-
ible design facilitates integration with diverse unsupervised
tasks, from clustering to generative modeling, broadening its
potential impact in both academic research and real-world
deployments.
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A. World Models: A Detailed Overview
In model-based reinforcement learning (RL), the term world
model typically refers to the combination of two main com-
ponents that together learn a generative representation of
the environment:

• Vision Model (V): Compresses each high-dimensional
observation (e.g., an image) into a lower-dimensional
latent vector zt. A common choice for this part is
a Variational Autoencoder (VAE), which learns both
an encoder and a decoder. The encoder maps images
to latent representations, and the decoder is capable
of reconstructing or “imagining” frames purely from
latent codes.

• Memory Model (M): Captures the temporal dynam-
ics of the environment in latent space. Typically, this
involves training a recurrent model (e.g., an RNN) that
outputs a Mixture Density Network (MDN) predicting
the next latent vector zt+1 given the current latent zt,
the agent’s action at, and the hidden state ht. For-
mally:

zt+1 ∼ P(zt+1 | zt,at,ht),

where P is modeled by the parameters of the mixture
components output by the MDN-RNN.

Once trained, these two modules—the Vision Model and the
Memory Model—constitute the world model. They allow an
agent to generate sequences of predicted future latent states,
which can be decoded back into image space if desired. In
essence, the Vision Model provides spatial compression and
reconstruction, while the Memory Model predicts how these
compressed representations evolve over time, effectively
simulating environment dynamics in a more manageable
latent space.

A.1. Controller

Although crucial for decision-making, the Controller (or
policy) lies outside the world model itself. The Controller
uses information from the latent state zt and the RNN hid-
den state ht to decide which action at to take. In the specific
setting we consider here, the Controller is a simple neural
network (without a hidden layer) of the form:

at = Wc

[
zt
ht

]
+ bc,

where zt ∈ Rd is the current latent state, ht is the hidden
state of the RNN, and Wc, bc are learnable parameters.
In practice, the Controller can be optimized to maximize
returns using a variety of standard algorithms (e.g., evolu-
tionary strategies, policy gradients). In our experiments, it is
trained on real environment rollouts (i.e., no synthetic data
is used to train the Controller).

A.2. Why World Models?

Sample Efficiency A key motivation behind world mod-
els is sample efficiency. By learning a generative model of
the environment, the goal is to create an internal simulation
that is so realistic that the controller can be trained solely
within these internal ”dreams.” This approach would be
highly efficient because it eliminates the need to process real
images, relying instead on compact latent representations.
Developing robust internal models can still yield significant
benefits. These include enhanced representations for down-
stream decision-making and potential improvements in how
quickly the agent can learn from real-world samples.

Partial Observability and Model Imperfection Because
the world model only “sees” what is encoded in the Vision
Model’s latent vectors, it may miss unobserved or unmod-
eled factors that influence the true state. If the Memory
Model or the Vision Model are poorly learned (e.g., due
to insufficient data or training instability), the latent transi-
tions and reconstructions will deviate from reality. Despite
these challenges, well-trained world models often provide a
powerful abstraction that can simplify policy learning.

A.3. Training Procedure

A conventional workflow for building and using a world
model can be summarized as follows:

1. Data Collection: Gather trajectories of observations
and actions using a random or exploratory policy in
the real environment.

2. Train the Vision Model: Fit an autoencoder (e.g., a
VAE) on the collected frames so that each image xt

is mapped into a latent vector zt, and the model can
reconstruct xt from zt.

3. Train the Memory Model: Use latent sequences
{(zt,at)} to train a recurrent network that outputs mix-
ture density parameters. At each time step t, it predicts
a distribution over possible next latents zt+1.

4. Train the Controller: Employ the (fixed) Vision and
Memory Models to encode real environment observa-
tions into latents, and update the Controller’s parame-
ters to maximize an RL objective (e.g., via CMA-ES
(Hansen, 2016)).

Because the environment dynamics are approximated by
the Memory Model directly in latent space, the agent can
generate short- or medium-horizon predictions. In some
setups, these predictions can be used for planning or to
reduce real-environment interactions. In our setting, the
Controller is trained solely with real-environment rollouts,
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Figure 6. comparison of images reconstructed through a VAE such as (Ha & Schmidhuber, 2018) and our model with the same number of
trainable params and latent space size z ∈ R32.

even though in principle the world model could be used for
additional hypothetical scenarios.

A.4. Beyond Reinforcement Learning: Real-Time Game
Generation

While originally introduced as a model-based RL strategy,
world models have recently gained traction in domains
beyond direct policy learning—particularly in the game-
generation community. Here, the world model’s generative
capacity is harnessed as a form of real-time game engine,
where game levels or scenarios can be dynamically cre-
ated through latent-space rollouts. By sampling how states
evolve over time using the Memory Model and then de-
coding them back to an observable format (e.g., 2D or 3D
graphics), developers and researchers can produce proce-
durally generated worlds that respond to player actions in
a highly adaptive manner. This “world model as a game
engine” paradigm enables unique forms of content creation
and interactive storytelling, blending the boundaries be-
tween model-based RL and creative generative applications.

B. Visualization
In this section, we present a series of image reconstruction
results generated by our proposed DDS+VAE model and
compare them to those produced by the original VAE ar-
chitecture (see Figure 6). The comparison highlights the
enhanced reconstruction quality, including sharper image
details over the standard VAE.

Furthermore, Figure 7 showcases some of the internal repre-
sentations learned by the DDS+VAE model. These shows
how DDS+VAE captures more nuanced features and struc-
tures within the data.

Figure 7. Visualization of intermediate image of our DDS+VAE
model trained with M = 3%
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