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ABSTRACT

In this work, we present OmniContrast, a unified contrastive learning model tai-
lored for vision, language, and vision-language-interleaved understanding within
multi-modal web documents. Unlike traditional image-caption data with clear
vision-language correspondence, we explore a new contrastive fashion on maxi-
mizing the similarity between consecutive snippets sampled from image-text in-
terleaved web documents. Moreover, to enable CLIP to handle long-form text
and image-text interleaved content from web documents, OmniContrast unifies
all modalities into pixel space, where text is rendered visually. This unifica-
tion simplifies the processing and representation of diverse multi-modal inputs,
enabling a single vision model to process any modality. To evaluate the omni-
modality understanding of OmniContrast, we design three consecutive informa-
tion retrieval benchmarks AnyCIR, SeqCIR, and CSR. Extensive experimental
results demonstrate that OmniContrast achieves superior or competitive omni-
modality understanding performance to existing standard CLIP models trained on
image-text pairs. This highlights the potential of multi-modal web documents as
a rich and valuable resource for advancing vision-language learning.

1 INTRODUCTION

To make Fonio Sweet Potato 
and Okra Sushi, you are going 
to need:1 cup cooked fonio
1 cooked and mashed sweet 
potato ...

This is how to make Pierre Thiam’s fonio sushi

Press the moistened edge 
against the roll to seal, and 
place the roll seam side down. 
Run your knife under warm 
water...

CLIP

Human
Web Document

Related?

Figure 1: Modeling implicit vision-language corre-
spondence within the same multi-modal document
is challenging for existing CLIP models as they are
solely trained on image and directly aligned captions.

Learning vision-language correspondence from
image-caption pairs, particularly with the advent
of contrastive learning methods like CLIP (Rad-
ford et al., 2021), has made significant strides
in multi-modal research. These models exhibit
strong zero-shot cross-modal ability across vari-
ous downstream tasks (Gu et al., 2021; Ramesh
et al., 2021; Wortsman et al., 2022) due to their
vision-language aligned representation space.

However, most CLIP-style models face chal-
lenges in understanding complex multi-modal in-
formation correspondence under web document
retrieval scenarios. As shown in Fig. 1, web doc-
uments often consist of loosely related image-text interleaved content and long-form text, while
CLIP models are primarily trained on images and directly aligned short captions. Although efforts
have been made to develop universal multi-modal embedding with various text (Wei et al., 2023;
Jang et al., 2024) or to handle long-form caption input (Zhang et al., 2024; Zheng et al., 2024) for
CLIP models, direct training of CLIP on multi-modal interleaved documents for omni-modality
representation remains uncharted. To design such a new contrastive learning paradigm, it is es-
sential to first define what constitutes contrast within image-text interleaved documents and how to
effectively represent the omni-modal input, especially for long text and being interleaved.

To address these challenges, we present OmniContrast, which unifies the image, text, and image-text
interleaved modalities from multi-modal web documents in contrastive learning by representing all
inputs in pixel space, as shown in Fig. 2. For contrast target, OmniContrast aligns two consecu-
tive multi-modal snippets from the same document by maximizing their embedding similarity. Each
snippet can consist of image-only, text-only, or image-text interleaved content. The consecutive doc-
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Figure 2: OmniContrast explore an alternative vision-centric paradigm for unifying vision-language modeling
from image-text interleaved web data. It uses a single vision transformer to process any modality presented in
pixels and thereby natively learn a unified representation for omni-modalities.

ument snippets exhibit a loose yet reasonable vision-language correspondence. Generally, images
often convey critical information that enhances the readability and understanding of coherent text
paragraphs in multi-modal web documents. Moreover, we design the modality masking and text
masking data augmentation strategy to improve the diversity of training data.

To seek a unification of omni-modality representation, OmniContrast unify all input into pixel space
by rendering text into images. Specifically, we represent all modality data as a 2×2 grid image,
where each grid can be visual text or image content. Since image-text interleaved content is primarily
presented in visual form on the web, pixel space provides a natural fit for representing image-text
interleaved data. Additionally, as shown by CLIPPO (Tschannen et al., 2023), the visual text can
convey longer context while keeping linguistic semantics in contrastive learning. Consequently,
unifying all data in pixel space simplifies pre-processing and reduces the need for specialized model
designs to handle omni-modal data. We provide a more detailed discussion in Sec. 6.

Moreover, we design AnyCIR benchmark to evaluate the cross-modality information retrieval under
the omni-modalities context and SeqCIR benchmark to assess the fine-grained consecutive rela-
tionship modeling within documents by retrieving consecutive snippets sequentially. To evaluate
the transferability of OmniContrast in real-world scenarios, we further design a zero-shot consec-
utive slide retrieval (CSR) benchmark, where slides are more complex image-text interleaved data.
Our extensive experiments also show that OmniContrast can achieve superior zero-shot multi-modal
information retrieval on M-BEIR (Wei et al., 2023) and text embedding learning on MTEB (Muen-
nighoff et al., 2023). Additionally, we also investigate the impact of various contrast targets (image-
caption, consecutive and non-consecutive snippets) and observe that joint image-text interleaved
training can further improve language understanding in pixel space.

Contributions. our contributions are three-folds: 1). To the best of our knowledge, OmniContrast is
the first to explore vision-language correspondence on image-text interleaved web documents in
CLIP-style. 2). OmniContrast is a single unified vision model with advanced vision, language, and
vision-language interleaved modality understanding capacity from pixel space for multi-modal web
document retrieval scenarios. 3). To facilitate the evaluation of omni-modality understanding, we
propose three consecutive information retrieval benchmarks, including AnyCIR, SeqCIR, and CSR.
Moreover, our extensive experimental results show that OmniContrast achieve superior performance
in our proposed consecutive information retrieval benchmarks, zero-shot multi-modal information
retrieval benchmark M-BEIR, and text embedding learning benchmark MTEB.

2 RELATED WORK

2.1 VISION-LANGUAGE LEARNING FROM WEB DATA

The pioneer work CLIP (Radford et al., 2021) establishes a breakthrough learning paradigm by ap-
plying contrastive learning on large-scale noisy image/alt-text paired data from the internet. Follow-
up studies scale the image-text pairs data (Schuhmann et al., 2022; Gadre et al., 2024) and the model
design (Li et al., 2022; Yu et al., 2022; Zhai et al., 2023) to further improve the performance. More
recently, with the rapid development of Multi-modal Large Language Models (MLLMs) (Li et al.,
2023; Liu et al., 2024; Lin et al., 2024), multi-modal web documents data, such as MMC4 (Zhu et al.,
2024) and OBELICS (Laurençon et al., 2024), have emerged as new sources of training data. These
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multi-modal documents typically consist of sequences of coherent text paragraphs interleaved with
images. Several research (Lin et al., 2024; McKinzie et al., 2024) demonstrate that joint training
with image-text data and multi-modal web documents outperforms solely image-text pairs, which
indicates the multi-modal documents contain useful vision-language correspondence from image-
text pairs. Moreover, (Ma et al., 2024; Lu et al., 2024; Jang et al., 2024) leverage MLLMs to encode
multi-modal document information for question answering or document retrieval. In contrast to
prior research focusing on MLLMs, we serve as the first step in studying the potential of contrastive
learning on image-text interleaved web document data.

2.2 VISUAL REPRESENTATION FOR LANGUAGE MODELING

Despite the impressive results achieved by text tokenization (Devlin, 2018; Sennrich, 2015) in
language modeling (Devlin, 2018; Brown, 2020), text tokenization is vulnerable to text permuta-
tions (Salesky et al., 2021), such as misspellings and has limited scalability to other languages (Rust
et al., 2022). To address these challenges, a line of works explores the tokenizer-free solution based
on the visual representation of text. (Meng et al., 2019) use glyph-vectors from Chinese characters
images to enhance the text representation. (Salesky et al., 2021) proposed visual text representation
as open-vocabularies to improve the robustness of machine translation. Recently, to close the gaps
between the visual text representation and text tokenization, (Rust et al., 2022; Xiao et al., 2024;
Gao et al., 2024; Chai et al., 2024) further explore different pre-training strategies, such as next
patch prediction, next token prediction, and contrastive learning.

In the vision-language domain, the most closely related work is CLIPPO (Tschannen et al., 2023).
CLIPPO utilizes rendered alt-text and image pairs to train the vision encoder using contrastive learn-
ing the same as CLIP. In contrast, OmniContrast marks the first attempt at exploration in image-text
interleaved documents contrastive learning and omni-modality learning. Additionally, screenshot
understanding (Gao et al., 2024) is also closely related to visual text representation learning, which
involves language modeling from documents (Kim et al., 2022), web pages (Lee et al., 2023) or UI
images (Li & Li, 2022). Despite these screenshot language models directly learning text information
from the input image, they still can not handle omni-modality input.

3 OMNICONTRAST

As shown in Fig. 2, OmniContrast uses rendered consecutive snippets sampled from multi-modal
web documents as training data. After data pre-processing and augmentation, each snippet in pos-
itive pairs can be either image-only, text-only or an interleaved image-text rendered image. During
training, the single vision model is optimized by contrastive loss on these consecutive data pairs.

3.1 INTERLEAVED WEB DATA PROCESSING

Document Pre-processing. Given a web document, our goal is to sample a pair of semantically
relevant image-text snippets for training. Firstly, we split a document text into multiple text segments
with a maximum of 1,100 characters in each segment. Then, we use the CLIP similarity annotation
provided in MMC4 dataset (Zhu et al., 2024) to assign the image to the corresponding segments.
Each interleaved snippet at least contains text while can be without images or assigned multiple
images. For the multiple image cases, we only randomly sample one image for training.

Data Augmentation. Next, we apply two types of augmentations to obtain augmented snippets, i.e.,
modality masking and text masking. In modality masking, we only mask snippets with both text and
image contents. During training, we apply modality masking with a masking rate of 40% on snippets
to randomly drop one modality content. With modality masking, we are able to sample diverse
training matching targets. For text masking, we randomly remove sentences from the beginning or
end of the text content in 40% of the snippets. This augmentation enhances the model’s language
understanding by preventing the model from overfitting on recurring words.

Multi-modal Snippet Rendering. Given a multimodal snippet containing both image and text, we
render its content into a 2×2 grid. Each grid has a resolution of 224×224 pixels. If the snippet
includes an image, we resize it to fit the grid and place it in a randomly selected grid cell. For
visual text rendering, we follow the approach in (Tschannen et al., 2023) using the GNU Unifont
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(a). AnyCIR Benchmark
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(b). SeqCIR Benchmark

Pass@1 = Succ(R1)
Pass@2 = Succ(R1)*Succ(R2)
Pass@3 = Succ(R1)*Succ(R2)*Succ(R3)
Pass@4 = Succ(R1)*Succ(R2)*Succ(R3)*Succ(R4) 

Consecutive Snippet Sequence1 2 3 4 5

Round1to1 2

Round2to2 3

Round3to3 4

Round4to4 5

Text (Tx) Image (Im)Interleaved (IN)

Figure 3: (a): In AnyCIR, we first sample consecutive snippet pairs from distinct documents and use the
former snippet to retrieve the latter one. For each query, we use all the later snippets as candidates. The com-
bination of different modalities results in 9 retrieval tasks in total. (b): In SeqCIR, we sequentially retrieve the
consecutive snippets in multiple rounds. For each query, we use all the snippets segmented from 5k documents
as candidates. For each query, we ignore the preceding snippets in the previous round.

bitmap font. The long-form text can be rendered across multiple grids, starting from the top-left
and proceeding left-to-right and top-to-bottom. Once one grid is fulfilled with either image or text
content, the rendering process continues in the next available grid.

3.2 TRAINING OBJECTIVES

Positive Pairs Sampling. After data pre-processing, a document di is segmented as a serials of
snippets, i.e., {sni }Nn=0 ∈ di. During training, we sample snippet pairs (sqi , s

k
i ) from the same

documents di as positive pairs, while the snippets from other documents are negative terms. We use
consecutive snippets, i.e., k = q + 1, to construct positive pairs as our default setting. To ablate the
optimal training targets, we also investigate the sampling strategy of pairs with one-hop distance,
i.e., k = q + 2. To differentiate, we use Omni to denote consecutive pairs only, and Omni+/++ to
denote 20%/40% of pairs are sampled from one-hop distance pairs.

Contrastive Learning. Our training objective is contrastive loss (Oord et al., 2018) formulated as,

Lc = − 1

N

N∑
i=1

log
exp(fq

i · fk
i )/τ)∑N

j=1 exp(f
q
i · fk

j )/τ)
, (1)

where (fq
i , f

k
i ) is the visual features extracted from sampled snippets (sqi , s

k
i ) from the same docu-

ment di and τ is the temperature to control the sharpness of the logit distribution.

4 CONSECUTIVE INFORMATION RETRIEVAL

To evaluate the consecutive information retrieval capabilities, we design two multi-modal snippet
retrieval benchmarks based on OBELICS (Laurençon et al., 2024) and zero-shot slide retrieval based
on Slideshare-1M (Araujo et al., 2016). Compared to the training dataset MMC4, the OBELICS
preserves the original image text interleaved order, which is closer to real-world scenes. The slides
in Slidershare-1M are naively interleaved multi-modal data with more complex interleaved forms.

Any-to-Any Consecutive Information Retrieval (AnyCIR). In this task, we aim to retrieve any
modality consecutive information given any modality queries, as shown in Fig. 3(a). The types of
modality include interleaved (IN), Text only (Tx), and Image only (Im), resulting in 9 tasks in total
with different combinations. The AnyCIR consists of 20,000 randomly sampled consecutive snippet
pairs from distinct documents. Each snippet in the pair includes text and at least one image content.
During inference, all the tasks share the same snippet pair source. For retrieval tasks with a single
modality, we simply mask other modalities during rendering. We render images into a randomly
chosen grid for both queries and candidates.

Sequential Consecutive Information Retrieval (SeqCIR). This task aims to evaluate the fine-
grained consecutive information modeling capacity. For each query, the candidate pool consists
of 26,433 snippets from 5,000 distinct documents. For each snippet, we use the full text and one
randomly selected image if applicable. We use 2,524 snippets as the initial query set, which are the
first snippets of the documents. For this task, we iteratively retrieve the next consecutive snippets
and only successful retrieval queries are passed to the next iteration. For each iteration, we ignore
the preceding snippets of the query snippet in the documents. The Pass@k rate denotes the success
rate of sequential retrieval at the nth round, as shown in Fig. 3(b). The SeqCIR is a very challenging
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Figure 4: Illustration of positive contrastive pair settings of different baseline models.

task as the candidate pool of SeqCIR contains subsequent snippets from the same documents. It
requires the model to accurately distinguish the most consecutive snippet.

Zero-Shot Consecutive Slide Retrieval (CSR). To better examine the transferability of Omni-
Contrast under real-world scenario, we propose a benchmark of retrieving the most relevant slide.
Specifically, we sample 28,016 pairs of consecutive slide images from Slideshare-1M (Araujo et al.,
2016). Each pair is sampled from a distinct slide deck (more than 6 slides) after removing the first
two slides. For evaluation, we use the former slide as a query and all the latter slides as candi-
dates. Despite some consecutive slides might share similar layouts or part of content overlap, our
experimental results show that it is still a challenging task even using these shortcuts.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP.

Data Variant Baselines. To better understand the model capacity learned from interleaved data, we
further construct different positive pair data as our baselines as illustrated in Fig. 4. Our baselines
include 1). Image-Text (Im-Tx) pairs sampled from a LAION subset; 2). Image-Text (Im-Tx) pairs
from the same snippet of MMC4, where we use the MMC4 annotation to generate the pairs, i.e. the
CLIP similarity assignment; 3). Text-Text (Tx-Tx) pairs by masking all the images in the snippets;
4). Interleaved-Interleaved (IN-IN) pairs by sampling from the snippets pairs containing both image
and text content; 5). Omni224 pairs first rendering in 448 × 448 resolution then resize to 224 × 224
resolution for fair comparison with original CLIP model; 6). Omni+/++ denotes 20%/40% of pairs
are sampled from one-hop pairs. All baselines use the same training setting.

Implementation Details. Our implementation is based on OpenCLIP (Ilharco et al., 2021). In all
experiments, we use ViT-B-16 (Dosovitskiy, 2020) with an input resolution 448×448. We use a
batch size of 1024 and a learning rate of 1e-4 for training 20 epochs. Our pretraining dataset uses
the MMC4-core-fewer-face (Zhu et al., 2024) subset, comprising 5 million documents with both
images and text, totaling 17 million images. We use CLIP (Radford et al., 2021) checkpoint as our
initialization due to the small scale of our training data.

5.2 CONSECUTIVE MULTI-MODAL INFORMATION RETRIEVAL

We include the vision encoder of CLIP (Radford et al., 2021), OpenCLIP (Cherti et al., 2023),
and CLIPPO (Tschannen et al., 2023) in the model size of ViT-B as our baseline. Note that these
baselines are trained on different sources and scales of image-text pair data.

Any-to-Any Consecutive Information Retrieval (AnyCIR). In Table 1, we report 9 retrieval task
results at Rank@1 metric. It can be observed that image-text interleaved data can help the model
better understand visual text data. For example, Omni and IN-IN models achieve better results on
the Tx-to-Tx retrieval task than the Tx-Tx baseline. Moreover, more diverse training data can boost
the performance of omni-modality representation learning, as Omni achieves better performance on
the IN-to-IN task compared to the IN-IN baseline. When training the model with none-consecutive
samples, i.e. Omni+ or Omni++, the performance only slightly decreases, which indicates that the
close snippets generally have consistent vision-language correspondence. Additionally, Omin224 in-
dicates that our performance gains not only from the higher input resolution but also from our novel
training data design. Interestingly, the CLIP vision encoder has stronger visual text understanding
capacity over OpenCLIP which is trained on a larger scale of datasets. When training on image-text
pair data from LAION, the model performs poorly on the AnyCIR benchmark indicating the large
domain gap between image-caption and multi-modal document data.

Sequential Consecutive Information Retrieval (SeqCIR). Table 2 reports sequential consecutive
snippets retrieval results in a total of four rounds. The best model only achieves a 3.7% success rate
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Table 1: Any-to-Any Consecutive Information Retrieval benchmark on Rank@1 metric. The modalities in-
clude Image-Text Interleaved (IN), Text only (Tx), and Image only (Im). Gray results refer to the model input
resolution as 224 and the default is 448.

Model Data IN-IN IN-Tx IN-Im Tx-IN Tx-Tx Tx-Im Im-IN Im-Tx Im-Im Overall
CLIP-V WIT 400M 24.10 6.18 5.27 14.23 11.47 1.02 11.60 0.93 12.45 9.69
OpenCLIP-V LAION 2B 18.41 0.26 12.23 4.73 3.82 0.86 13.52 0.02 15.76 7.73
CLIPPO YFCC 100M 10.17 0.01 9.99 0.00 0.01 0.01 6.31 0.02 11.79 4.25
Omni224 MMC4-core 69.39 67.20 13.89 67.86 70.61 5.04 14.00 5.68 14.45 36.45
Im-Tx LAION 40M 25.64 15.23 11.89 21.21 26.40 5.72 15.07 5.36 16.20 15.86
Im-Tx MMC4-core 63.34 59.15 15.60 61.30 61.08 12.34 17.36 12.31 17.97 35.60
Tx-Tx MMC4-core 53.16 62.34 0.01 61.12 73.38 0.01 0.03 0.02 0.78 27.87
IN-IN MMC4-core 76.56 74.85 0.40 74.19 74.81 0.12 2.58 0.64 8.95 34.79
Omni MMC4-core 78.27 73.89 22.10 74.19 74.32 10.08 22.00 10.95 19.50 42.81
Omni+ MMC4-core 77.94 73.68 21.87 73.73 73.68 10.06 21.76 10.70 19.29 42.52
Omni++ MMC4-core 78.05 73.53 21.27 73.57 73.41 9.96 21.48 10.63 19.55 42.38

Table 2: Sequential Consecutive Information Retrieval.
Pass@k denotes the retrieval success rate at kth round.
Gray results refer to the model input resolution as 224

and the default is 448.
Model Data Pass@1 Pass@2 Pass@3 Pass@4
CLIP-V WIT 400M 11.69 1.51 0.24 0.04
OpenCLIP-V LAION 2B 7.49 0.71 0.16 0.00
CLIPPO YFCC 100M 3.86 0.36 0.09 0.00
Omni224 MMC4-core 31.85 10.97 5.39 2.81
Im-Tx LAION 40M 13.00 1.90 0.32 0.04
Im-Tx MMC4-core 29.48 9.03 3.80 1.58
Tx-Tx MMC4-core 26.39 7.21 3.01 1.55
IN-IN MMC4-core 32.53 12.96 6.38 3.57
Omni MMC4-core 34.43 13.07 6.78 3.76
Omni+ MMC4-core 33.28 12.60 6.50 3.68
Omni++ MMC4-core 33.76 12.56 6.42 3.76

Table 3: Zero-Shot Consecutive Slides Retrieval.
Gray results refer to the model input resolution as

224 and the default is 448.

Model Data R@1 R@5 R@10 Avg
CLIP-V WIT 400M 34.60 45.10 49.29 43.00
OpenCLIP-V LAION 2B 38.08 48.33 52.27 46.23
CLIPPO YFCC 100M 26.42 34.31 37.30 32.68
Omni224 MMC4-core 33.81 43.28 47.02 41.37
Im-Tx LAION 40M 26.21 33.13 35.85 31.73
Im-Tx MMC4-core 34.68 43.45 46.85 41.66
Tx-Tx MMC4-core 11.04 14.59 16.14 13.92
IN-IN MMC4-core 25.92 33.40 36.46 31.93
Omni MMC4-core 44.05 55.55 59.74 53.11
Omni+ MMC4-core 44.21 55.54 59.68 53.14
Omni++ MMC4-core 43.74 55.16 59.29 52.73

after four rounds, which indicates that these models still lack of capacity for fine-grained consecutive
relation modeling. The results also draw the same observation as the AnyCIR benchmark, which is
that diverse training data helps omni-modality representation learning.

Zero-Shot Consecutive Slide Retrieval (CSR). As shown in Table 3, the Omni model achieves
the best results with 44% rank@1 accuracy under zero-shot setting. It indicates that our learned
interleaved representation is able to generalize to the complex interleaved data, i.e. slide. Moreover,
the results demonstrate that the language understanding capacity of OmniContrast can be gener-
alized beyond rendered text to various styles and font sizes. We also find that OpenCLIP is better
than CLIP in CSR, which is in contrast to previous benchmarks. One possible reason is that the
OpenCLIP has been trained with slide data as suggested in (Lin et al., 2023).

5.3 TRADITIONAL MULTI-MODAL INFORMATION RETRIEVAL

To investigate the ability of OmniContrast in traditional information retrieval tasks, we adopt zero-
shot M-BEIR (Wei et al., 2023) for evaluation, which assembles 10 diverse datasets from multiple
domains with 8 distinct multi-modal retrieval tasks. In our setting, we render all modality informa-
tion (image and text) into a single image for all the queries and candidates without using instructions.
As we find out the balance of the modality information is critical to this task, we pad all the text
input to 800 chars by repeating them. We provide the ablation study results on supply materials.

Table 4 shows the zero-shot union candidate pool results of OmniContrast and baselines, including
CLIPB(ViT-B), CLIPL(ViT-L), SigLIP (Zhai et al., 2023), BLIP (Li et al., 2022) and BLIP2 (Li
et al., 2023). OmniContrast using single vision encoder outperforms the models with separate text
encoder under the zero-shot setting, e.g.SigLIP. Also, it can be seen that the models trained on
interleaved data generally are good at WebQA (Chang et al., 2022) while performing poorly on
InfoSeek (Chen et al., 2023) compared to the CLIP-style model. It indicates that the interleaved
web data and image-caption data empower the model with different capacities.

5.4 TEXT EMBEDDING BENCHMARK

To evaluate the language understanding capability, we use MTEB (Muennighoff et al., 2023) English
subset which comprises 7 different tasks in a total of 56 datasets. During inference, we render
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Table 4: Zero-shot results on M-BEIRunion (Recall@5). Im-Txla denote train on LAION 40M data.
Task Dataset CLIPB CLIPL SigLIP BLIP BLIP2 Im-Txla Im-Tx Tx-Tx IN-IN Omni Omni+ Omni++

1. qt → ci

VisualNews 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.2 0.2 0.2
MSCOCO 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Fashion200K 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

2. qt → ct WebQA 32.5 32.1 34.0 38.1 35.2 35.9 47.3 41.0 46.0 46.2 48.5 49.3
3. qt
→ (ci, ct)

EDIS 3.0 6.7 1.1 0.0 0.0 1.7 2.3 4.4 11.4 10.6 11.5 12.3
WebQA 0.8 5.5 2.1 0.0 0.0 1.2 6.8 24.0 40.7 27.4 29.1 29.5

4. qi → ct

VisualNews 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.3 0.2
MSCOCO 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.3 0.3 0.3
Fashion200K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5. qi → ct NIGHTS 27.1 25.3 28.7 25.1 24.0 28.0 27.1 0.2 15.7 25.0 24.3 25.5
6. (qi, qt)
→ ct

OVEN 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.1 0.6 0.6 1.0
InfoSeek 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.2 0.2 0.4

7. (qi, qt)
→ ci

FashionIQ 1.0 4.4 4.8 2.2 3.9 6.8 2.7 0.0 0.5 3.8 4.2 3.5
CIRR 1.6 5.4 7.1 7.4 6.2 7.4 3.1 0.0 0.2 5.5 5.9 5.7

8. (qi, qt)
→ (ci, ct)

OVEN 1.0 24.5 27.2 10.1 13.8 14.5 2.2 0.0 0.1 5.8 6.1 4.8
InfoSeek 0.6 22.1 24.3 7.9 11.4 11.1 1.7 0.0 0.2 4.2 4.6 3.1

- Average 4.2 7.9 8.1 5.7 5.9 6.7 5.9 4.3 7.2 8.1 8.5 8.5
Table 5: Mass Text Embedding Benchmark. The rows in Cyan refer to the text encoder directly processing

the text input. Gray results refer to the model input resolution as 224 and the default is 448.
Class. Clust. PairClass. Rerank. Retr. STS Summ. Avg.

Num. Datasets 12 11 3 4 15 10 1 56
Glove 57.29 27.73 70.92 43.29 21.62 61.85 28.87 41.97
Komninos 57.65 26.57 72.94 44.75 21.22 62.47 30.49 42.06
BERT 61.66 30.12 56.33 43.44 10.59 54.36 29.82 38.33
SimCSE-BERT-unsup 62.5 29.04 70.33 46.47 20.29 74.33 31.15 45.45
CLIP-T 60.17 32.7 75.4 46 14.76 65.7 30.29 42.9
OpenCLIP-T 59.2 36.61 72.43 47.91 28.05 70.43 26.57 47.76
CLIP-V 55.76 31.64 63.85 45.12 14.51 62.55 26.81 40.34
OpenCLIP-V 49.4 23.85 56.55 42.05 11.75 54.6 28.57 34.71
Im-Tx (LAION) 49.04 27.67 67.34 43.67 16.49 65.26 29.74 39.27
Im-Tx 52.46 34.48 70.67 47.19 19.58 65.27 30.64 42.62
Tx-Tx 51.12 33.26 70.62 46.56 17.89 65.51 26.72 41.56
IN-IN 53.83 35.13 73.27 48.03 20.59 68.48 29.31 44.06
Omni 53.69 36.75 72.34 48.10 21.93 67.18 28.44 44.41
Omni+ 53.25 36.95 72.50 48.34 23.07 67.62 27.91 44.76
Omni++ 52.95 36.99 71.99 48.29 22.27 67.58 27.79 44.45

all text into images and use the pooled representation as text embedding. We can observe that
OmniContrast achieve competitive performance against most of unsupervised baselines, including
Glove (Pennington et al., 2014), Komninos (Komninos & Manandhar, 2016), BERT (Devlin, 2018)
and SimCSE (Gao et al., 2021), which are trained on a large language corpus. When training with
one-hop pair samples as the alignment target, our model achieves better performance. Similar to the
aforementioned findings, the MTEB benchmark shows that the multi-modal data helps the model
to better learn language representation from pixels. We also provide the results of the text(-T)
and vision(-V) encoder performance of CLIP and OpenCLIP, where the vision encoder input is
rendered text at 224 resolution size. Interestingly, the text encoder of OpenCLIP outperforms all the
unsupervised baselines while its vision encoder poorly understands the visual text information.

6 DISCUSSION: WHY UNIFYING IN PIXELS?

Motivation. In real-world scenarios, much of image-text interleaved content is natively present in
visual formats such as screenshots. Therefore, it is natural to develop a single end-to-end modal
that can process any modality. Unifying everything into pixels can reduce specialized design for
diverse modalities. Moreover, CLIPPO (Tschannen et al., 2023) demonstrates that the vision en-
coder can learn meaningful textual representation directly from pixels. While OmniContrast taking
a further step towards a more general-purpose vision-centric encoder that can seamlessly understand
image, scene text, and their relationship. We acknowledge that layout information (size and posi-
tion) of image-text can be one major benefit of unified pixel space, which has not been fully explored
in OmniContrast. Because it requires acquiring the exact snippet location from screenshots and is
non-trivial to manipulate the data content, which we left for future work.

Separate Encoder Baseline. Besides unifying in pixel space, another straightforward approach to
training CLIP on image-text interleaved data is fusing the image-text in the feature space, similar
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Table 6: AnyCIR benchmark with Separate Encoder Baselines.
Model Data IN-IN IN-Tx IN-Im Tx-IN Tx-Tx Tx-Im Im-IN Im-Tx Im-Im Overall
OpenCLIP-V+T (B/16) LAION 2B 43.38 39.29 28.32 38.58 35.27 19.65 28.57 19.95 23.84 30.76
CLIP-V+T (L/14) WIT 400M 43.62 38.72 28.74 37.97 33.06 21.30 28.99 20.41 23.66 30.72
UniIR-CLIP (L/14) UniIR-1M 48.76 41.13 27.61 35.54 41.23 12.89 27.43 6.68 22.58 29.31
CLIP-V+T (B/16) WIT 400M 37.35 33.18 24.88 32.59 28.29 15.92 24.46 14.40 21.05 25.79
Omni (B/16) MMC4-core 78.27 73.89 22.10 74.19 74.32 10.08 22.00 10.95 19.50 42.81

(a). t-SNE of OmniContrast (b). t-SNE of CLIP-V+T (c). t-SNE of UniIR-CLIP

Figure 5: t-SNE visualization of interleaved, text and image snippets embedding on OBELICS.

to UniIR (Wei et al., 2023). In Table 6, we report the CLIP-V+T and OpenCLIP-V+T baselines,
which use feature averaging to represent image-text interleaved modalities, on our proposed AnyCIR
benchmark. Moreover, we include the UniIR fine-tuned CLIP score fusion model result as the model
is fine-tuned on diverse data including image-text interleaved document snippets. It can be observed
that using a consistent performance drop on image-related retrieval tasks of OmniContrast after
training on image-text interleaved data is the same as the UniIR trained on diverse data. The reason
might be that loose image-text correspondence decreases the model capacity in image perception.
Image-caption and image-text interleaved data mixing strategy can be a promising solution for this
issue, we also leave this direction for future exploration.

Benefits from Unified Pixels Space. In Fig. 5, we visualize the distribution of interleaved, image
and text embeddings from the same snippets of three models including OmniContrast, CLIP-V+T,
and UniIR-CLIP. The labels of the snippet are predicted by topic model (Grootendorst, 2022) trained
on 20NewsGroups (Lang, 1995). It can be observed that our model can learn useful representations
that are aligned with linguistic semantics as snippets on similar topics are close to each other. Com-
pared to the separate encoder baselines, OmniContrast learn a more unified omni-modality repre-
sentation, which indicates unifying in pixel space can further reduce the modality discrepancy.

6.1 ABLATION STUDY AND VISUALIZATION

Effect of Model Initialization. As shown in Table 7a, we observed that the CLIP initialization is
important for OmniContrast. Note that our training data only contains 5 million documents with
around 17 million images, which is relatively small compared to WIT-400M. The scale-up experi-
ments are left for future study due to the computation constraint and limited data scale.

Importance of Image Rendering Positions. In Table 7b, we ablate the effect of the image rendering
position in girds as text content uses a fixed rendering order. We rendered all the image content into
the same grid positions for queries, while the candidates still use random positions. The results
indicate that OmniContrast learns a robust representation against different rendered grid positions.

Modality Masking Ratio Selection. In Table 7c, we investigate the modality masking ratio of
training data. It can be observed that modality masking is crucial for image-to-image retrieval ability
learning. In our setting, the best masking ratio is 40% and the larger ratio will drop the performance.

Effect of Text Masking. Table 7d reports the results of applying different text masking ratios during
training. We find that randomly dropping the sentences in the text can improve the performance of
language understanding. One possible reason is that the longer text has more redundant information.

Non-Consecutive Pair Sampling. As shown in Table 7e, we compare models using different ratios
of one-hot consecutive pair for training. Generally, more consecutive pairs achieve higher perfor-
mance on the AnyRIC benchmark as these data are more aligned with AnyRIC tasks. The one-hop
consecutive pairs only slightly degrade the performance, which indicates that the model can learn
useful representation from the non-consecutive snippets with a weaker connection.
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Table 7: Ablation experiments on AnyCIR benchmark
Init Model IN-IN Tx-Tx Im-Im Avg

IN-IN 65.85 64.55 6.46 29.60
✓ IN-IN 76.56 74.81 8.95 34.79

Omni 62.30 61.22 12.18 30.42
✓ Omni 78.27 74.32 19.50 42.81

(a) Model initialization.

Position Im-IN Im-Tx Im-Im
grid-0 22.07 10.88 19.53
grid-1 22.18 11.03 19.50
grid-2 22.01 10.91 19.51
grid-3 22.18 11.03 19.43

(b) Image Rendering Positions.

Ratio IN-IN Tx-Tx Im-Im Avg
0.0 76.56 74.81 8.95 34.79
0.2 76.22 71.63 19.50 41.74
0.4 77.41 72.39 19.30 41.98
0.6 77.60 73.29 18.74 41.75
0.8 78.00 73.96 17.06 40.80
1.0 76.56 74.26 8.71 34.70

(c) Modality Masking.

Ratio IN-IN Tx-Tx Im-Im Avg
0.0 77.41 72.39 19.30 41.98
0.2 78.34 74.26 19.27 42.71
0.4 78.27 74.32 19.50 42.81
0.6 77.70 73.56 19.48 42.48
0.8 77.85 73.32 19.58 42.42
1.0 77.41 72.60 19.08 41.96

(d) Text Masking.

Ratio IN-IN IN-Tx IN-Im Avg
0 78.27 74.32 19.50 42.81

0.1 78.04 73.53 19.74 42.54
0.2 (+) 77.94 73.68 19.29 42.52

0.3 78.13 73.65 19.31 42.44
0.4 (++) 78.05 73.41 19.55 42.38

0.5 77.95 73.54 19.29 42.31
(e) Non-Consecutive Pair Sampling.

Rank 1 Rank 2

Omni

CLIP-V

Query

PBF Energy Inc (NYSE:PBF) was in 
23 hedge funds’ portfolios at the end 
of September. PBF has experienced 
a decrease in enthusiasm from smart 
money in recent months. There were 
24 hedge funds in our database with 
PBF holdings at the end of the 
previous quarter. The level and the 
change in hedge fund popularity...

At Q3’s end, a total of 23 of the hedge funds 
tracked by Insider Monkey held long positions in 
this stock, a decrease of 4% from the previous 
quarter. With the smart money’s capital changing 
hands, there exists an “upper tier” of key hedge 
fund managers who were increasing their stakes ...

It was because of this excessive dependence on oil 
revenues that Iraq struggled to meet its production 
quota under the OPEC+ production control 
agreements from the past couple of years. Iraq’s 
non-compliance proved so blatant that at one point 
Saudi Arabia threatened its neighbour to open its 
own taps to punish it for pumping too much...

As the RAC reported, the drops in the cost of 
fuel could partially be down to the rise of the 
Coronavirus in China, and the resulting sharp 
drop in travel. Less travel means increased 
supply, which means a lower price. This 
followed the tensions between America and Iran 
causing fuel prices to jump in the early weeks ...

Cigna managed to beat its third-quarter earnings 
estimate last month with a revenue beat of $1.41 
billion and an earnings-per-share beat of 52 cents. 
During the third quarter, the medical care ratio did 
weaken slightly to 84.4% from 82.6% in 2020 due 
to covid-related implications; however, this ...

Query

Omni 

Rank 1 Rank 2

CLIP-V+T

Those trees aren't going to cut 
themselves down. In Lignum, the 
players take on the role of 
woodcutters who make their living 
cutting and milling wood ...... The 
game is simple in concept. In each 
non-winter round, you spend time 
traveling the board and getting 
resources. Then, after everyone has 
finished, you each use those 
resources to cut wood, transport it 
to your sawmill, and then sell the 
raw product or mill it into finished 
pieces. Easy, right?

Well, no. Not exactly. The trip 
around the board can be brutal. 
There are more than twenty 
spaces ... If you want to efficiently 
transport your cut wood from the 
forest to your sawmill, you'll need 
rafts or carts' or a sled in the 
winter. And not all equipment is 
available for purchase at the 
market. So sometimes it can be 
essential to leap ahead on the 
track and grab something before 
your opponents can do so.

But leaping ahead comes at a 
cost. You can only move forward, 
never back. So anything you pass 
over is skipped. And some spots 
you skip at your peril. If you don't 
hire any bearers, you might not 
be able to get your wood to your 
mill. Miss out on woodcutters, 
and you'll be unable to cut new 
wood. Skip sawyers and you 
won't be milling anything this 
round. Of course, every player 
gets one 'œwild' worker that can 
do anything. Even so, you'll 
definitely need help.

Because of the scarcity of 
equipment, the game also 
prevents anyone from becoming 
too self-sufficient or building up an 
empire ... how having one more 
bearer or skipping that raft tile is 
going to turn out for you. But after 
a round, the basic structure comes 
into view. And after a game or two, 
the strategic layers start to unfold. 
While this learning curve may be 
off-putting for some, it should be a 
real delight for those who enjoy 
heavy games.

Round 1 Round 2

Snippet 1 Snippet 2 Snippet 3 Snippet 5

(a). AnyCIR (IN-IN)

(b). SeqCIR (c). CSR
Figure 6: Visualization of retrieval results on AnyCIR, SeqCIR, and CSR benchmarks.

Retrieval Results Visualization. As shown in Fig. 6(a) OmniContrast understands the loosely
vision-language correspondence correctly while CLIP-V+T is dominated by the image feature in
AnyCIR IN-to-IN task. In Fig. 6(b), it can be observed that SeqCIR is a very challenging task
as it requires the modal to capture the precise connection between the consecutive snippets from
omni-modality input. Lastly, Fig. 6(c) indicates that despite being trained on rendered data, Omni-
Contrast can effectively generalize to real-world complex layouts with different font size and style.

7 CONCLUSION

We introduce OmniContrast, a unified vision model that learns the loosely vision-language corre-
spondence from multi-modal documents in a contrastive fashion. To achieve this, OmniContrast use
consecutive image-text interleaved snippets as contrast targets and unify all the modalities into the
pixel space. Moreover, we propose three consecutive information retrieval benchmarks to demon-
strate that multi-modal web documents can empower the CLIP model with new omni-modality un-
derstanding capacity. We hope that OmniContrast serves as a stepping stone for exploring multi-
modal documents as valuable training data in the vision-language research community.

Although our presented OmniContrast can process any modality input from pixel space using a sin-
gle model, its efficiency and scalability are limited by its fixed input size. Future work on designing
a dynamic input strategy or specific architecture could significantly enhance the performance and
unlock more application scenarios for multi-modal web document understanding.
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ETHICS STATEMENT

A primary concern in our work is that the multi-modal document datasets collected from the Internet
through common web crawlers may contain unfair or biased data. Despite employing multiple filter-
ing steps during the dataset collection process, the presence of unwanted data remains a possibility.
Additionally, using a pre-trained CLIP (Radford et al., 2021) checkpoint for model initialization
could propagate existing biases inherent in the pre-trained model into our methodology. We are
committed to continuously monitoring and mitigating potential biases in both our model and dataset
as they are identified. We hope that our research contributes positively and fairly to the field of
vision-language understanding research.

REPRODUCIBILITY STATEMENT

In this work, we solely use publicly available datasets for the model training and evaluation bench-
mark. The CLIP (Radford et al., 2021) pre-trained model used for model initialization is fully
open-source. For methodology details, we elaborate on the data preprocessing steps in Sec. 3.1 and
Sec. A. Our training code base is built upon the OpenCLIP (Ilharco et al., 2021) open-source code
base. Our codes and proposed evaluation benchmark data will be released upon completion of the
review process.
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A MORE IMPLEMENTATION DETAILS

Data Pre-processing. Given a document, we chunked the document into several snippets in a
sliding window strategy based on text sequence. For MMC4 (Zhu et al., 2024), the document text is
stored in a list of sentences. To create snippets, we merge consecutive sentences until their combined
length reaches 1100 characters or less. Then we use the image-text assignment provided by MMC4
to assign each image to the corresponding snippet. For OBELICS (Laurençon et al., 2024), we first
split the text content based on the newline character and then use the same sliding window strategy to
generate text snippets. Differently, OBELICS organizes the documents as an image-text interleaved
sequence, where the image position is extracted from the original HTML files. In both AnyCIR and
SeqCIR, we assign each image to the closest preceding text snippet, while images appearing at the
beginning of the document are assigned to the first text snippet.

Training Data Details. During training, to maintain optimal text length, we apply text masking
augmentation only to snippets containing more than four sentences and exceeding 250 characters.
Empirically, we found that a maximum text length of 768 characters during training led to better
performance. During testing, the model can handle up to 1,100 characters without any degradation
in performance. Therefore, we set the maximum training text length to 768 characters and 1,100
characters for testing. After initialization from the CLIP pre-trained checkpoint, the positional em-
bedding is randomly initiated for 448×448 input size. For each training batch, the data modalities
are mixed from image, text, and image-text interleaved without specialized balance.

B ADDITIONAL EXPERIMENT ANALYSIS

Table 8 presents the complete results of the AnyCIR benchmark used in the ablation study. Table 9
shows the ablation study on padding text to exceed a certain length by repeating it and its impact on
M-BEIR task performance. The results suggest that the short text information might be surpassed in
the image-text interleaved representation.

C VISUALIZATION

In Fig. 7, we showcase some rendered snippet samples used for training. Moreover, we present some
examples of our proposed consecutive information retrieval benchmark, shown in Fig. 8,9 and 10.
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Table 8: Full results of ablation study in AnyCIR.
Settings IN-IN IN-Tx IN-Im Tx-IN Tx-Tx Tx-Im Im-IN Im-Tx Im-Im Overall

- IN-IN 65.85 64.26 0.10 63.84 64.55 0.05 1.10 0.19 6.46 29.60
Init ✓ IN-IN 76.56 74.85 0.40 74.19 74.81 0.12 2.58 0.64 8.95 34.79

- Omni 62.30 59.29 8.52 59.11 61.22 1.47 8.23 1.49 12.18 30.42
Init ✓ Omni 78.27 73.89 22.10 74.19 74.32 10.08 22.00 10.95 19.50 42.81

Image
Rendering
Positions

grid-0 78.17 73.96 22.15 74.38 74.32 10.12 22.07 10.88 19.53 42.84
grid-1 78.26 74.05 22.07 74.38 74.32 10.12 22.18 11.03 19.50 42.88
grid-2 78.31 74.01 22.00 74.38 74.32 10.12 22.01 10.91 19.51 42.84
grid-3 78.18 73.78 22.04 74.38 74.32 10.12 22.18 11.03 19.43 42.83

Modality
Masking

Ratio

0.0 76.56 74.85 0.40 74.19 74.81 0.12 2.58 0.64 8.95 34.79
0.2 76.22 71.47 21.94 71.44 71.63 10.67 21.56 11.25 19.50 41.74
0.4 77.41 72.06 21.72 72.74 72.39 9.71 21.78 10.72 19.30 41.98
0.6 77.60 73.35 20.72 72.90 73.29 9.02 20.70 9.47 18.74 41.75
0.8 78.00 74.32 17.38 73.93 73.96 6.89 17.96 7.69 17.06 40.80
1.0 76.56 74.49 0.54 74.07 74.26 0.26 2.78 0.65 8.71 34.70

Text
Masking

Ratio

0.0 77.41 72.06 21.72 72.74 72.39 9.71 21.78 10.72 19.30 41.98
0.2 78.34 73.96 21.85 74.25 74.26 10.16 21.46 10.89 19.27 42.71
0.4 78.27 73.89 22.10 74.19 74.32 10.08 22.00 10.95 19.50 42.81
0.6 77.70 73.44 21.94 73.42 73.56 10.11 21.88 10.77 19.48 42.48
0.8 77.85 73.20 21.86 73.20 73.32 10.11 22.01 10.64 19.58 42.42
1.0 77.41 72.38 21.60 72.66 72.60 9.67 21.64 10.61 19.08 41.96

Consecutive
Pair

Sampling

0.0 78.27 73.89 22.10 74.19 74.32 10.08 22.00 10.95 19.50 42.81
0.1 78.04 73.27 21.88 73.66 73.53 9.90 21.96 10.94 19.74 42.54
0.2 77.94 73.68 21.87 73.73 73.68 10.06 21.76 10.70 19.29 42.52
0.3 78.13 73.46 21.46 73.76 73.65 9.98 21.51 10.68 19.31 42.44
0.4 78.05 73.53 21.27 73.57 73.41 9.96 21.48 10.63 19.55 42.38
0.5 77.95 73.50 21.29 73.37 73.54 9.80 21.59 10.47 19.29 42.31

Table 9: Ablation study of text padding length on M-BEIR benchmark.

Task Dataset Text Padding Length
- 100 400 800 1000

(qi, qt) → (ci, ct)
oven task8 0.26 0.65 4.37 5.77 5.21

infoseek task8 0.09 0.33 3.01 4.21 4.05

Figure 7: Rendered image-text snippets from a training batch. Each column represents the positive pairs.
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[Ugarkovic] posted the final stunning image to an online forum run by the 
non-profit Planetary Society, an organization that promotes space 
exploration. The photograph went viral after senior editor and planetary 
evangelist Emily Lakdawalla posted it on her blog and Twitter. At Discover, 
we were so impressed that we judged it our favorite science image of 2013 
and placed it on our cover. The amateur image processing community 
helps NASA, ESA, and other space agencies put their best foot forward -- 
thanks, Gordan, and the folks at unmannedspaceflight.com, for making that 
happen! Discover: The Year in Science 2013 I've been waiting impatiently 
for this issue to show up in my mailbox since seeing your name on the 
cover -- and it just arrived today! Can't wait to read the article.

I learned a lot while researching this article, with the help of conversations 
with Mike Brown, Pablo Santos-Sanz, and Alex Parker. I did the original 
research for it nearly two years ago now, when I wrote this post about the 
shapes of Kuiper belt orbits, and I want to thank Mike especially for a 
recent review to make sure it was still up-to-date, and Alex for helping me 
figure out the colors of the largest Kuiper belt objects. While I'm mentioning 
magazines, I want to congratulate amateur image processor Gordan 
Ugarkovic for his version of Cassini's top-down Saturn portrait making the 
cover of the January/February 2014 issue of Discover magazine. In the 
writeup about the cover image, photo editor Ernie Mastroianni wrote:

There are four alpine routes up Castle Mountain listed in Sean Dougherty’s 
“Selected Alpine Climbs in the Canadian Rockies”. Eisenhower Tower, 
Bass Buttress, Ultra-Brewers and Brewer Buttress. Quite a few other routes 
can be contemplated at Tabvar.org. Bass Buttress, Brewer Buttress and 
Eisenhower are the “classics” and therefore most common routes. What 
makes Bass Buttress popular no doubt is the access via the tiny Castle 
Mountain Hut (photo provided) managed by the Alpine Club of Canada. 
Don’t have any grand illusions of throwing a party up there. Although 
advertised to sleep six, I feel sorry for the last two of six to arrive. It is a 
very cool location for a hut though and even though you can do Bass 
Buttress easy in a day from the car (as we did), the hut is an experience in 
and of itself not to miss. And perhaps even more unique is the open air pit 
toilet on the edge of a dramatic cliff.

Bass Buttress was put in by Brian Greenwood and Joe Farrand in 1968. 
Bass Buttress Direct, the version I did, was put up by Bugs McKeith and 
John Calvert in 1972 and I much recommend this line over the original, 
which involves three alternate pitches raising the rating from 5.6 to 5.7. It 
is a shaded route for much of the day, which is a huge advantage on hot 
summer days, but at this elevation, we are only talking a few days of the 
year that this would be seen as an advantage. Bass Buttress has less pins 
than Brewers Buttress and is climbed somewhat less because it normally 
is considerably colder. The direct route makes it a much cleaner line. This 
is a 4600’+/- total ascent trip, car to car. The guidebook discusses some 
3.5-5 hours to achieve the hut from the parking area via the Castle 
Lookout Trail. However I typically take only 2 hours.

There are many trick components to this build, but one of the most over the 
top was sent to me from G.Skill. G.Skill released a very special memory kit 
for the SR-2 based on the Trident heat spreader design. This kit was only 
available in 48GB and 24GB capacity sizes and had an official rating of 
2,000 MHz with 9-8-9-24 timings. That didn't stop me from starting out at 
2K MHz and 7-7-7-20 timings. That's good enough for this old timer. When 
the system gets settled in I'll make some forum posts on this very fast 
memory. A big thank you goes out to all of the companies who thought it 
was time for me to get back into kicking virtual ass. My build started out 
simple enough. The Xigmatek Elysium comes with enough motherboard 
stand offs to install the EVGA SR-2. What's even more impressive is the 
amount of usable cable push thru locations left even after putting in this 
massive board. We still have two at the top, two at the bottom and four on 
the drive bay side that can use utilized.

The back side will allow me to quickly install a water cooling kit when I 
start feeling the urge to overclock the six-core Xeons. The system is 
starting to come together and I found a way to route the USB 3.0 cables. 
At first I didn't think these were long enough to reach the rear USB 3.0 
ports on the motherboard, but they made it with enough slack to not be 
concerned about. This is also one of the things I didn't really like about the 
Elysium and something I hope Xigmatek changes in future versions. New 
motherboards are shipping with internal USB 3.0 headers, but the case 
doesn't come with adapters to switch from external connectors and the 
new USB 3.0 headers. This was brought up with Xigmatek and they are 
taking it under consideration. Go big or go home baby! Three way SLI with 
dual Xigmatek Hammers cooled by 120mm fans that match the included 
rear and HDD bay fans. In the future I'll need to brush up on my cable 
management skills or just force Chad to do it when he comes to visit.

Figure 8: Visualization samples in AnyCIR benchmark. Each row represents the consecutive pairs.

What is a Toyota Prius hybrid vehicle? Prius is the world's first mass-produced hybrid model launched by Toyota Motor in 
Japan in 1997. In 2001, it has been sold to more than 40 countries and regions around the world, and its main markets are 
Japan and North America. Among them, the United States is the largest market for Prius. As of the beginning of 2009, Prius 
has sold more than 600,000 vehicles in the United States. According to 2007 data from the U.S. Environmental Protection 
Agency, the Prius is the most fuel-efficient car sold in the United States. Additionally, the Prius is by far the cleanest vehicle in 
the United States, according to the U.S. Environmental Protection Agency and the California Air Resources Board's evaluation 
of each model based on carbon dioxide emissions. According to figures released by the UK Department for Transport, the 
Prius is the second-lowest CO2-emitting vehicle sold in the UK.

The first-generation Prius came out at the end of October 1997 and was the world's first mass-produced hybrid vehicle. 
Today, when people pay more and more attention to environmental protection, Prius has epoch-making significance and 
advancement because of its revolutionary reduction of vehicle fuel consumption and exhaust emissions, and has been highly 
praised by the world. The shape of the Prius is shown in Figure 1. (1) As needed, the engine can be stopped and the motor 
can be driven alone. Regardless of starting or normal driving, the electric motor will be preferentially driven, thereby shortening 
the working time of the engine and achieving the goals of low fuel consumption, low emissions and low noise.

(2) Fully recover the energy and charge the battery to effectively reuse the energy. When decelerating, the engine can be 
completely stopped, and the wheel drives the generator to charge the battery for efficient energy recovery. The large-capacity 
battery can achieve more power storage. (2) Electric motor. The maximum output power of the electric motor equipped in the 
new-generation Prius has been increased from the original 50kW to 60kW, and through measures such as increasing torque 
and adopting a reduction gear, it has achieved miniaturization and light weight, and further improved the fuel economy of the 
vehicle. (4) Power distribution device. The power of the engine is sent to the wheels and the generator respectively, and at the 
same time, by connecting and effectively controlling the engine, motor and generator, the vehicle has agile and smooth 
acceleration performance.

(5) Battery. The new-generation Prius uses high-power nickel-metal hydride batteries, which can provide sufficient power for 
the motor and generator, and greatly reduce the dead area of ​​the battery, improving energy efficiency. The cooling system 
and main relay are arranged in an optimal distribution way, and the air inlet and outlet of the cooling system and the fan are 
miniaturized, which not only brings low fuel consumption, but also reduces the body weight and expands the trunk space.

(6) Variable voltage control system. The system can effectively control the DC output of the battery and the AC output used to 
drive the motor and generator. The new generation of Prius can increase the system voltage from the maximum 500V of the 
previous generation model to 650V with the help of the boost converter of the variable voltage control system, and further 
optimize the cooling device, greatly improve the motor torque, and make the system smaller , lighter in weight, more efficient 
in operation, and more powerful in output power.

Round 1

Round 2

Round 3

Round 4

Figure 9: Visualization sample in SeqCIR benchmark.

Figure 10: Visualization samples in CSR benchmark. Each column represents the consecutive pairs.
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