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Abstract

Recent work has shown that, while large lan-001
guage models (LLMs) demonstrate strong word002
translation or bilingual lexicon induction (BLI)003
capabilities in few-shot setups, they still can-004
not match the performance of ‘traditional’005
mapping-based approaches in the unsupervised006
scenario where no seed translation pairs are007
available, especially for lower-resource lan-008
guages. To address this challenge with LLMs,009
we propose self-augmented in-context learning010
(SAIL) for unsupervised BLI: starting from a011
zero-shot prompt, SAIL iteratively induces a012
set of high-confidence word translation pairs013
for in-context learning (ICL) from an LLM,014
which it then reapplies to the same LLM in the015
ICL fashion. Our method shows substantial016
gains over zero-shot prompting of LLMs on017
two established BLI benchmarks spanning a018
wide range of language pairs, also outperform-019
ing mapping-based baselines across the board.020
In addition to achieving state-of-the-art unsu-021
pervised BLI performance, we also conduct022
comprehensive analyses on SAIL and discuss023
its limitations.024

1 Introduction and Motivation025

The task of word translation (WT), also known026

as bilingual lexicon induction (BLI), aims to auto-027

matically induce lexica of words with the same or028

similar meaning in different languages, thus bridg-029

ing the lexical gap between languages. Even in030

the era of large language models (LLMs), BLI still031

has wide applications in machine translation and032

cross-lingual transfer learning (Sun et al., 2021;033

Zhou et al., 2021; Wang et al., 2022; Ghazvinine-034

jad et al., 2023; Jones et al., 2023). A particular035

BLI setup, termed (fully) unsupervised BLI, is es-036

pecially compelling because it is not only more037

technically challenging but is also used as a pivotal038

component towards unsupervised machine trans-039

lation (Lample et al., 2018; Artetxe et al., 2018b;040

Marchisio et al., 2020; Chronopoulou et al., 2021).041

Until recently, BLI approaches have predomi- 042

nantly relied on learning cross-lingual word em- 043

bedding (CLWE) mappings: these are known 044

as MAPPING-BASED approaches and are developed 045

based on static or decontextualized word embed- 046

dings (WEs) (Patra et al., 2019; Grave et al., 2019; 047

Li et al., 2022a; Yu et al., 2023). The trend in 048

BLI has also recently shifted towards exploring 049

autoregressive LLMs, which have become the cor- 050

nerstone of modern NLP techniques (Brown et al., 051

2020; Ouyang et al., 2022; Touvron et al., 2023a) 052

with success in many real-world tasks (Kasneci 053

et al., 2023; Wu et al., 2023; Thirunavukarasu et al., 054

2023). Concerning BLI, Li et al. (2023) first show 055

that prompting LLMs with gold-standard WT pairs 056

as in-context examples (few-shot in-context learn- 057

ing: ICL) outperforms all existing BLI approaches 058

in the supervised and semi-supervised BLI setups 059

(where typically 1K∼5K gold-standard WT pairs 060

are available for training or ICL), while zero-shot 061

prompting still falls behind traditional MAPPING- 062

BASED approaches for the fully unsupervised BLI 063

setup, especially for lower-resource languages. 064

In this work, we thus aim at improving unsuper- 065

vised BLI with LLMs. To this end, we propose the 066

self-augmented in-context learning (SAIL) method 067

for unsupervised BLI with LLMs. The key idea is 068

to first iteratively retrieve a set of high-confidence 069

WT pairs by zero-shot prompting LLMs and then 070

use the gradually refined bilingual lexicon for BLI 071

inference in an ICL fashion (§2). Our extensive 072

experiments show that SAIL establishes new state- 073

of-the-art unsupervised BLI performance on two 074

standard BLI benchmarks. We also conduct thor- 075

ough analyses of its key components, providing 076

further insight into its inner workings (§3-§4). 077

2 Methodology 078

Unsupervised BLI: Task Preliminaries. We as- 079

sume a pair of two languages: a source language 080
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Lx with its vocabulary X and a target language081

Ly with vocabulary Y . In a typical, standard BLI082

setup the vocabulary of each language contains083

the most frequent 200, 000 word types in the lan-084

guage (Glavaš et al., 2019; Li et al., 2022a). Given085

a source word wx ∈ X , the unsupervised BLI task086

then aims to infer its translation in Ly, without any087

word-level parallel data (i.e., seed translation pairs088

from a lexicon) available for training or ICL.1089

Zero-Shot Prompting. Li et al. (2023) have pro-090

posed to prompt autoregressive LLMs for the BLI091

task, where the input word wx is embedded into092

a predefined text template. We adopt the pool of093

templates provided by Li et al. (2023) and conduct094

template search for each LLM on a randomly cho-095

sen language pair. As an example, the zero-shot096

template for LLAMA-27B is as follows:2097

‘The Lx word wx in Ly is:’,098

where Lx, Ly, and wx are placeholders for the099

source language, target language, and the query100

word in the source language (e.g., Lx = Hungarian,101

wx = macska, Ly = Catalan).102

The deterministic beam search (with beam size103

of n as a hyper-parameter) is adopted to generate104

n output text pieces in the final beam, ranked by105

their sequence scores.3 For each of the n outputs,106

the first word in the generated output following the107

input sequence is extracted as a candidate answer.108

After filtering out those candidate answers not in109

Y , the candidate Ly word with the highest associ-110

ated sequence score is returned as the final word111

translation prediction.112

Limitations of Zero-Shot Prompting. The above113

zero-shot approach for unsupervised BLI, proposed114

by Li et al. (2023), comes with several limitations.115

First, the template does not stipulate the output116

format and thus parsing the output text may not117

be as straightforward as expected. Put simply,118

LLM’s prediction may not be the first word in the119

generated sequence. Second, the LLM may not120

fully ‘understand’ the input template and some-121

times may tend not to generate words for lower-122

resource languages. For the supervised BLI setup,123

where a dictionary of gold standard translation124

pairs is assumed and available, few-shot in-context125

1Again following prior work, when wx has multiple
ground truth translations in Ly , a prediction is considered
correct if it is any of the ground truth answers.

2The full list of templates used for other LLMs are pre-
sented in Table in Appendix .

3We use n = 5 following Li et al. (2023).

learning can substantially improve final BLI per- 126

formance (Li et al., 2023), since it not only pro- 127

vides examples of the desired output format but 128

also helps LLMs ‘understand’ the BLI task. How- 129

ever, the availability of such a seed dictionary is not 130

assumed in the unsupervised BLI task variant, and 131

the key idea of this work is to derive and iteratively 132

refine a seed dictionary by prompting LLMs. 133

SAIL: Self-Augmented In-Context Learning for 134

Unsupervised BLI. We thus propose to facili- 135

tate and improve unsupervised BLI by S1) using 136

zero-shot prompting to retrieve Dh, a set of high- 137

confidence translation pairs, and then S2) leverag- 138

ing these pairs as ‘self-augmented’ in-context ex- 139

amples for few-shot prompting to further iteratively 140

refine Dh (across 0 to Nit−1 iterations, where Nit 141

is a hyper-parameter denoting total times of Dh 142

inference in S1 and S2), and finally S3) conducting 143

few-shot learning with the final, Nit-th self-created 144

seed lexicon Dh for BLI inference on the test set. 145

Deriving High-Confidence Pairs. For both steps 146

S1 and S2 outlined above, we start with the most 147

frequent Nf words in Lx since representations of 148

less frequent words are considered to be much nois- 149

ier in general (Artetxe et al., 2018a). For each wx, 150

we conduct Lx → Ly translation: we refer to this 151

predicted word as ŵy. We then propose to con- 152

duct word back-translation, translating ŵy from 153

Ly back into Lx. The word pair (wx, ŵy) is con- 154

sidered a high-confidence pair only if wx is also 155

the output word of the back-translation step.4 We 156

denote the set of all high-confidence pairs from the 157

Lx words as Dx
h. Likewise, we also start from the 158

most frequent Nf words in Ly and symmetrically 159

derive Dy
h. Finally, we update the high-confidence 160

dictionary with Dh = Dx
h ∪ Dy

h. 161

Few-Shot Prompting with High-Confidence 162

Pairs. Step S1 of SAIL relies on zero-shot prompt- 163

ing, but all the subsequent iterations in S2 and 164

S3 apply few-shot prompting/ICL with the ‘self- 165

augmented’ high-confidence translation pairs Dh. 166

Following Li et al. (2023), we adopt 5-shot prompt- 167

ing, and again conduct template search on the 168

BLI task with a single, randomly selected lan- 169

guage pair.5 The in-context examples, (wx
i , w

y
i ) ∈ 170

4Earlier MAPPING-BASED approaches have retrieved high-
confidence pairs through ranking cross-lingual word simi-
larity scores (e.g., cosine similarity) to refine CLWE map-
pings (Artetxe et al., 2018a; Li et al., 2022a); in a sense, our
work renovates and revitalises the idea with LLMs.

5The decoding and output parsing strategy is the same as
in zero-shot prompting.
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Dh, 1 ≤ i ≤ 5, are retrieved where the wx
i words171

are the nearest neighbours of the input word wx in172

Lx’s static word embedding space. The few-shot173

template for LLAMA-27B is then as follows:174

‘The Lx word wx
1 in Ly is wy

1. The175

Lx word wx
2 in Ly is wy

2. ... The Lx176

word wx in Ly is’.177

3 Experimental Setup178

BLI Data and LLMs. We adopt two standard BLI179

benchmarks: 1) 5 languages from XLING (Glavaš180

et al., 2019) including German (DE), English181

(EN), French (FR), Italian (IT), and Russian (RU);182

their combinations result in 20 BLI directions;183

2) 3 lower-resource languages including Bulgar-184

ian (BG), Catalan (CA), and Hungarian (HU) from185

PanLex-BLI (Vulić et al., 2019), which result in186

6 BLI directions.6 For both benchmarks, a test187

set of 2K WT pairs is provided for each BLI di-188

rection. We experiment with four open-source189

LLMs: LLAMA 7B, LLAMA-27B, LLAMA 13B, and190

LLAMA-213B (Touvron et al., 2023a,b). Li et al.191

(2023) found that 4 other families of LLMs, includ-192

ing mT5, mT0, mGPT and XGLM, underperform193

LLAMA; we thus skip these LLMs in our work.194

Implementation Details and BLI Evaluation. As195

mentioned in §2, our hyper-parameter and tem-196

plate search are conducted on a single, randomly197

selected language pair, which is DE-FR, follow-198

ing Li et al. (2023). Batch size is set to 1. We199

adopt Nit = 1, Nf = 5, 000 in our main experi-200

ments (§4.1) and then investigate their influence201

on BLI performance and the effectiveness of our202

proposed word back-translation in our further anal-203

yses (§4.2). Half-precision floating-point format204

(torch.float16) is adopted for all our SAIL and205

ZERO-SHOT experiments. Since our method does not206

imply any randomness, all results are from single207

runs. For evaluation, we adopt the standard top-1208

accuracy as prior work.209

Baselines. We adopt two established MAPPING-210

BASED baselines. 1) VECMAP is a representative211

unsupervised BLI approach and features a self-212

learning mechanism that refines linear maps for213

deriving CLWEs (Artetxe et al., 2018a). 2) CON-214

TRASTIVEBLI learns CLWEs with a two-stage con-215

trastive learning framework and is the strongest216

6The two datasets are also used in many recent BLI
works (Sachidananda et al., 2021; Aboagye et al., 2022; Li
et al., 2022a,b; Vulić et al., 2020, 2023; Li et al., 2023).

[Unsupervised BLI] DE EN FR IT RU AVG.
MAPPING-BASED

VECMAP 44.14 51.7 51.51 51.03 34.36 46.55
CONTRASTIVEBLI (C1) 44.72 52.12 52.29 51.77 35.5 47.28
CONTRASTIVEBLI (C2) 46.02 53.32 53.26 52.99 37.26 48.57

ZERO-SHOT

LLAMA 7B 41.94 50.16 48.25 46.91 40.04 45.46
LLAMA-27B 43.91 52.7 50.68 48.23 42.8 47.66
LLAMA 13B 45.39 53.35 52.39 50.58 41.74 48.69

LLAMA-213B 47.12 55.02 51.31 52.02 43.09 49.71

SAIL (Ours)
LLAMA 7B 51.39 61.92 58.92 56.94 50.7 55.97

LLAMA-27B 53.81 64.12 61.09 59.96 53.77 58.55
LLAMA 13B 55.35 64.84 62.49 61.27 54.5 59.69

LLAMA-213B 57.69 67.0 64.11 63.18 57.04 61.8

Table 1: Main results on the 20 XLING BLI directions.
For each language, the average accuracy scores over 8
BLI directions (i.e., going from and going to other 4
languages) is reported. See also Appendix E.

MAPPING-BASED approach for supervised and semi- 217

supervised BLI tasks on our two benchmarks (Li 218

et al., 2022a); however, it does not support unsuper- 219

vised setup. We extend CONTRASTIVEBLI to unsu- 220

pervised BLI by initialising the initial map with the 221

unsupervised VECMAP method. The CONTRASTIVE- 222

BLI C1 variant based on static WEs and its stronger 223

C2 variant combining static and decontextualised 224

WEs are both used as our baselines. In addition, 225

we report 3) ZERO-SHOT prompting with each of our 226

LLMs as baselines following Li et al. (2023). 227

4 Results and Discussion 228

4.1 Main Results 229

Results on the Two BLI Benchmarks are sum- 230

marised in Tables 1 and 2 respectively, with full 231

BLI scores pear each individual language pair in 232

Tables 6 and 7 in Appendix E. As the main findings, 233

1) our SAIL shows consistent gains against ZERO- 234

SHOT for each of the 4 LLMs, showing the effective- 235

ness of the proposed approach; 2) while ZERO-SHOT 236

still lags behind MAPPING-BASED on PanLex-BLI’s 237

lower-resource languages, applying SAIL outper- 238

forms MAPPING-BASED across the board. The only 239

exception is that CONTRASTIVEBLI (C2) still has a 240

slight edge over SAIL with the weakest LLM over- 241

all, LLAMA 7B. 3) Among the 4 LLMs, LLAMA- 242

213B presents the strongest BLI capability. 243

Variance and Statistical Significance. The whole 244

SAIL method does not imply any variance due to 245

randomness: it does not rely on any actual LLM 246

fine-tuning; we adopt deterministic beam search; 247

the deterministic nearest neighbour retrieval is used 248

for deriving IC examples. Here, we report the sta- 249
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[Unsupervised BLI] BG CA HU AVG.
MAPPING-BASED

VECMAP 37.22 36.27 36.89 36.8
CONTRASTIVEBLI (C1) 36.7 35.86 37.82 36.79
CONTRASTIVEBLI (C2) 38.87 38.48 40.54 39.3

ZERO-SHOT

LLAMA 7B 27.9 28.87 27.18 27.98
LLAMA-27B 28.2 27.21 26.92 27.45
LLAMA 13B 27.49 30.61 28.2 28.77

LLAMA-213B 29.08 32.38 30.53 30.66

SAIL (Ours)
LLAMA 7B 37.02 37.63 36.29 36.98

LLAMA-27B 40.06 40.51 40.22 40.27
LLAMA 13B 41.71 42.76 42.07 42.18

LLAMA-213B 45.4 46.26 44.88 45.51

Table 2: Main results on 6 PanLex-BLI BLI directions.
For each language, the average accuracy scores over 4
BLI directions (i.e., going from and going to other 2
languages) is reported. See also Appendix E.
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Figure 1: Top-1 accuracy (×100%) averaged over 20
XLING BLI directions with respect to Nit. Setting
Nit = 0 refers to the ZERO-SHOT baseline.

tistical significance with χ2 tests. When compar-250

ing SAIL and ZERO-SHOT (both with LLAMA-213B),251

the p-value is 1.1e-251 on 20 XLING BLI direc-252

tions and 2.7e-109 on 6 PanLex-BLI BLI direc-253

tions. We then compare SAIL (with LLAMA-213B)254

against CONTRASTIVEBLI (C2) which is the strongest255

mapping-based baseline: the p-values are 3.1e-300256

and 7.8e-20 respectively. These show that our find-257

ings are strongly statistically significant.258

4.2 Further Analyses259

Impact of Nit. Figure 1 shows the influence of260

the number of iterations Nit on the average BLI261

scores on XLING. When Nit = 1, where only step262

S1 is executed (see §2), SAIL already approaches263

(almost) its optimal performance. Further refining264

the Dh for more iterations (step S2) only leads to265

small fluctuations in BLI performance, which we266

deem not worth the increased computational cost.267

Figure 3 (Appendix B) with results on PanLex-BLI268

shows a similar trend.269

Impact of Nf . We then study the impact of the270
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Nf
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Figure 2: Top-1 accuracy on XLING with respect to Nf .
Nf = 0 yields the ZERO-SHOT baseline.

ZERO-SHOT SAIL (w/o back translation) SAIL

LLAMA-27B 45.36 52.9 56.12
LLAMA-213B 46.26 55.1 59.31

Table 3: BLI results on XLING, demonstrating the use-
fulness of back-translation when constructing Dh.

frequency threshold Nf on the average BLI perfor- 271

mance with a subset of XLING spanning DE-FR, 272

EN-RU and RU-FR, each in both directions. The re- 273

sults in Figure 2 reveal that even with Nf = 1, 000, 274

the BLI performance is boosted substantially when 275

compared against the ZERO-SHOT baseline (i.e., 276

when Nf = 0). When we further increase Nf , the 277

accuracy score still increases slowly, and the gain 278

seems negligible with Nf ≥ 5000: i.e., increasing 279

Nf again may not be worth the extra computational 280

cost. 281

Impact of Word Back-Translation. The back- 282

translation step aims to improve the quality of D. 283

Here, we experiment with the ablated version of 284

SAIL without back translation on the same XLING 285

subset as before. The results in Table 3 clearly 286

demonstrate the effectiveness of proposed word 287

back-translation: the p-values (χ2 tests) are 8.8e- 288

7 and 1.0e-10 respectively for LLAMA-27B and 289

LLAMA-213B when comparing SAIL variants with 290

and without the back-translation component. 291

5 Conclusion 292

We proposed Self-Augmented In-Context Learning 293

(SAIL) to improve unsupervised BLI with LLMs. 294

The key idea is to iteratively retrieve a set of high- 295

confidence word translation pairs by prompting 296

LLMs and then leverage the retrieved pairs as in- 297

context examples for unsupervised BLI. Our exper- 298

iments on two standard BLI benchmarks showed 299

that the proposed SAIL method substantially out- 300

performs established MAPPING-BASED and ZERO- 301

SHOT BLI baselines. The code will be available 302

at [ANONYMOUS-URL]. 303
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Limitations304

The main limitation of this work, inherited from305

prior work as well (Li et al., 2023) is that the306

scope of our languages is constrained to the lan-307

guages supported (or ‘seen’) by the underlying308

LLMs. For example, LLAMA-2 is reported to sup-309

port only around 27 natural languages (Touvron310

et al., 2023b). This limitation could be mitigated if311

more advanced LLMs that support more languages312

are available in the future. It might also be fea-313

sible to adapt existing LLMs to more languages314

by fine-tuning on their monolingual corpora poten-315

tially combined with modern cross-lingual transfer316

learning techniques, whereas such adaptations of317

LLMs to unseen languages extend way beyond this318

work focused on the BLI task.319

In addition, compared to the ZERO-SHOT base-320

line, our SAIL framework organically requires more321

computational time and budget, as reported in Ta-322

ble 5 of Appendix D.323

Moreover, the SAIL framework is proposed and324

evaluated for the unsupervised BLI task. This work325

does not discuss if and how adapted variants of326

SAIL could also be applied to other NLP tasks327

beyond BLI. Further, the SAIL method should be328

equally applicable in weakly supervised BLI se-329

tups (Vulić et al., 2019) where a tiny set of available330

seed word translations (e.g., 50-500 word pairs)331

can be assumed to seed the iterative procedure. We332

leave this to future work.333
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A Languages540

Family Language Code

Germanic
English EN

German DE

Romance
Catalan CA

French FR

Italian IT

Slavic
Bulgarian BG

Russian RU

Uralic Hungarian HU

Table 4: Languages used in our experiments with their
ISO 639-1 codes.

B Impact of Nit with PanLex-BLI541
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Figure 3: Top-1 accuracy (×100%) averaged over 6
PanLex-BLI BLI directions with respect to Nit. Setting
Nit = 0 refers to the ZERO-SHOT baseline.

C Templates542

Li et al. (2023) provide the suggested (carefully543

searched) templates for LLAMA 7B and LLAMA 13B,544

which we directly adopt in our work. For LLAMA-545

27B and LLAMA-213B, we conduct template search546

following Li et al. (2023) on a single language pair547

DE-FR in both directions.548

Zero-Shot Template. LLAMA 7B, LLAMA-27B and549

LLAMA-213B share the same zero-shot template as550

introduced in §2. LLAMA-213B’s zero-shot template551

is as follows:552

‘Translate from Lx to Ly: wx=>’.553

Few-Shot Template.. We have introduced the few-554

shot template of LLAMA-27B in §2. The remaining555

three LLMs happen to share the same few-shot556

template, given as follows:557

‘The Lx word 'wx
1' in Ly is wy

1. The 558

Lx word 'wx
2' in Ly is wy

2. ... The Lx 559

word 'wx' in Ly is’. 560

D Reproducibility Checklist 561

• Source Code: our code will be made publicly 562

available at [ANONYMOUS-URL]. 563

• Hyperparameter Search: Nit is selected from 564

{1, 2, 3, 4} and Nf from {1000, 2000, 3000, 4000, 565

5000, 6000, 7000, 8000, 9000, 10000}. 566

• Software: Python 3.9.7, PyTorch 1.10.1, Trans- 567

formers 4.28.1. 568

• Computing Infrastructure: our code is run with 569

a single Nvidia 80GB A100 GPU. 570

• Half-Precision Floating-Point Format: as in- 571

troduced in §3, our BLI inference relies on 572

torch.float16 for both our SAIL and the ZERO- 573

SHOT baseline. We have verified that fp16 can 574

accelerate our computation with only negligible 575

impact on the absolute BLI performance. Note that 576

Li et al. (2023) did not specify torch.float16 in 577

their ZERO-SHOT experiments with LLAMA 7B and 578

LLAMA 13B, so the BLI scores reported are slightly 579

different from ours. 580

• Data, WEs, LLMs: all the BLI data, WEs, 581

LLMs and baseline codes are open-source and 582

publicly available. The WEs for retrieving in- 583

context examples are fastText WEs (Bojanowski 584

et al., 2017): the version pretrained on Wikipedia7 585

is used for XLING and the version pretrained 586

with Wikipedia plus Common Crawl8 is used for 587

PanLex-BLI, as recommended by XLING and 588

PanLex-BLI, respectively. The same WEs are used 589

for our MAPPING-BASED baselines. 590

• Baselines: for every baseline, we use its rec- 591

ommended setup for unsupervised BLI and make 592

sure the recommended setup achieves its own (near- 593

)optimal performance. As introduced in §3, we 594

extend CONTRASTIVEBLI to the unsupervised BLI 595

setup. Specifically, we adopt the set of its hyper- 596

parameters recommended for weakly supervised 597

BLI setup, which we found can also achieve strong 598

unsupervised BLI performance. 599

• Parameter Count and Runtime: we report the 600

number of parameters of each LLM and the GPU 601

7https://fasttext.cc/docs/en/pretrained-vecto
rs.html

8https://fasttext.cc/docs/en/crawl-vectors.h
tml
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runtime for BLI inference on a single BLI direction602

DE→FR, which contains circa 2K word pairs, in603

Table 5.604

• Carbon Footprint: our work consumes about605

750 A100 GPU hours in total which we estimate606

causes the emission of 90kg CO2 equivalents ac-607

cording to a publicly available ‘machine learning608

emissions calculator’ (Luccioni et al., 2019)9.609

E Full BLI Results610

Table 6 shows detailed BLI scores for each BLI di-611

rection in the XLING dataset. Similarly, individual612

per-direction results on PanLex-BLI are presented613

in Table 7.614

9https://mlco2.github.io/impact/#compute
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LLM Model ID Parameter Count Runtime: ZERO-SHOT Runtime: SAIL

LLAMA 7B "huggyllama/llama-7b" 6, 738, 415, 616 5 min 40 min
LLAMA-27B "meta-llama/Llama-2-7b-hf" 6, 738, 415, 616 5 min 40 min
LLAMA 13B "huggyllama/llama-13b" 13, 015, 864, 320 6 min 49 min

LLAMA-213B "meta-llama/Llama-2-13b-hf" 13, 015, 864, 320 6 min 49 min

Table 5: LLMs adopted in our work with their huggingface.co model IDs, parameter count, and GPU runtime on
a single BLI direction for ZERO-SHOT and SAIL respectively.

[Unsupervised BLI] VECMAP CONTRASTIVEBLI (C1) CONTRASTIVEBLI (C2) LLAMA 7B LLAMA-27B LLAMA 13B LLAMA-213B LLAMA 7B LLAMA-27B LLAMA 13B LLAMA-213B

MAPPING-BASED ZERO-SHOT SAIL (Ours)
DE→FR 48.98 50.39 51.8 42.46 44.44 47.37 46.64 54.67 54.77 58.37 61.5
FR→DE 43.97 43.61 44.9 43.2 45.47 48.11 50.8 50.08 54.16 54.47 56.29
DE→IT 48.41 49.77 50.23 42.78 42.78 46.06 48.51 53.36 54.25 57.38 59.05
IT→DE 44.03 43.93 45.43 38.6 41.55 44.39 45.27 46.15 51.63 52.2 52.92
DE→RU 25.67 28.22 31.09 30.41 35.32 32.76 36.62 45.12 46.9 48.98 51.59
RU→DE 39.13 40.02 41.33 43.53 44.68 43.11 42.12 46.83 50.55 50.65 53.9
EN→DE 48.4 47.45 47.4 52.0 52.1 54.35 59.85 59.55 61.75 62.8 65.05
DE→EN 54.51 54.36 55.97 42.57 44.91 46.95 47.16 55.35 56.44 57.96 61.24
EN→FR 60.15 61.05 61.25 57.6 62.65 62.65 61.75 72.6 73.8 75.85 76.35
FR→EN 61.25 62.34 63.58 54.58 55.56 57.27 53.03 63.68 65.13 65.29 66.63
EN→IT 57.4 57.6 58.75 58.95 60.85 60.4 65.8 71.7 73.0 74.25 77.6
IT→EN 60.83 62.02 63.46 47.39 50.08 54.94 53.54 60.1 64.08 64.13 65.43
EN→RU 24.55 25.45 26.1 42.05 44.6 40.1 47.6 57.4 60.25 61.05 63.75
RU→EN 46.52 46.67 50.03 46.15 50.81 50.13 51.44 54.95 58.51 57.41 59.93
IT→FR 64.75 65.12 65.89 51.42 54.47 57.36 55.3 61.91 65.58 65.94 68.17
FR→IT 63.37 63.94 64.61 57.32 55.98 60.01 61.87 64.72 66.22 69.22 69.53
RU→FR 45.31 46.78 47.93 43.58 48.04 47.77 41.17 54.79 57.62 57.52 60.29
FR→RU 24.26 25.09 26.07 35.8 38.8 38.59 39.94 48.94 51.42 53.29 54.11
RU→IT 43.95 44.89 46.15 47.3 47.15 45.99 49.45 53.54 56.26 56.31 59.25
IT→RU 25.48 26.87 29.35 31.52 33.02 35.45 36.38 44.03 48.63 50.75 53.49

Avg. 46.55 47.28 48.57 45.46 47.66 48.69 49.71 55.97 58.55 59.69 61.8

Table 6: Full BLI results on 20 XLING BLI directions.

[Unsupervised BLI] VECMAP CONTRASTIVEBLI (C1) CONTRASTIVEBLI (C2) LLAMA 7B LLAMA-27B LLAMA 13B LLAMA-213B LLAMA 7B LLAMA-27B LLAMA 13B LLAMA-213B

MAPPING-BASED ZERO-SHOT SAIL (Ours)
BG→CA 39.6 38.08 39.66 32.83 29.79 32.77 33.47 40.19 42.23 42.52 47.9
CA→HU 34.09 34.2 36.85 23.7 23.2 24.42 30.17 32.27 35.25 38.34 39.83
HU→BG 36.46 38.36 40.44 28.28 27.71 26.5 26.73 38.19 41.47 43.89 46.66
CA→BG 33.6 31.39 33.94 26.35 27.2 27.03 28.39 36.54 38.47 42.27 45.67
HU→CA 37.79 39.77 43.45 32.62 28.66 38.23 37.51 41.53 46.09 47.91 51.65
BG→HU 39.24 38.95 41.44 24.13 28.12 23.67 27.72 33.16 38.08 38.14 41.38

Avg. 36.8 36.79 39.3 27.98 27.45 28.77 30.66 36.98 40.27 42.18 45.51

Table 7: Full BLI results on 6 PanLex-BLI BLI directions.
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