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Abstract

Researchers have reported high decoding accuracy (>95%) using non-invasive1

Electroencephalogram (EEG) signals for brain-computer interface (BCI) decod-2

ing tasks like image decoding, emotion recognition, auditory spatial attention3

detection, etc. Since these EEG data were usually collected with well-designed4

paradigms in labs, the reliability and robustness of the corresponding decoding5

methods were doubted by some researchers, and they argued that such decoding6

accuracy was overestimated due to the inherent temporal autocorrelation of EEG7

signals. However, the coupling between the stimulus-driven neural responses and8

the EEG temporal autocorrelations makes it difficult to confirm whether this over-9

estimation exists in truth. Furthermore, the underlying pitfalls behind overesti-10

mated decoding accuracy have not been fully explained due to a lack of appro-11

priate formulation. In this work, we formulate the pitfall in various EEG decod-12

ing tasks in a unified framework. EEG data were recorded from watermelons13

to remove stimulus-driven neural responses. Labels were assigned to continuous14

EEG according to the experimental design for EEG recording of several typical15

datasets, and then the decoding methods were conducted. The results showed the16

label can be successfully decoded as long as continuous EEG data with the same17

label were split into training and test sets. Further analysis indicated that high18

accuracy of various BCI decoding tasks could be achieved by associating labels19

with EEG intrinsic temporal autocorrelation features. These results underscore20

the importance of choosing the right experimental designs and data splits in BCI21

decoding tasks to prevent inflated accuracies due to EEG temporal correlations.22

The watermelon EEG dataset collected in this work can be obtained at Zenodo:23

https://zenodo.org/records/11238929, and all the codes of this work can24

be obtained in the supplementary materials.25

1 Introduction and related works26

A brain-computer interface (BCI) is a type of human-machine interaction that bridges a pathway27

from the brain to external devices [1]. Electroencephalogram (EEG) has emerged as a valuable tool28

for BCI because of its high time resolution, low cost, and good portability [2], and algorithms of29

neural decoding from EEG signals play a role in its practical applications. Recently, deep learning30

methods have been developed widely for various EEG decoding tasks, and high decoding accuracy31

was reported. For example, in the task of decoding image classes with EEG recordings, when32

subjects were required to watch images of different classes, a decoding accuracy of 82.90% was33

reported for the 40-way classification by Spampinato et al. [3]. With their EEG dataset, subsequent34
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studies reported a higher decoding accuracy (98.30%, [4]), high performance on image retrieval, and35

even image generation from EEG [5, 6, 7].36

However, it remains unclear what kind of EEG features are learned by the DNN-based models. Some37

researchers have posited that the high decoding accuracy on the image-evoked EEG dataset was38

attributed to the block-design paradigm during EEG recording [8, 9, 10], in which 50 images with the39

same class label were presented to the subject continuously in one block, and the 40 image-classes40

were presented as 40 separate blocks. Due to the existence of temporal autocorrelation of EEG41

signals, i.e., the temporally nearby data is more similar than the temporally distal [11, 12, 13, 14],42

the models could learn the block-related features rather than the image-related.43

To verify their concerns, Li et al. [8] recorded EEG with two experimental designs: block design44

and rapid-event design. For the rapid-event design, images across the 40 classes were presented45

alternately and randomly. When the same DNN model was used, it was found that the decoding46

accuracy was close to Spampinato et al. [3] with the block-design EEG data, but it was dramati-47

cally decreased to the chance-level (2.50%) with the rapid-event design data. Subsequent work also48

confirmed the low decoding accuracy for EEG recorded with rapid-event design [9, 10]. However,49

Palazzo et al. [15] proposed that temporal autocorrelations only play a marginal role in EEG de-50

coding tasks because they found that EEG data recorded during rest periods (temporal proximity to51

adjacent blocks) could not be successfully classified as the preceding block label or the succeeding52

block label. They also argued that the rapid-event design seemed to weaken the image-related neural53

responses due to the possible cognitive load and fatigue effect compared to the block design. Some54

researchers [15, 16, 17, 18] pointed out that block design is essential because humans tend to react55

more consistently and respond faster when conditions are presented in blocks [19, 20]. Wilson et56

al. [18] advised that classification work that decodes from block design datasets is the most suitable57

approach until advances are made to reduce noise.58

Although the pitfall of overestimated decoding accuracy has been mainly discussed in image neural59

decoding tasks, we noticed that similar pitfalls might also exist in various EEG decoding tasks such60

as in auditory spatial attention detection (ASAD) tasks [21, 22, 23, 24], which involves decoding61

the subjects auditory attention locus from neural data, and in emotion recognition task [25, 26, 27],62

which involves recognizing the subjects emotion type from neural data. Researchers have also found63

that splitting a continuous EEG from a specific experimental condition into training and test sets64

would bring higher decoding accuracy in epilepsy detection tasks [28], motor imagery decoding65

tasks [29], and so on. All those high decoding accuracy works share the common characteristic:66

continuously recorded EEG data of a specific class (condition) label are divided into training and67

test sets (see the top-left of Figure 1).68

Although some studies have mentioned the overestimated decoding accuracy and tried to remind69

the possible pitfall [8, 30], it is difficult to discriminate the influence of the inherent temporal auto-70

correlation in EEG signals due to the coupling of stimuli-driven neural responses and the temporal71

autocorrelations. More importantly, due to the lack of an effective formalization, there is not an72

adequate explanation of how models utilize temporal autocorrelation features for decoding. Further-73

more, their concerns only focused on one specific decoding task, and the results and conclusions74

cannot be generalized to general BCI decoding tasks.75

In this work, the pitfall of various EEG decoding tasks was formulated with a unified framework.76

To completely decouple the temporal autocorrelation features from stimuli-driven neural responses,77

EEG data were collected from 10 watermelons in this work to construct "Watermelon EEG". This78

method is known as phantom EEG in previous studies [31, 32, 33, 34, 35, 36], and the EEG data79

exclude stimulus-driven neural responses while reserving the temporal autocorrelation features. For80

comparison, a human EEG dataset was also adopted. The watermelon EEG and human EEG81

were reorganized into three classic neural decoding EEG datasets following their EEG experimen-82

tal paradigm: image classification (CVPR, [3]), emotion classification (DEAP, [37]), and auditory83

spatial attention decoding (KUL, [38]), resulting in six EEG datasets. A sample CNN-based decod-84

ing model was used to complete the decoding tasks with the corresponding EEG dataset, and the85

experimental results revealed that:86

1. When the pitfall was formulated with a unique framework, and the temporal autocorre-87

lation was defined as domain features, high decoding accuracy of various BCI decoding88

tasks could be achieved by associating labels with EEG intrinsic temporal autocorrelation89

features.90
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2. The pitfall exists not only in classification but also widely in EEG-image joint training91

without explicit labels and even image generation.92

3. Splitting a continuous EEG with the same class label into training and test sets should never93

be used in future BCI decoding works.94

2 Method95

The section is organized by: the pitfall is formulated in Subsection 2.1, and the datasets used are96

introduced in Subsection 2.2. Then, the methods to finish different classification tasks are introduced97

in Subsection 2.3, and joint training and image generation from EEG are introduced in Subsection98

2.4. Some implementation details and statistical analysis method are described in Subsection 2.5.99

Figure 1: Overestimated decoding performance in BCI works. (a) Continuous EEG data in a certain
experimental condition (with the same class label) are split into training and test sets for decoder
training and evaluation. (b) With the test EEG sample input, the decoder gives output in the forms of
classification, retrieval, and generation. (c) Decoders may use both domain features or class-related
features for decoding.

2.1 Problem Formulation100

In some BCI works on domain generalization [39], all EEG data from a dataset [40] or from a subject101

[41] are usually regarded as a domain to emphasize EEG pattern distribution differences between102

datasets or subjects. Adopted from this concept, we regard a period of continuous EEG data with103

the same class label as a domain. In some BCI works [3, 4, 21, 22, 23, 24, 25, 26, 27], researches104

segment the EEG data from the same domain into samples and further split the samples into training105

and test data (as shown in Figure 1a) and complete decoding task, such as classification, retrieval106

and generation (as shown in Figure 1b). In these cases, the models used in these works would learn107

the coupled features containing the class-related feature and domain feature (as shown in the middle108

of the Figure 1c). The underlying assumption of these works is that the domain feature plays only a109

margin role in EEG decoding tasks as shown in the left of the Figure 1c. However, we assumed that110

the domain feature contributes to the high decoding accuracy as shown in the right of the Figure 1c,111

which is the pitfall we mentioned in Section 1.112

To validate our assumption, we need to formulate the pitfall. Denote D as the domain set, and each113

domain d ∈ D contains many samples. We use Sd to denote the sample set of the domain d. The114

notation xd
i represents the i-th sample (e.g., a 0.5-second EEG data corresponding to watching a115

specific image) of domain d, which is associated with class ydi (e.g., the class label panda of the116
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watched image). Considering the temporal autocorrelation of the EEG data, the domain features of117

data within the same domain are more similar, while the domain features of data in different domains118

are more distinct.119

For EEG decoding tasks, we assume the data is generated from a two-stage process. First, each120

domain is modeled as a latent factor z sampled from some meta domain distribution p(·). Second,121

each data sample x is sampled from a sample distribution conditioned on the domain z and class y:122

z ∼ p(·), x ∼ p(·|z, y) (1)

Given the sample x, the aim of a specific EEG decoding task is to uncover its true class label using123

the posterior p(y|x). The quantity can be factorized by the domain factor z as,124

p(y|x) =
∫

p(y, z|x)dz =

∫
p(y|x, z)p(z|x) (2)

When we use the Watermelon EEG dataset or use a dataset that is completely unrelated to the125

current task (e.g., decoding images from an auditory EEG dataset), the class-related feature has126

none possibility to exist in EEG samples. In this condition, p(y|x, z) = p(y|z) and the equation (2)127

can be modified as:128

p(y|x) =
∫

p(y, z|x)dz =

∫
p(y|z)p(z|x) (3)

The assumption of this work is that the model could also deduce p(y|x) by learning p(y|z) and129

p(z|x) even there is none class-related feature exists. In other words, we assumed that it could also130

achieve high decoding accuracy on different EEG decoding tasks when using the Watermelons EEG131

dataset.132

2.2 Dataset133

Watermelon EEG Dataset Ten watermelons were selected as subjects. EEG data were recorded134

with a NeuroScan SynAmps2 system (Compumedics Limited, Victoria, Australia), using a 64-135

channel Ag/AgCl electrodes cap with a 10/20 layout. An additional electrode was placed on the136

lower part of the watermelon as the physiological reference, and the forehead served as the ground137

site (see Appendix A.1 for photography). The inter-electrode impedances were maintained under138

20 kOhm. Data were recorded at a sampling rate of 1000 Hz. EEG recordings for each watermelon139

lasted for more than 1 hour to ensure sufficient data for the decoding task. We refer to the dataset140

consisting of EEG recordings of 10 watermelons as the Watermelon EEG Dataset.141

SparrKULee Dataset SparrKULee dataset[42] is a speech-evoked EEG dataset from the KU Leu-142

ven University containing 64-channel EEG recordings from 85 participants, each of whom listened143

to 90-150 minutes of natural speech. We used this dataset because EEG recordings were longer than144

1 hour to ensure a sufficient amount of data for each subject. To match the number of subjects in145

the Watermelon EEG Dataset, EEG data from 10 subjects (ID: Sub7-Sub16) from the SparrKULee146

Dataset were used.147

Dataset reorganization and dataset segmentation The term "reorganization" refers to segmenting148

continuous EEG into samples and assigning each sample a class label and a domain label according149

to the referenced experimental design. Here, we follow the experimental designs of three classical150

published EEG datasets to reorganize the Watermelon EEG Dataset and SparrKULee Dataset. These151

three datasets were collected respectively for image decoding, emotion recognition, and ASAD152

tasks.153

For the image decoding task, we referred to the experimental design of the CVPR dataset [3]. For154

the CVPR dataset, 40 classes of images were presented in a block-design paradigm. Specifically, 50155

different images of the same class were presented continuously in a block, with each image lasting156

for 0.5 second, resulting in 40 blocks of presentation for each subject. The 0.5-second length EEG157

data of the same class were split into training, validation, and test sets in a ratio of 8:1:1 [4, 3].158

Following this experimental design and dataset segmentation, we segment continuous EEG from159
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the Watermelon EEG Dataset and SparrKULee Dataset into blocks and assign a unique class label160

and a unique domain label for each block. The interval between adjacent blocks is set to 10 seconds161

to match the rest time of the subjects during the EEG recording in the CVPR dataset. Then, EEG162

data in each block are further segmented into 50 0.5-s length samples. Since the EEG data in the163

CVPR dataset has 128 channels, we replicated our 64-channel EEG in the channel dimension. The164

reorganized datasets for Watermelon Dataset and SparrKULee Dataset are called WM-CVPR and165

SK-CVPR, respectively. Here, we use the "A-B" naming format, where the left side of "-" represents166

the source dataset (WM: watermelon dataset, SK: SparrKULee Dataset), and the right side of "-"167

represents the dataset of which the experimental design is referenced. For the emotion recognition168

task and ASAD task, the DEAP dataset and the KUL dataset are used as the referenced dataset,169

resulting in WM-DEAP, SK-DEAP, WM-KUL, and SK-KUL. More details for reorganization can170

be found in Appendix A.2.171

2.3 Classification tasks172

Model. To demonstrate that domain features are strong and easy to be learned by the network,173

we used a simple CNN (or some parts of this CNN) to complete all classification tasks mentioned174

in this work. The CNN network includes a layer-norm layer, a 2D-convolutional layer (output175

channel: 100), an averaging pooling layer, and two fully connected layers. The kernel size of the176

2D-convolutional layer depends on the channel number and sampling frequency of the input EEG.177

The node number of the output fully connected layer depends on the number of classes.178

Decoding the domain feature To demonstrate that the model can predict the domain factor z from179

EEG input sample x, which relates to learning posterior p(z|x), a domain label classification was180

adopted on the six datasets (i.e., WM-CVPR, WM-DEAP, WM-KUL, SK-CVPR, SK-DEAP and181

SK-KUL dataset) with a simple CNN classifier. The splitting strategy leave-samples-out was used,182

which means that all sample were randomly split into training set, validation set and test set. The183

outputs after the averaging pooling layer were selected as domain feature representation, and t-SNE184

was utilized for dimensionality reduction and visualization.185

Decoding the class label from the domain feature To demonstrate that the model can predict186

the class label y from the domain factor z, which relates to learning posterior p(y|z), a class label187

classification was adopted on the four datasets (classification on the WM-CVPR dataset and SK-188

CVPR dataset are unnecessary since domain labels and class labels are one-to-one correspondence)189

using a single network with two linear layers and an intermediate sigmoid function.190

End-to-end classification To demonstrate that the model can predict the class label y from the EEG191

input sample x directly when samples in the training set and test set are from common domains,192

a class label classification was adopted on the six datasets with the simple CNN classifier. The193

splitting strategy leave samples out was used. Classification on the WM-CVPR dataset and SK-194

CVPR dataset is the same since domain labels and class labels in the two datasets are one-to-one195

correspondence. To demonstrate that the model indeed used the domain feature to complete the196

end-to-end classification, the splitting strategy leave domains out was used on the four datasets (i.e.,197

WM-DEAP, WM-KUL, SK-DEAP, and SK-KUL dataset) in which samples in the same domain198

only appear in the training set or the test set.199

Zero-shot classification In a recent work [4], EEG data from 34 classes within the CVPR2017200

dataset were used to train an EEG encoder, and the remaining 6 unseen classes were used for test-201

ing. The results showed that features of different unseen classes clustered in distinct groups on the202

two-dimensional t-SNE plane. Similar analyses were conducted on the SK-CVPR and WM-CVPR203

datasets. Six classes were selected for testing, and the remaining 34 classes were for training. The204

simple CNN was used to predict class labels from input EEG samples, and the outputs from the av-205

erage pooling layer were chosen as the EEG feature representation. Two strategies were employed206

for selecting the 6 test classes: random selection and first-six selection. For random selection, the 6207

test classes are randomly chosen from the 40 classes. For the first-six selections, the first presented208

6 classes in the EEG experiment are chosen. During the test stage, since the training set does not in-209

clude classes corresponding to the test EEG data, the model could not give the corresponding labels210

and could only output the most probable classes among the 34 seen during training. Therefore, we211

proposed two evaluation metrics:Accnear and Acc7th. Accnear represents the proportion of EEG212

data classified into temporally adjacent classes, while Acc7th represents the proportion classified213

into the category presented seventh in time.214

5



2.4 Joint training and image generation215

To demonstrate that the model can utilize domain features to accomplish retrieval and generation216

besides classification, EEG-image joint training and image generation on WM-CVPR and SK-CVPR217

were conducted.218

Joint training In the EEG-image joint training, a pre-trained image encoder was typically utilized219

to extract image representation, while an EEG encoder was employed to extract EEG features to220

align with the image representation. During the decoding process, a retrieval task was applied.221

Specifically, given a test EEG sample and a collection of images containing the target and the non-222

target. The image representation was reconstructed from the EEG with the EEG encoder. The223

similarity between the reconstructed image representation and all candidate image representations224

in the collection is calculated. The decoded output image is selected based on the ranking of these225

similarities. Usually, the Top-k accuracy and normalized Rank accuracy are used as evaluation226

metrics. In this work, the simple CNN described in Subsection 2.3 is used as an EEG encoder. The227

detailed implementation can be found in Appendix A.3.228

Image generation The image generation aims to generate images seen by the subjects from their229

EEG data. This task commonly uses a two-stage process: EEG encoding and image generation.230

In the EEG encoding stage, a model is built to encode EEG data into a latent representation. In231

the image generation stage, a pre-trained image generator is used. The generator is fine-tuned with232

EEG representation and corresponding images. In this work, the EEG data are first encoded into233

image representation with a simple CNN described in Subsection 2.3. Following previous work[43],234

a latent diffusion model conditioned on image representation was used. The metric of n-way top-k235

accuracy was used for evaluating the semantic correctness of generated images [44]. The detailed236

implementation can be found in Appendix A.4.237

2.5 Implement details238

The neural networks were implemented with the Pytorch and trained on a single high-performance239

computing node with 8 A800 GPU. For the classification task, the AdamW [45] optimizer was em-240

ployed to minimize the cross-entropy loss function with a learning rate of 10−3. For the joint training241

and image generation, the AdamW optimizer was used with a learning rate of 10−3 and 5 × 10−4242

for each task respectively. More details can be found in our codes. All the experiments mentioned243

in this work were trained within the subjects (i.e., models were trained for each subject respectively)244

except special annotation (unseen subject decoding results were only presented in Appendix A.5).245

For statistical analysis, the one-sample t-test was used to check whether the reported results were246

significantly higher than the chance level. Bonferroni correction was used to adjust the p-value. A247

p-value of 0.05 or lower was considered statistically significant.248

3 Results249

3.1 Classification tasks250

The results shown in Table 1 present that classification accuracy in domain label classification and251

class label classification are all significantly above the chance level. This shows that the domain252

feature can be extracted effectively with a simple CNN, and the label class can be decoded from253

the extracted domain features or from EEG directly. In contrast, the decoding accuracy drops to the254

chance level when using the splitting strategy leave-domains-out, further supporting domain feature-255

induced high decoding accuracy. The standard error of the mean calculated over the subjects level256

is reported for accuracy in this work.257

Figures 2a and 2b show the t-SNE plot for domain label classification and end-to-end class label258

classification. As shown in Figure 2a, 8 distinct clusters exist, each corresponding to one domain.259

In Figure 2b, 8 distinct clusters also exist, with four corresponding to class label 1 and the other260

four corresponding to class label 2. This indicates that the high decoding accuracy results from261

associating class labels with domain features.262
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Table 1: Classification accuracy (%) on the six datasets. DLC is for domain label classification.
TLC-DF is for class label classification from domain features. TLC-EEG is for end-to-end class
label classification. TLC-EEG-woDO is for class label classification direct from EEG when samples
in the training set and test set are from different domains.

WM-CVPR WM-DEAP WM-KUL SK-CVPR SK-DEAP SK-KUL
DLC 88.78± 4.95 96.98± 0.76 99.99± 0.01 69.83± 2.98 72.70± 1.36 100.00± 0.00

DLC (chance level) 2.50 2.50 12.50 2.50 2.50 12.50
TLC-DF - 92.77± 1.31 100.00± 0.00 - 76.19± 1.80 100.00± 0.00

TLC-EEG 88.78± 4.95 88.74± 3.26 82.74± 6.44 69.83± 2.98 74.44± 2.76 93.34± 2.01
TLC-EEG-woDO - 24.67± 2.31 49.97± 4.67 - 25.34± 1.85 59.32± 4.07

TCL (chance level) 2.50 25.00 50.00 2.50 25.00 50.00

Figure 2: t-SNE plot for (a) domain label classification, (b) end-to-end class label classification,
and (c) zero-shot class label classification

The experimental results for zero-shot classification are displayed in Table 2. It can be observed263

that the model tended to classify test samples into temporally adjacent classes. Figure 2c shows the264

t-SNE visualization of the unseen EEG features extracted from the decoder. Despite being unseen,265

different domains of features clustered in distinct groups. This suggests that the decoder just learned266

to extract EEG domain features during training and distinguish unseen EEG responses from the267

domain features.268

Table 2: Zero-shot EEG classification accuracy (%) on WM-CVPR and SK-CVPR datasets.

WM-CVPR
first-six

WM-CVPR
random

SK-CVPR
first-six

SK-CVPR
random

Accnear - 79.43± 5.61 - 78.00± 5.66
Acc7th 69.60± 10.64 6.73± 3.24 77.03± 11.32 0.87± 0.82

3.2 Joint training and image generation269

For EEG-image joint training, Table 3 displays the accuracy for the retravel task on the test set. The270

table shows that, for both types of loss functions, decoding accuracy is far above the chance level,271

demonstrating that the model can utilize domain features to align EEG with image features. Table 3272

Result for joint training on WM-CVPR and SK-CVPR with a loss function of cosine similarity (CS)273

or InfoNCE.274

Table 3: Accuracy (%) for joint training on WM-CVPR and SK-CVPR with a loss function of cosine
similarity (CS) or InfoNCE.

WM-CVPR SK-CVPR Chance levelCS loss InfoNCE loss CS loss InfoNCE loss
Top1 Acc 81.40± 9.25 90.15± 5.45 80.70± 0.60 79.70± 0.92 2.50
Top5 Acc 90.65± 5.82 98.56± 1.09 88.86± 1.03 92.39± 0.38 12.50
Rank Acc 95.87± 2.51 99.42± 0.38 95.20± 0.24 98.09± 0.07 50.00

For image generation, Table 4 displays the n-way top-k accuracy for the generated images on the275

WM-CVPR and SK-CVPR datasets. The metrics are significantly above the chance level, indicating276
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that the generated images have correct semantics. Figure 3 shows some generated images on the277

WM-CVPR dataset. As shown in the figure, the model can exactly generate the correct images. The278

results on EEG-image joint training and image generation show that in addition to classification279

tasks, retrieval, and generation can also achieve high performance by leveraging domain features280

shared by the test and training sets.281

Table 4: Accuracy (%) for semantic correctness. The repeated times N was set to 50.

- Top-1/50-way Top-5/50-way Top-1/100-way Top-5/100-way

WM-CVPR 26.77± 3.37 46.44± 4.60 21.64± 2.89 38.11± 4.30
SK-CVPR 25.04± 0.93 43.61± 0.88 20.37± 0.91 35.35± 0.89

Chance 2.00 10.00 1.00 5.00

Figure 3: EEG-generated image from a typical watermelon subject, where the first column of
each panel represents the real images "watched" by the watermelon subject, and the following five
columns show the images generated by the model.

4 Discussion282

4.1 Relying on the domain features for EEG decoding283

While many works on EEG decoding have reported high-performance results, we proposed that284

some of these high-performance may rely on temporal autocorrelation of EEG data. The pitfall may285

involve different EEG decoding tasks. To clarify this pitfall, the concept of domain was adopted286

to describe the temporal autocorrelation of a continuous EEG with the same label. EEG data were287

collected from watermelon as the phantom to exclude the contribution of stimuli-driven neural re-288

sponses to decoding results. The results showed that a simple CNN network could well learn domain289

features from EEG data and could associate class labels with domain features.290

To avoid the pitfalls, a feasible approach is to adopt a reasonable data-splitting strategy to avoid train-291

ing and test sets sharing the common domain features, i.e., a leave-domains-out splitting strategy.292

For instance, a leave-subjects-out data-splitting strategy can be adopted, which entails designating293

the data from certain participants for training and data from others for testing. Alternatively, for294

datasets that do not follow a block design, a leave-trials-out strategy may be applied. Prior research295

has consistently demonstrated that employing a leave-subjects-out splitting strategy precipitates a296

notable decline in decoding performance [46]. In some cases, it has been reported that decoding297

accuracy dropped to the chance level [47, 8]. The prevalent interpretation is that inter-individual298

variability [46] hampers the generalizability across different subjects. However, we posit that the299

observed decrement in decoding accuracy is attributable to model overfitting to domain features.300

Although the leave-subjects-out partitioning strategy is designed to prevent the leakage of domain301

features, the presence of these domain features in the training set can still lead the model to inadver-302

tently exploit them to differentiate between categories during the training phase. The methods and303

results further support the conclusion can be found in Appendix A.5304

Palazzo et al. [15] proposed that the EEG temporal correlation related to baseline drift could be al-305

leviated by high-pass filtering. However, our further experiment proved that the domain feature still306

exists and that high decoding accuracy could be achieved in any frequency band (see Appendix A.6).307

We argue that the focus should not be exclusively on the elimination of EEG autocorrelation through308
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filtering. Instead, greater emphasis should be placed on the experimental paradigms of EEG record-309

ing and the methods employed for dataset splitting. By addressing these aspects, we can proactively310

prevent the overestimated decoding accuracy arising from EEG temporal autocorrelations.311

It is worth noting that we do not want to create an illusion that all BCI works utilize EEG temporal312

autocorrelation features for decoding. In fact, there are many works that do not rely on EEG temporal313

autocorrelation features for decoding in image decoding [48, 49, 50] emotion recognition [51], sleep314

detection [40, 41] and ASAD [52]. These works demonstrated the feasibility of various BCI tasks.315

4.2 Potential sources of domain features316

In this work, we have demonstrated the existence of EEG temporal autocorrelation in the water-317

melon EEG, which consists of no neural activities, and in the human EEG data. Li et al. [8] believed318

the model decodes by utilizing the baseline drift in the CVPR2017 dataset. They found that when319

the EEG data is filtered with a bandpass filter, the decoding accuracy dropped greatly. Palazzo et320

al. [15] also claimed that temporal correlation was strong only in low frequency. However, we have321

demonstrated in Appendix A.4 that the domain feature still exists and that high decoding accuracy322

can be achieved in any frequency band. In addition to baseline drift, some neuroscience works have323

shown that temporal autocorrelation existed in neural oscillation, which could be reflected in EEG324

in various frequency bands. This is referred to as Long-Range Temporal Correlations (LRTC) in325

neuroscience research [11, 12, 13, 14]. Linkenkaer-Hansen et al. [13] first calculated the LRTC in326

resting-state EEG data. They found that spontaneous alpha, mu, and beta oscillations result in signif-327

icant LRTC for at least several hundred seconds during resting conditions. Subsequent neuroscience328

research further demonstrated that significant LRTC exists in the theta [11] and gamma [12] bands.329

While baseline drift can be removed through filtering, the frequency range of the LRTC overlaps330

with the frequency range of stimuli-driven neural responses, making it impossible to remove this331

domain feature through filtering. Temporal correlation analysis on human EEG in the SparrKULee332

Dataset showed the existence of strong LRTC in all frequency bands, and the LRTC in a narrowband333

is sufficient to complete the corresponding decoding task. The methods and results further support334

the conclusion can be found in Appendix A.7.335

4.3 Limitation and future work336

Although direct evidence of overestimated decoding accuracy attributable to domain feature across337

various brain-computer interface (BCI) tasks have been provided in the current work, no solution has338

been proposed to mitigate overfitting to domain features in the training set. Some works have already339

used domain adaptation [2, 53, 54] or domain generalization [40, 41] method to improve decoding340

accuracy under leave-subjects-out data splitting in BCI tasks. This may also help alleviate the ad-341

verse effects of domain features on decoding tasks. It is also noteworthy to highlight the remarkable342

efficacy of large-scale EEG model in various BCI decoding tasks [55, 56, 57]. Given that domain343

features are pervasive in extensive EEG datasets and do not necessitate manually annotated labels,344

self-supervised pre-trained large EEG models may be especially adept at discerning and neutralizing345

domain features, thereby facilitating more robust and generalizable decoding performance.346

5 Conclusion347

In this work, the “overestimated decoding accuracy pitfall” in various EEG decoding tasks is for-348

mulated in a unified framework by adopting the concept of “domain”. Some typical EEG decoding349

tasks (image decoding, emotion recognition, and auditory spatial attention detection) are conducted350

on the self-collected watermelon EEG dataset. The results showed that EEG data from different351

domains have distinctive domain features induced by EEG temporal autocorrelations. Using the in-352

appropriate data partitioning strategy, high decoding accuracy is achieved by associating class labels353

with domain features. The results will draw attention to the high decoding performance caused by354

EEG temporal correlation and guide the development of BCI in a positive direction.355
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A Appendix A531

A.1 Photography of the watermelon subject532

Figure 4: Photos of watermelons used in the experiment. Each watermelon’s ID is marked on the
watermelon, with IDs ranging from 1 to 10.

A.2 Reorganization for KUL dataset and DEAP dataset533

For the emotion recognition task, we referred to the experimental design of DEAP dataset [37]. In534

this dataset, the EEG data were recorded while subjects are presented with 40 audio-visual clips of535

60 seconds in length, with each corresponding to one of four emotion classes. We only used the first536

32 channels of the EEG to match the EEG channel numbers in the DEAP dataset. The watermelon537

EEG data and SparrKULee EEG data were down-sampled to 128 Hz and then were segmented into538

40 60-second segments. The interval between adjacent segments is set to 40 seconds to match the539

rest time of the subjects during the EEG recording in the KUL dataset. Each segment was assigned540

a unique domain label and a class label in accordance with the DEAP dataset, and each segment was541

further segmented into 2-second samples [25]. The reorganized datasets for the Watermelon EEG542

Dataset and SparrKULee Dataset are called WM-DEAP and SK-DEAP, respectively.543

For the ASAD task, we referred to the experimental design of the KUL dataset [38]. In this dataset,544

8 clips of two-talker mixed speech are presented to subjects, with each lasting for 6 minutes. Each545

speech clip contains a left talker and a right talker. Subjects are instructed to attend left or right talker546

during the entire duration of one clip presentation. The watermelon EEG data and SparrKULee EEG547

data were down-sampled to 128 Hz and then were epoch into 8 6-minute segments. The interval548

between adjacent segments is set to 1-2 minutes to match the rest time of the subjects during the EEG549

recording in the KUL dataset. Each segment was assigned a unique domain label and a class label550

in accordance with the KUL dataset and was further segmented into 1-second samples [22, 21, 23].551

The reorganized datasets for Watermelon Dataset and SparrKULee Dataset are called WM-KUL and552

SK-KUL, respectively.553

A.3 Detailed implementation of joint training554

The joint training was performed on the WM-CVPR and SK-CVPR datasets. All EEG samples555

were randomly divided into the training set, validation set, and test set in a ratio of 8:1:1. The image556

encoder of the CLIP (CLIP VIT-L/14) model 1 is chosen to extract image representation, yielding557

1https://huggingface.co/openai/clip-vit-large-patch14
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768-dimensional vectors from the image inputs. The structure of the EEG encoder is similar to the558

model introduced in Subsection 2.3, with an augmentation from 40 to 768 output nodes to match559

the dimension of the image representation. The network is trained using either a cosine similarity560

(CS) loss or an InfoNCE contrastive loss (with a temperature parameter set to 0.07). The evaluation561

metrics selected are Top-1 accuracy, Top-5 accuracy, and Rank accuracy, where the Top-1 accuracy562

metric is equivalent to the classification accuracy in the classification task.563

A.4 Detailed implementation of image generation564

We take an approach similar to previous works [44] 2. We used a CLIP image encoder to extract565

image representation and trained an EEG encoder with cosine similarity loss to reconstruct image566

representation from EEG. This process is the same as described in Joint training with image features.567

The reconstructed features are then serviced as a conditional input of an image generator. To match568

the reconstructed features, we employ the pre-trained StableDiffusion model 3 as our generator. This569

model uses a fixed pre-trained image encoder (CLIP VIT-L/14) to extract image features, which570

then guide the Latent Diffusion models generation process in the latent space. The diffusion model571

gradually generates images from a random noise distribution that corresponds to the conditional572

features during its iterative process. To improve the generation performance, we fine-tuned the573

generator with the reconstructed image features and the corresponding images. Experiments were574

done on the WM-CVPR and SK-CVPR datasets. All EEG samples were randomly divided into575

training set, validation set, and test set in a ratio of 8:1:1.576

Consistent with previous work [1], we evaluate the semantic correctness of the generated images577

using N-way Top-1 and Top-5 accuracy classification tasks. Specifically, given a generated image578

input, a pre-trained ImageNet1K classifier is used to output a classification logit probability among579

1000 classes. Among the 1000 classes, N-1 random classes and the correct class are selected, and580

the Top-1 and Top-5 classification accuracy are calculated. To avoid randomness, this operation is581

repeated 50 times for each generated image, with the average value taken as the accuracy.582

A.5 leave-subjects-out data splitting strategy583

In this subsection, we employed the leave-subjects-out data splitting strategy. This refers to using584

data from a subset of subjects for training, while data from the remaining subjects are used for585

testing. Within the training data, there are two further data partitioning methods: leave-samples-out586

and leave-subjects-out. The former involves randomly dividing all samples of the training data into587

training and validation sets, whereas the latter uses data from a subset of subjects for the training set,588

with the remaining subjects data allocated for the test set. Table 5 presents the decoding accuracy589

for six datasets (i.e., WM-CVPR, WM-DEAP, WM-KUL, SK-CVPR, SK-DEAP, and SK-KUL).590

It can be observed that when the leave-samples-out splitting strategy was used within the training591

data, both the training and validation sets achieved very high decoding accuracy, but the accuracy592

only reached the chance level on the test set. Such results are similar to those reported by [46, 47, 8],593

which corroborates the argument that while the leave-subjects-out approach may avert the domain594

features leakage, it cannot prevent overfitting of the domain features during the training stage, as595

discussed in Subsection 4.1. Moreover, when the leave-subjects-out data splitting strategy was used596

within the training dataset, the validation set performance was only at chance level despite high597

accuracy on the training set. This further demonstrates that decoding that relies on domain features598

cannot be generalized to practical application scenarios.599

2https://github.com/bbaaii/DreamDiffusion
3https://huggingface.co/runwayml/stable-diffusion-v1-5
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Table 5: Decoding accuracy (%) for the six datasets on training, validation and test set. Leave-
subjects-out data splitting strategy is used for training and test data. Leave-samples-out and leave-
subjects-out data splitting strategy is used for training and validation set. The mean accuracy and
standard deviation are calculated over subjects level with a five-fold cross-validation.

Data
splitting strategy
for validation set

WM-CVPR WM-DEAP WM-KUL SK-CVPR SK-DEAP SK-KUL

leave-
samples-

out

Training 80.93± 1.68 87.86± 1.48 99.54± 0.16 69.17± 1.03 76.22± 0.71 100.00± 0.00
validation 80.55± 1.59 86.10± 1.63 99.43± 0.24 68.86± 1.20 74.55± 0.60 100.00± 0.00

Test 2.46± 0.16 24.22± 0.48 48.37± 2.15 2.70± 0.63 26.71± 0.87 50.22± 1.14
leave-

subjects-
out

Training 78.93± 1.09 86.40± 0.75 99.59± 0.16 72.31± 0.59 77.43± 0.52 100.00± 0.00
validation 3.70± 0.34 22.23± 1.29 56.13± 3.06 4.15± 0.60 24.57± 0.33 53.24± 2.85

Test 2.26± 0.16 24.90± 0.43 52.06± 1.26 2.13± 0.29 25.61± 0.43 45.22± 2.83
Chance level 2.50 25.00 50.00 2.50 25.00 50.00

A.6 Results on different frequency band600

To demonstrate that domain features are not solely due to baseline drift, we conducted an analysis on601

seven frequency bands across six datasets. These seven frequency bands are delta (0-4 Hz), theta (4-602

8 Hz), alpha (8-12 Hz), beta (12-32 Hz), low gamma (32-45 Hz), and high gamma (55-95 Hz). High603

gamma frequency band results for DEAP and KUL datasets are not presented due to the sampling604

rate of 128 Hz (i.e., only frequency under 64 Hz is available according to the Nyquist sampling605

theorem). Tables 6, 7, 8, and 9 show the decoding accuracy for domain label classification (DLC-606

EEG), class label classification from domain features (TLC-DF), class label classification directly607

from EEG (TLC-EEG), and class label classification directly from EEG when samples in the training608

set and test set are from different domains (TLC-EEG-woDO), respectively. As expected, the highest609

decoding accuracy is observed for both the low-frequency band (delta band) and the full-frequency610

EEG data. However, other frequency bands also exhibited decoding accuracy significantly higher611

than the chance level. This suggests that baseline correction through filtering does not eliminate612

domain features. Consequently, any experimental designs and data partitioning strategies that could613

lead to the leakage of domain information should be meticulously avoided.614

Table 6: Decoding accuracy (%) using different EEG bands for domain label classification (DLC-
EEG)

WM-CVPR WM-DEAP WM-KUL SK-CVPR SK-DEAP SK-KUL
Full 88.78± 4.95 96.98± 0.76 99.99± 0.01 69.83± 2.98 72.70± 1.36 100.00± 0.00

Delta 88.58± 5.11 96.31± 0.89 99.99± 0.01 69.65± 2.88 72.76± 1.24 100.00± 0.00
Theta 8.90± 1.95 10.54± 2.17 41.97± 5.50 11.24± 1.60 10.19± 1.15 43.11± 5.13
Alpha 8.62± 1.77 12.88± 2.80 43.42± 5.96 15.16± 1.76 12.87± 1.00 47.67± 4.70
Beta 18.53± 3.18 18.18± 2.72 57.85± 4.86 43.95± 2.27 43.68± 1.97 97.17± 0.71

Low gamma 39.74± 7.35 62.59± 5.95 85.97± 2.82 53.72± 2.25 52.82± 1.40 96.57± 0.96
High gamma 42.15± 7.39 - - 61.55± 1.94 - -
Chance level 2.50 2.50 50.00 2.50 2.50 50.00

Table 7: Decoding accuracy (%) using different EEG bands for class label classification from domain
features (TLC-DF)

WM-CVPR WM-DEAP WM-KUL SK-CVPR SK-DEAP SK-KUL
Full - 92.77± 1.31 100.00± 0.00 - 76.19± 1.80 100.00± 0.00

Delta - 92.12± 1.49 100.00± 0.00 - 76.51± 1.74 100.00± 0.00
Theta - 31.39± 1.80 67.78± 3.56 - 32.17± 1.16 69.41± 3.80
Alpha - 33.10± 2.43 68.78± 4.03 - 33.88± 0.69 71.98± 3.47
Beta - 39.03± 2.09 77.33± 3.71 - 56.91± 2.02 97.83± 0.72

Low gamma - 59.32± 5.22 88.23± 2.56 - 63.80± 1.43 97.44± 0.88
High gamma - - - - - -
Chance level - 25.00 50.00 - 25.00 50.00
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Table 8: Decoding accuracy (%) using different EEG bands for class label classification directly
from EEG (TLC-EEG)

WM-CVPR WM-DEAP WM-KUL SK-CVPR SK-DEAP SK-KUL
Full 88.78± 4.95 88.74± 3.26 82.74± 6.44 69.83± 2.98 74.44± 2.76 93.34± 2.01

Delta 88.58± 5.11 88.60± 3.36 81.49± 6.44 69.65± 2.88 74.90± 2.55 92.90± 2.15
Theta 8.90± 1.95 29.36± 1.27 66.40± 3.47 11.24± 1.60 30.62± 1.30 65.28± 3.83
Alpha 8.62± 1.77 31.00± 1.70 68.16± 3.59 15.16± 1.76 32.17± 1.10 67.11± 3.83
Beta 18.53± 3.18 35.95± 1.12 71.24± 4.16 43.95± 2.27 43.95± 1.78 93.27± 1.52

Low gamma 39.74± 7.35 52.05± 4.72 73.42± 5.37 53.72± 2.25 46.81± 1.03 93.51± 2.02
High gamma 42.15± 7.39 - - 61.55± 1.94 - -
Chance level 2.50 25.00 50.00 2.50 25.00 50.00

Table 9: Decoding accuracy (%) using different EEG bands for class label classification directly
from EEG when samples in the training set and test set are from different domains (TLC-EEG-
woDO)

WM-CVPR WM-DEAP WM-KUL SK-CVPR SK-DEAP SK-KUL
Full - 24.67± 2.31 49.97± 4.67 - 25.34± 1.85 59.32± 4.07

Delta - 25.89± 2.58 49.72± 4.85 - 24.71± 1.74 58.25± 3.76
Theta - 23.91± 0.63 49.10± 3.13 - 23.28± 2.18 51.89± 4.32
Alpha - 23.50± 0.82 49.70± 2.91 - 23.26± 1.68 52.77± 4.04
Beta - 22.96± 1.25 50.30± 4.35 - 24.21± 1.39 57.32± 5.26

Low gamma - 26.75± 2.17 49.46± 3.63 - 25.72± 1.61 54.88± 4.92
High gamma - - - - - -
Chance level - 25.00 50.00 - 25.00 50.00

A.7 LRTC615

The autocorrelation analysis was used to evaluate long range temporal correlation in EEG data from616

the Watermelon and SparrKULee datasets, similar to the approach taken by previous study. For a617

lengthy segment of single-channel EEG, the Morlet wavelet transform was employed to extract the618

time-varying amplitude envelope Wf (t) at a given frequency f . The autocorrelation function ACFf619

for Wf (t) is defined as:620

ACFf (τ) = corr(Wf (t),Wf (t+ τ)) (4)

In the above equation, corr(, ) denotes the Pearson correlation coefficient between two time series,621

and τ represents the time lag.622

In our analysis, the original EEG data were down-sampled to 200 Hz. Ninety-five analysis frequen-623

cies were distributed linearly and evenly between 1-95 Hz. Two hundred autocorrelation time lags624

were logarithmically spaced between 0.5 s and 500 s. For each subject in the Watermelon dataset,625

continuous EEG recordings were divided into five segments of equal length (with each segment626

ranging from 15 to 20 minutes), and autocorrelation analysis was completed on each segment. For627

each subject in the SparrKULee dataset, the autocorrelation analysis was carried out separately on628

each of their ten trials. Figure 5 shows the results of the autocorrelation analysis for the Watermelon629

and SparrKULee datasets. The figure illustrates the magnitude of correlation at different frequen-630

cies and time lags (represented by color). The correlation values were obtained by averaging the631

results across all subjects, segments (trials), and electrodes. Black lines represent the contour lines632

where p = 0.01, as determined by statistical analysis. Statistical significance was assessed using633

single-sample t-test at the subject-electrode level. Specifically, for each electrode of each subject, the634

averaged Pearson correlation coefficient across all segments (trials) was used as the value for the t-635

test. Additionally, p-values were corrected for multiple comparisons using the Benjamini-Hochberg636

False Discovery Rate (BH-FDR) to type I error.637

As demonstrated in Figure 5, EEG data from both Watermelon and SparrKULee datasets show638

significant LRTC across multiple frequency bands. For the EEG data from the Watermelon dataset,639

significant bands of LRTC are primarily distributed in the low-frequency range (<8 Hz) and around640

50 Hz, with these correlations spanning over 500 seconds. This indicates that baseline drifts and line641
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noise contribute to the temporal correlation observed in the Watermelon dataset. For the EEG data642

from the SparrKULee dataset, LRTCs are significant across the entire frequency range. Similarly,643

LTRCs are most prominent at low frequencies (<5 Hz) and around 50 Hz, consistent with the findings644

from the Watermelon dataset. Notably, for SparrKULee dataset, there is also a significant presence645

of LTRC around 10 Hz, which aligns with previous research findings [13], suggesting the temporal646

correlation of alpha oscillations in human subjects.647

Figure 5: Autocorrelation analysis result on (a) Watermelon and (b) SparrKULee datasets.

18



NeurIPS Paper Checklist648

1. Claims649
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