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ABSTRACT

Collective action problems, which require aligning individual incentives with col-
lective goals, are classic examples of Ill-Structured Problems (ISPs). For an
individual agent, the causal links between local actions and global outcomes
are unclear, stakeholder objectives often conflict, and no single, clear algorithm
can bridge micro-level choices with macro-level welfare. We present ECHO-
MIMIC, a general computational framework that converts this global complex-
ity into a tractable, Well-Structured Problem (WSP) for each agent by discov-
ering executable heuristics and persuasive rationales. The framework operates
in two stages: ECHO (Evolutionary Crafting of Heuristics from Outcomes)
evolves snippets of Python code that encode candidate behavioral policies, while
MIMIC (Mechanism Inference & Messaging for Individual-to-Collective Align-
ment) evolves companion natural language messages that motivate agents to adopt
those policies. Both phases employ a large-language-model-driven evolutionary
search: the LLM proposes diverse and context-aware code or text variants, while
population-level selection retains those that maximize collective performance in
a simulated environment. We demonstrate this framework on two distinct ISPs:
a canonical agricultural landscape management problem and a carbon-aware EV
charging time slot usage problem. Results show that ECHO-MIMIC discovers
high-performing heuristics compared to baselines and crafts tailored messages that
successfully align simulated agent behavior with system-level goals. By coupling
algorithmic rule discovery with tailored communication, ECHO-MIMIC trans-
forms the cognitive burden of collective action into a implementable set of agent-
level instructions, making previously ill-structured problems solvable in practice
and opening a new path toward scalable, adaptive policy design.

1 INTRODUCTION

Many of the most pressing real-world challenges, from sustainable resource management and cli-
mate change mitigation to economic policy design, are Ill-Structured Problems (ISPs) (Simon &
Newell, 1971; Reitman, 1964). Unlike Well-Structured Problems (WSPs), which have clearly de-
fined goals, known constraints, and a finite set of operators, ISPs feature ambiguous goals, unclear
causal relationships, and undefined solution spaces (Simon, 1973). Solving an ISP requires the
problem-solver to impose structure, define objectives and discover pathways, as an integral part of
the solution process itself.

A classic example of an ISP arises in collective action problems, where locally rational decisions
made by autonomous agents lead to globally suboptimal or even harmful outcomes (Hardin, 1968;
Ostrom, 1990). Consider farmers operating within a shared agricultural landscape or EV owners
choosing when to charge at home. Each agent makes decisions driven by local incentives like
maximizing crop yield or minimizing charging costs and discomfort. While these decisions may be
optimal at the individual level, their combined effect can degrade the shared ecosystem or overload
the grid during peak hours. For an individual agent, the decision of how to act is an ISP: the link
between their specific choices and the health of the entire system is complex and unclear, and the
right action is not algorithmically defined. The challenge for a system designer or policymaker
is to create a mechanism that simplifies this decision-making process for the individual. An ideal
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solution would be practical behavioral rules, or heuristics, that, if followed by individual agents,
reliably produce a desirable global outcome. Such heuristics would effectively transform the ISP
faced by each agent into tractable WSPs. Discovering such heuristics, however, is a challenging
second-order problem.

We introduce ECHO-MIMIC, a framework designed to automate the discovery of these heuristics
and the mechanisms to encourage their adoption. Our approach is grounded in Simon’s models of
bounded rationality, which posit that agents rely on rules-of-thumb to navigate complex environ-
ments (Gigerenzer & Gaissmaier, 2011; Simon, 1990). We operationalize this concept using the
synergy of Evolutionary Algorithms (EAs) and Large Language Models (LLMs). This LLM+EA
paradigm represents a new frontier for creative problem-solving, and recent work has begun to
leverage LLMs within evolutionary program searches to generate and tune heuristics for complex
optimization problems (Guo et al., 2023; Romera-Paredes et al., 2024; Liu et al., 2024a; Ye et al.,
2024; Novikov et al., 2025; Chen et al., 2023). However, the utility of this paradigm in practical
optimization settings and its applicability to real-world complex systems has been underexplored.

Our end-to-end framework leverages this paradigm to solve real-world collective action problems,
transforming them from ISPs into effective WSPs. Our primary contributions are:

1. We introduce ECHO-MIMIC, a general framework that deconstructs complex collective ac-
tion ISPs into executable behavioral heuristics that are well-structured for individual agents,
and then nudges the agents to implement these heuristics.

2. We demonstrate our framework on two distinct domains: agricultural landscape manage-
ment and carbon-aware EV charging. We show that it significantly outperforms LLM
program-synthesis baselines like DSPy MiPROv2 and agent frameworks like AutoGen.

3. We find that performance of heuristics produced by ECHO rises with code-complexity
indicators and that nudges generated by MIMIC can be tailored to diverse agent personas.

4. To facilitate generalization, we develop a Domain Creation Agent that automatically gen-
erates modular, domain-specific system instructions and prompts given the (state, action)
schema and constraints of a new task.

5. Peripherally, we show the effectiveness of the LLM+EA paradigm on optimization prob-
lems in real-world systems, moving beyond work focusing on combinatorial benchmarks
(Liu et al., 2024a; Ye et al., 2024; Dat et al., 2025; Romera-Paredes et al., 2024).

2 RELATED WORK

LLM-guided evolutionary search and automated heuristic design: A growing line of work cou-
ples LLMs with evolutionary search to generate programs, prompts, and heuristics. FunSearch
demonstrates LLM-driven program discovery within an evolutionary loop for mathematical prob-
lems (Romera-Paredes et al., 2024). EvoPrompt connects LLMs with evolutionary algorithms to
evolve high-performing prompts (Guo et al., 2023). LLMs have also been used as evolutionary op-
timizers or operators more broadly (Liu et al., 2024b; Yang et al., 2023; Lange et al., 2024). Beyond
prompts, language hyper-heuristics (Burke et al., 2003) evolve executable code to improve search
efficiency and generality across combinatorial problems (Ye et al., 2024; Liu et al., 2024a; Dat et al.,
2025). Our ECHO phase aligns with this paradigm but specializes it to produce validated code
heuristics that map local states to actions to drive collective-action.

Multi-agent optimization and communication: Recent frameworks like DSPy (Khattab et al.,
2023; Opsahl-Ong et al., 2024) and AutoGen (Wu et al., 2024) enable the construction of multi-agent
LLM systems for diverse tasks. DSPy provides a programming model for optimizing LM prompts
and weights through compilation, and AutoGen provides a flexible infrastructure for agent interac-
tion. While these frameworks are very useful in constructing multi-agent systems and workflows
for general problems, they do not inherently solve the problem of discovering optimal local poli-
cies for collective goals in complex, constraint-heavy environments, but rather need to be explicitly
setup to do so. G-Designer (Zhang et al., 2024) addresses the design of multi-agent communication
topologies via graph neural networks, which is related but orthogonal to our work. Our setup fixes
the neighbor graph and focuses on program (policy) synthesis + measurable nudging. We compare
against AutoGen as a general-purpose agent scaffold baseline and DSPy MIPROv2 (Opsahl-Ong
et al., 2024) as a strong prompt optimization baseline.
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AI and social dilemmas: Within AI, a large body of work has studied social dilemmas in synthetic
multi-agent substrates. Sequential and intertemporal social dilemmas in grid-world or DMLab-style
environments have been used to analyze emergent cooperation under different learning rules and
reward structures (Leibo et al., 2017; Peysakhovich & Lerer, 2017). Other work rewards social
influence or inequity aversion to improve coordination (Jaques et al., 2019; Hughes et al., 2018).
Learning-to-incentivize approaches similarly optimize incentive functions in simulated MARL tasks
without targeting concrete deployments (Yang et al., 2020). Most of these benchmarks use stylized
spatial geometries and focus on optimizing opaque neural policies or reshaped rewards. Our method
is an end-to-end way to approach social dilemmas with deployable rule-books and nudging, and
we demonstrate it in real-world settings. Moreover, our agents are bounded-rational rule users that
employ executable heuristics, which is closer to how humans make decisions.

Collective action, bounded rationality, and heuristics: The core challenge we target, aligning
individual incentives with social welfare, sits squarely within collective action and commons gov-
ernance. Hardin framed the dynamic as a tragedy of the commons (Hardin, 1968), while Ostrom
documented institutional conditions under which communities avert that tragedy (Ostrom, 1990).
From a cognition viewpoint, our agent-level design follows the bounded-rationality tradition: peo-
ple use fast, implementable heuristics adapted to their environments (Gigerenzer & Gaissmaier,
2011). At the system-level, designing those heuristics transforms an ill-structured problem (Simon,
1973) into well-structured subproblems with explicit objectives and evaluators.

Mechanisms, nudges, and AI-personalized messaging: Adoption is often the bottleneck, and
even good policies underperform without mechanisms for uptake. Behavioral nudges and choice
architecture can shift real-world environmental decisions (Byerly et al., 2018). Recent evidence
shows that generative models can craft personalized messages with stronger persuasive effects than
generic appeals (Matz et al., 2024; Rogiers et al., 2024). Our MIMIC phase operationalizes this by
evolving messages that reliably alter agents’ code-level heuristics toward ECHO-derived targets.

3 PROBLEM FORMULATION AND APPROACH

The collective action setting is ill-structured at two coupled levels. At the agent level, each agent
i ∈ N observes a local state SL,i (e.g., their own resources, constraints, and immediate context),
chooses an action ai ∈ Ai (e.g., how much to extract, when to act, or where to intervene), and
optimizes a local objective UL,i (e.g., profit, convenience, or personal cost). However, the effect
of ai on societal goals depends on the unknown and evolving actions of others, a−i. At the sys-
tem level (policymaker), inferring what agents currently do (baseline behavior), determining how to
coordinate local choices so they aggregate into desired global patterns, and how to incentivize behav-
ior under real-world constraints are themselves ill-structured problems. We consider two domains:
agricultural landscape management and carbon-aware EV charging coordination.

Let A = (a1, . . . , aN ) denote the joint action profile and define a nonseparable global objective
UG(A) = G

(
Φ(A)

)
, where Φ maps joint interventions to a mesoscale representation (e.g., a

habitat graph or a load profile), and G scores that representation. From any single agent’s vantage
point, ∂UG/∂ai depends on unknown and evolving a−i and is mediated by thresholds, complemen-
tarities, and path dependence in Φ. These properties render one-shot mechanism design ill-posed.
Therefore, to make this collective action ISP tractable, our approach imposes structure at both the
system and agent levels by decomposing the problem into four well-structured stages whose outputs
are executable (Fig. 1):

Stage 1 - Establish Baseline Behavior: We fix what agents do by default. For each agent i, we
compute the baseline action a0i by solving the local problem maxa UL,i(a, SL,i). This yields state-
action pairs D0

i = (SL,i, a
0
i ). Practically, this means solving for (or recording) each agent’s personal

choices, for example, how much to ecologically intervene on the agricultural farm or how much to
use a particular time slot for charging through the week.

Stage 2 - Learn Baseline Heuristics: We learn executable code heuristics ĤL,i that reproduces
a0i from SL,i, where candidates are Python programs. An LLM proposes/mutates code and an EA
selects by a computable error between predicted and baseline actions. In effect, this yields a program
for each agent that, given the observables, outputs the same local actions the agent would normally
choose using personal preferences.

3
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Figure 1: ECHO–MIMIC framework. ECHO uses an LLM+EA search loop to propose personal-
level decision heuristics aligned with baseline (stage 2) and global (stage 3) objectives. MIMIC
optimizes personalized nudges (e.g., messages/mechanisms/policies) using an LLM+EA search loop
to drive collective action. Overall, the framework converts the collective action ISP into system- and
agent-level WSPs. Figure uses the farm domain. See Appendix B.2 for a more detailed workflow.

Stage 3 - Learn Global Heuristics: We identify globally desirable targets (directions) H∗
G,i that

maximize UG, then learn executable code Ĥ∗
G,i that maps SL,i 7→ H∗

G,i(SL,i). Candidates are again
Python heuristics evolved by LLM+EA and scored by an appropriate fitness score. In our domains,
this produces programs that collectively improve landscape connectivity or clean-energy charging.

Stage 4 - Nudge to Global Heuristics: We discover natural-language messages Mi that move
agents from executing ĤL,i toward Ĥ∗

G,i. In simulation, an Agent LLM seeded with the code of
ĤL,i and a persona, receives a message from a Policy LLM, edits its code to a temporary Hnudged,i

if persuaded, and outputs an action ãi. Fitness rewards messages that make ãi close to Ĥ∗
G,i.

For the policymaker, these four stages are WSPs, with finite candidate sets and computable fitness.
For agents, scripts ĤL,i and Ĥ∗

G,i are executable, and messages M∗
i minimize cognitive burden.

4 THE ECHO–MIMIC FRAMEWORK

ECHO–MIMIC is an end-to-end framework to think about collective action problems. We first
start by breaking down any collective action problem into the four stages discussed in the previous
section. We then implement the four stage decomposition in two coupled phases. First, ECHO
discovers executable heuristics (Stages 2–3), followed by MIMIC, which discovers mechanisms to
adopt them (Stage 4). Both phases follow the same design philosophy: the LLM serves as the
variation engine, generating, mutating, crossing over, repairing, and reflecting on candidates, while
the Evolutionary Algorithm supplies selection pressure via computable fitness.

4.1 ECHO: EVOLUTIONARY CRAFTING OF HEURISTICS FROM OUTCOMES

ECHO learns executable Python heuristics that replicate baseline local behavior (ĤL,i, Stage 2) and
globally desirable behavior (Ĥ∗

G,i, Stage 3). Each candidate is a constrained function with a fixed
I/O signature that reads SL,i and returns actions.

4
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To implement this phase, we evolve a population of K candidates for H generations using three
LLM roles. These include a Generator to produce initial population of programs, a Modifier to apply
mutation, crossover, and reflect-and-improve edits, and a Fixer to repair compile/runtime issues in
programs. The Modifier and Fixer are used in tandem each round, followed by elitism to preserve
the top-k candidates. Stage 2 and 3 use distinct fitness functions. In stage 2, the fitness minimizes the
error between a candidate’s action and the baseline a0i , yielding ĤL,i as explicit approximations to
locally rational behavior. Whereas in stage 3, the fitness minimizes the error between a candidate’s
action and the global targets H∗

G,i, returning Ĥ∗
G,i as policies for the collective goal.

4.1.1 PROMPTING DESIGN AND NEIGHBOR IN-CONTEXT LEARNING IN ECHO

Generator LLM: To propose an initial population of executable heuristics with the required I/O
signature, we compose the prompt as

Pgen = [SYSTEM] ⊕ [TASK] ⊕ [ICLN (i)] ⊕ [SL,i] ⊕ [Θ],

where ⊕ refers to concatenation; [SYSTEM] fixes coding constraints and file I/O; [TASK] restates the
goal of returning proper actions and failure modes to avoid; [ICLN (i)] is a small set of (input, output)
exemplars from neighbors N (i) for in-context learning (ICL); [SL,i] is the current agent’s feature
vector. [Θ] collects other global parameters (prices, costs etc.).

Choosing neighbors for ICL: We define N (i) as k adjacent farms, and supply examples{(
GeoJSONin

j , GeoJSONout
j

)}
j∈N (i)

summarizing state and the realized interventions. This introduces the model to patterns likely to
transfer under similar geographical and social conditions. Neighbor ICL allows us to withhold the
current agent’s baseline labels to test whether the LLM can infer decision rules from analogous
contexts when supervision is provided indirectly via EA selection. It also mirrors observational
diffusion in society, where practices propagate through local networks facing shared pressures.

Modifier LLM: For genetic variation operators in the evolutionary loop, we use

Pmod = [SYSTEM] ⊕ [TASK] ⊕ [OPERATOR] ⊕ [Θ] ⊕ [CANDIDATES],

where [OPERATOR] specifies the details regarding the operation to be performed (mutate, crossover,
reflect, see Appendix B.3), and [CANDIDATES] includes the parent(s) and, for reflect, a brief leader-
board with fitness scores. [SYSTEM] and [TASK] are similar to the ones used for generation.

Fixer LLM: When a candidate triggers compile/runtime errors, the Fixer LLM performs minimal
edits to restore validity while preserving the required I/O signature and intended behavior.

4.2 MIMIC: MECHANISM INFERENCE & MESSAGING FOR INDIVIDUAL-TO-COLLECTIVE
ALIGNMENT

MIMIC is designed to imitate a central planner that coordinates between agents by observing their
locally optimal heuristics, computing their potentially globally optimal heuristics, and using this in-
formation to change their behavior in the right direction. To do so, it searches for natural-language
mechanisms Mi that reliably steer agents from running ĤL,i toward Ĥ∗

G,i (Stage 4). The population
is textual candidates made of economic incentives, behavioral framings, and hybrids, generated/-
modified by Policy LLMs. Each message is evaluated in a simulation with an Agent LLM (Farmer,
EV Owner) that is initialized with both a persona and the program ĤL,i. To ensure robust evalu-
ation, we construct agent personas by using traits relevant to the domain, which drive the agent’s
decision process. We also implement an explicit refusal mechanism, where if a proposed message
conflicts with the agent’s core values or constraints (as defined by its persona), the agent can reject
the message and stick to its baseline heuristic ĤL,i. Therefore, upon reading Mi, the Agent LLM
may propose edits to its code or make no changes, yielding Hnudged,i, which outputs an action ãi.
Fitness rewards messages that make ãi closely match Ĥ∗

G,i (Appendix B.2; Fig. 5b). Thus, MIMIC
is effective because its objective is defined against ECHO’s executable heuristics and persuasion is
measured as concrete code edits that change behavior.

We us the following LLMs in MIMIC to perform different actions:

5
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Policy Generator LLM: To propose candidate nudges, the Policy Generator composes

Ppol-gen = [SYSTEM/FRAMING]⊕ [TASK]⊕ [DECISIONCONTEXT : SL,i, ĤL,i, Ĥ
∗
G,i, Θ]

⊕ [Θmech],

where [Θmech] encodes mechanism constraints (e.g., budget caps). The model outputs a structured
Mi tailored to the persona with framing as instructed.

Policy Modifier LLM: Given parent messages, the Policy Modifier applies constrained edits via

Ppol-mod = [SYSTEM]⊕ [OPERATOR]⊕ [DECISIONCONTEXT]⊕ [Θmech]⊕ [CANDIDATES],

and returns M ′
i that preserves constraints (budget honesty, no coercive framing) while increasing

persuasion, measured downstream by induced (Hnudged,i, ãi) and fitness against Ĥ∗
G,i(SL,i).

Agent (Simulation) LLM: We emulate an agent’s response to candidate nudges with an Agent
LLM. The prompt is composed as

Psim = [SYSTEM/PERSONA] ⊕ [DECISIONCONTEXT : SL,i, ĤL,i, Θ] ⊕ [MESSAGE : Mi],

where [SYSTEM/PERSONA] fixes background, goals, and receptivity; [DECISIONCONTEXT] speci-
fies the local state SL,i, the baseline heuristic ĤL,i, and constraints/parameters; and [MESSAGE] is
the candidate nudge from the Policy LLMs. The model returns Hnudged,i which when executed gives
ãi, tying persuasion to code edits and actions that can be scored against Ĥ∗

G,i.

To summarize, we use ECHO to discover what to do and MIMIC to discover how to get people to
do it. This coupling turns a challenging ISP into a chain of WSPs whose outputs are deployable, i.e.,
communicate M∗

i to each agent to induce adoption of Ĥ∗
G,i. Full prompt templates for the stages,

LLM roles, operators, and personas for the farm domain are given in Appendix F.

4.3 AUTOMATED DOMAIN CREATION AGENT

To enable our framework to generalize across domains without manual prompt engineering, we in-
troduce a Domain Creation Agent. This agent takes as input a high-level domain schema of: a) Agent
State (SL,i): Description of local variables (e.g., crop yields, charging demand). b) Action Space
(ai): Allowable decisions (e.g., intervention length, slot usage). c) Observability: What neighbors
or global signals are visible. d) Constraints: Budget, physical limits, or regulatory bounds. Using
a meta-prompt, the agent generates the specific system instructions, task prompts, and evaluation
harness for the ECHO and MIMIC stages. This ensures that the prompt and evaluation templates are
modular and composable, automatically adapting to the specific terminology and logic of the new
domain, allowing our framework to scale to new collective action problems.

5 EXPERIMENTAL RESULTS

We demonstrate the application of our ECHO-MIMIC framework on two distinct collective action
domains: agricultural landscape management and carbon-aware EV charging coordination.

Agricultural Landscape Management: In this domain, we follow models of ecological intensi-
fication (Kremen, 2020; Bommarco et al., 2013; Dsouza et al., 2025) where biodiversity outcomes
hinge on spatial configuration (Taylor et al., 1993). Each agent i (farmer) observes local state SL,i

consisting of plot-level agro-ecological and economic features (crop types, yields, prices). Actions
ai are farm interventions: (i) margin intervention (length, placement), and (ii) habitat conversion
(area, orientation). The local objective UL,i is net present value (NPV) under farm-specific con-
straints, while the global objective UG prioritizes landscape-scale ecological connectivity, measured
by the Integral Index of Connectivity (IIC) (Pascual-Hortal & Saura, 2006). We simulate an agri-
cultural landscape of 5 farms (Fig. 2a) by generating synthetic farm and plot-level geo-spatial data
based on real farm data from the 2022 Canadian Annual Crop Inventory (CACI) (Agriculture and
Agri-Food Canada (AAFC), 2022).

Carbon-Aware EV Charging Coordination: In this domain, which models the challenge of coor-
dinating distributed energy resources (Anderson et al., 2023; Cheng et al., 2022), each agent i (EV

6
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Table 1: Mean accuracy (averaged over 5 agents and 2 seeds per domain) for ECHO–MIMIC, DSPy
MIPROv2, and AutoGen across two domains (Farm, EV) and five models. ECHO (Stage 2+3)
and MIMIC (Stage 4) together form the ECHO-MIMIC pipeline. The evolutionary algorithm is
configured with a population of 25 individuals and run for 25 generations. G2.0-FT is omitted
for the EV domain and AutoGen due to lack of reliable API access. Models: G2.0-FT = Gem-
ini 2.0 Flash Thinking, G2.5-F = Gemini 2.5 Flash, G2.5-P = Gemini 2.5 Pro, GPT5-n = GPT-5 nano
(medium), GPT5-m = GPT-5 mini (medium).

Domain Stage Method G2.0-FT G2.5-F G2.5-P GPT5-n GPT5-m

Farm

2 DSPy MIPROv2 0.41 0.46 0.53 0.45 0.55
2 ECHO 0.93 0.94 0.95 0.94 0.95
2 AutoGen – 0.40 0.47 0.43 0.52
3 DSPy MIPROv2 0.00 0.00 0.12 0.00 0.18
3 ECHO 0.24 0.29 0.33 0.27 0.35
3 AutoGen – 0.08 0.10 0.05 0.14
4 DSPy MIPROv2 0.33 0.35 0.43 0.38 0.43
4 MIMIC 0.73 0.75 0.79 0.71 0.82
4 AutoGen – 0.33 0.44 0.37 0.46

EV

2 DSPy MIPROv2 – 0.51 0.60 0.58 0.62
2 ECHO – 0.95 0.96 0.95 0.97
2 AutoGen – 0.39 0.50 0.44 0.48
3 DSPy MIPROv2 – 0.66 0.68 0.67 0.71
3 ECHO – 0.87 0.91 0.85 0.93
3 AutoGen – 0.38 0.47 0.40 0.44
4 DSPy MIPROv2 – 0.70 0.75 0.72 0.76
4 MIMIC – 0.91 0.93 0.91 0.94
4 AutoGen – 0.78 0.82 0.79 0.83

owner) observes local state SL,i consisting of base demand across time slots, preferred charging
slots, and comfort penalties for non-preferred slots. Actions ai are daily usage vectors (one per
slot). The local objective UL,i minimizes electricity price and comfort penalties, while the global
objective UG minimizes carbon emissions, grid overload, and slot-usage constraints. We generate
synthetic scenarios with 5 agents, 4 time slots, and 7-day horizons, with varying input data. See
Appendix B.7 for more info on data generation for both domains.

5.1 ECHO-MIMIC OUTPERFORMS BASELINES AT DRIVING COLLECTIVE ACTION

As there is no direct comparison to ECHO-MIMIC driving collective action by working at both the
system and agent levels, we assume system level breakdown into stages, and compare at the agent
level against DSPy MIPROv2 (Opsahl-Ong et al., 2024), a strong LLM-native baseline, and Auto-
Gen (Wu et al., 2024), a general multi-agent framework (Table 1). We do not compare to non-LLM
program search as our goal is not merely to approximate a global planner but to induce human-
readable heuristics that can be executed by agents and seamlessly verbalized into messages. Across
both domains, ECHO-MIMIC outperforms both DSPy and AutoGen in all stages under identical
input constraints. DSPy struggles to induce global-compatible local heuristics in stage 3, while Au-
toGen, lacking the explicit evolutionary pressure on code/message structure, fails to consistently dis-
cover high-performing policies. These results show consistent cross-domain and cross-LLM gains
of ECHO-MIMIC in generating executable heuristics and messages, beyond what generic LLM
program-synthesis or agent frameworks achieve. Finally, we noticed that though baselines perform
better with more capable LLMs (G2.5-P, GPT5-m), their performance cannot match ECHO-MIMIC,
which also benefits from higher capability.

5.2 ECHO DISCOVERS CONTEXT-AWARE HEURISTICS

ECHO reliably evolves Python heuristics that approximate local behavior across heterogeneous
agents. In the farm domain, ECHO learns when to choose margin versus habitat conversion at

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a)

Time
Slots

7 Day
Horizon

Demand,
Preferences,

Persona

Pricing, Grid
Load, Carbon,

Constraints

Inputs

Agent

Scenario

(b)

Figure 2: Domain specific actions. a) Interventions resulting from ECHO learned baseline heuris-
tics in stage 2 for the farm domain. The interventions match the ground-truth baseline computed
from stage 1 closely. For the comparison with ground-truth, ECHO stage 3 predictions, and synthet-
ically generated farm geometries, see Appendix C. b) Synthetically generated EV charging spatio-
temporal configuration. Five agents are placed in a line, each with their own charging demand,
preferences, and carbon intensity. They are allowed to specify usage in four time slots for a week.

the plot level (Fig. 2b), improving fitness across generations for all farms (Fig. 4a). Farms 2 and 5
converge quickly, while Farms 1, 3, and 4 improve more gradually, indicating harder optimization
landscapes. Lineage analysis of the best final heuristics for both the farm and EV charging domains
show Crossover is both the most frequent operator and the largest contributor to cumulative fitness
gains (Fig. 4b). Mutate is also common and adds steady improvements. Reflect appears infrequently
in top lineages and adds little directly, suggesting it supports diversity rather than breakthroughs
(Appendix C; Fig. 11b).

Across agents, fitness typically rises with code-complexity indicators (e.g., logical lines of code,
Halstead difficulty, distinct (H1) operators up to an intermediate optimum; beyond that point, ad-
ditional complexity correlates with lower fitness. We plot this phenomenon for the farm domain in
Fig. 9c (also see Appendix C; Fig. 10). Maintainability tends to decline as fitness rises, consistent
with more intricate logic being leveraged to capture hard cases. Farm 3, 4 show particularly steep
gains at higher distinct-operator counts, suggesting that richer program vocabularies are necessary to
escape performance plateaus (Fig. 9c, Appendix C; Fig. 10). On Farm 3, adding prompt instructions
that explicitly encourage high Halstead distinct-operator counts and difficulty produces consistently
higher accuracy, with a clear divergence after generation 15 (Fig. 9d). This indicates that seeding
the search with more expressive building blocks expands the recombination space that operators can
exploit later in evolution.

Evolved programs implement multi-layered logic, for instance in the EV charging domain, by cal-
culating headroom safety and determining the allocation based on persona like below:

Inputs: capacity, baseline, base_demand, carbon, tariff
Outputs: usage_allocation, preference_score

headroom <- capacity - baseline - base_demand
preference_score <- carbon + (tariff * 1000)

if rationed_day is True and slot == 2:
headroom <- headroom - 2.0

if headroom > 0.05:
allocatable <- headroom - 0.05

if remaining_load > 0:
usage_allocation <- min(remaining_load, allocatable)
remaining_load <- remaining_load - usage_allocation

Other representative heuristics can be found in Appendix D, highlighting ECHO’s ability to integrate
economic and spatial reasoning like computing tariff-weighted exponential demand or polygon ori-
entation via PCA. In summary, ECHO discovers context-aware heuristics in both domains, operators
play distinct roles, and controlled increases in code complexity can unlock superior performance.
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Figure 3: ECHO stage 2 results. a) Accuracy (1 − error) over generations in stage 2 for the
farm domain. Some farms are easier to make progress in (farms 2, 5) compared to others (farms
1, 3, 4), and distinct capabilities emerge in harder farms as generations progress. b) Total fitness
(1/error) delta for both the domains together, resulting from LLM variation operators, summed
across generations for the best performing program at the end. Crossover and mutate have the
highest positive cumulative change in fitness. c) Accuracy versus normalized complexity metrics
of the heuristics for farm 3 in the farm domain. Increased Halstead metrics are correlated with
increased accuracy, upto a point, followed by a decrease. d) Accuracy over generations with and
without Halstead instructions for farm 3 in the farm domain. Adding additional Halstead instructions
to the prompt provides free gains in accuracy at the expense of interpretability.

5.3 MIMIC EVOLVES PERSONALITY-ALIGNED NUDGES

LLMs can produce persuasive text that draws on behavioral science to scale tailored messages (Matz
et al., 2024; Rogiers et al., 2024). Yet nudge efficacy is highly context-dependent and hard to eval-
uate. MIMIC addresses this with a closed-loop search between two agents: a Policy LLM that
generates candidate nudges and an Agent LLM that simulates agent responses and executes heuris-
tics.

In the EV charging domain, with versatile personas (to model agent heterogeneity) and generic in-
structions (no specific framing), accuracy with respect to generated global heuristic actions from
ECHO (stage 3) improves across generations and agents (Fig. 4a). In the farm domain we use three
personas, Resistant, Economic, and Social, and two nudge types, Economic and Behavioral (choice-
architecture levers such as social comparison, defaults, commitments, and framing (Byerly et al.,
2018; Carlsson et al., 2021)). We see that social personas + behavioral nudges, and economic per-
sonas + economic nudges, perform the best (Fig. 4b), while economic personas also benefit from
behavioral nudges after an initial lag. Both these experiments demonstrate the persona and framing
specific targeting potential of MIMIC. Qualitatively, across both domains, we see that top behavioral
nudges leverage social proof and low-risk trials, while top economic nudges offer subsidies/premi-
ums with clear commitments. Full best-message exemplars are in Appendix G. In summary, MIMIC
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Figure 4: MIMIC nudge discovery and personalization. Accuracy of nudges over generations
a) for the EV charging domain with versatile personas and generic instructions. At different points
MIMIC learns to use personalized benefits, social proof, and environmental impact framing. b) for
the farm domain (hard farms) with persona and nudge type specific instructions. P refers to personas
and N refers to nudge types. Personas are either Resistant, Economic, or Social. Nudge Types are
either Behavioral or Economic.

adapts collective action nudges to context and persona, while traditional static mechanisms and
purely economic incentives struggle with such heterogeneity (Knowler, 2014). Moreover, MIMIC
(together with ECHO) is readily extensible to human-in-the-loop deployment, where real feedback
replaces simulated responses for iterative refinement (Appendix E).

6 DISCUSSION AND FUTURE WORK

We introduced ECHO-MIMIC, a general end-to-end framework that addresses ill-structured collec-
tive action by converting the system-level design problem into a sequence of well-structured searches
for the policymaker and by producing executable heuristics that render each agent’s local decision
a WSP. Across both our agriculture and EV charging domains, ECHO learns heuristics that repro-
duce both personal preferences and globally important objectives. MIMIC then discovers messages
that induce agents to adopt those executable targets. Together, these phases evolve what should be
done and how to get it done, suggesting a practical path to scalable, adaptive policy design. Finally,
our domain creation agent, by taking in input-output schema, observability, constraints, and domain
specific details and automatically adapting the logic of the any domain to our framework, allows
extension of our framework to any arbitrary collective action problem.

Despite the potential applications, there are some limitations of our current framework. First, the
agent simulation abstracts human behavior. Personas and code-edit responses by a Farm LLM are
proxies that require validation with real participants. Second, non-stationarity of prices, ecology, and
policy can quickly stale learned heuristics and nudges. Distribution shift undermines both ECHO’s
scripts and MIMIC’s messages. Third, persuasive mechanisms risk manipulation, unequal burden
sharing, or disparate impacts on smallholders. Respecting privacy, transparency, and consent from
the outset are essential. Finally, evolution can produce complex heuristics with deep branching and
opaque feature engineering that erode interpretability/trust and create implementation frictions. This
can potentially be alleviated by regularizing code complexity and enforcing functional signatures.
Given these limitations, we see several directions for future work (see Appendix E.5 for more):

Field validation: conduct preregistered behavioral experiments and pilots with farmers to estimate
heterogeneous treatment effects of nudge messages and to measure sim-to-real gaps.

Online iterative refinement with real-world feedback: although the EA selects high-fitness mes-
sages in simulation for each persona, post-deployment we can treat each rollout as a new generation
and update the message and heuristic pool using real outcomes. See Appendix E for more details.

Interpretability of heuristics: curb complexity creep by adding complexity regularizers (e.g., func-
tional signatures, MDL-style penalties, cyclomatic-complexity caps) and enforcing edit budgets.
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7 ETHICS STATEMENT

Our study uses only synthetically generated data and simulated agents; no human participants, per-
sonally identifiable information, or proprietary private data were collected or analyzed. The syn-
thetic data were procedurally generated, as detailed in Appendix B.7. We evaluate policy nudges
exclusively in simulation via predefined agent personas and a closed-loop interaction between a
Policy LLM and an Agent LLM; we note that these are proxies and call for preregistered field
studies before any deployment. To mitigate foreseeable risks (e.g., manipulation, unequal burdens,
privacy harms, or distribution-shift failures), we propose governance measures, human-in-the-loop
approvals, privacy-preserving telemetry and opt-in consent, as outlined in Appendix E.4. We also
discuss value-laden choices and Goodhart risks of proxy objectives and recommend stress-testing
and transparency (Appendix E.5). Any funding or affiliations will be disclosed in the paper’s ac-
knowledgments.

8 REPRODUCIBILITY STATEMENT

We provide an anonymous supplementary zip with all source code to reproduce results. The pa-
per and appendix specify model choices (e.g., Gemini variants and evolutionary settings) and li-
braries/interfaces used, enabling replication of LLM-EA runs (Appendix B.1). Execution occurs
in a controlled environment (json/numpy/shapely I/O from input.geojson to output.*) with com-
prehensive logging of fitness scores, operator usage, candidate trajectories, and code-complexity
metrics, details that support exact reruns and diagnostics (Appendix B.4). Fitness definitions for all
stages (local/global heuristics and nudging) are formalized in B.5 with explicit error metrics, and
the fitness-evaluation loop is diagrammed (Figs. 5,6) for clarity. Data generation is fully specified
in B.7, enabling others to rebuild the synthetic datasets. Finally, we include representative heuristic
programs (Appendix D) and complete prompts (Appendix F) to aid verification.
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A SUBMISSION DETAILS

A.1 SOURCE CODE

Source code associated with this project is attached as a supplementary zip file.
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A.2 USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) in the following scoped, human-supervised ways: (i) Writ-
ing polish. Draft sections were refined for clarity, structure, and tone; all technical claims, numbers,
and citations were authored and verified by us, and every LLM-suggested edit was line-reviewed
to avoid introducing errors or unsupported statements. (ii) Retrieval & discovery. We used LLMs
to craft and refine search queries to find related work and background resources; candidate papers
were then screened manually, with citations checked against the original sources to prevent hallu-
cinations. (iii) Research ideation. We used brainstorming prompts to surface alternative baselines,
ablation angles, and failure modes; only ideas that survived feasibility checks and pilot experiments
were adopted. (iv) Coding assistance (via Cursor, Gemini, and OpenAI). We used Cursor’s inline
completions and chat for boilerplate generation (tests, docstrings, refactors); We used Gemini-2.5-
pro and o3 to generate code snippets for different parts of the project; all code was reviewed before
inclusion. Across all uses, we ensured that LLM outputs never replaced human analysis, repro-
ducibility artifacts, or empirical validation.

B IMPLEMENTATION DETAILS

B.1 MODELS

Our experimental setup leverages gemini-2.0-flash-thinking-exp-01-21, gemini-2.5-flash, gemini-
2.5-pro, gpt-5-nano, and gpt-5-mini models for the core tasks of heuristic generation, modification,
fixing, and agent simulation. We compare our method and baselines across these family of models.
The evolutionary algorithm was configured with a population size of 25 individuals and was run for
a maximum of 25 generations for ECHO and 10 generations for MIMIC.

B.2 OVERALL ECHO-MIMIC WORKFLOW AND COMPONENTS

Fig. 5 summarizes the complete ECHO-MIMIC pipeline. In ECHO (Fig. 5a), an LLM–evolutionary
loop proposes, executes, and scores human-readable farm heuristics against baseline (Stage 2) and
global (Stage 3) objectives under the same observability constraints used at deployment. In MIMIC
(Fig. 5b), the system translates the learned heuristics into actionable nudges: messages/mechanism-
s/policies, then simulates agent responses to iteratively refine adoption.

The two reusable building blocks are detailed in Fig. 6: a robust fitness-evaluation-and-repair loop
that executes candidate programs on farm data, scores outcomes, and attempts automatic fixes on
failures (Fig. 6a), and an LLM-driven variation engine with mutation, crossover, exploration, and
reflection operators to generate improved candidates across iterations (Fig. 6b). Together, these
components enable end-to-end search over interpretable heuristics and their message-level imple-
mentations while preserving decision-time observability constraints.

B.3 LLM-GUIDED EVOLUTIONARY OPERATORS

The evolutionary search in both the ECHO and MIMIC phases is driven by a set of variation op-
erators executed by a Modifier LLM. These operators take one or more parent candidates from the
population and generate a new offspring candidate.

• Mutation: The LLM receives a single parent candidate (either a Python script or a natural
language message) and is prompted to introduce a subtle mutation aimed at improving
performance while preserving the core structure and validity of the candidate.

• Crossover: The LLM is given two parent candidates and prompted to combine them in an
optimal way to cover heuristics/information from both. The goal is to produce a child that
synergistically integrates advantageous traits from both parents.

• Exploration 1 (Diverge): Given two parents, the LLM is prompted to generate a new
candidate that is as different as possible to explore new ideas. This operator encourages
diversification and prevents premature convergence by exploring novel regions of the search
space.
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Evaluate Generation

(a)

Termination Criteria Met

(b)

Figure 5: ECHO–MIMIC framework. a) ECHO uses an LLM-evolutionary search loop to pro-
pose, score, and select farm-level decision heuristics aligned with baseline (stage 2) and global
(stage 3) objectives. (b) MIMIC optimizes personalized nudges (e.g., messages/mechanisms/poli-
cies) using an LLM-evolutionary search loop, evaluates nudges using simulated agent responses,
and iteratively updates nudges to drive collective action. Illustration uses the farm domain as an
example. See Fig. 6 showing the two subroutines of fitness evaluation and LLM-driven variation.

• Exploration 2 (Converge & Innovate): The LLM receives two parents, identifies common
ideas between them, and then designs a new candidate based on these shared concepts but
also introduces novel elements. This balances the exploitation of successful ideas with the
exploration of new variations.

• Reflection: The LLM is provided with the top k (e.g., 5) candidates from the current pop-
ulation, along with their fitness scores. It is prompted to analyze these heuristics/messages
and craft a new one that is expected to have increased fitness. This allows the system to
consolidate progress and make more informed, innovative leaps.

B.4 ENVIRONMENT MANAGEMENT DETAILS

Some management, execution, and tracking details are given below:

Selection: After generating offspring through the evolutionary operators, a selection strategy deter-
mines which individuals proceed to the next generation. This involves methods like elitism (pre-
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Fixed

Fails

Compare w/ Ground Truth Data

Script OK

(a) (b)

Figure 6: LLM–EA candidate generation and fitness evaluation. (a) Fitness evaluation & repair
loop: run candidate scripts on data, generate predicted interventions, compare with ground-truth
labels, and compute a heuristic fitness score; if execution fails, a Fixing-LLM attempts repair and
unrepaired scripts receive low fitness, otherwise the repaired script is re-executed and scored, and
the final fitness is output. Illustration uses the farm domain as an example. (b) LLM-driven variation
subroutine: four operator families, mutation (subtle edits), crossover (combine parents), exploration
(diverse ideas + converge & innovate), and reflection (analyze elites, innovate), produce new candi-
date heuristics/messages.

serving the best-performing individuals) combined with score-based selection from the combined
pool of parents and offspring, maintaining a constant population size.

Execution Environment: Candidate Python scripts are executed in a controlled environment. This
environment is equipped with necessary libraries such as json (for handling data files), numpy (for
numerical operations), and shapely (for geometric operations). The scripts perform file I/O, reading
from input.geojson and writing to output.geojson or output.json.

Tracking: Comprehensive data is logged for analysis and monitoring of the evolutionary process.
This includes: fitness scores of all candidates, the representation of each candidate (Python code
or natural language message), counts of how often each evolutionary operator is used, cumulative
fitness deltas achieved by each operator, indicating their effectiveness, candidate trajectories, show-
ing the sequence of operators applied to generate them, code complexity metrics (e.g., cyclomatic
complexity, Halstead metrics) for Python script candidates, computed using the radon library. This
helps in understanding the nature of the evolved solutions.

Heuristics Explanation: The generation of heuristic explanations follows a systematic, multi-stage
pipeline (Fig. 7). The process involves an iterative loop which processes each Farm ID sequentially.
For every farm, the core heuristic analysis begins by identifying and loading the relevant heuristic
files. Concurrently, two LLMs are initialized, an Explanation LLM for generating initial explanatory
summaries from code or data segments, and a Merge LLM for consolidating these explanations. The
loaded heuristic files are subsequently processed in designated groups, typically consisting of three
files each. As the system iterates through these file groups, the Explanation LLM analyzes the con-
tent of each group to generate an initial heuristic explanation. This newly generated explanation is
then integrated into a cumulative summary. The Merge Model is then employed to combine the new
group-specific explanation with the existing summary compiled from previous groups. Following
this integration, the overall summary is updated, and an intermediate group summary is saved, al-
lowing for checkpointing. Once all files for a given farm have been analyzed and their explanations
merged, a final consolidated summary, representing the comprehensive heuristic explanation for that
farm, is saved. The entire procedure concludes after this iterative processing has been completed
for all designated Farm IDs. See “Heuristics Explanation” section in supplementary for more full
prompts used for the two LLMs.
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Start

Initialize Config & Farm IDs

Loop through 
Farms

Set Directory & Call main
function End

Find & Load Heuristic Files

Initialize Explanation & 
Merge AI Models

Loop through 
File Groups - 3 files 

per group

Analyze Group Code -->
Explanation Model

First 
Group?

Summary = ExplanationMerge Previous Summary &
Explanation --> Merge Model

Update Summary

Save Intermediate Group
Summary

Save Final Consolidated
Summary

For each Farm
Loop Done

Process Group

Yes
No

All Groups Done

Figure 7: Heuristic-explanation consolidation pipeline. For each agent, initialize configs and
load heuristic code files; then iterate over 3-file groups: an Explanation model analyzes each group
to produce a draft, and, starting from the first group, a Merge model incrementally combines the
running summary with each new explanation; intermediate group summaries are saved, followed by
a final consolidated summary per agent. Illustration uses the farm domain as an example.
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B.5 FITNESS FUNCTION DETAILS

B.5.1 AGRICULTURAL DOMAIN

Fitness for all candidates is calculated as the inverse of an error metric, with a small constant ϵ added
to prevent division by zero: Fitness = 1/(Error + ϵ). Ground truth is obtained by computing
results from existing ecological intensification and connectivity models (Dsouza et al., 2025).

ECHO Fitness (Local Heuristics): FitnessNPV The error is the Mean Absolute Error (MAE)
between the intervention levels predicted by a candidate heuristic (mpi

, hpi
) and the ground-truth

NPV-optimal levels (mgti , hgti ) across all N plots in a farm.

ErrorNPV =
1

N

N∑
i=1

(|mgti −mpi
|+ |hgti − hpi

|)

ECHO Fitness (Global Heuristics): FitnessCONN The error is based on the Jaccard Dis-
tance between the sets of intervention directions predicted by the candidate (MDpi , HDpi ) and
the ground-truth connectivity-optimal directions (MDgti , HDgti ).

JaccardDist(A,B) = 1− |A ∩B|
|A ∪B|

ErrorCONN =
1

N

N∑
i=1

(JaccardDist(MDgti ,MDpi) + JaccardDist(HDgti , HDpi))

MIMIC Fitness (Nudging): FitnessNUDGE The error measures the MAE between the interven-
tion amounts produced by the agent’s nudged heuristic (mpi , hpi ) and the target fractional amounts
derived from the global connectivity-optimal directions.

ErrorNUDGE =
1

N

N∑
i=1

(∣∣∣∣ |MDgti |
4

−mpi

∣∣∣∣+ ∣∣∣∣ |HDgti |
4

− hpi

∣∣∣∣)
B.5.2 EV CHARGING DOMAIN

Fitness for all candidates is calculated as 1− MAE (Mean Absolute Error) between the candidate’s
usage vector and the target usage vector, averaged across all days and slots.

Fitness = 1− 1

D

D∑
d=1

1

S

S∑
s=1

|u(d,s)
candidate − u

(d,s)
target|

where D is the number of days, S is the number of slots per day, u(d,s)
candidate is the usage value of the

candidate for day d and slot s, and u
(d,s)
target is the target usage value. The target usage vector varies

by phase: for Local Heuristics, it is the local optimum; for Global Heuristics and Nudging, it is the
global optimum.

B.6 AGENT PERSONALITY AND NUDGE MECHANISM PROMPTS

In the MIMIC phase, the Farm LLM’s persona and the Policy LLM’s nudge generation are guided
by specific system prompts.

• Agent Personalities: The system prompt for the Agent LLM establishes its background,
goals, and receptiveness to advice. For example, the Resistant agent might be described
as skeptical of new methods and valuing traditional practices, while the Economic agent
is primarily focused on maximizing profit and return on investment. The Social agent is
described as influenced by the actions of neighbors and community norms.

• Nudge Mechanisms: The Policy LLM is prompted to generate messages of a specific type.
For an Economic nudge, the prompt might instruct it to design a financial incentive package
within a budget that encourages adopting globally optimal practices. For a Behavioral
nudge, the prompt instructs it to use principles like social proof, commitment, and framing
to craft a persuasive message, without offering significant new economic incentives.
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B.7 DATA GENERATION

B.7.1 AGRICULTURAL DOMAIN

To simulate agricultural landscapes, synthetic farm and plot-level geo-spatial data were generated
(Fig. 8). The process began by establishing the combined boundaries of a farm cluster, which was
then broken into five distinct farms using Voronoi tessellation based on random points; the resulting
Voronoi cells were clipped to the edge to create a set of non-overlapping farms that together spanned
the selected area. Each of these individual farm polygons was subsequently subdivided into nine land
use plots, again using Voronoi tessellation, to produce smaller, non-overlapping plot polygons that
filled the entire farm. Following this spatial design, properties were attached to each plot. First, plots
were randomly divided into either agricultural plot (with a 60% probability) or habitat plot (40%
probability). Later, a particular land use label was assigned through a weighted random strategy
depending on its primary type: agricultural plots received crop type labels (e.g., Spring wheat,
Oats, etc.) and habitat plots received land use type labels (e.g., Broadleaf, Grassland, etc.), with
weights reflecting distributions from the 2022 Canadian Annual Crop Inventory (CACI) (Agriculture
and Agri-Food Canada (AAFC), 2022). Following this, a yield value, drawn from a distribution
matching the CACI data for the assigned crop, was matched to each agricultural plot. Ultimately,
each synthetic farm’s output was a GeoJSON FeatureCollection, detailing the geometric definitions
(polygons) and the specific assigned attributes (type, label, yield) for every plot it contained.

B.7.2 EV CHARGING DOMAIN

For the EV charging coordination domain, synthetic scenarios were generated with the following
structure: 5 agents (EV owners), 4 time slots (representing different times of day), and 7-day plan-
ning horizons. Each agent was assigned a base demand profile (a 4-element vector representing
charging needs across slots), a set of preferred charging slots (0-3 indices), a comfort penalty value
(cost incurred when charging outside preferred slots), a persona, and a location on the grid feeder.
Scenario-level parameters included slot-specific electricity pricing (varying by time of day), carbon
intensity values (gCO2/kWh per slot), baseline grid load (non-EV load per slot), grid capacity limits,
and slot-usage constraints (minimum and maximum number of agents allowed per slot). Multi-day
profiles were created by varying these parameters across the 7-day horizon to simulate realistic tem-
poral patterns (e.g., weekday vs. weekend pricing, weather-dependent carbon intensity). Neighbor
in-context learning examples were constructed by sampling from other agents’ configurations. All
scenarios were serialized as JSON files containing agent configurations, daily profiles, and global
parameters, enabling reproducible evaluation of evolved heuristics and nudges.

B.8 DOMAIN CREATION AGENT

The Domain Creation Agent is a meta-level component designed to automate the adaptation of
ECHO-MIMIC to new domains. It bridges the gap between a high-level problem description and
the specific prompt templates required by the ECHO and MIMIC stages.

B.8.1 WORKFLOW

1. Input Schema: The user provides a JSON-like schema defining the agent’s state space,
action space, and constraints.

2. Meta-Prompting: The Domain Creation Agent uses a meta-prompt that encodes the prin-
ciples of good prompts (e.g., clear role definition and explicit constraints).

3. Template Generation: The agent generates:

• System Instructions: Defines the role of the Policy LLM (e.g., “You are an expert in
EV charging optimization...”).

• Task Prompts: Formats the specific state variables into a natural language description
(e.g., “The battery is at 20%...”).

• Operator Prompts: Defines valid mutation operators for the code/text (e.g., “Change
the threshold for urgent charging...”).

• Evaluation Harness: Generates scoring functions and JSON schemas based on the
domain’s objectives and evaluation criteria.
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Figure 8: Synthetic farms and plots. a) Synthetically generated farm geometries and overall land-
scape configuration. Each farm is assigned its own distribution of crops, yields, and habitat plots. b)
Each farm is assigned its own distribution of crops, yields, and habitat plots.

(a) (b)

(c) (d)

Figure 9: Agricultural landscape and interventions. a) Synthetically generated farm geometries
and overall landscape configuration. Each farm is assigned its own distribution of crops, yields,
and habitat plots (see Appendix B.7). b) Interventions resulting from ECHO after learning baseline
heuristics in stage 2. The interventions match the ground-truth baseline computed from stage 1
closely. For a comparison see Appendix C, Fig. ??.

This automation reduces the setup time for a new domain from days of manual prompt engineering
to minutes of schema definition.

C ADDITIONAL RESULTS

D SAMPLE HEURISTICS

ECHO heuristic EV charging: Tariff-weighted exponential demand sharpening

def calculate_policy():
# Load scenario
with open("scenario.json", "r") as f:

scenario = json.load(f)
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Figure 10: ECHO accuracy on the farm domain against complexity metrics. Accuracy versus
normalized complexity metrics of the heuristics for farms 1(a), 2(b), 4(c), and 5(d). Increased
complexity metrics are correlated with increased accuracy, upto a point, followed by a decrease.
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Figure 11: ECHO stage 2 operator counts and trajectory on the farm domain. a) Total operator
count for each of the LLM variation operators summed across generations for the best performing
heuristic file at the end of the final generation. Crossover and mutate are the most used in high
performing heuristics. b) The trajectory of the best performing heuristic file at the end of the final
generation. We see that although reflect doesn’t produce high positive fitness delta, the best per-
forming heuristic in the end has it in its trajectory, pointing to its role in injecting diversity over
generations.

base_demand = [1.20, 0.70, 0.80, 0.60]
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(a) (b)

Figure 12: Composition and trajectory of sample best messages on the farm domain. a) Best
policy message communicated to a farmer with a resistant personality, using a behavioral nudge. b)
Best policy message communicated to a farmer with an economics-oriented personality, using an
economics-oriented nudge.

exponent = 4.0 # Sharpening factor to match neighbor intensity
(˜0.7-0.8 peak usage)

daily_usage = []

for day_data in scenario["days"]:
tariffs = day_data["tariff"]
weights = []

# Calculate raw utility for each slot
for slot_idx in range(4):

# Higher demand -> Higher utility
# Lower tariff -> Higher utility
utility = (base_demand[slot_idx] ** exponent) / tariffs

[slot_idx]
weights.append(utility)

total_weight = sum(weights)

# Normalize to usage range [0, 1] summing to 1.0 (
representing total daily charge allocation)

usage_vector = [w / total_weight for w in weights]

# Round for cleanliness (4 decimal places)
usage_vector = [round(u, 4) for u in usage_vector]

# Floating point correction: ensure sum is exactly 1.0 by
adjusting the max element

current_sum = sum(usage_vector)
diff = 1.0 - current_sum
max_idx = usage_vector.index(max(usage_vector))
usage_vector[max_idx] += diff
usage_vector[max_idx] = round(usage_vector[max_idx], 4)

daily_usage.append(usage_vector)

ECHO heuristic Farm: NPV with decaying discount rate

discount_rate = initial_discount_rate * math.exp(-0.2 * year) +
long_term_discount_rate
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discount_factor = 1 / (1 + discount_rate) ** year

# Ecosystem service gains (delayed benefits)
pollination_increase_margin = 0.01 * (1 / (1 + math.exp(-0.1 * (
year - 5)))) # delayed benefit
pest_control_increase_margin = 0.005 * (1 / (1 + math.exp(-0.2 * (
year - 2)))) # delayed benefit
ecosystem_service_value_margin = (pollination_increase_margin +
pest_control_increase_margin) * 500

# Monetary value
revenue_margin += ecosystem_service_value_margin
margin_npv += revenue_margin * discount_factor

# Decide conversion from NPV difference
npv_difference = habitat_npv - margin_npv
# Clip to avoid overflow in exp
npv_difference = max(-100, min(100, npv_difference))
# Sigmoid with steepness 0.1
habitat_conversion = 1 / (1 + math.exp(-0.1 * npv_difference))

ECHO heuristic Farm: Polygon orientation via PCA

import math
import numpy as np

def calculate_eigenvectors(cov):
M = np.array(cov, dtype=float)
vals, vecs = np.linalg.eig(M)
order = np.argsort(vals)[::-1] # descending by

eigenvalue
vals = vals[order]
vecs = vecs[:, order]
# as Python lists: first vector is the principal direction
return vals.tolist(), [vecs[:, 0].tolist(), vecs[:, 1].tolist()

]

def calculate_plot_orientation(geometry):
if not geometry or geometry.get("type") != "Polygon" or "

coordinates" not in geometry:
return 0.0

coords = geometry["coordinates"][0] # exterior ring
if len(coords) < 3:

return 0.0

# coordinates
x_coords = [c[0] for c in coords]
y_coords = [c[1] for c in coords]

# means
x_mean = sum(x_coords) / len(x_coords)
y_mean = sum(y_coords) / len(y_coords)

# 2x2 covariance matrix (un-normalized; scale doesn’t affect
eigenvectors)

cov = [[0.0, 0.0], [0.0, 0.0]]
for xi, yi in zip(x_coords, y_coords):

dx, dy = xi - x_mean, yi - y_mean
cov[0][0] += dx * dx
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cov[0][1] += dx * dy
cov[1][0] += dy * dx
cov[1][1] += dy * dy

# eigen decomposition
eigenvalues, eigenvectors = calculate_eigenvectors(cov)

# angle of principal eigenvector (largest eigenvalue)
vx, vy = eigenvectors[0][0], eigenvectors[0][1]
orientation = math.atan2(vy, vx) # radians, in [-pi, pi]
return orientation

E REAL-WORLD APPLICATION AND POTENTIAL EXTENSIONS

This section provides a blueprint for deploying the ECHO-MIMIC framework in real-world settings
and outlines extensions that increase its scope. The workflow operationalizes the core idea: align-
ing individual, heuristic-driven decisions with global objectives, via an iterative feedback loop that
alternates between simulate → nudge → observe → refine (Fig. 13).

E.1 FIELD DEPLOYMENT LOOP

Stage 1: Baseline Behavior (Observation & Variable Discovery): Establish typical behavior of
local agents (e.g., farmers, EV drivers, depot managers) under current processes and states. Collect
logs on decisions, constraints, and outcomes to (i) characterize baseline policies and (ii) identify
salient decision variables to encode in heuristics.

Stage 2: Learn Baseline Heuristics (LLM–EA Imitation): Given Stage 1 data, the superagent
trains an LLM-guided evolutionary algorithm (LLM–EA) to codify each local agent’s baseline
heuristic. Prompts include: task instructions, in-context examples (possibly from community data),
current agent/state descriptors, and economic/operational parameters organized around the Stage 1
variables. Output is an explicit, executable heuristic that reproduces observed baseline actions.

Stage 3: Learn Global Heuristics (Target Policy Search): Define global utility (e.g., ecological
connectivity, grid stability, system-wide cost). Use LLM-guided EA to evolve explicit, actionable
global heuristics approximating target behaviors that optimize the collective objective under con-
straints.

Stage 4: Nudge & Iterative Real-World Refinement: Design and deploy nudges that steer local
heuristics toward the global target: a) Initial Nudges: Tailor messages/incentives using simulated
preferences and learned baseline heuristics; optionally profile behavioral types (e.g., resistant, cost-
focused, socially influenced) inferred from Stage 1/ongoing data to personalize nudges. b) Deploy-
ment & Feedback: Deploy nudges; observe agent responses and realized outcomes. c) Refinement:
Feed observations back into the LLM–EA: update nudges, revise baseline heuristics, and (when
needed) re-tune global heuristics. Repeat the loop at a cadence aligned to decision cycles.

Minimal Pseudocode for Implementation.

Initialize data D obs from Stage 1; learn Ĥ baseline (Stage 2) and Ĥ global Stage 3).
for round t = 1, 2, . . . do
Synthesize nudgesN t = LLM-EA(Ĥ baseline, Ĥ global, profiles, constraints)
DeployN t; observe responses/actions A t and outcomes Y t

Update Ĥ baseline, Ĥ global← Refit/Retune(D obs ∪ {(N t,A t,Y t)})
end for

E.2 DATA, INSTRUMENTATION, AND METRICS

Operations should be grounded in three layers: Data & Telemetry, Instrumentation, and Evaluation.
For Data & Telemetry, teams should collect operational logs of actions and costs, contextual state
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heuristics

Stage 3: ECHO
Learn Global Heuristics

Identify ideal global behaviors
for collective outcome

Global agent uses LLM+EA

Develop actionable heuristic
representations approximating

target global behaviors

Stage 4: MIMIC
Nudge to Global Heuristics & 

Iterative Refinement

Infer agent personalities from collected data

Design initial nudge mechanisms: e.g., advice,
incentives using LLM+EA, tailored to

personalities

Deploy Nudges 
in Real World

Observe real-world agent
actions & collect feedback

Evaluate Nudge 
Effectiveness

Iterative Refinement

Update Baseline 
Understanding

Refine Variable 
Identification/Data Collection

Figure 13: Real-world iterative ECHO–MIMIC workflow. Stage 1: collect real-world actions
and context to identify key decision variables. Stage 2 (ECHO): use an LLM + evolutionary algo-
rithms to elicit explicit baseline heuristics conditioned on those variables. Stage 3 (ECHO): learn
global, outcome-aligned heuristics that approximate target collective behavior. Stage 4 (MIMIC):
infer agent personas and design personalized nudges (e.g., advice, incentives, quotas), deploy in the
field, observe feedback, evaluate effectiveness, and iteratively refine both nudges and data/variable
selection to close the loop.

variables (environmental, network, demand), outcome measures (yields, reliability, risk proxies),
and consented behavioral signals such as opt-in profiles and communication reach/uptake. Build-
ing on that foundation, Instrumentation should provide stable unique agent identifiers, timestamp
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all actions and outcomes, record nudge delivery along with open/engagement rates, include ran-
domized holdouts or stepped rollouts for causal assessment, and maintain safe rollback controls for
rapid recovery. Finally, Evaluation should proceed along three complementary axes. At the Lo-
cal level, applications need to track utility/cost, the adherence shift from baseline → nudged, and
fairness across types/localities. At the Global level, the target metric (e.g., connectivity, peak reduc-
tion, system cost) needs to be monitored alongside constraint satisfaction; and at the Causal level,
applications should use A/B or stepped-wedge designs, estimate heterogeneous uplift by personali-
ty/type, and apply off-policy estimators when experimentation is limited. These practices create the
observability and methodological rigor needed for trustworthy implementation.

E.3 ILLUSTRATIVE DOMAINS WHERE ECHO-MIMIC APPLIES

Domain Superagent Example nudges / instru-
ments

Global objective

Decentralized
water or rangelands

Water board /
cooperative

Dynamic quotas, tiered prices,
targeted advisories, rotation
schedules

Equity, scarcity
management,
sustainability

Supply chains &
logistics

Central logistics
coordinator

Congestion tolls, dynamic pri-
ority slots, routing prompts

System cost,
delay, carbon

Local energy grids
(EV charging)

Grid operator /
aggregator

Time-varying tariffs, feed-in in-
centives, peak alerts

Peak shaving,
stability,
emissions

Disaster risk
mitigation
(wildfire/flood)

Coordinating
agency

Risk-based cost-sharing, syn-
chronized action windows, tar-
geted alerts

Vulnerability
reduction

Crowdsourcing /
participatory
governance

Platform or
municipality

Gamified tasks, localized chal-
lenges, reputation credits

Coverage/quality
for collective
goals

Urban mobility
(road & transit
networks)

Transit authority /
traffic-management
center (TMC)

Time-varying congestion pric-
ing, transit/EV priority, pool-
ing/micromobility incentives

Network
throughput,
emissions
reduction

E.4 PRACTICAL CONSIDERATIONS AND RISKS

Responsible deployment should be underpinned by a coherent governance stack. First, for Safety &
Governance, teams should conduct pre- and post-deployment checks on nudge content, enforce rate
limits, require human-in-the-loop approval for high-impact changes, and maintain comprehensive
audit logs while regularly red-teaming LLM outputs. Second, to ensure Incentive Compatibility,
designers should avoid perverse incentives, cap payouts, and add guardrail constraints (e.g., mini-
mum service levels, environmental thresholds) so that local rewards do not undermine system goals.
Third, to protect Privacy & Consent, projects should apply differential privacy to telemetry, rely
on opt-in profiles, and practice data minimization with clear retention policies. Fourth, Robustness
should be maintained through continuous distribution-shift monitoring, well-tested fallback heuris-
tics, and stress tests under shocks such as demand spikes or outages. Finally, advancing Equity re-
quires tracking heterogeneous treatment effects and mitigating disparate impacts via fairness-aware
objective terms. Taken together, these measures would enable safe, effective, and socially responsi-
ble deployment of the framework.

E.5 POTENTIAL EXTENSIONS

Looking ahead, apart from the future work mentioned in the main text (section 6), several other
extensions could further strengthen the framework. Validating the framework with real-world data
(e.g., farm plots, charging logs) featuring irregular and heterogeneous conditions will ensure robust-
ness beyond synthetic testbeds. Adaptive Persona Modeling can personalize nudges by embedding
agents online and updating policies with Bayesian or meta-learning as evidence accumulates. A
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Mechanism Design Layer could jointly search over nudge forms (messages, prices, quotas) and
allocation rules while honoring budgetary and fairness constraints. Multi-Level Governance could
stack superagents from local to regional to national tiers, enforcing cross-scale consistency and man-
aging externalities across jurisdictions. Causal Discovery Hooks can integrate instrumental-variable
and DoWhy-style analyses, as well as synthetic controls, to attribute effects when full randomization
is infeasible. Human-in-the-loop governance can co-design panels to set acceptable trade-offs, audit
nudges for ethics and transparency, and publish policy cards for each heuristic/message detailing
scope, assumptions, and expected impacts. Global targets and fitnesses rely on proxy evaluators
(e.g., connectivity metrics such as IIC and error measures like MAE/Jaccard) and planner choices
(acceptable yield loss, budget constraints). These introduce Goodhart risks and value-ladenness
that should be stress-tested. Adaptive operator design like bandit or meta-learning over LLM op-
erators (generate, mutate, crossover, fix, reflect) and priors bootstrapped from successful edit traces
∆Hi can potentially improve sample efficiency. Extending the evaluator and state/action schemas
to watersheds, urban mobility, supply chains, online governance, and disaster response, and testing
whether ECHO-MIMIC’s overall philosophy transfers with minimal retuning is also interesting.

Future research can also examine the framework’s multi-level structure with formal tools, for ex-
ample by deriving bounds on the suboptimality of evolved heuristics relative to true optima and by
characterizing how global objectives constrain the design of optimal incentive mechanisms. Another
complementary direction is to increase the behavioral fidelity of LLM-simulated agents, endowing
them with learning dynamics, memory, and simple social interactions, to better approximate real
decision processes and thereby improve the policy-relevance of simulation results. It would be use-
ful to test whether a Bag of Heuristics curated from simpler configurations can act as a transferable
prior or curriculum, accelerating convergence in more complex scenarios. It would also be inter-
esting to evaluate whether heuristics articulated in natural language (e.g., chain-of-thought rendered
as structured JSON for direct execution) achieve performance on par with, or complementary to,
the Python-based heuristics explored here, thereby clarifying the trade-offs between interpretabil-
ity, flexibility, and execution efficiency. Finally, Human Oversight & Preference Elicitation can
institutionalize periodic Delphi-style panels or elections to update global objectives and normative
constraints. Together, these directions form a good roadmap for scaling the approach in capability,
reliability, and legitimacy.

F PROMPT TEMPLATES

All prompt templates used across domains, stages, LLM roles, operators, and personas can be found
in the attached code.

G SAMPLE NUDGE MESSAGES

Some sample messages generated by the Policy LLMs for some personality-nudge type combina-
tions are given below.

Farm Domain: Personality-Resistant, Nudge-Behavioral

Dear Farmer,

We recognize your dedication to efficient farming, especially with
crops like Corn, Soybeans, Spring wheat, and Barley, alongside your
Broadleaf habitat. We’ve been observing trends among farms in the

area, and many, including your neighbors, are exploring ways to
improve resilience and productivity through ecological connectivity
.
Like you, we have observed your neighbors farming Spring wheat.
Notably, Neighbor 1 has a Spring wheat plot (ID 4), just like yours
, with a significantly higher yield (2.52) compared to your plot
(0.5). Other neighbors have also adopted similar strategies with
success.
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Given this and the fact that your Spring wheat plot (ID 4)
currently has a lower yield, would you consider a low-commitment
trial to enhance connectivity? A common first step is establishing
a **0.5 margin intervention along the North-East and South-West
edges of your Spring wheat plot (ID 4), with habitat intervention
across all four sides (resulting in a habitat conversion of 1.0)**.
Many farmers in your community are finding that dedicating some

small sections to margin interventions and habitat conversion are a
practical way to start and have collectively decided that this

should be a default practice for everyone.

Based on ecological connectivity best practices and success in
farms like yours, we recommend that for your Corn plot (ID 2), you
establish margin interventions on all directions (north-west, north
-east, south-west, south-east, resulting in a margin intervention
of 1.0). For your Soybeans plot (ID 3), we recommend setting up
margin interventions on the south-west and south-east direction (
resulting in a margin intervention of 0.5). Finally, for your
Barley plot (ID 5), we recommend setting up margin interventions on
the north-west, south-west, and south-east directions (resulting

in a margin intervention of 0.75), and habitat interventions on all
directions (north-west, north-east, south-west, south-east,

resulting in a habitat intervention of 1.0). For your Oats plot (ID
9) consider adding margin interventions on the north-west, north-

east, and south-east edges (amounting to an intervention of 0.75),
and habitat interventions across all directions (north-west, north-
east, south-west, and south-east, amounting to an intervention of
1.0).
This isn’t just about the environment. It’s about making your
Spring wheat plot (ID 4) more resilient, potentially improving its
yield, enhancing pest control, and boosting water infiltration.
Successfully implementing these changes can potentially open your
farm to existing general support programs.

We’re here to provide guidance and support as you explore this
impactful change. We will set you up with agronomists and
ecologists so they can best advise you on what practices will suit
your farm’s needs. Let us know if you’d like to discuss these
options further and tailor these strategies to your farm’s specific
needs!

Sincerely,

[Your Organization]

Farm Domain: Personality-Resistant, Nudge-Economic

**Invest in a Connected & *Highly* Profitable Future!**
Dear Farmer,

We’re committed to supporting your farm’s success while enhancing
our community’s ecological health. This enhanced program *
significantly* rewards you for creating strategically connected
habitats, improving pollination, pest control, water quality, and
the long-term resilience of our farms.

**Here’s how you can *dramatically* benefit:**
* **Eco-Premiums Remain:** Continue to get a **20 percent** price
boost on Spring Wheat and Barley crops.
* **Tiered Subsidies for Margins:**
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* **Strategic Directional Margins:** Receive a **60 percent subsidy
** on the cost of establishing new margins and a **25 percent
subsidy** on ongoing maintenance when you place these margins in
key locations (specified by our connectivity plan) to connect
habitats. We’ll provide detailed guidance!
* **Other Margins:** Receive a 40 percent subsidy on establishment
and a **15 percent** subsidy on ongoing maintenance for margins
placed in other locations.
* **Tiered Subsidies for Habitats:**
* **Strategic Directional Habitats:** Get a **50 percent subsidy**
on habitat establishment and a **20 percent subsidy** on
maintenance when you strategically establish new habitat patches (
specified by our connectivity plan) that connect with existing
natural areas.
* **Other Habitats:** Receive a 30 percent subsidy on establishment
and **10 percent** on maintenance for habitat in other locations.
* **Connectivity Bonus!** Earn an extra **150** per hectare *on top
* of the establishment subsidy for margins and habitats placed in
the *exact* directions recommended by our connectivity plan. This
ensures your efforts *maximize* ecological benefit *and your
financial returns*!
* **Get Paid to Convert:** Receive a payment of 80 per hectare for
converting suitable agricultural land into valuable habitat.
**Minimum Requirements:**

To ensure everyone contributes to a healthier landscape, we’re
setting a minimum standard of 2 hectares of habitat per farm and
0.1 hectares of margin along existing habitats. These minimums can
qualify for subsidies, but the *real* rewards come from strategic
connectivity!

**Why Participate?**
This program is about *more* than just meeting requirements. It’s
about *maximizing* your farm’s profitability while building a
resilient and thriving ecosystem. By strategically connecting
habitats, you contribute to a healthier landscape *and* unlock *the
highest* financial benefits.

**Ready to *maximize your returns*?** Contact us today to learn
more about the specific connectivity plan for your farm and how you
can participate!

Sincerely,

[Your Organization]

EV Charging Domain: Persona-Battery engineer balancing budget and solar backfeed

Dear Engineer,

I have reviewed your current dispatch algorithm and identified a
significant risk in your weighting parameters. While prioritizing
tariff (weight 1.0) optimizes your immediate economic budget, your
heuristic assigns a negligible weight (0.001) to spatial carbon
intensity. This effectively blinds your system to real-time local
congestion, creating a vulnerability during this week’s unique grid
events.

Specifically, your feeder faces high-stress scenarios on Day 2 (
Evening Wind Ramps) and Day 6 (Maintenance Advisory), where the
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valley transformer is explicitly capped. Your current logic ignores
these physical constraints, pushing load during periods where your
specific transformer is already thermally compromised.

The attached coordinated profile offers a strategic correction. We
request you to shift your primary load into confirmed low-
congestion windowsspecifically targeting the ˜330g carbon intensity
drops available in Slot 1 on Day 2 and Slot 2 on Day 3.

Adopting this schedule safeguards your infrastructure. By aligning
with actual thermal headroom rather than simple price arbitrage,
you ensure your solar backfeed capabilities are not curtailed by
upstream safety limits. Let us secure your budget by respecting the
grid’s physical constraints.

Regards,

Grid Coordination System
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