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ABSTRACT

Collective action problems, which require aligning individual incentives with col-
lective goals, are classic examples of Ill-Structured Problems (ISPs). For an
individual agent, the causal links between local actions and global outcomes
are unclear, stakeholder objectives often conflict, and no single, clear algorithm
can bridge micro-level choices with macro-level welfare. We present ECHO-
MIMIC, a computational framework that converts this global complexity into a
tractable, Well-Structured Problem (WSP) for each agent by discovering com-
pact, executable heuristics and persuasive rationales. The framework operates
in two stages: ECHO (Evolutionary Crafting of Heuristics from Outcomes)
evolves snippets of Python code that encode candidate behavioral policies, while
MIMIC (Mechanism Inference & Messaging for Individual-to-Collective Align-
ment) evolves companion natural language messages that motivate agents to adopt
those policies. Both phases employ a large-language-model-driven evolution-
ary search: the LLM proposes diverse and context-aware code or text variants,
while population-level selection retains those that maximize collective perfor-
mance in a simulated environment. We demonstrate this framework on a canoni-
cal ISP in agricultural landscape management, where local farming decisions im-
pact global ecological connectivity. Results show that ECHO-MIMIC discovers
high-performing heuristics compared to baselines and crafts tailored messages
that successfully align simulated farmer behavior with landscape-level ecologi-
cal goals. By coupling algorithmic rule discovery with tailored communication,
ECHO-MIMIC transforms the cognitive burden of collective action into a simple
set of agent-level instructions, making previously ill-structured problems solvable
in practice and opening a new path toward scalable, adaptive policy design.

1 INTRODUCTION

Many of the most pressing real-world challenges, from sustainable resource management and cli-
mate change mitigation to economic policy design, are Ill-Structured Problems (ISPs) (Simon &
Newell, 1971; Reitman, 1964). Unlike Well-Structured Problems (WSPs), which have clearly de-
fined goals, known constraints, and a finite set of operators, ISPs feature ambiguous goals, unclear
causal relationships, and undefined solution spaces (Simon, 1973). Solving an ISP requires the
problem-solver to impose structure, define objectives and discover pathways, as an integral part of
the solution process itself.

A classic example of an ISP arises in collective action problems, where locally rational decisions
made by autonomous agents lead to globally suboptimal or even harmful outcomes (Hardin, 1968;
Ostrom, 1990). Consider farmers operating within a shared agricultural landscape. Each farmer
makes land-use decisions driven by local incentives like maximizing crop yield and profitability.
While these decisions may be optimal at the farm level, their combined effect can degrade the shared
ecosystem upon which all depend, for instance by reducing biodiversity or compromising ecological
connectivity (Kremen, 2020; Poteete et al., 2010; Taylor et al., 1993). For an individual farmer, the
decision of how to act is an ISP: the link between their specific planting choices and the health of
the entire landscape is complex and unclear, and the right action is not algorithmically defined.
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The challenge for a system designer or policymaker is to create a mechanism that simplifies this
decision-making process for the individual. An ideal solution would be simple, practical behavioral
rules, or heuristics, that, if followed by individual agents, reliably produce a desirable global out-
come. Such heuristics would effectively transform the ISP faced by each agent into tractable WSPs.
Discovering such heuristics, however, is a challenging second-order problem.

We introduce the ECHO-MIMIC framework, designed to automate the discovery of these heuristics
and the mechanisms to encourage their adoption. Our approach is grounded in Simon’s models of
bounded rationality, which posit that agents rely on simple rules-of-thumb to navigate complex
environments (Gigerenzer & Gaissmaier, 2011; Simon, 1990). We operationalize this concept using
the synergy of Evolutionary Algorithms (EAs) and Large Language Models (LLMs). This LLM+EA
paradigm represents a new frontier for creative problem-solving, and recent work has begun to
leverage LLMs within evolutionary program searches to generate and tune heuristics for complex
optimization problems, such as optimizing prompts for the LLMs themselves (Guo et al., 2023) and
to fuel mathematical, algorithmic, and scientific discovery (Romera-Paredes et al., 2024; Liu et al.,
2024a; Ye et al., 2024; Novikov et al., 2025; Chen et al., 2023).

However, the utility of this paradigm in practical optimization settings and its applicability to real-
world complex systems has been underexplored. Our framework applies this paradigm to solve
a real-world collective action problem, an ISP, and transform it into effective WSPs. To achieve
this, the LLM acts as a creative engine that proposes executable heuristics and nudges, while the
Evolutionary Algorithm (EA) provides the optimization pressure. Our primary contributions are:

1. We introduce ECHO-MIMIC, a framework that deconstructs complex collective action
ISPs into simple, executable behavioral heuristics that are well-structured for individual
agents, and then nudges the agents to implement these heuristics.

2. We demonstrate our framework on the important ecological collective action problem of en-
hancing connectivity in agricultural landscapes, and show that it significantly outperforms
generic LLM program-synthesis baselines like DSPy MiPROv2.

3. We find that performance of heuristics produced by ECHO rises with code-complexity
indicators and that nudges generated by MIMIC can be tailored to farmer personas.

4. We show the effectiveness of the LLM+EA paradigm on a chain of spatial optimization
problems in a complex system, moving beyond work focusing on combinatorial bench-
marks (Liu et al., 2024a; Ye et al., 2024; Dat et al., 2025; Romera-Paredes et al., 2024).

2 RELATED WORK

LLM-guided evolutionary search and automated heuristic design: A growing line of work cou-
ples LLMs with evolutionary search to generate programs, prompts, and heuristics. FunSearch
demonstrates LLM-driven program discovery within an evolutionary loop for mathematical prob-
lems (Romera-Paredes et al., 2024). EvoPrompt connects LLMs with evolutionary algorithms to
evolve high-performing prompts (Guo et al., 2023). LLMs have also been used as evolutionary op-
timizers or operators more broadly (Liu et al., 2024b; Yang et al., 2023; Lange et al., 2024). Beyond
prompts, language hyper-heuristics (Burke et al., 2003) evolve executable code to improve search
efficiency and generality across combinatorial problems (Ye et al., 2024; Liu et al., 2024a; Dat et al.,
2025). Our ECHO phase aligns with this paradigm but specializes it to produce validated code
heuristics that map local states to actions to drive collective-action.

Collective action, bounded rationality, and heuristics: The core challenge we target, aligning
individual incentives with social welfare, sits squarely within collective action and commons gov-
ernance. Hardin framed the dynamic as a tragedy of the commons (Hardin, 1968), while Ostrom
documented institutional conditions under which communities avert that tragedy (Ostrom, 1990).
From a cognition viewpoint, our agent-level design follows the bounded-rationality tradition: peo-
ple use fast, simple heuristics adapted to their environments (Gigerenzer & Gaissmaier, 2011). At
the system-level, designing those heuristics transforms an ill-structured problem (Simon, 1973) into
well-structured subproblems with explicit objectives and evaluators.

Ecological connectivity and ecological intensification: In working landscapes, biodiversity out-
comes hinge on both production decisions and spatial configuration. Ecological intensification em-
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phasizes managing on-farm practices and diversification to sustain yields while supporting ecosys-
tem services (Kremen, 2020; Bommarco et al., 2013; Garibaldi et al., 2019). At landscape scale,
ecological connectivity is crucial (Taylor et al., 1993; Keeley et al., 2021). Graph-based indices
like Integral Index of Connectivity (IIC) (Pascual-Hortal & Saura, 2006) formalize how local inter-
ventions aggregate into network-level connectivity. We follow these existing models of ecological
intensification and connectivity to derive ground-truth baseline and global behaviors of agents.

Mechanisms, nudges, and AI-personalized messaging: Adoption is often the bottleneck, and
even good policies underperform without mechanisms for uptake. Behavioral nudges and choice
architecture can shift real-world environmental decisions (Byerly et al., 2018). Recent evidence
shows that generative models can craft personalized messages with stronger persuasive effects than
generic appeals (Matz et al., 2024; Rogiers et al., 2024). Our MIMIC phase operationalizes this by
evolving messages that reliably alter agents’ code-level heuristics toward ECHO-derived targets.

3 PROBLEM FORMULATION AND APPROACH

The collective action setting is ill-structured at two coupled levels. At the agent level, each agent i ∈
N observes a local state SL,i, chooses ai ∈ Ai, and optimizes a local objective UL,i, while the effect
of ai on societal goals depends on unknown and evolving a−i. At the system level (policymaker),
inferring what agents currently do (baseline behavior), determining how to coordinate local choices
so they aggregate into desired global patterns, and how to incentivize behavior under real-world
constraints are themselves ill-structured problems. Here, we present this problem and our approach
in the context of agricultural collective action, but the formulation and the ECHO-MIMIC pipeline
apply broadly to other collective action domains (e.g., decentralized resource management).

In our agricultural setting, SL,i consists of plot-level agro-ecological and economic features, such
as crop types, yields, and prices. Actions ai are farm interventions: (i) margin intervention (length,
placement), and (ii) habitat conversion (area, orientation). We focus on these two levers because
they are common, farmer-controlled choices in ecological intensification that modulate on-farm ser-
vices (pollination, pest control) and economic trade-offs with relatively low implementation friction
(Kremen, 2020). At the landscape scale, their placement, length, area, and orientation directly re-
shape the habitat graph (patch areas and potential corridors), making them a compact yet expressive
action basis for steering connectivity (Taylor et al., 1993). We set the local objective UL,i to be net
present value (NPV) under farm-specific constraints, whereas the global objective UG prioritizes
landscape-scale ecological connectivity, measured by the Integral Index of Connectivity (IIC), an
area-weighted graph metric computed on the habitat network (Pascual-Hortal & Saura, 2006).

Let A = (a1, . . . , aN ) and define a nonseparable global objective UG(A) = G
(
Φ(A)

)
, where

Φ maps joint interventions to a mesoscale representation, like a habitat graph built from the spatial
pattern and directionality of margins/habitats, and G scores that representation using IIC or related
connectivity metrics. From any single agent’s vantage point, ∂UG/∂ai depends on unknown and
evolving a−i and is mediated by thresholds, complementarities, and path dependence in Φ. For
instance, an intervention that nearly bridges two patches has negligible effect until a neighboring
segment exists (threshold); an intervention’s benefit materializes only if downstream segments ex-
ist (complementarity); and interventions can align with or sever emergent corridors (directionality).
These properties render one-shot mechanism design ill-posed. Therefore, to make this collective
action ISP tractable, our approach imposes structure at both the system and agent levels by decom-
posing the problem into four well-structured stages whose outputs are directly executable (Fig. 1):

Stage 1 - Establish Baseline Behavior: We fix what agents do by default. For each agent i, we
compute the baseline action a0i by solving the local problem maxa UL,i(a, SL,i) following Kremen
(2020); Dsouza et al. (2025). This yields state-action pairs D0

i = (SL,i, a
0
i ). Practically, this means

solving for (or recording) each farm’s profit-maximizing choices, for example, how much margin
length and habitat area to allocate given assumed prices, costs, and constraints.

Stage 2 - Learn Baseline Heuristics: We learn executable code heuristics ĤL,i that reproduces
a0i from SL,i, where candidates are Python programs. An LLM proposes/mutates code and an
EA selects by a computable error like MAE between predicted and baseline actions. In effect, this
yields a program for each farm that, given its yields, crops, and prices, outputs the same profit-driven
intervention pattern the farmer would normally choose under ecological intensification.
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Figure 1: ECHO–MIMIC framework. ECHO uses an LLM+EA search loop to propose farm-level
decision heuristics aligned with baseline (stage 2) and global (stage 3) objectives. MIMIC optimizes
personalized nudges (e.g., messages/mechanisms/policies) using an LLM+EA search loop to drive
collective action. Overall, the framework converts the collective action ISP into system- and agent-
level WSPs. See Appendix B.2 for a more detailed workflow.

Stage 3 - Learn Global Heuristics: We identify globally desirable targets (directions) H∗
G,i that

maximize UG, then learn executable code Ĥ∗
G,i that maps SL,i 7→ H∗

G,i(SL,i). Candidates are
again Python heuristics evolved by LLM+EA and scored by an appropriate fitness like Jaccard over
spatial directions. In our case, this produces programs that choose margin and habitat placements
that collectively improve landscape connectivity, with modest production loss compared to stage 1.

Stage 4 - Nudge to Global Heuristics: We discover natural-language messages Mi that move
agents from executing ĤL,i toward Ĥ∗

G,i. In simulation, a Farm LLM seeded with the code of ĤL,i

and a persona, receives a message from a Policy LLM, edits its code to a temporary Hnudged,i if
persuaded, and outputs an action ãi. Fitness rewards messages that make ãi close to Ĥ∗

G,i.

For the policymaker, these four stages are WSPs, with finite candidate sets and computable fitness.
For agents, scripts ĤL,i and Ĥ∗

G,i are executable, and messages M∗
i minimize cognitive burden.

4 THE ECHO–MIMIC FRAMEWORK

We implement the four stage decomposition above in two coupled phases. First, ECHO discovers
executable heuristics (Stages 2–3), followed by MIMIC, which discovers mechanisms to adopt them
(Stage 4). Both phases follow the same design philosophy: the LLM serves as the variation engine,
generating, mutating, crossing over, repairing, and reflecting on candidates, while the Evolutionary
Algorithm supplies selection pressure via computable fitness.

4.1 ECHO: EVOLUTIONARY CRAFTING OF HEURISTICS FROM OUTCOMES

ECHO learns executable Python heuristics that replicate baseline local behavior (ĤL,i, Stage 2) and
globally desirable behavior (Ĥ∗

G,i, Stage 3). Each candidate is a constrained function with a fixed
I/O signature that reads SL,i and returns intervention intensities or directions.

4
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To implement this phase, we evolve a population of K candidates for H generations using three
LLM roles. These include a Generator to produce initial population of programs, a Modifier to apply
mutation, crossover, and reflect-and-improve edits, and a Fixer to repair compile/runtime issues in
programs. The Modifier and Fixer are used in tandem each round, followed by elitism to preserve
the top-k candidates. Stage 2 and 3 use distinct fitness functions. In stage 2, the fitness minimizes the
error between a candidate’s action and the baseline a0i , yielding ĤL,i as explicit approximations to
locally rational behavior. Whereas in stage 3, the fitness minimizes the error between a candidate’s
action and the global targets H∗

G,i, returning Ĥ∗
G,i as policies for the collective goal.

4.1.1 PROMPTING DESIGN AND NEIGHBOR IN-CONTEXT LEARNING IN ECHO

Generator LLM: To propose an initial population of executable heuristics with the required
I/O signature heuristic(S L) → (margin len, habitat area, margin dir,
habitat dir), we compose the prompt as

Pgen = [SYSTEM] ⊕ [TASK] ⊕ [ICLN (i)] ⊕ [SL,i] ⊕ [Θ],

where ⊕ refers to concatenation; [SYSTEM] fixes coding constraints and file I/O; [TASK] restates
the goal of returning intervention intensities/directions and failure modes to avoid; [ICLN (i)] is a
small set of (input, output) exemplars from neighbors N (i) for in-context learning (ICL); [SL,i] is
the current farm’s feature vector (crop type, yield). [Θ] collects global parameters (prices, costs).

Choosing neighbors for ICL: We define N (i) as k adjacent farms, and supply examples{(
GeoJSONin

j , GeoJSONout
j

)}
j∈N (i)

summarizing state and the realized interventions. This introduces the model to patterns likely to
transfer under similar agro-ecological and geographical conditions. Neighbor ICL allows us to
intentionally withhold the current farm’s baseline labels to test whether the LLM can infer decision
rules from analogous contexts when supervision is provided indirectly via EA selection. It also
mirrors observational diffusion in farming communities, where practices propagate through local
networks facing shared biophysical and market regimes.

Modifier LLM: For genetic variation operators in the evolutionary loop, we use
Pmod = [SYSTEM] ⊕ [TASK] ⊕ [OPERATOR] ⊕ [Θ] ⊕ [CANDIDATES],

where [OPERATOR] specifies the details regarding the operation to be performed (mutate, crossover,
reflect, see Appendix B.3), and [CANDIDATES] includes the parent(s) and, for reflect, a brief leader-
board with fitness scores. [SYSTEM] and [TASK] are similar to the ones used for generation.

Fixer LLM: When a candidate triggers compile/runtime errors, the Fixer LLM performs minimal
edits to restore validity while preserving the required I/O signature and intended behavior.

4.2 MIMIC: MECHANISM INFERENCE & MESSAGING FOR INDIVIDUAL-TO-COLLECTIVE
ALIGNMENT

MIMIC searches for natural-language mechanisms Mi that reliably steer agents from running ĤL,i

toward Ĥ∗
G,i (Stage 4). The population is textual candidates made of economic incentives, behav-

ioral framings, and hybrids, generated/modified by Policy LLMs. Each message is evaluated in a
simulation with a Farm LLM that is initialized with both a persona (Economic, Resistant, Social)
and the program ĤL,i. Upon reading Mi, the Farm LLM may propose edits to its code, yield-
ing Hnudged,i, and then output an action ãi. Fitness rewards messages that make ãi closely match
Ĥ∗

G,i (Appendix B.2; Fig. 5b). MIMIC is effective because its objective is defined against ECHO’s
executable heuristics and persuasion is measured as concrete code edits that change behavior.

Policy Generator LLM: To propose candidate nudges, the Policy Generator composes
Ppol-gen = [SYSTEM/FRAMING]⊕ [TASK]⊕ [DECISIONCONTEXT : SL,i, ĤL,i, Ĥ

∗
G,i, Θ]

⊕ [Θmech],

where [Θmech] encodes mechanism constraints (e.g., budget caps). The model outputs a structured
Mi with either Behavioral or Economic framing as instructed.

5
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Figure 2: Agricultural landscape and ECHO predicted stage 2 interventions. a) Synthetically
generated farm geometries and overall landscape configuration. Each farm is assigned its own distri-
bution of crops, yields, and habitat plots (details in Appendix B.7). b) Interventions resulting from
ECHO learned baseline heuristics in stage 2. The interventions match the ground-truth baseline
computed from stage 1 closely. For the comparison with ground-truth and ECHO stage 3 predic-
tions, see Appendix C, Fig. 9.

Policy Modifier LLM: Given parent messages, the Policy Modifier applies constrained edits via

Ppol-mod = [SYSTEM]⊕ [OPERATOR]⊕ [DECISIONCONTEXT]⊕ [Θmech]⊕ [CANDIDATES],

and returns M ′
i that preserves constraints (budget honesty, no coercive framing) while increasing

persuasion, measured downstream by induced (Hnudged,i, ãi) and fitness against Ĥ∗
G,i(SL,i).

Farm (Simulation) LLM: We emulate an agent’s response to candidate nudges with a Farm LLM.
The prompt is composed as

Psim = [SYSTEM/PERSONA] ⊕ [DECISIONCONTEXT : SL,i, ĤL,i, Θ] ⊕ [MESSAGE : Mi],

where [SYSTEM/PERSONA] fixes background, goals, and receptivity; [DECISIONCONTEXT] speci-
fies the farm state SL,i, the baseline heuristic ĤL,i, and constraints/parameters; and [MESSAGE] is
the candidate nudge from the Policy LLMs. The model returns Hnudged,i which when executed gives
ãi, tying persuasion to code edits and actions that can be scored against Ĥ∗

G,i.

To summarize, we use ECHO to discover what to do and MIMIC to discover how to get people to
do it. This coupling turns a challenging ISP into a chain of WSPs whose outputs are deployable, i.e.,
communicate M∗

i to each agent to induce adoption of Ĥ∗
G,i. Full prompt templates for the stages,

LLM roles, operators, and personas are given in Appendix F.

5 EXPERIMENTAL RESULTS

We demonstrate the application of our ECHO-MIMIC framework to the problem of collective action
in agricultural landscapes. We simulate an agricultural landscape of 5 farms (Fig. 2a) by generat-
ing synthetic farm and plot-level geo-spatial data based on real farm data from the 2022 Canadian
Annual Crop Inventory (CACI) (Agriculture and Agri-Food Canada (AAFC), 2022). See Appendix
B.7 for more info on data generation. We use gemini-2.0-flash-thinking-exp-01-21, and configure
the evolutionary algorithm with a population of 25 individuals and run for 25 generations.

5.1 ECHO DISCOVERS CONTEXT-AWARE HEURISTICS

ECHO reliably evolves Python heuristics that approximate NPV-optimal intervention policies across
heterogeneous farms (Dsouza et al., 2025). The system learns when to choose margin versus habitat
conversion at the plot level (Fig. 2b), improving fitness across generations for all farms (Fig. 4a).
Farms 2 and 5 converge quickly, while Farms 1, 3, and 4 improve more gradually, indicating harder
optimization landscapes. Lineage analysis of the best final heuristics shows Crossover is both the
most frequent operator and the largest contributor to cumulative fitness gains (Fig. 4b). Mutate is
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Figure 3: ECHO stage 2 results and complexity metrics. a) Accuracy (1−error) over generations
in stage 2. Some farms are easier to make progress in (farms 2, 5) compared to others (farms 1, 3, 4),
and distinct capabilities emerge in harder farms as generations progress. b) Total fitness (1/error)
delta resulting from LLM variation operators, summed across generations for the best performing
program at the end. Crossover and mutate have the highest positive cumulative change in fitness.
c) Accuracy versus normalized complexity metrics of the heuristics for farm 3. Increased Halstead
metrics are correlated with increased accuracy, upto a point, followed by a decrease. d) Accuracy
over generations with and without Halstead instructions. Adding additional Halstead instructions to
the prompt provides free gains in accuracy at the expense of interpretability.

also common and adds steady improvements. Reflect appears infrequently in top lineages and adds
little directly, suggesting it supports diversity rather than breakthroughs (Appendix C; Fig. 11b).

Across farms, fitness typically rises with code-complexity indicators (e.g., logical lines of code, Hal-
stead difficulty, distinct (H1) operators up to an intermediate optimum; beyond that point, additional
complexity correlates with lower fitness (Fig. 9c, Appendix C; Fig. 10). Maintainability tends to
decline as fitness rises, consistent with more intricate logic being leveraged to capture hard cases.
Farm 3, 4 show particularly steep gains at higher distinct-operator counts, suggesting that richer pro-
gram vocabularies are necessary to escape performance plateaus (Fig. 9c, Appendix C; Fig. 10). On
Farm 3, adding prompt instructions that explicitly encourage high Halstead distinct-operator counts
and difficulty produces consistently higher accuracy, with a clear divergence after generation 15
(Fig. 9d). This indicates that seeding the search with more expressive building blocks expands the
recombination space that operators can exploit later in evolution.

Evolved programs implement multi-layered logic, for instance, prioritizing low-revenue/low-yield
plots, using thresholds, and scaling habitat conversion by yield deficits and crop prices like below:

Inputs: plot_yield, crop_label, crop_prices(.)
Outputs: margin_intervention, habitat_conversion

revenue <- plot_yield * crop_prices(crop_label)
margin_intervention <- 0; habitat_conversion <- 0

7
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Figure 4: MIMIC nudge discovery and personalization. Accuracy of nudges over generations
a) for hard farms with generic instructions. At different points MIMIC learns to use social proof,
give a concrete roadmap, and talk about risk-free implementation. b) for hard farms with persona
and nudge type specific instructions. P refers to personas and N refers to nudge types. Personas are
either Resistant, Economic, or Social. Nudge Types are either Behavioral or Economic.

if revenue < low_rev_thr then
if plot_yield < 1.5 then
if crop_label in crop_prices and crop_prices(crop_label) > 250 then
x <- (1.5 - plot_yield) * crop_prices(crop_label) / 500
habitat_conversion <- min(1, max(0, x))

Other representative heuristics compute NPVs with a decaying discount rate and estimate polygon
orientation via a PCA on plot vertices (Appendix D), highlighting ECHO’s ability to integrate eco-
nomic and spatial reasoning. In summary, ECHO discovers context-aware heuristics, operators play
distinct roles, and controlled increases in code complexity can unlock superior performance.

5.2 MIMIC EVOLVES PERSONALITY-ALIGNED NUDGES

LLMs can produce persuasive text that draws on behavioral science to scale tailored messages (Matz
et al., 2024; Rogiers et al., 2024). Yet nudge efficacy is highly context-dependent and hard to evalu-
ate. MIMIC addresses this with a closed-loop search between two agents: a Policy LLM that gener-
ates candidate nudges and a Farm LLM that simulates farmer responses and executes heuristics. On
challenging farm configurations with generic instructions, accuracy with respect to generated global
heuristic actions from ECHO (stage 3) improves across generations (Fig. 4a). Next, we model het-
erogeneity with three farmer personas, Resistant, Economic, and Social, and two nudge types, Eco-
nomic and Behavioral (choice-architecture levers such as social comparison, defaults, commitments,
and framing (Byerly et al., 2018; Carlsson et al., 2021)). We see that social personas + behavioral
nudges, and economic personas + economic nudges, perform the best (Fig. 4b), while economic
personas also benefit from behavioral nudges after an initial lag. Resistant personas score lower
overall, but behavioral nudges deliver modest gains relative to economic nudges. Qualitatively, top
behavioral nudges leverage social proof and low-risk trials, while top economic nudges offer sub-
sidies/premiums with clear commitments. Full best-message exemplars for each persona× nudge
pairing are in Appendix G. In summary, MIMIC adapts collective action nudges to context and per-
sona, while traditional static mechanisms and purely economic incentives struggle with such hetero-
geneity (Knowler, 2014). Moreover, MIMIC is readily extensible to human-in-the-loop deployment,
where real feedback replaces simulated responses for iterative refinement (Appendix E).

5.3 COMPARISON WITH BASELINES

As there is no direct comparison to ECHO-MIMIC driving collective action by working at both the
system and agent levels, we assume system level breakdown into stages, and compare only at the
agent level against DSPy MIPROv2 (Opsahl-Ong et al., 2024), a strong LLM-native baseline (Table

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Mean accuracy (averaged over 5 seeds) on five farms. Stages 2-3: ECHO vs. MIPROv2;
Stage 4: MIMIC vs. MIPROv2. We run DSPy MIPROv2 under its heavy-auto configuration. Both
methods are evaluated with identical starting prompts.

Stage Method Farm 1 Farm 2 Farm 3 Farm 4 Farm 5

2 DSPy MIPROv2 0.01 0.99 0.65 0.32 0.06
ECHO 0.92 0.99 0.86 0.90 0.99

3 DSPy MIPROv2 0.00 0.00 0.00 0.00 0.00
ECHO 0.23 0.29 0.13 0.25 0.31

4 DSPy MIPROv2 0.34 0.22 0.14 0.21 0.73
MIMIC 0.69 0.92 0.57 0.69 0.76

1). We do not compare to non-LLM program search as our goal is not merely to approximate a global
planner but to induce human-readable heuristics that can be executed by farmers and seamlessly
verbalized into messages. Across farms, ECHO-MIMIC decisively outperforms DSPy in all stages
under identical input constraints. Particularly, DSPy completely fails to induce global-compatible
local heuristics in stage 3. These results show consistent cross-input gains of ECHO-MIMIC in gen-
erating executable heuristics and messages, beyond what a generic LLM program-synthesis baseline
like DSPy MiPROv2 achieves under the same decision-time information. Finally, we noticed that
the quality of the LLM matters, and while ECHO-MIMIC succeeds with the gemini-2.0 family of
models, it fails with the gemini-1.5 family, suggesting that the step change in capability matters.

6 DISCUSSION AND FUTURE WORK

We introduced ECHO-MIMIC, an LLM+EA framework that addresses ill-structured collective ac-
tion by converting the system-level design problem into a sequence of well-structured searches for
the policymaker and by producing executable heuristics that render each agent’s local decision a
WSP. In agricultural landscape management, ECHO learns heuristics that both reproduce baseline
profit-seeking behavior and globally connectivity-improving patterns. MIMIC then discovers mes-
sages that induce agents to adopt those executable targets. Together, these phases evolve what should
be done and how to get it done, suggesting a practical path to scalable, adaptive policy design.

Despite the potential applications, there are some limitations of our current framework. First, the
agent simulation abstracts human behavior. Personas and code-edit responses by a Farm LLM
are proxies that require validation with real participants. Second, nonstationarity of prices, ecol-
ogy, and policy can quickly stale learned heuristics and nudges. Distribution shift undermines both
ECHO’s scripts and MIMIC’s messages. Third, performance is sensitive to prompts, LLM choice,
and stochastic runs. Further ablation studies with different model providers and compute budgets
need to be carried out. Fourth, persuasive mechanisms risk manipulation, unequal burden sharing, or
disparate impacts on smallholders. Respecting privacy, transparency, and consent from the outset are
essential. Finally, evolution can produce increasingly complex heuristics with deep branching and
opaque feature engineering that erode interpretability/trust and create implementation frictions. This
can potentially be alleviated by regularizing code complexity and enforcing functional signatures.
Given these limitations, we see several directions for future work (see Appendix E.5 for more):

Field validation: conduct preregistered behavioral experiments and pilots with farmers to estimate
heterogeneous treatment effects of nudge messages and to measure sim-to-real gaps.

Online iterative refinement with real-world feedback: although the EA selects high-fitness mes-
sages in simulation for each persona, post-deployment we can treat each rollout as a new generation
and update the message and heuristic pool using real outcomes. See Appendix E for more details.

Generalization to other domains: port the evaluator and state/action schemas to watersheds, urban
mobility, supply chains, online governance, energy grids, and disaster response, testing whether
ECHO-MIMIC’s overall philosophy transfers with minimal retuning. See Appendix E.2 for details.

Interpretability of heuristics: curb complexity creep by adding complexity regularizers (e.g., func-
tional signatures, MDL-style penalties, cyclomatic-complexity caps) and enforcing edit budgets.

9
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7 ETHICS STATEMENT

Our study uses only synthetically generated agricultural landscapes and simulated agents; no human
participants, personally identifiable information, or proprietary private data were collected or ana-
lyzed. The synthetic farms and plot attributes were procedurally generated and weighted to public
crop distributions (CACI 2022), as detailed in Appendix B.7. We evaluate policy nudges exclusively
in simulation via predefined farmer personas and a closed-loop interaction between a Policy LLM
and a Farm LLM; we note that these are proxies and call for preregistered field studies before any
deployment. To mitigate foreseeable risks (e.g., manipulation, unequal burdens, privacy harms, or
distribution-shift failures), we propose governance measures, human-in-the-loop approvals, privacy-
preserving telemetry and opt-in consent, as outlined in Appendix E.4. We also discuss value-laden
choices and Goodhart risks of proxy objectives and recommend stress-testing and transparency (Ap-
pendix E.5). Any funding or affiliations will be disclosed in the paper’s acknowledgments.

8 REPRODUCIBILITY STATEMENT

We provide an anonymous supplementary zip with all source code to reproduce results. The pa-
per and appendix specify model choices (e.g., Gemini variants and evolutionary settings) and li-
braries/interfaces used, enabling replication of LLM-EA runs (Appendix B.1). Execution occurs in
a controlled environment (json/numpy/shapely I/O from input.geojson to output.*) with comprehen-
sive logging of fitness scores, operator usage, candidate trajectories, and code-complexity metrics,
details that support exact reruns and diagnostics (Appendix B.4). Fitness definitions for all stages
(local/global heuristics and nudging) are formalized in B.5 with explicit error metrics (MAE/Jac-
card), and the fitness-evaluation loop is diagrammed (Figs. 5,6) for clarity. Data generation is fully
specified in B.7, enabling others to rebuild the synthetic datasets. Finally, we include representative
heuristic programs (Appendix D) and complete prompts (Appendix F) to aid verification.
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A SUBMISSION DETAILS

A.1 SOURCE CODE

Source code associated with this project is attached as a supplementary zip file.

A.2 USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) in the following scoped, human-supervised ways: (i) Writ-
ing polish. Draft sections were refined for clarity, structure, and tone; all technical claims, numbers,
and citations were authored and verified by us, and every LLM-suggested edit was line-reviewed
to avoid introducing errors or unsupported statements. (ii) Retrieval & discovery. We used LLMs
to craft and refine search queries to find related work and background resources; candidate papers
were then screened manually, with citations checked against the original sources to prevent hallu-
cinations. (iii) Research ideation. We used brainstorming prompts to surface alternative baselines,
ablation angles, and failure modes; only ideas that survived feasibility checks and pilot experiments
were adopted. (iv) Coding assistance (via Cursor, Gemini, and OpenAI). We used Cursor’s inline
completions and chat for boilerplate generation (tests, docstrings, refactors); We used Gemini-2.5-
pro and o3 to generate code snippets for different parts of the project; all code was reviewed before
inclusion. Across all uses, we ensured that LLM outputs never replaced human analysis, repro-
ducibility artifacts, or empirical validation.

B IMPLEMENTATION DETAILS

B.1 MODELS

Our experimental setup primarily leveraged the gemini-2.0-flash-thinking-exp-01-21 model for the
core tasks of heuristic generation and modification. This choice was guided by a balance between
computational efficiency and generative capabilities. Access to the Gemini family of models was fa-
cilitated through the google-generativeai Python library. The evolutionary algorithm was configured
with a population size of 25 individuals and was run for a maximum of 25 generations.
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Evaluate Generation

(a)

Termination Criteria Met

(b)

Figure 5: ECHO–MIMIC framework. a) ECHO uses an LLM-evolutionary search loop to pro-
pose, score, and select farm-level decision heuristics aligned with baseline (stage 2) and global (stage
3) objectives. (b) MIMIC optimizes personalized nudges (e.g., messages/mechanisms/policies) us-
ing an LLM-evolutionary search loop, evaluates nudges using simulated farm agent responses, and
iteratively updates nudges to drive collective action. See Fig. 6 showing the two subroutines of
fitness evaluation and LLM-driven variation.

B.2 OVERALL ECHO-MIMIC WORKFLOW AND COMPONENTS

Fig. 5 summarizes the complete ECHO-MIMIC pipeline. In ECHO (Fig. 5a), an LLM–evolutionary
loop proposes, executes, and scores human-readable farm heuristics against baseline (Stage 2) and
global (Stage 3) objectives under the same observability constraints used at deployment. In MIMIC
(Fig. 5b), the system translates the learned heuristics into actionable nudges: messages/mechanism-
s/policies, then simulates agent responses to iteratively refine adoption.

The two reusable building blocks are detailed in Fig. 6: a robust fitness-evaluation-and-repair loop
that executes candidate programs on farm data, scores outcomes, and attempts automatic fixes on
failures (Fig. 6a), and an LLM-driven variation engine with mutation, crossover, exploration, and
reflection operators to generate improved candidates across iterations (Fig. 6b). Together, these
components enable end-to-end search over interpretable heuristics and their message-level imple-
mentations while preserving decision-time observability constraints.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Fixed

Fails

Compare w/ Ground Truth Data

Script OK

(a) (b)

Figure 6: LLM–EA candidate generation and fitness evaluation. (a) Fitness evaluation & repair
loop: run candidate scripts on farm data, generate predicted interventions, compare with ground-
truth labels, and compute a heuristic fitness score; if execution fails, a Fixing-LLM attempts repair
and unrepaired scripts receive low fitness, otherwise the repaired script is re-executed and scored,
and the final fitness is output. (b) LLM-driven variation subroutine: four operator families, mutation
(subtle edits), crossover (combine parents), exploration (diverse ideas + converge & innovate), and
reflection (analyze elites, innovate), produce new candidate heuristics/messages.

B.3 LLM-GUIDED EVOLUTIONARY OPERATORS

The evolutionary search in both the ECHO and MIMIC phases is driven by a set of variation op-
erators executed by a Modifier LLM. These operators take one or more parent candidates from the
population and generate a new offspring candidate.

• Mutation: The LLM receives a single parent candidate (either a Python script or a natural
language message) and is prompted to introduce a subtle mutation aimed at improving
performance while preserving the core structure and validity of the candidate.

• Crossover: The LLM is given two parent candidates and prompted to combine them in an
optimal way to cover heuristics/information from both. The goal is to produce a child that
synergistically integrates advantageous traits from both parents.

• Exploration 1 (Diverge): Given two parents, the LLM is prompted to generate a new
candidate that is as different as possible to explore new ideas. This operator encourages
diversification and prevents premature convergence by exploring novel regions of the search
space.

• Exploration 2 (Converge & Innovate): The LLM receives two parents, identifies common
ideas between them, and then designs a new candidate based on these shared concepts but
also introduces novel elements. This balances the exploitation of successful ideas with the
exploration of new variations.

• Reflection: The LLM is provided with the top k (e.g., 5) candidates from the current pop-
ulation, along with their fitness scores. It is prompted to analyze these heuristics/messages
and craft a new one that is expected to have increased fitness. This allows the system to
consolidate progress and make more informed, innovative leaps.

B.4 ENVIRONMENT MANAGEMENT DETAILS

Some management, execution, and tracking details are given below:

Selection: After generating offspring through the evolutionary operators, a selection strategy deter-
mines which individuals proceed to the next generation. This involves methods like elitism (pre-
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serving the best-performing individuals) combined with score-based selection from the combined
pool of parents and offspring, maintaining a constant population size.

Execution Environment: Candidate Python scripts are executed in a controlled environment. This
environment is equipped with necessary libraries such as json (for handling data files), numpy (for
numerical operations), and shapely (for geometric operations). The scripts perform file I/O, reading
from input.geojson and writing to output.geojson or output.json.

Tracking: Comprehensive data is logged for analysis and monitoring of the evolutionary process.
This includes: fitness scores of all candidates, the representation of each candidate (Python code
or natural language message), counts of how often each evolutionary operator is used, cumulative
fitness deltas achieved by each operator, indicating their effectiveness, candidate trajectories, show-
ing the sequence of operators applied to generate them, code complexity metrics (e.g., cyclomatic
complexity, Halstead metrics) for Python script candidates, computed using the radon library. This
helps in understanding the nature of the evolved solutions.

Heuristics Explanation: The generation of heuristic explanations follows a systematic, multi-stage
pipeline (Fig. 7). The process involves an iterative loop which processes each Farm ID sequentially.
For every farm, the core heuristic analysis begins by identifying and loading the relevant heuristic
files. Concurrently, two LLMs are initialized, an Explanation LLM for generating initial explanatory
summaries from code or data segments, and a Merge LLM for consolidating these explanations. The
loaded heuristic files are subsequently processed in designated groups, typically consisting of three
files each. As the system iterates through these file groups, the Explanation LLM analyzes the con-
tent of each group to generate an initial heuristic explanation. This newly generated explanation is
then integrated into a cumulative summary. The Merge Model is then employed to combine the new
group-specific explanation with the existing summary compiled from previous groups. Following
this integration, the overall summary is updated, and an intermediate group summary is saved, al-
lowing for checkpointing. Once all files for a given farm have been analyzed and their explanations
merged, a final consolidated summary, representing the comprehensive heuristic explanation for that
farm, is saved. The entire procedure concludes after this iterative processing has been completed
for all designated Farm IDs. See “Heuristics Explanation” section in supplementary for more full
prompts used for the two LLMs.

B.5 FITNESS FUNCTION DETAILS

Fitness for all candidates is calculated as the inverse of an error metric, with a small constant ϵ added
to prevent division by zero: Fitness = 1/(Error + ϵ). Ground truth is obtained by computing
results from existing ecological intensification and connectivity models (Dsouza et al., 2025).

ECHO Fitness (Local Heuristics): FitnessNPV The error is the Mean Absolute Error (MAE)
between the intervention levels predicted by a candidate heuristic (mpi

, hpi
) and the ground-truth

NPV-optimal levels (mgti , hgti ) across all N plots in a farm.

ErrorNPV =
1

N

N∑
i=1

(|mgti −mpi
|+ |hgti − hpi

|)

ECHO Fitness (Global Heuristics): FitnessCONN The error is based on the Jaccard Dis-
tance between the sets of intervention directions predicted by the candidate (MDpi , HDpi ) and
the ground-truth connectivity-optimal directions (MDgti , HDgti ).

JaccardDist(A,B) = 1− |A ∩B|
|A ∪B|

ErrorCONN =
1

N

N∑
i=1

(JaccardDist(MDgti ,MDpi
) + JaccardDist(HDgti , HDpi

))

MIMIC Fitness (Nudging): FitnessNUDGE The error measures the MAE between the interven-
tion amounts produced by the agent’s nudged heuristic (mpi , hpi ) and the target fractional amounts
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Start

Initialize Config & Farm IDs

Loop through 
Farms

Set Directory & Call main
function End

Find & Load Heuristic Files

Initialize Explanation & 
Merge AI Models

Loop through 
File Groups - 3 files 

per group

Analyze Group Code -->
Explanation Model

First 
Group?

Summary = ExplanationMerge Previous Summary &
Explanation --> Merge Model

Update Summary

Save Intermediate Group
Summary

Save Final Consolidated
Summary

For each Farm
Loop Done

Process Group

Yes
No

All Groups Done

Figure 7: Heuristic-explanation consolidation pipeline. For each farm, initialize configs and
load heuristic code files; then iterate over 3-file groups: an Explanation model analyzes each group
to produce a draft, and, starting from the first group, a Merge model incrementally combines the
running summary with each new explanation; intermediate group summaries are saved, followed by
a final consolidated summary per farm.

derived from the global connectivity-optimal directions.

ErrorNUDGE =
1

N

N∑
i=1

(∣∣∣∣ |MDgti |
4

−mpi

∣∣∣∣+ ∣∣∣∣ |HDgti |
4

− hpi

∣∣∣∣)
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Figure 8: Synthetic farms and plots. a) Synthetically generated farm geometries and overall land-
scape configuration. b) Each farm is assigned its own distribution of crops, yields, and habitat plots.

B.6 AGENT PERSONALITY AND NUDGE MECHANISM PROMPTS

In the MIMIC phase, the Farm LLM’s persona and the Policy LLM’s nudge generation are guided
by specific system prompts.

• Agent Personalities: The system prompt for the Farm LLM establishes its background,
goals, and receptiveness to advice. For example, the Resistant agent might be described
as skeptical of new methods and valuing traditional farming practices, while the Economic
agent is primarily focused on maximizing profit and return on investment. The Social agent
is described as influenced by the actions of neighbors and community norms.

• Nudge Mechanisms: The Policy LLM is prompted to generate messages of a specific type.
For an Economic nudge, the prompt might instruct it to design a financial incentive package
within a budget that encourages adopting connectivity-friendly practices. For a Behavioral
nudge, the prompt instructs it to use principles like social proof, commitment, and framing
to craft a persuasive message, without offering significant new economic incentives.

B.7 DATA GENERATION

To simulate agricultural landscapes, synthetic farm and plot-level geo-spatial data were generated
(Fig. 8). The process began by establishing the combined boundaries of a farm cluster, which was
then broken into five distinct farms using Voronoi tessellation based on random points; the resulting
Voronoi cells were clipped to the edge to create a set of non-overlapping farms that together spanned
the selected area. Each of these individual farm polygons was subsequently subdivided into nine land
use plots, again using Voronoi tessellation, to produce smaller, non-overlapping plot polygons that
filled the entire farm. Following this spatial design, properties were attached to each plot. First, plots
were randomly divided into either agricultural plot (with a 60% probability) or habitat plot (40%
probability). Later, a particular land use label was assigned through a weighted random strategy
depending on its primary type: agricultural plots received crop type labels (e.g., Spring wheat,
Oats, etc.) and habitat plots received land use type labels (e.g., Broadleaf, Grassland, etc.), with
weights reflecting distributions from the 2022 Canadian Annual Crop Inventory (CACI) (Agriculture
and Agri-Food Canada (AAFC), 2022). Following this, a yield value, drawn from a distribution
matching the CACI data for the assigned crop, was matched to each agricultural plot. Ultimately,
each synthetic farm’s output was a GeoJSON FeatureCollection, detailing the geometric definitions
(polygons) and the specific assigned attributes (type, label, yield) for every plot it contained.
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(a) (b)

(c) (d)

Figure 9: Agricultural landscape and interventions. a) Synthetically generated farm geometries
and overall landscape configuration. Each farm is assigned its own distribution of crops, yields,
and habitat plots (see Appendix B.7). b) Interventions resulting from ECHO after learning baseline
heuristics in stage 2. The interventions match the ground-truth baseline computed from stage 1
closely. For a comparison see Appendix C, Fig. ??.

C ADDITIONAL RESULTS

D SAMPLE HEURISTICS

ECHO heuristic: NPV with decaying discount rate

discount_rate = initial_discount_rate * math.exp(-0.2 * year) +
long_term_discount_rate
discount_factor = 1 / (1 + discount_rate) ** year

# Ecosystem service gains (delayed benefits)
pollination_increase_margin = 0.01 * (1 / (1 + math.exp(-0.1 * (
year - 5)))) # delayed benefit
pest_control_increase_margin = 0.005 * (1 / (1 + math.exp(-0.2 * (
year - 2)))) # delayed benefit
ecosystem_service_value_margin = (pollination_increase_margin +
pest_control_increase_margin) * 500

# Monetary value
revenue_margin += ecosystem_service_value_margin
margin_npv += revenue_margin * discount_factor

# Decide conversion from NPV difference
npv_difference = habitat_npv - margin_npv
# Clip to avoid overflow in exp
npv_difference = max(-100, min(100, npv_difference))
# Sigmoid with steepness 0.1
habitat_conversion = 1 / (1 + math.exp(-0.1 * npv_difference))
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Figure 10: ECHO accuracy against complexity metrics. Accuracy versus normalized complexity
metrics of the heuristics for farms 1(a), 2(b), 4(c), and 5(d). Increased complexity metrics are
correlated with increased accuracy, upto a point, followed by a decrease.
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Figure 11: ECHO stage 2 operator counts and trajectory. a) Total operator count for each of the
LLM variation operators summed across generations for the best performing heuristic file at the end
of the final generation. Crossover and mutate are the most used in high performing heuristics. b)
The trajectory of the best performing heuristic file at the end of the final generation. We see that
although reflect doesn’t produce high positive fitness delta, the best performing heuristic in the end
has it in its trajectory, pointing to its role in injecting diversity over generations.

ECHO heuristic: Polygon orientation via PCA

import math
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(a) (b)

Figure 12: Composition and trajectory of sample best messages. a) Best policy message com-
municated to a farmer with a resistant personality, using a behavioral nudge. b) Best policy message
communicated to a farmer with an economics-oriented personality, using an economics-oriented
nudge.

import numpy as np

def calculate_eigenvectors(cov):
"""
Return (eigenvalues, eigenvectors) of a 2x2 covariance matrix,
with the first eigenvector corresponding to the largest

eigenvalue.
"""
M = np.array(cov, dtype=float)
vals, vecs = np.linalg.eig(M)
order = np.argsort(vals)[::-1] # descending by

eigenvalue
vals = vals[order]
vecs = vecs[:, order]
# as Python lists: first vector is the principal direction
return vals.tolist(), [vecs[:, 0].tolist(), vecs[:, 1].tolist()

]

def calculate_plot_orientation(geometry):
"""Calculate the dominant orientation (radians) of a GeoJSON

Polygon."""
if not geometry or geometry.get("type") != "Polygon" or "

coordinates" not in geometry:
return 0.0

coords = geometry["coordinates"][0] # exterior ring
if len(coords) < 3:

return 0.0

# coordinates
x_coords = [c[0] for c in coords]
y_coords = [c[1] for c in coords]

# means
x_mean = sum(x_coords) / len(x_coords)
y_mean = sum(y_coords) / len(y_coords)

# 2x2 covariance matrix (un-normalized; scale doesn’t affect
eigenvectors)

cov = [[0.0, 0.0], [0.0, 0.0]]
for xi, yi in zip(x_coords, y_coords):

dx, dy = xi - x_mean, yi - y_mean
cov[0][0] += dx * dx

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

cov[0][1] += dx * dy
cov[1][0] += dy * dx
cov[1][1] += dy * dy

# eigen decomposition
eigenvalues, eigenvectors = calculate_eigenvectors(cov)

# angle of principal eigenvector (largest eigenvalue)
vx, vy = eigenvectors[0][0], eigenvectors[0][1]
orientation = math.atan2(vy, vx) # radians, in [-pi, pi]
return orientation

ECHO heuristic: Landscape context with habitat ratio

def apply_landscape_context_scaling(data):
# Landscape context: habitat ratio across the farm
ag_plot_count = sum(

1 for f in data["features"]
if f.get("properties", {}).get("type") == "ag_plot"

)
hab_plot_count = sum(

1 for f in data["features"]
if f.get("properties", {}).get("type") == "hab_plot"

)

total_plot_count = ag_plot_count + hab_plot_count
habitat_ratio = (hab_plot_count / total_plot_count) if

total_plot_count > 0 else 0.0

# Apply scaling inside per-plot loop (after initial
calculations)

for feat in data["features"]:
props = feat.setdefault("properties", {})
if props.get("type") != "ag_plot":

continue

# read current decisions (default 0.0)
hc = float(props.get("habitat_conversion", 0.0))
mi = float(props.get("margin_intervention", 0.0))

# Enhanced landscape context influence:
# Non-linear scaling for habitat conversion (stronger when

habitat_ratio is low)
hc *= (1.6 - habitat_ratio) ** 1.1

# Slightly reduced landscape scaling for margin
mi *= (1 - 0.4 * (1 - habitat_ratio))

# clamp back to [0, 1]
props["habitat_conversion"] = max(0.0, min(1.0, hc))
props["margin_intervention"] = max(0.0, min(1.0, mi))

E REAL-WORLD APPLICATION AND POTENTIAL EXTENSIONS

This section provides a blueprint for deploying the ECHO-MIMIC framework in real-world settings
and outlines extensions that increase its scope. The workflow operationalizes the core idea: align-
ing individual, heuristic-driven decisions with global objectives, via an iterative feedback loop that
alternates between simulate → nudge → observe → refine (Fig. 13).
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Stage 1: Establish 
Baseline Behavior

Collect real-world data on agent
actions & context

Identify key decision variables
influencing behavior

Stage 2: ECHO 
Learn Baseline Heuristics

Global agent uses LLM+EA

Craft prompt structures based on
identified decision variables &

relationships

Generate explicit
representations of baseline

heuristics

Stage 3: ECHO
Learn Global Heuristics

Identify ideal global behaviors
for collective outcome

Global agent uses LLM+EA

Develop actionable heuristic
representations approximating

target global behaviors

Stage 4: MIMIC
Nudge to Global Heuristics & 

Iterative Refinement

Infer agent personalities from collected data

Design initial nudge mechanisms: e.g., advice,
incentives using LLM+EA, tailored to

personalities

Deploy Nudges 
in Real World

Observe real-world agent
actions & collect feedback

Evaluate Nudge 
Effectiveness

Iterative Refinement

Update Baseline 
Understanding

Refine Variable 
Identification/Data Collection

Figure 13: Real-world iterative ECHO–MIMIC workflow. Stage 1: collect real-world actions
and context to identify key decision variables. Stage 2 (ECHO): use an LLM + evolutionary algo-
rithms to elicit explicit baseline heuristics conditioned on those variables. Stage 3 (ECHO): learn
global, outcome-aligned heuristics that approximate target collective behavior. Stage 4 (MIMIC):
infer agent personas and design personalized nudges (e.g., advice, incentives, quotas), deploy in the
field, observe feedback, evaluate effectiveness, and iteratively refine both nudges and data/variable
selection to close the loop.
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E.1 FIELD DEPLOYMENT LOOP

Stage 1: Baseline Behavior (Observation & Variable Discovery): Establish typical behavior of
local agents (e.g., farmers, depot managers, households) under current processes and states. Collect
logs on decisions, constraints, and outcomes to (i) characterize baseline policies and (ii) identify
salient decision variables to encode in heuristics.

Stage 2: Learn Baseline Heuristics (LLM–EA Imitation): Given Stage 1 data, the superagent
trains an LLM-guided evolutionary algorithm (LLM–EA) to codify each local agent’s baseline
heuristic. Prompts include: task instructions, in-context examples (possibly from community data),
current agent/state descriptors, and economic/operational parameters organized around the Stage 1
variables. Output is an explicit, executable heuristic that reproduces observed baseline actions.

Stage 3: Learn Global Heuristics (Target Policy Search): Define global utility (e.g., ecological
connectivity, system-wide cost/carbon, risk reduction). Use LLM-guided EA to evolve explicit,
actionable global heuristics approximating target behaviors that optimize the collective objective
under constraints.

Stage 4: Nudge & Iterative Real-World Refinement: Design and deploy nudges that steer local
heuristics toward the global target: a) Initial Nudges: Tailor messages/incentives using simulated
preferences and learned baseline heuristics; optionally profile behavioral types (e.g., resistant, cost-
focused, socially influenced) inferred from Stage 1/ongoing data to personalize nudges. b) Deploy-
ment & Feedback: Deploy nudges; observe agent responses and realized outcomes. c) Refinement:
Feed observations back into the LLM–EA: update nudges, revise baseline heuristics, and (when
needed) re-tune global heuristics. Repeat the loop at a cadence aligned to decision cycles.

Minimal Pseudocode for Implementation.

Initialize data D obs from Stage 1; learn Ĥ baseline (Stage 2) and Ĥ global Stage 3).
for round t = 1, 2, . . . do
Synthesize nudgesN t = LLM-EA(Ĥ baseline, Ĥ global, profiles, constraints)
DeployN t; observe responses/actions A t and outcomes Y t

Update Ĥ baseline, Ĥ global← Refit/Retune(D obs ∪ {(N t,A t,Y t)})
end for

E.2 ILLUSTRATIVE DOMAINS WHERE ECHO-MIMIC APPLIES

Domain Superagent Example nudges / instru-
ments

Global objective

Decentralized
water or rangelands

Water board /
cooperative

Dynamic quotas, tiered prices,
targeted advisories, rotation
schedules

Equity, scarcity
management,
sustainability

Supply chains &
logistics

Central logistics
coordinator

Congestion tolls, dynamic pri-
ority slots, routing prompts

System cost,
delay, carbon

Local energy grids
(demand response)

Grid operator /
aggregator

Time-varying tariffs, feed-in in-
centives, peak alerts

Peak shaving,
stability,
emissions

Disaster risk
mitigation
(wildfire/flood)

Coordinating
agency

Risk-based cost-sharing, syn-
chronized action windows, tar-
geted alerts

Vulnerability
reduction

Crowdsourcing /
participatory
governance

Platform or
municipality

Gamified tasks, localized chal-
lenges, reputation credits

Coverage/quality
for collective
goals

Urban mobility
(road & transit
networks)

Transit authority /
traffic-management
center (TMC)

Time-varying congestion pric-
ing, transit/EV priority, pool-
ing/micromobility incentives

Network
throughput,
emissions
reduction
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E.3 DATA, INSTRUMENTATION, AND METRICS

Operations should be grounded in three layers: Data & Telemetry, Instrumentation, and Evaluation.
For Data & Telemetry, teams should collect operational logs of actions and costs, contextual state
variables (environmental, network, demand), outcome measures (yields, reliability, risk proxies),
and consented behavioral signals such as opt-in profiles and communication reach/uptake. Build-
ing on that foundation, Instrumentation should provide stable unique agent identifiers, timestamp
all actions and outcomes, record nudge delivery along with open/engagement rates, include ran-
domized holdouts or stepped rollouts for causal assessment, and maintain safe rollback controls for
rapid recovery. Finally, Evaluation should proceed along three complementary axes. At the Lo-
cal level, applications need to track utility/cost, the adherence shift from baseline → nudged, and
fairness across types/localities. At the Global level, the target metric (e.g., connectivity, peak reduc-
tion, system cost) needs to be monitored alongside constraint satisfaction; and at the Causal level,
applications should use A/B or stepped-wedge designs, estimate heterogeneous uplift by personali-
ty/type, and apply off-policy estimators when experimentation is limited. These practices create the
observability and methodological rigor needed for trustworthy implementation.

E.4 PRACTICAL CONSIDERATIONS AND RISKS

Responsible deployment should be underpinned by a coherent governance stack. First, for Safety &
Governance, teams should conduct pre- and post-deployment checks on nudge content, enforce rate
limits, require human-in-the-loop approval for high-impact changes, and maintain comprehensive
audit logs while regularly red-teaming LLM outputs. Second, to ensure Incentive Compatibility,
designers should avoid perverse incentives, cap payouts, and add guardrail constraints (e.g., mini-
mum service levels, environmental thresholds) so that local rewards do not undermine system goals.
Third, to protect Privacy & Consent, projects should apply differential privacy to telemetry, rely
on opt-in profiles, and practice data minimization with clear retention policies. Fourth, Robustness
should be maintained through continuous distribution-shift monitoring, well-tested fallback heuris-
tics, and stress tests under shocks such as demand spikes or outages. Finally, advancing Equity re-
quires tracking heterogeneous treatment effects and mitigating disparate impacts via fairness-aware
objective terms. Taken together, these measures would enable safe, effective, and socially responsi-
ble deployment of the framework.

E.5 POTENTIAL EXTENSIONS

Looking ahead, apart from the future work mentioned in the main text (section 6), several other ex-
tensions could further strengthen the framework. Validating the framework with real farm data fea-
turing irregular and heterogeneous plot polygons will ensure robustness beyond synthetic testbeds.
Adaptive Persona Modeling can personalize nudges by embedding agents online and updating poli-
cies with Bayesian or meta-learning as evidence accumulates. A Mechanism Design Layer could
jointly search over nudge forms (messages, prices, quotas) and allocation rules while honoring bud-
getary and fairness constraints. Multi-Level Governance could stack superagents from local to re-
gional to national tiers, enforcing cross-scale consistency and managing externalities across juris-
dictions. Causal Discovery Hooks can integrate instrumental-variable and DoWhy-style analyses,
as well as synthetic controls, to attribute effects when full randomization is infeasible. Human-
in-the-loop governance can co-design panels to set acceptable trade-offs, audit nudges for ethics
and transparency, and publish policy cards for each heuristic/message detailing scope, assumptions,
and expected impacts. Global targets and fitnesses rely on proxy evaluators (e.g., connectivity met-
rics such as IIC and error measures like MAE/Jaccard) and planner choices (acceptable yield loss,
budget constraints). These introduce Goodhart risks and value-ladenness that should be stress-
tested. Adaptive operator design like bandit or meta-learning over LLM operators (generate, mu-
tate, crossover, fix, reflect) and priors bootstrapped from successful edit traces ∆Hi can potentially
improve sample efficiency.

Future research can also examine the framework’s multi-level structure with formal tools, for ex-
ample by deriving bounds on the suboptimality of evolved heuristics relative to true optima and by
characterizing how global objectives constrain the design of optimal incentive mechanisms. Another
complementary direction is to increase the behavioral fidelity of LLM-simulated agents, endowing
them with learning dynamics, memory, and simple social interactions, to better approximate real de-
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cision processes and thereby improve the policy-relevance of simulation results. It would be useful
to test whether a Bag of Heuristics curated from simpler farm configurations can act as a trans-
ferable prior or curriculum, accelerating convergence in more complex, harder farm scenarios. It
would also be interesting to evaluate whether heuristics articulated in natural language (e.g., chain-
of-thought rendered as structured JSON for direct execution) achieve performance on par with, or
complementary to, the Python-based heuristics explored here, thereby clarifying the trade-offs be-
tween interpretability, flexibility, and execution efficiency. Finally, Human Oversight & Preference
Elicitation can institutionalize periodic Delphi-style panels or elections to update global objectives
and normative constraints. Together, these directions form a good roadmap for scaling the approach
in capability, reliability, and legitimacy.

F PROMPT TEMPLATES

This appendix consolidates all prompt templates used across stages, LLM roles, operators, and
personas.

F.1 SHARED FRAGMENTS

params

You can incorporate parameters like crop prices and implementation
and maintenance costs provided here in your heuristics.

These are the crop prices in USD/Tonne: {’Soybeans’: 370, ’Oats’:
95, ’Corn’: 190, ’Canola/rapeseed’: 1100, ’Barley’: 120, ’Spring
wheat’: 200}, and these are the costs (implementation costs one
time and in USD/ha, and maintenance costs in USD/ha/year) : {’
margin’: {’implementation’: 400, ’maintenance’: 60}, ’habitat’: {’
implementation’: 300, ’maintenance’: 70}, ’agriculture’: {’
maintenance’: 100}}.

F.2 STAGE 2: LEARN BASELINE HEURISTICS

system instructions

You are a helpful assistant who is an expert in spatial
optimization methods and who helps the user with optimization
related queries. You will return final answers in python code. You
can’t use the given values of interventions (margin_intervention
and habitat_conversion) to produce the output, they are only for
reference to produce the heuristics. Do not create any dummy data
and dump to input geojson at any cost. You should load the input
geojson from the existing input.geojson. You can only use this
input data and no other data. Every feature (plot) in the input
geojson should have output interventions, don’t skip any feature (
plot). Save outputs to output.geojson.

common task instructions

The python programs are trying to solve the task of deciding which
interventions need to be done at which agricultural plots (crops,
type=’ag_plot’) based on how the interventions affect NPV. The
choice is between margin (convert only the margins) and habitat (
convert a contiguous region) interventions. The interventions can
be fractional. Existing habitat plots (type=’hab_plots’) remain
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unaffected. The NPV is calculated based on how the interventions
affect pollination and pest control services over distance and time
, and how these affect yield. There is a tradeoff between the cost
of implementation and maintenance vs the benefit of increased yield
.

F.2.1 GENERATION LLM

Composition

Prompt = system_instructions + task_instructions + params

task instructions

Instructions: Your task is to decide which interventions need to be
done at which agricultural plots (crops, type=’ag_plot’) based on

how the interventions affect NPV. The choice is between margin (
convert only the margins) and habitat (convert a contiguous region)
interventions. The interventions can be fractional. Existing

habitat plots (type=’hab_plots’) remain unaffected. The NPV is
calculated based on how the interventions affect pollination and
pest control services over distance and time, and how these affect
yield. There is a tradeoff between the cost of implementation and
maintenance vs the benefit of increased yield. I will show you
examples of initial input geojson and the output interventions
suggested by Pyomo optimization for your neighbouring farms. In the
input geojson, the id for each plot is in ’id’, land use class in

’label’, whether ag_plot or hab_plot in ’type’, yield in ’yield’,
and polygon in ’geometry’. In the output, only plots having non-
zero interventions are shown, and the rest of the plots have zero
interventions. Given these examples, provided input geojson of your
farm, you need to predict the final interventions using heuristics
created in python. Look at properties that you think have a

pattern (like yield, label, type, geometry, do not use plot_ids to
assign rules). You can compute metrics using these variables and
others, and can even look at the graphical structure of the farms.
You can incorporate the parameters like crop prices and
implementation and maintenance costs provided at the end in your
heuristics.

Data:

Neighbour 1: input: {...} Output: {...}
Neighbour 2: input: ... ...
Your farm: input: ...

Final Instructions: I want you to infer the logic from the examples
and work through the inferred logic to predict interventions. Give
me your best estimate as to what fraction of which intervention

should be done at each agricultural plot. Proceed based on the
conceptual framework inferred from provided examples. Do not
hallucinate. Come up with heuristics. Don’t provide the full json
but rather provide the python code to produce the json using the
decided heuristics. Explain your reasoning and think step by step
before providing the code. Handle all the features, i.e., plot ids.
Don’t create new variable names. Use margin_intervention and

habitat_conversion for predicted values in the output. In the code
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no need to define the input json again, just load it from the file
input.geojson. Save outputs to output.geojson.

F.2.2 MODIFICATION LLM

Composition

Prompt = system_instructions + operator_instructions +
common_task_instructions + params_instructions

F.2.3 FIXING LLM

Composition

Prompt = system_instructions + task_instructions

system instructions

You are a helpful assistant who is an expert in graph and spatial
optimization methods and python. Given the python code and the
stack traceback, fix the errors and return the correct functioning
python code.

task instructions

Given the following Python code:

‘‘‘python
{heuristics_code}
‘‘‘‘

And the following traceback:
{trace}

Fix the errors and return the correct functioning python code. Give
the full code.

F.3 STAGE 3: LEARN GLOBAL HEURISTICS

system instructions

You are a helpful assistant who is an expert in graph and spatial
optimization methods and who helps the user with optimization
related queries. You will return final answers in python code. You
can’t copy the directions (margin_directions and habitat_directions
) given to produce the output, they are only for reference to
produce the heuristics. And don’t assign them by plot_id. i.e., do
not use plot_ids in the if statements as rules to assign directions
. Don’t invent new variable names, use margin_directions and
habitat_directions for directions in the output predictions. Do not
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create any dummy data and dump it to input geojson at any cost.
You should load the input geojson from the existing input.geojson.
You can only use this input data and no other data. Every feature (
plot) in the input geojson should have output interventions, don’t
skip any feature (plot). Save outputs to output.json.

common task instructions

The python programs are trying to solve the task of deciding which
interventions need to be done at which agricultural plots (crops,
type=’ag_plot’) and how to place them geometrically based on how
the interventions increase ecological connectivity, while not
decreasing NPV from a baseline value. The choice is between margin
(convert only the margins) and habitat (convert a contiguous region
) interventions. The margin interventions are chosen among the
following directions on the boundary: north-east, north-west, south
-east, south-west. The habitat conversions are chosen among the
same directions in the internal area of polygons. The directions
are computed by running a horizontal and a vertical line through
the centre of each plot, and choosing them if they have
interventions (as computed by IPOPT optimization) greater than a
threshold. Existing habitat plots (type=’hab_plots’) remain
unaffected. Integral index of connectivity (IIC) is used as the
metric for ecological connectivity, which tries to increase the
size of the connected components in the neighbourhood. It promotes
fractions touching each other and extending the connectivity
between existing habitats in the landscape, which includes the farm
and its neighbours. There is a tradeoff between maximizing

connectivity and maintaining NPV. NPV is calculated based on how
the interventions affect pollination and pest control services over
distance and time, and how these affect yield. There is also the

tradeoff between the cost of implementation and maintenance vs the
benefit of increased yield. Look at properties that you think have
a pattern (like yield, label, type, nbs, geometry, do not use
plot_ids to assign rules), and the relative positioning of both the
farm neighbours with respect to your farm and the plots with

respect to each other within the farm in the context of ecological
connectivity. Use all the given geometry information to infer these
geographical relationships.

F.3.1 GENERATION LLM.

Composition

Prompt = system_instructions + task_instructions + params

task instructions

Instructions: Your task is to decide which interventions need to be
done at which agricultural plots (crops, type=’ag_plot’) and how

to place them geometrically based on how the interventions increase
ecological connectivity, while not decreasing NPV from a baseline

value. The choice is between margin (convert only the margins) and
habitat (convert a contiguous region) interventions. The margin
interventions are chosen among the following directions on the
boundary: north-east, north-west, south-east, south-west. The
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habitat conversions are chosen among the same directions in the
internal area of polygons. The directions are computed by running a
horizontal and a vertical line through the centre of each plot,

and choosing them if they have interventions (as computed by IPOPT
optimization) greater than a threshold. Existing habitat plots (
type=’hab_plots’) remain unaffected. Integral index of connectivity
(IIC) is used as the metric for ecological connectivity, which

tries to increase the size of the connected components in the
neighbourhood. It promotes fractions touching each other and
extending the connectivity between existing habitats in the
landscape, which includes the farm and its neighbours. There is a
tradeoff between maximizing connectivity and maintaining NPV. The
NPV is calculated based on how the interventions affect pollination
and pest control services over distance and time, and how these

affect yield. There is also the tradeoff between the cost of
implementation and maintenance vs the benefit of increased yield. I
will show you examples of initial input geojson and the output

interventions and geometries suggested by IPOPT optimization for
your neighbouring farms. In the input geojson, the id for each plot
is in ’id’, land use class in ’label’, whether ag_plot ot hab_plot
in ’type’, yield in ’yield’, the neighboring plot ids in ’nbs’,

and plot polygon in ’geometry’. In the output, ’plot_id’ refers to
the plot id, ’plot_type’ refers to whether ag_plot or hab_plot, ’
label’ refers to land use class, ’margin_directions’ and ’
habitat_directions’ show the margin intervention and habitat
conversion directions on the boundary and internally respectively.

Given these examples, provided input geojson of your farm, you need
to predict the final intervention directions using heuristics

created in python. Use names of margin_directions and
habitat_directions for the predicted intervention geometries in the
output, and don’t alter these variable names. Look at properties

that you think have a pattern (like yield, label, type, nbs,
geometry), and the relative positioning of both the farm neighbours
with respect to your farm and the plots with respect to each other
within the farm in the context of ecological connectivity. Use all
the given geometry information to infer these geographical

relationships. Do not use plot_ids in the if statements as rules to
assign directions. You can incorporate the parameters like crop

prices and implementation and maintenance costs provided at the end
in your heuristics.

Data:

Neighbour 1: input: {...} Output: [...]
Neighbour 2: input: ... ...
Your farm: input: ...

Final Instructions: I want you to infer the logic from the examples
and work through the inferred logic to predict intervention

directions. Give me your best estimate as to where the
interventions should be placed at each agricultural plot. Proceed
based on the conceptual framework inferred from provided examples.
Do not hallucinate. Come up with heuristics. Don’t provide the full
json but rather provide the python code to produce the json using

the decided heuristics. Explain your reasoning and think step by
step before providing the code. Handle all the features, i.e., plot
ids. Don’t create new variable names. Use margin_directions and

habitat_directions for the predicted intervention geometries in the
output. In the code no need to define the input json again, just

load it from the file input.geojson. Save outputs to output.json.
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F.3.2 MODIFICATION / FIXING LLM.

Composition

Same format as stage 2 (replace task context with stage 3
accordingly).

F.4 STAGE 4: NUDGE TO GLOBAL HEURISTICS

F.4.1 GENERATION LLM (POLICY AUTHORING).

policy system instructions

You are an expert in land use policy, communication, incentives,
and economics. Your task is to come up with the best message to be
communicated to the farmers so as to change their behaviour from
one set of heuristics to another set of heuristics. Provide your
final message to the farmer in this format \communication{message}.

policy task instructions

The messages are communications to the farmers in order to change
their behaviour from following the ecological intensification
heuristics that benefits solely their farm to following the
ecological connectivity heuristics that increase landscape
connectivity. Your communication to the farmer can be persuasive.
It can provide incentives such as reducing the implementation or
maintenance cost of an intervention by providing a one-time subsidy
or yearly subsidies. It can compensate the farmers for yield that

is lost to habitat conversion. It can communicate the benefits of
landscape connectivity, and so on. Your goal should be to
communicate a message that gets them to alter the
margin_intervention and habitat_conversion values for each of the
plots, from the former to the latter. Your final message to the
farmer should be in this format \communication{message}.

Composition

Prompt = policy_system_instructions + policy_task_instructions +
params

F.4.2 SIMULATION LLM (FARMER RESPONSE).

Composition

Prompt = farm_system_instructions + farm_task_instructions +
policy_message
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farm system instructions

You are a farmer who currently follows a given set of python
heuristics. Your task is to respond to communication from policy
professionals by altering your heuristics in an appropriate way.
You will return final answers in python code. You should keep all
data loading from input.geojson and dumping to output.geojson the
exact same, and just alter the logic depending on what your context
is and what the message is. Don’t invent new variable names in the
output, keep using margin_intervention and habitat_conversion.

farm task instructions

The current set of heuristics you follow are:

‘‘‘python
{heur_eco_intens}
‘‘‘

Don’t get easily persuaded to change your behaviour. You need to be
relatively selfish in following your heuristics so that you look

out for your own interests. However, if the message convinces you,
or provides the right incentives that align with what you want,
enabling you to do more for the landscape ecological connectivity
than you are currently, then you should respond accordingly by
changing your behaviour. If the message proposes changes to some
key parameters that you are using in your heuristics, you should
change them according to the proposed changes. If the message
introduces new parameters or ideas, you can incorporate them in
your heuristics if you want to. You should react to the message
from the policy professional, resulting in altered
margin_intervention and habitat_conversion values for your plots,
in an appropriate way that aligns with your interests and the
message you received. Your final answer should be in python code,
keeping the overall framework of the original python code the same.

policy message

Message from the policy professional is: {heuristic_policy}.

F.5 OPERATOR PROMPTS

F.5.1 STAGE 2

common operator instructions

You can’t use the given values of interventions (
margin_intervention and habitat_conversion) to produce the output,
they are only for reference to produce the heuristics. Retain
loading input geojson from input.geojson and saving outputs to
output.geojson. Do not create any dummy data and dump it to input
geojson at any cost. Don’t create new variable names. Use variable
names margin_intervention and habitat_conversion for predicted
values in the output. Return the modified Python code for the
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heuristics. Explain your reasoning and think step by step. Do not
hallucinate.

Mutation

Given the following Python code for agricultural plot heuristics:

‘‘‘python
{parent_code}
‘‘‘

Suggest a subtle mutation to the heuristics to improve overall
performance and logic. The mutation should still result in valid
Python code. Focus on small, logical changes related to the plot’s
properties, geometry, or interactions with neighboring plots.

Crossover (EI)

Given two sets of Python code for agricultural plot heuristics (
parent 1 and parent 2):

Parent 1:

‘‘‘python
{parent1["code"]}
‘‘‘

Parent 2:

‘‘‘python
{parent2["code"]}
‘‘‘

Combine these two sets of heuristics in an optimal way to cover
heuristics from both parent 1 and parent 2. The combination should
still result in valid Python code.

Exploration 1

Given two sets of Python code for agricultural plot heuristics (
parent 1 and parent 2):

Parent 1:

‘‘‘python
{parent1["code"]}
‘‘‘

Parent 2:

‘‘‘python
{parent2["code"]}
‘‘‘
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Generate new heuristics that are as much different as possible from
parent heuristics, in order to explore new ideas. The new

heuristics should still result in valid Python code.

Exploration 2

Given two sets of Python code for agricultural plot heuristics (
parent 1 and parent 2):

Parent 1:

‘‘‘python
{parent1["code"]}
‘‘‘

Parent 2:

‘‘‘python
{parent2["code"]}
‘‘‘

Explore new heuristics that share the same idea as the parent
heuristics. Identify common ideas behind these heuristics. Then,
design new heuristics that are based on the common ideas but are as
much different as possible from the parents by introducing new

parts. The new heuristics should still result in valid Python code.

Reflection

Based on the following top 5 heuristics and their corresponding
fitness scores:
{heuristics_info},
please analyze these heuristics and craft a new heuristic that is
expected to have increased fitness. Ensure that the new heuristic
is valid Python code.

F.5.2 STAGE 3

common operator instructions

You can’t use the given directions (margin\_directions and habitat\
_directions) to produce the output, they are only for reference to
produce the heuristics. Retain loading input geojson from input.
geojson and saving outputs to output.json. Do not create any dummy
data and dump to input geojson at any cost. Don’t create new
variable names. Use variable names margin_directions and
habitat_directions for predicted directions in the output. Return
the modified Python code for the heuristics. Explain your reasoning
and think step by step. Do not hallucinate.
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All stage 3 operators

Same operator wordings as stage 2 (Mutation, Crossover, Exploration
1, Exploration 2, Reflection), with stage 3 context and using \

texttt{margin_directions} and \texttt{habitat_directions}.

F.5.3 STAGE 4

common operator instructions

The new message should still be a valid message that can be
communicated to the farmer. Explain your reasoning and think step
by step. Provide your final message to the farmer in this format \
communication{message}.

Mutation

The following message is communicated to the farmer in order to
change their behaviour from following the ecological
intensification heuristics that benefits solely their farm to
following the ecological connectivity heuristics that increase
landscape connectivity:
{heuristic_policy}

Suggest a subtle mutation to the message to better nudge the farmer
. Focus on small, logical changes in terms of how the message is
communicated or the kind of incentives you provide.

Crossover

Given two sets of messages communicated to the farmer in order to
change their behaviour (parent 1 and parent 2):
Parent 1: {parent1_message}
Parent 2: {parent2_message}

Combine these two sets of messages in an optimal way to cover
information from both parent 1 and parent 2.

Exploration 1

Given two sets of messages communicated to the farmer in order to
change their behaviour (parent 1 and parent 2):
Parent 1: {parent1_message}
Parent 2: {parent2_message}

Generate a new message that is as much different as possible from
parent messages, in order to explore new ideas.
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Exploration 2

Given two sets of messages communicated to the farmer in order to
change their behaviour (parent 1 and parent 2):
Parent 1: {parent1_message}
Parent 2: {parent2_message}

Explore a new message that shares the same idea as the parent
messages. Identify common ideas behind these messages. Then, design
a new message that is based the common ideas but is as much

different as possible from the parents by introducing new parts.

Reflection

Based on the following top 5 messages and their corresponding
fitness scores:
{heuristics_info}, please analyze these messages and craft a new
message that is expected to have increased fitness.

F.6 NUDGE MECHANISM & PERSONALITY PROMPT BUILDING BLOCKS

common policy intro

Your task is to come up with a message to the farmers in order to
change their behaviour from following the ecological
intensification heuristics that benefits solely their farm to
following the ecological connectivity heuristics that increase
landscape connectivity.
The ecological intensification heuristics the farmer is currently
following are:

‘‘‘python
{heur_eco_intens_str}
‘‘‘

The ecological connectivity heuristics that you should nudge them
towards are:

‘‘‘python
{heur_eco_conn_str}
‘‘‘

The current parameters like prices and costs are: {
params_instructions_str}.
One caveat is that the ecological connectivity heuristics are given
in directions (margin_directions and habitat_directions), where

there are 4 possible directions: north-west, north-east, south-west
, south-east. That means the resulting margin_intervention and
habitat_conversion values can only be in multiples of 0.25 (i.e.,
0.0, 0.25, 0.5, 0.75, 1.0). You need to ensure your nudge
encourages outcomes consistent with this. Your goal should be to
communicate a message that gets the farmer to alter the
margin_intervention and habitat_conversion values for each of the
plots, from the former to the latter. Provide your final message to
the farmer in this format \communication{message}. Explain your

reasoning step-by-step BEFORE providing the final message block.
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social comparison data str

Neighbour 1: input: {...} Output: [...]
Neighbour 2: input: ...
Your farm: input: ...

behavioral instructions

For this task, employ **behavioral economics levers** by analyzing
the provided farm and neighbor data. Your message should subtly
guide the farmer.
\--- BEGIN FARM AND NEIGHBOR DATA
{social_comparison_data_str}
\--- END FARM AND NEIGHBOR DATA
Using this data, customize your approach for each lever:

1. Social Comparisons: Analyze the data to find relevant
comparisons between the target farm and its neighbors. Highlight
similarities in farm characteristics (e.g., size, crops, yield if
similar) and then point to neighbors’ adoption of connectivity
measures.
2. Defaults: Based on prevalent practices among neighbors (if any
are clear from the data) or common successful starting points
observed, suggest a ’default’ or ’recommended first step’ that
seems most suitable for the target farm’s context (e.g., ’Given
your farm’s layout and what’s worked for others nearby with similar
watercourses, a common starting point is establishing margins

along...’). Make this default easy to adopt. If many neighbors are
doing something, you can frame it as ’Many farmers in your
community are finding that X is a practical way to start and have
collectively decided that this should be a default practice for
everyone.’.
3. Commitments: Look at the target farm’s current state and
neighbors’ outputs. Propose a small, manageable, voluntary
commitment that aligns with the farm’s characteristics (e.g., ’
Seeing that your neighbor Farm Z started with a small trial patch,
would you be open to a similar low-commitment trial on one of your
less productive field edges this season?’).
4. Framing: Use the provided data to frame the benefits of
ecological connectivity in a way that is concrete and relatable to
the target farm. Acknowledge potential concerns and frame solutions
or outcomes in light of those. Emphasize tangible gains and

opportunities relevant to the farm’s context as suggested by the
data.

Your message should weave these data-driven, customized elements
into a persuasive narrative. You are primarily shaping the choice
context and message, not offering new major financial packages
beyond existing general support programs (which can be alluded to
if they fit the framing).

economic incentives table info

You can use a mix of the following policy instruments:

* Subsidy factor for margin establishment adjacent to existing
habitat (on farmer’s cost of 400/ha, one-time).
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* Subsidy factor for habitat establishment adjacent to existing
habitat (on farmer’s cost of 300/ha, one-time).
* Subsidy factor for margin maintenance (on farmer’s cost of 60/ha/
year, for 20 years).
* Subsidy factor for habitat maintenance (on farmer’s cost of 70/ha
/year, for 20 years).
* Payment per hectare for habitat conversion (direct one-time
payment, range $[0, 150]$ currency units/ha).
The following are constraints or market factors, not direct subsidy
levers from your budget:

* Mandated minimum total habitat area per farm (range $[0, 10]$ ha)
.
* Mandated minimum fraction of margin adjacent to existing habitats
(range $[0, 0.3]$ ha).

* Eco-premium factor for crop (increase selected individual crop
prices by a factor in the range [1, 1.3]).

economic instructions

For this task, design a policy message that primarily uses **
economic incentives**. You have a total notional budget of
BUDGET_PER_FARM:10000 per farm (Present Value over a 20-year
horizon with a 5 percent annual discount rate; the PV factor for 20
years of annual payments is PV_FACTOR_20Y_5PC:12.46).

{economic_incentives_table_info}
When proposing your policy, explicitly state the subsidy rates (as
percentages or factors, e.g., ’a 0.4 subsidy factor means 40
percent subsidy’) or payment amounts you are offering. These rates
must be within their specified ranges.
Your proposed incentive *rates* should be chosen considering the
total budget. For example, the PV cost to the budget per hectare
for your offered incentives would be:
- Margin Establishment * 400
- Habitat Establishment * 300 + P_{ha} (if payment is for new
habitat)
- Margin Maintenance (PV over 20 yrs) * 60 * {PV_FACTOR_20Y_5PC}
- Habitat Maintenance (PV over 20 yrs) * 70 * {PV_FACTOR_20Y_5PC}

Design an attractive package of *rates*. Assume a farmer might
adopt measures on a few hectares (e.g., 1-5 ha of habitat, 1-3 ha
of margins). Your offered rates should aim to keep the potential
total PV cost for such a scenario within the {BUDGET_PER_FARM}
limit. You don’t need to calculate the farmer’s exact uptake, but
the *offer itself* must be responsibly designed with this budget
constraint in mind.

Policy task assembly

Behavioral mechanism: policy_task_instructions =
common_policy_intro + behavioral_instructions

Economic mechanism: policy_task_instructions = common_policy_intro
+ economic_instructions

Policy_system_instructions: You are an expert in land use policy,
communication, incentives, and economics. Your task is to come up
with the best message to be communicated to the farmers so as to
change their behaviour from one set of heuristics to another set of
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heuristics. Modify your approach based on whether you are asked to
use **behavioral economics levers** or **economic incentives**.

Farmer Personalities

resistant: "You are a farmer who is extremely resistant to changing
your current practices. You are highly skeptical of new advice and
require overwhelming evidence or extremely compelling reasons to

alter your ways. You prioritize autonomy and established routines
above all else. You will likely ignore most messages and nudges
unless they address a critical, undeniable issue you are personally
facing, or offer an exceptionally large and straightforward

benefit with minimal effort or risk on your part."

economic: "You are a pragmatic farmer focused primarily on the on
the economic outcomes of your farm. You are open to changing your
heuristics if the proposed changes have a clear, quantifiable
positive impact on your profitability, efficiency, or reduce your
financial risks. You respond well to financial incentives, cost-
benefit analyses, and evidence of improved yields or market access.
Social or purely environmental arguments are secondary to economic
viability.

socially influenced: "You are a farmer who is significantly
influenced by the practices and opinions of your peers and the
broader farming community. You are concerned about your reputation
and how your farm is perceived. You are more likely to adopt new
practices if you see others in your network successfully
implementing them or if there are strong social norms or community
expectations favoring such changes. While economics matter, social
validation and community standing are strong motivators for you."

farm system instructions

Your task is to respond to communication from policy professionals
by altering your heuristics in an appropriate way. You will return
final answers in python code. You should keep all data loading from
input.geojson and dumping to output.geojson the exact same, and

just alter the logic depending on your context and personality, and
what the message is. Don’t invent new variable names in the output

, keep using margin_intervention and habitat_conversion. If you do
decide to follow the message and implement suggestions in the
message, then:
a) If the message proposes changes to some key parameters that you
are using in your heuristics, you should change them according to
the proposed changes.
b) If the message introduces new parameters or ideas, you should
incorporate them in your heuristics.
c) Your should react to the message from the policy professional,
resulting in altered margin_intervention and habitat_conversion
values for your plots, in an appropriate way that aligns with your
personality, interests and the message you received.
d) Your final answer should be your full altered python code
heuristics, keeping overall framework of the original python code
the same.
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If you decide not to follow the message or implement suggestions in
the message, then you should just return the full original code

and not make any changes.

Simulation prompt

Prompt = farm_system_instructions + personality_prompt +
policy_message

F.7 HEURISTICS EXPLANATION & MERGING

F.7.1 EXPLANATION LLM.

explanation system prompt

You are a highly knowledgeable code analysis assistant with
expertise in optimization algorithms and Python programming. You
will be provided with a group of Python programs generated to solve
an agricultural intervention planning task. These programs are

ordered from lowest to highest performance. Your task is to
carefully examine the provided code and explain, in a detailed,
step-by-step manner, the differences and improvements between
successive versions.
Guidelines:

- Identify modifications in heuristics, variable usage, control
flow, and algorithmic structures that may lead to better
performance.
- Explain how these modifications might improve the trade-off
between intervention cost and increased yield, by affecting factors
such as pollination and pest control.

- Point out any recurring patterns or trends across the successive
versions.
- Explain your reasoning and think step by step before providing
your final explanation.
Do not include any information not present in the provided code or
background context.

explanation task instructions

Task Background:
The Python programs are designed to decide which interventions to
apply at agricultural plots. The interventions: ’margin’ and ’
habitat’, may be fractional. Performance is evaluated based on
their effect on the Net Present Value (NPV), which is influenced by
pollination and pest control services affecting yield, balanced

against the costs of implementation and maintenance. Existing
habitat plots remain unaffected.

Composition (Explanation)

prompt = explanation_system_prompt + "Please analyze the following
group of Python programs:\n" + f"{code_snippet}\n" + f"{
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explanation_task_instructions}\n" + "Explain your reasoning and
think step by step before providing your final explanation:"

F.7.2 MERGING LLM.

merge system prompt

You are a skilled analytical assistant tasked with synthesizing and
merging insights from multiple analyses of Python programs

designed for an agricultural optimization task. You will be
provided with a previous summary of insights and a new detailed
explanation generated for the current group of programs. Your goal
is to merge these insights into an updated, consolidated summary.
Guidelines:

- Explain your reasoning and think step by step before providing
your final merged summary.
- Identify common patterns, modifications in heuristics, variables,
and control structures that enhance performance.

- Ensure that the final summary is clear, comprehensive, and
strictly based on the provided inputs.
Do not include any extraneous or invented details.

merging task instructions

Task Background:
The programs under analysis decide on interventions at agricultural
plots, balancing the cost of interventions against benefits in

yield through improved pollination and pest control. They choose
between ’margin’ and ’habitat’ interventions, while existing
habitat plots remain unaffected.

Composition (Merging)

prompt = merge_system_prompt + "You have a previous summary of
insights:\n" + f"{previous_summary}\n" + "Additionally, here is the
new explanation for the current group:\n" + f"{current_explanation

}\n" + f"{merging_task_instructions}\n" + "Please merge the
previous insights with this new analysis. Explain your reasoning
and think step by step before providing your updated, consolidated
summary."

G SAMPLE NUDGE MESSAGES

Some sample messages generated by the Policy LLMs for the different personality-nudge type com-
binations are given below.

Personality: Resistant, Nudge: Behavioral

Dear Farmer,
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We recognize your dedication to efficient farming, especially with
crops like Corn, Soybeans, Spring wheat, and Barley, alongside your
Broadleaf habitat. We’ve been observing trends among farms in the

area, and many, including your neighbors, are exploring ways to
improve resilience and productivity through ecological connectivity
.
Like you, we have observed your neighbors farming Spring wheat.
Notably, Neighbor 1 has a Spring wheat plot (ID 4), just like yours
, with a significantly higher yield (2.52) compared to your plot
(0.5). Other neighbors have also adopted similar strategies with
success.

Given this and the fact that your Spring wheat plot (ID 4)
currently has a lower yield, would you consider a low-commitment
trial to enhance connectivity? A common first step is establishing
a **0.5 margin intervention along the North-East and South-West
edges of your Spring wheat plot (ID 4), with habitat intervention
across all four sides (resulting in a habitat conversion of 1.0)**.
Many farmers in your community are finding that dedicating some

small sections to margin interventions and habitat conversion are a
practical way to start and have collectively decided that this

should be a default practice for everyone.

Based on ecological connectivity best practices and success in
farms like yours, we recommend that for your Corn plot (ID 2), you
establish margin interventions on all directions (north-west, north
-east, south-west, south-east, resulting in a margin intervention
of 1.0). For your Soybeans plot (ID 3), we recommend setting up
margin interventions on the south-west and south-east direction (
resulting in a margin intervention of 0.5). Finally, for your
Barley plot (ID 5), we recommend setting up margin interventions on
the north-west, south-west, and south-east directions (resulting

in a margin intervention of 0.75), and habitat interventions on all
directions (north-west, north-east, south-west, south-east,

resulting in a habitat intervention of 1.0). For your Oats plot (ID
9) consider adding margin interventions on the north-west, north-

east, and south-east edges (amounting to an intervention of 0.75),
and habitat interventions across all directions (north-west, north-
east, south-west, and south-east, amounting to an intervention of
1.0).
This isn’t just about the environment. It’s about making your
Spring wheat plot (ID 4) more resilient, potentially improving its
yield, enhancing pest control, and boosting water infiltration.
Successfully implementing these changes can potentially open your
farm to existing general support programs.

We’re here to provide guidance and support as you explore this
impactful change. We will set you up with agronomists and
ecologists so they can best advise you on what practices will suit
your farm’s needs. Let us know if you’d like to discuss these
options further and tailor these strategies to your farm’s specific
needs!

Sincerely,

[Your Organization]

Personality: Resistant, Nudge: Economic

**Invest in a Connected & *Highly* Profitable Future!**
Dear Farmer,
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We’re committed to supporting your farm’s success while enhancing
our community’s ecological health. This enhanced program *
significantly* rewards you for creating strategically connected
habitats, improving pollination, pest control, water quality, and
the long-term resilience of our farms.

**Here’s how you can *dramatically* benefit:**
* **Eco-Premiums Remain:** Continue to get a **20 percent** price
boost on Spring Wheat and Barley crops.
* **Tiered Subsidies for Margins:**
* **Strategic Directional Margins:** Receive a **60 percent subsidy
** on the cost of establishing new margins and a **25 percent
subsidy** on ongoing maintenance when you place these margins in
key locations (specified by our connectivity plan) to connect
habitats. We’ll provide detailed guidance!
* **Other Margins:** Receive a 40 percent subsidy on establishment
and a **15 percent** subsidy on ongoing maintenance for margins
placed in other locations.
* **Tiered Subsidies for Habitats:**
* **Strategic Directional Habitats:** Get a **50 percent subsidy**
on habitat establishment and a **20 percent subsidy** on
maintenance when you strategically establish new habitat patches (
specified by our connectivity plan) that connect with existing
natural areas.
* **Other Habitats:** Receive a 30 percent subsidy on establishment
and **10 percent** on maintenance for habitat in other locations.
* **Connectivity Bonus!** Earn an extra **150** per hectare *on top
* of the establishment subsidy for margins and habitats placed in
the *exact* directions recommended by our connectivity plan. This
ensures your efforts *maximize* ecological benefit *and your
financial returns*!
* **Get Paid to Convert:** Receive a payment of 80 per hectare for
converting suitable agricultural land into valuable habitat.
**Minimum Requirements:**

To ensure everyone contributes to a healthier landscape, we’re
setting a minimum standard of 2 hectares of habitat per farm and
0.1 hectares of margin along existing habitats. These minimums can
qualify for subsidies, but the *real* rewards come from strategic
connectivity!

**Why Participate?**
This program is about *more* than just meeting requirements. It’s
about *maximizing* your farm’s profitability while building a
resilient and thriving ecosystem. By strategically connecting
habitats, you contribute to a healthier landscape *and* unlock *the
highest* financial benefits.

**Ready to *maximize your returns*?** Contact us today to learn
more about the specific connectivity plan for your farm and how you
can participate!

Sincerely,

[Your Organization]

Personality: Economic, Nudge: Behavioral

Dear Farmer,
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We appreciate your dedication to productivity. Like Neighbors 1, 2,
and 3, you also cultivate a mix of crops including Spring wheat,

Oats, Soybeans, Corn, and Barley, which is quite typical for
farms in our region. We see Neighbor 2, for example, who also
cultivates Oats, starting to explore connectivity practices, and
they’ve seen positive results.

A common first step many farmers find successful, given their crop
mix, is to focus on their Corn (plot id: 2), Soybeans (plot id: 3),
Spring wheat (plot id: 4), Barley (plot id: 5) and Soybeans (plot

id: 6) plots to improve landscape connectivity. We’ve observed that
converting the *south-west and south-east borders* of the Soybeans
(plot ID 3) into margins is a particularly non-disruptive starting
point that has worked well for others. Many farmers in your area

fi nd that edge margin conversions and habitat connectivity is a
great way to start and have collectively decided that this is a
default practice for everyone.

Considering the layout of your farm and crop selection, as well as
the experience of your neighbors, here are some specific options to
improve landscape connectivity:

* **Corn (plot id: 2):** Many find trialing margin interventions at
0.25 increments (north-west, north-east, south-west, or south-east
edge) is a non-disruptive starting point and have collectively

decided that this should be a default practice for everyone. We
recommend full margin interventions on all sides, given their
ability to enhance yield. This would result in a margin
intervention value of 1.0.
* **Soybeans (plot id: 3):** A great starting point is to convert
margins on the *south-west and south-east borders*. This would
result in a margin intervention value of 0.5.
* **Spring wheat (plot id: 4):** Given the lower yield on your
Spring wheat plot, consider margin interventions along the *north-
east and south-west borders*, *and* converting the *north-west,
north-east, south-west, and south-east borders* to habitat.
Implementing only the margin interventions would result in a margin
intervention value of 0.5. Fully implementing all recommendations

would result in a habitat conversion value of 1.0, alongside the
0.5 margin intervention value.
* **Barley (plot id: 5):** Explore margin interventions on the *
north-west, south-west,* and *south-east* edges, alongside habitat
creation on all edges. Only implementing the margin intervention
would result in a margin intervention value of 0.75. Implementing
all recommendations here would result in a habitat conversion value
of 1.0 alongside the 0.75 margin intervention value.

* **Soybeans (plot id: 6):** We suggest margin interventions on the
*north-west, north-east,* and *south-east* borders. This would

result in a margin intervention value of 0.75.
* **Oats (plot id: 9):** How about trying margin interventions on
the *north-west, north-east,* and *south-east* edges, coupled with
habitat creation on all edges? Only implementing the margin
interventions would result in a margin intervention value of 0.75.
Fully implementing all recommendations would result in a habitat
conversion value of 1.0 alongside the 0.75 margin intervention
value.

Given the lower yield on your Spring wheat plot (ID 4), a small-
scale trial of margin intervention along just 25 percent of *north-
east and south-west* edges this season would be a low-commitment
way to observe the effects firsthand. Additionally, perhaps you
could consider also implementing margin intervention on your
Soybeans plot 3?
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Remember, improving landscape connectivity can lead to long-term
resilience and profitability, along with the potential for reduced
input costs, improved pollination, *which will translate to an
increase in Spring wheat yield in the long run*, and soil health.
These interventions can be thought of as an insurance policy
against lower yields. We also have general support programs that
may be available to help with these transitions.

We are here to support you with resources and guidance as you
explore these options. Feel free to reach out to learn more about
how other farmers are making it work and how existing support
programs can help. Even small changes can make a big difference for
our community and our farms!

Personality: Economic, Nudge: Economic

**Unlock Strategic Farm Investments: Connectivity Rewards Await!**
Dear Farmers,

Transform your farm into a connected, profitable, and resilient
landscape with our Connectivity Rewards Program! We’re offering *
significant* financial incentives to establish margins and habitats
in *key locations* on your fields, maximizing both ecological
benefits and your bottom line.

**Here’s How to Profit from Connectivity:**
* **Strategic Margin Placement: Supercharged Incentives:** Receive
an *85 percent subsidy* on the cost of establishing margins in *
specific corners of your fields*. This means your establishment
cost is only 60/ha instead of 400! It’s like getting paid to
protect your investment, *but only if you put the margins in the
right place!*
* **Long-Term Margin Peace of Mind:** We’ll provide a generous *65
percent subsidy* on the *annual* maintenance of these connectivity
margins for the next 20 years. A worry-free investment in your farm
’s future.
* **Habitat Conversion Pays Big:** Convert underperforming corners
of your fields to valuable habitat and receive a *one-time payment
of 140/ha*, *in addition* to establishment and maintenance
subsidies. Turn unproductive land into a revenue stream!
* **Subsidized Habitat establishment:** Get a 70 percent subsidy on
habitat establishment in targeted locations, and only pay 90/ha

* **Habitat maintenance:** Get a 50 percent subsidy on annual
habitat maintenance.
* **Oats Eco-Premium:** Boost your revenue with a *10 percent price
premium* on Oats grown on fields with connectivity margins or

habitats in the *specified directions*.
**Where to Connect: Location is Key!**
*To qualify for these enhanced incentives, you MUST establish
margins and habitats in the following locations based on your crop
:*
* **Corn:** Margins in the north-west, north-east, south-west, and
south-east corners of your corn fields.
* **Soybeans (Plot ID 3):** Margins in the south-west, south-east
corners of your soybean field.
* **Spring Wheat:** Margins in the north-east, south-west corners *
AND* convert areas in the north-west, north-east, south-west, and
south-east corners of your Spring Wheat fields into valuable
habitat.

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

* **Barley:** Margins in the north-west, south-west and south-east
corners *AND* convert areas in the north-west, north-east, south-
west, and south-east corners of your Barley fields into valuable
habitat.
* **Soybeans (Plot ID 6):** Margins in the north-west, north-east,
south-east corners of your soybean field.
* **Oats:** Margins in the north-west, north-east and south-east
corners *AND* convert areas in the north-west, north-east, south-
west, and south-east corners of your Oat fields into valuable
habitat.

*Minimum Commitments:* We require a minimum of 1 hectare of total
habitat per farm and 0.1 ha of margin to participate in the program
.
**Why This Matters:**
These targeted connectivity measures are a strategic investment in:
* **Increased Pollination & Pest Control:** Supporting biodiversity
boosts your yields and reduces reliance on costly inputs.
* **Long-Term Farm Value:** Resilient landscapes are more valuable
and sustainable.
* **A Thriving Agricultural Community:** Contribute to a healthier
and more connected agricultural landscape.
**Take the Next Step:**

Contact your local agricultural extension office *today* to learn
more and develop your personalized connectivity plan. They’ll help
you identify the *exact* locations for margins and habitats on your
farm to maximize your rewards. Don’t miss this opportunity to
boost your farm’s future!

Sincerely,

[Your Organization]

Personality: Social, Nudge: Behavioral

Hello, fellow farmer!

We’ve been impressed with your current farming practices. Like many
farmers in this region including Neighbor 3 who also have

broadleaf habitats, you’re already contributing to the ecological
diversity of the landscape with crops such as Corn, Soybeans,
Spring Wheat, Barley, and Oats, alongside natural habitats such as
the Broadleaf and Exposed land/barren areas.

We’ve also observed how neighboring farms have started enhancing
ecological connectivity to improve their farms’ resilience. Notably
, Neighbor 2 has seen promising results from implementing both
margin interventions and habitat conversion strategies. Based on
the ‘ecological connectivity heuristics‘, which assigns specific
directions for margin and habitat interventions to various plots:
* Consider the plot of ‘Corn‘: Our model suggest that margin
intervention should be implemented on all four sides of the plot, i
.e. north-west, north-east, south-west, south-east. This will
require a margin_intervention value of 1.0.
* Consider the plot of ‘Soybeans‘ with id 3: Our model suggest that
margin intervention should be implemented on its south-west and

south-east. This will require a margin_intervention value of 0.5.
* Consider the plot of ‘Spring wheat‘: Our model suggest that
margin intervention should be implemented on its north-east and
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south-west, and habitat conversion should be implemented on all
four sides. This will require a margin_intervention value of 0.5
and habitat_conversion value of 1.0.
* Consider the plot of ‘Barley‘: Our model suggest that margin
intervention should be implemented on its north-west, south-west,
and south-east, and habitat conversion should be implemented on all
four sides. This will require a margin_intervention value of 0.75

and habitat_conversion value of 1.0.
* Consider the plot of ‘Oats‘: Our model suggest that margin
intervention should be implemented on its north-west, north-east,
and south-east, and habitat conversion should be implemented on all
four sides. This will require a margin_intervention value of 0.75

and habitat_conversion value of 1.0.

Given your existing Broadleaf habitat (plot ID 1), a natural and
manageable next step, and one many farmers find easy to implement,
is to implement margin interventions on the north-west and north-
east of the adjacent Corn plot, acting as a natural extension of
the existing habitat. Alternatively, would you be open to trialing
margin interventions on just the north-east side of the ‘Spring
wheat‘ plot for the upcoming season? By strategically connecting
your existing habitats with these interventions, you’re not just
supporting biodiversity, but also creating ’wildlife
corridors’ that can enhance pollination and natural pest control
across your farm. These interventions can potentially reduce
reliance on external inputs. We’ve also noticed that some farmers
have collectively discussed making marginal interventions a default
practice to encourage collaboration.

We’re here to support you with any information or resources you may
need!

Personality: Social, Nudge: Economic

**Unlock a More Profitable, Sustainable, and Connected Farm with "
Connect & Prosper"!**
We’re excited to introduce "Connect & Prosper," a program designed
to significantly boost your farm’s long-term wealth by enhancing
ecological connectivity across our agricultural landscape. By
strategically integrating nature into your farm *in specific,
recommended directions*, you can create a more sustainable,
resilient, and *profitable* operation.
**Here’s how "Connect & Prosper" benefits you:**
* **Increased Crop Yields:** Attract pollinators and beneficial
insects for better pollination and natural pest control.
* **Reduced Input Costs:** Decrease your reliance on expensive
pesticides and fertilizers.
* **Enhanced Biodiversity:** Create a healthier, more resilient
ecosystem on your farm.
* **Long-Term Sustainability:** Protect your farm’s productivity
for future generations.
* **Increased Land Value:** Ecologically healthy and *connected*
land is likely to be valued more.
**"Connect & Prosper" offers substantial financial incentives, with
a special "Connectivity Bonus" for establishing margins and
habitats *in specific directions* that maximize benefits for your
farm and the environment! Incentives are highest for following
these recommendations!**
* **Generous Establishment Subsidies:**
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* **70 percent subsidy** on the cost of establishing margins in the
*recommended directions* adjacent to existing habitats (**

Connectivity Bonus**).
* **55 percent subsidy** on the cost of establishing margins in *
other directions* adjacent to existing habitats.
* **70 percent subsidy** on the cost of establishing new habitats
in the *recommended directions* adjacent to existing habitats (**
Connectivity Bonus**).
* **55 percent subsidy** on the cost of establishing new habitats
in *other directions* adjacent to existing habitats.
* **Ongoing Maintenance Support (for 20 years!):**
* **55 percent subsidy** on margin maintenance costs for margins in
the *recommended directions* (**Connectivity Bonus**).
* **40 percent subsidy** on margin maintenance costs for margins in
*other directions*.

* **55 percent subsidy** on habitat maintenance costs for habitats
in the *recommended directions* (**Connectivity Bonus**).
* **40 percent subsidy** on habitat maintenance costs for habitats
in *other directions*.
* **Direct Habitat Conversion Payments:**
* Get a one-time payment of **125 per hectare** for converting
agricultural land into valuable habitat *in the recommended
directions* (**Connectivity Bonus**).
* Get a one-time payment of **75 per hectare** for converting
agricultural land into valuable habitat in *other directions*.
* **Premium Prices for Eco-Friendly Crops:** We’ll increase the
price we pay for your crops:
* **Spring Wheat by 11 percent**
* **Barley by 9 percent**
* **Oats by 7 percent**
**Connectivity Bonus by Crop**
Here are the recommended directions of interventions for different
crops:
* For **Corn**: create margins in the north-west, north-east, south
-west, and south-east directions.
* For **Soybeans** at plot ID 3: create margins in the south-west
and south-east directions.
* For **Spring wheat**: create margins in the north-east and south-
west directions; create habitats in the north-west, north-east,
south-west, and south-east directions.
* For **Barley**: create margins in the north-west, south-west, and
south-east directions; create habitats in the north-west, north-

east, south-west, and south-east directions.
* For **Soybeans** at plot ID 6: create margins in the north-west,
north-east, and south-east directions.
* For **Oats**: create margins in the north-west, north-east, and
south-east directions; create habitats in the north-west, north-
east, south-west, and south-east directions.
**To participate, we ask that you commit to a minimal habitat of
0.5 ha (1.235 acres) and ensure a minimal 0.15 ha (0.37 acres) of
margin is adjacent to existing habitats.**
**Why Connectivity?**
Creating a connected landscape isn’t just good for wildlife; it’s
good for your farm. Enhanced connectivity can lead to:
* Improved pollination and natural pest control
* Increased water infiltration and reduced soil erosion
* A more resilient farm that can better withstand environmental
changes
**Ready to connect your farm to greater prosperity and claim your

Connectivity Bonus?** Contact your local agricultural extension
office today. Our experts will provide personalized assistance to
help you develop a "Connect & Prosper" plan that meets your
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specific needs and unlocks the full potential of your land. Don’t
miss this opportunity to make your farm more profitable, resilient,
and environmentally sustainable! Leading farmers are already

seeing the benefits, join them!
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