

STRUCTURING COLLECTIVE ACTION WITH LLM-GUIDED EVOLUTION: FROM ILL-STRUCTURED PROBLEMS TO EXECUTABLE HEURISTICS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Collective action problems, which require aligning individual incentives with col-
 014 lective goals, are classic examples of Ill-Structured Problems (ISPs). For an
 015 individual agent, the causal links between local actions and global outcomes
 016 are unclear, stakeholder objectives often conflict, and no single, clear algorithm
 017 can bridge micro-level choices with macro-level welfare. We present ECHO-
 018 MIMIC, a general computational framework that converts this global complex-
 019 ity into a tractable, Well-Structured Problem (WSP) for each agent by discov-
 020 ering executable heuristics and persuasive rationales. The framework operates
 021 in two stages: ECHO (Evolutionary Crafting of Heuristics from Outcomes)
 022 evolves snippets of Python code that encode candidate behavioral policies, while
 023 MIMIC (Mechanism Inference & Messaging for Individual-to-Collective Align-
 024 ment) evolves companion natural language messages that motivate agents to adopt
 025 those policies. Both phases employ a large-language-model-driven evolutionary
 026 search: the LLM proposes diverse and context-aware code or text variants, while
 027 population-level selection retains those that maximize collective performance in
 028 a simulated environment. We demonstrate this framework on two distinct ISPs:
 029 a canonical agricultural landscape management problem and a carbon-aware EV
 030 charging time slot usage problem. Results show that ECHO-MIMIC discovers
 031 high-performing heuristics compared to baselines and crafts tailored messages that
 032 successfully align simulated agent behavior with system-level goals. By coupling
 033 algorithmic rule discovery with tailored communication, ECHO-MIMIC trans-
 034 forms the cognitive burden of collective action into a implementable set of agent-
 035 level instructions, making previously ill-structured problems solvable in practice
 036 and opening a new path toward scalable, adaptive policy design.

1 INTRODUCTION

038 Many of the most pressing real-world challenges, from sustainable resource management and cli-
 039 mate change mitigation to economic policy design, are Ill-Structured Problems (ISPs) (Simon &
 040 Newell, 1971; Reitman, 1964). Unlike Well-Structured Problems (WSPs), which have clearly de-
 041 fined goals, known constraints, and a finite set of operators, ISPs feature ambiguous goals, unclear
 042 causal relationships, and undefined solution spaces (Simon, 1973). Solving an ISP requires the
 043 problem-solver to impose structure, define objectives and discover pathways, as an integral part of
 044 the solution process itself.

045 A classic example of an ISP arises in collective action problems, where locally rational decisions
 046 made by autonomous agents lead to globally suboptimal or even harmful outcomes (Hardin, 1968;
 047 Ostrom, 1990). Consider farmers operating within a shared agricultural landscape or EV owners
 048 choosing when to charge at home. Each agent makes decisions driven by local incentives like
 049 maximizing crop yield or minimizing charging costs and discomfort. While these decisions may be
 050 optimal at the individual level, their combined effect can degrade the shared ecosystem or overload
 051 the grid during peak hours. For an individual agent, the decision of how to act is an ISP: the link
 052 between their specific choices and the health of the entire system is complex and unclear, and the
 053 *right* action is not algorithmically defined. The challenge for a system designer or policymaker
 is to create a mechanism that simplifies this decision-making process for the individual. An ideal

054 solution would be practical behavioral rules, or heuristics, that, if followed by individual agents,
 055 reliably produce a desirable global outcome. Such heuristics would effectively transform the ISP
 056 faced by each agent into tractable WSPs. Discovering such heuristics, however, is a challenging
 057 second-order problem.

058 We introduce **ECHO-MIMIC**, a framework designed to automate the discovery of these heuristics
 059 and the mechanisms to encourage their adoption. Our approach is grounded in Simon’s models of
 060 bounded rationality, which posit that agents rely on rules-of-thumb to navigate complex environ-
 061 ments (Gigerenzer & Gaissmaier, 2011; Simon, 1990). We operationalize this concept using the
 062 synergy of Evolutionary Algorithms (EAs) and Large Language Models (LLMs). This LLM+EA
 063 paradigm represents a new frontier for creative problem-solving, and recent work has begun to
 064 leverage LLMs within evolutionary program searches to generate and tune heuristics for complex
 065 optimization problems (Guo et al., 2023; Romera-Paredes et al., 2024; Liu et al., 2024a; Ye et al.,
 066 2024; Novikov et al., 2025; Chen et al., 2023). However, the utility of this paradigm in practical
 067 optimization settings and its applicability to real-world complex systems has been underexplored.

068 Our end-to-end framework leverages this paradigm to solve real-world collective action problems,
 069 transforming them from ISPs into effective WSPs. Our primary contributions are:

- 071 1. We introduce ECHO-MIMIC, a general framework that deconstructs complex collective ac-
 072 tion ISPs into executable behavioral heuristics that are well-structured for individual agents,
 073 and then nudges the agents to implement these heuristics.
- 074 2. We demonstrate our framework on two distinct domains: agricultural landscape manage-
 075 ment and carbon-aware EV charging. We show that it significantly outperforms LLM
 076 program-synthesis baselines like DSPy MiPROv2 and agent frameworks like AutoGen.
- 077 3. We find that performance of heuristics produced by ECHO rises with code-complexity
 078 indicators and that nudges generated by MIMIC can be tailored to diverse agent personas.
- 079 4. To facilitate generalization, we develop a Domain Creation Agent that automatically gen-
 080 erates modular, domain-specific system instructions and prompts given the (state, action)
 081 schema and constraints of a new task.
- 082 5. Peripherally, we show the effectiveness of the LLM+EA paradigm on optimization prob-
 083 lems in real-world systems, moving beyond work focusing on combinatorial benchmarks
 084 (Liu et al., 2024a; Ye et al., 2024; Dat et al., 2025; Romera-Paredes et al., 2024).

085 2 RELATED WORK

086 **LLM-guided evolutionary search and automated heuristic design:** A growing line of work cou-
 087 ples LLMs with evolutionary search to generate programs, prompts, and heuristics. FunSearch
 088 demonstrates LLM-driven program discovery within an evolutionary loop for mathematical prob-
 089 lems (Romera-Paredes et al., 2024). EvoPrompt connects LLMs with evolutionary algorithms to
 090 evolve high-performing prompts (Guo et al., 2023). LLMs have also been used as evolutionary
 091 optimizers or operators more broadly (Liu et al., 2024b; Yang et al., 2023; Lange et al., 2024). Beyond
 092 prompts, language hyper-heuristics (Burke et al., 2003) evolve executable code to improve search
 093 efficiency and generality across combinatorial problems (Ye et al., 2024; Liu et al., 2024a; Dat et al.,
 094 2025). Our ECHO phase aligns with this paradigm but specializes it to produce validated code
 095 heuristics that map local states to actions to drive collective-action.

096 **Multi-agent optimization and communication:** Recent frameworks like DSPy (Khattab et al.,
 097 2023; Opsahl-Ong et al., 2024) and AutoGen (Wu et al., 2024) enable the construction of multi-agent
 098 LLM systems for diverse tasks. DSPy provides a programming model for optimizing LM prompts
 099 and weights through compilation, and AutoGen provides a flexible infrastructure for agent interac-
 100 tion. While these frameworks are very useful in constructing multi-agent systems and workflows
 101 for general problems, they do not inherently solve the problem of discovering optimal local poli-
 102 cies for collective goals in complex, constraint-heavy environments, but rather need to be explicitly
 103 setup to do so. G-Designer (Zhang et al., 2024) addresses the design of multi-agent communication
 104 topologies via graph neural networks, which is related but orthogonal to our work. Our setup fixes
 105 the neighbor graph and focuses on program (policy) synthesis + measurable nudging. We compare
 106 against AutoGen as a general-purpose agent scaffold baseline and DSPy MIPROv2 (Opsahl-Ong
 107 et al., 2024) as a strong prompt optimization baseline.

108 **AI and social dilemmas:** Within AI, a large body of work has studied social dilemmas in synthetic
 109 multi-agent substrates. Sequential and intertemporal social dilemmas in grid-world or DMLab-style
 110 environments have been used to analyze emergent cooperation under different learning rules and
 111 reward structures (Leibo et al., 2017; Peysakhovich & Lerer, 2017). Other work rewards social
 112 influence or inequity aversion to improve coordination (Jaques et al., 2019; Hughes et al., 2018).
 113 Learning-to-incentivize approaches similarly optimize incentive functions in simulated MARL tasks
 114 without targeting concrete deployments (Yang et al., 2020). Most of these benchmarks use stylized
 115 spatial geometries and focus on optimizing opaque neural policies or reshaped rewards. Our method
 116 is an end-to-end way to approach social dilemmas with deployable rule-books and nudging, and
 117 we demonstrate it in real-world settings. Moreover, our agents are bounded-rational rule users that
 118 employ executable heuristics, which is closer to how humans make decisions.
 119

120 **Collective action, bounded rationality, and heuristics:** The core challenge we target, aligning
 121 individual incentives with social welfare, sits squarely within collective action and commons gov-
 122 ernance. Hardin framed the dynamic as a *tragedy of the commons* (Hardin, 1968), while Ostrom
 123 documented institutional conditions under which communities avert that tragedy (Ostrom, 1990).
 124 From a cognition viewpoint, our agent-level design follows the bounded-rationality tradition: peo-
 125 ple use fast, implementable heuristics adapted to their environments (Gigerenzer & Gaissmaier,
 126 2011). At the system-level, designing those heuristics transforms an ill-structured problem (Simon,
 127 1973) into well-structured subproblems with explicit objectives and evaluators.
 128

129 **Mechanisms, nudges, and AI-personalized messaging:** Adoption is often the bottleneck, and
 130 even good policies underperform without mechanisms for uptake. Behavioral nudges and choice
 131 architecture can shift real-world environmental decisions (Byerly et al., 2018). Recent evidence
 132 shows that generative models can craft personalized messages with stronger persuasive effects than
 133 generic appeals (Matz et al., 2024; Rogiers et al., 2024). Our MIMIC phase operationalizes this by
 134 evolving messages that reliably alter agents’ code-level heuristics toward ECHO-derived targets.
 135

3 PROBLEM FORMULATION AND APPROACH

136 The collective action setting is ill-structured at two coupled levels. At the *agent level*, each agent
 137 $i \in \mathcal{N}$ observes a local state $S_{L,i}$ (e.g., their own resources, constraints, and immediate context),
 138 chooses an action $a_i \in \mathcal{A}_i$ (e.g., how much to extract, when to act, or where to intervene), and
 139 optimizes a local objective $U_{L,i}$ (e.g., profit, convenience, or personal cost). However, the effect
 140 of a_i on societal goals depends on the unknown and evolving actions of others, a_{-i} . At the *system level* (policymaker),
 141 inferring what agents currently do (baseline behavior), determining how to
 142 coordinate local choices so they aggregate into desired global patterns, and how to incentivize behav-
 143 ior under real-world constraints are themselves ill-structured problems. We consider two domains:
 144 agricultural landscape management and carbon-aware EV charging coordination.
 145

146 Let $\mathbf{A} = (a_1, \dots, a_N)$ denote the joint action profile and define a nonseparable global objective
 147 $U_G(\mathbf{A}) = G(\Phi(\mathbf{A}))$, where Φ maps joint interventions to a mesoscale representation (e.g., a
 148 habitat graph or a load profile), and G scores that representation. From any single agent’s vantage
 149 point, $\partial U_G / \partial a_i$ depends on unknown and evolving a_{-i} and is mediated by thresholds, comple-
 150 mentarities, and path dependence in Φ . These properties render one-shot mechanism design ill-posed.
 151 Therefore, to make this collective action ISP tractable, our approach imposes structure at both the
 152 system and agent levels by decomposing the problem into four well-structured stages whose outputs
 153 are executable (Fig. 1):
 154

155 **Stage 1 - Establish Baseline Behavior:** We fix what agents do by default. For each agent i , we
 156 compute the baseline action a_i^0 by solving the local problem $\max_a U_{L,i}(a, S_{L,i})$. This yields state-
 157 action pairs $D_i^0 = (S_{L,i}, a_i^0)$. Practically, this means solving for (or recording) each agent’s personal
 158 choices, for example, how much to ecologically intervene on the agricultural farm or how much to
 159 use a particular time slot for charging through the week.
 160

161 **Stage 2 - Learn Baseline Heuristics:** We learn executable code heuristics $\hat{H}_{L,i}$ that reproduces
 162 a_i^0 from $S_{L,i}$, where candidates are Python programs. An LLM proposes/mutates code and an EA
 163 selects by a computable error between predicted and baseline actions. In effect, this yields a program
 164 for each agent that, given the observables, outputs the same local actions the agent would normally
 165 choose using personal preferences.
 166

Figure 1: **ECHO–MIMIC framework.** ECHO uses an LLM+EA search loop to propose personal-level decision heuristics aligned with baseline (stage 2) and global (stage 3) objectives. MIMIC optimizes personalized nudges (e.g., messages/mechanisms/policies) using an LLM+EA search loop to drive collective action. Overall, the framework converts the collective action ISP into system- and agent-level WSPs. Figure uses the farm domain. See Appendix B.2 for a more detailed workflow.

Stage 3 - Learn Global Heuristics: We identify globally desirable targets (directions) $H_{G,i}^*$ that maximize U_G , then learn executable code $\hat{H}_{G,i}^*$ that maps $S_{L,i} \mapsto H_{G,i}^*(S_{L,i})$. Candidates are again Python heuristics evolved by LLM+EA and scored by an appropriate fitness score. In our domains, this produces programs that collectively improve landscape connectivity or clean-energy charging.

Stage 4 - Nudge to Global Heuristics: We discover natural-language messages M_i that move agents from executing $\hat{H}_{L,i}$ toward $\hat{H}_{G,i}^*$. In simulation, an Agent LLM seeded with the code of $\hat{H}_{L,i}$ and a persona, receives a message from a Policy LLM, edits its code to a temporary $H_{\text{nudged},i}$ if persuaded, and outputs an action \tilde{a}_i . Fitness rewards messages that make \tilde{a}_i close to $\hat{H}_{G,i}^*$.

For the policymaker, these four stages are WSPs, with finite candidate sets and computable fitness. For agents, scripts $\hat{H}_{L,i}$ and $\hat{H}_{G,i}^*$ are executable, and messages M_i^* minimize cognitive burden.

4 THE ECHO–MIMIC FRAMEWORK

ECHO–MIMIC is an end-to-end framework to think about collective action problems. We first start by breaking down any collective action problem into the four stages discussed in the previous section. We then implement the four stage decomposition in two coupled phases. First, ECHO discovers executable heuristics (Stages 2–3), followed by MIMIC, which discovers mechanisms to adopt them (Stage 4). Both phases follow the same design philosophy: the LLM serves as the variation engine, generating, mutating, crossing over, repairing, and reflecting on candidates, while the Evolutionary Algorithm supplies selection pressure via computable fitness.

4.1 ECHO: EVOLUTIONARY CRAFTING OF HEURISTICS FROM OUTCOMES

ECHO learns executable Python heuristics that replicate baseline local behavior ($\hat{H}_{L,i}$, Stage 2) and globally desirable behavior ($\hat{H}_{G,i}^*$, Stage 3). Each candidate is a constrained function with a fixed I/O signature that reads $S_{L,i}$ and returns actions.

To implement this phase, we evolve a population of K candidates for H generations using three LLM roles. These include a *Generator* to produce initial population of programs, a *Modifier* to apply mutation, crossover, and reflect-and-improve edits, and a *Fixer* to repair compile/runtime issues in programs. The Modifier and Fixer are used in tandem each round, followed by elitism to preserve the top- k candidates. Stage 2 and 3 use distinct fitness functions. In stage 2, the fitness minimizes the error between a candidate’s action and the baseline a_i^0 , yielding $\hat{H}_{L,i}$ as explicit approximations to locally rational behavior. Whereas in stage 3, the fitness minimizes the error between a candidate’s action and the global targets $H_{G,i}^*$, returning $\hat{H}_{G,i}^*$ as policies for the collective goal.

4.1.1 PROMPTING DESIGN AND NEIGHBOR IN-CONTEXT LEARNING IN ECHO

Generator LLM: To propose an initial population of executable heuristics with the required I/O signature, we compose the prompt as

$$\mathcal{P}^{\text{gen}} = [\text{SYSTEM}] \oplus [\text{TASK}] \oplus [\text{ICL}_{\mathcal{N}(i)}] \oplus [S_{L,i}] \oplus [\Theta],$$

where \oplus refers to concatenation; $[\text{SYSTEM}]$ fixes coding constraints and file I/O; $[\text{TASK}]$ restates the goal of returning proper actions and failure modes to avoid; $[\text{ICL}_{\mathcal{N}(i)}]$ is a small set of (input, output) exemplars from neighbors $\mathcal{N}(i)$ for in-context learning (ICL); $[S_{L,i}]$ is the current agent’s feature vector. $[\Theta]$ collects other global parameters (prices, costs etc.).

Choosing neighbors for ICL: We define $\mathcal{N}(i)$ as k adjacent farms, and supply examples

$$\{(\text{GeoJSON}_j^{\text{in}}, \text{GeoJSON}_j^{\text{out}})\}_{j \in \mathcal{N}(i)}$$

summarizing state and the realized interventions. This introduces the model to patterns likely to transfer under similar geographical and social conditions. Neighbor ICL allows us to withhold the current agent’s baseline labels to test whether the LLM can infer decision rules from analogous contexts when supervision is provided indirectly via EA selection. It also mirrors observational diffusion in society, where practices propagate through local networks facing shared pressures.

Modifier LLM: For genetic variation operators in the evolutionary loop, we use

$$\mathcal{P}^{\text{mod}} = [\text{SYSTEM}] \oplus [\text{TASK}] \oplus [\text{OPERATOR}] \oplus [\Theta] \oplus [\text{CANDIDATES}],$$

where $[\text{OPERATOR}]$ specifies the details regarding the operation to be performed (mutate, crossover, reflect, see Appendix B.3), and $[\text{CANDIDATES}]$ includes the parent(s) and, for *reflect*, a brief leader-board with fitness scores. $[\text{SYSTEM}]$ and $[\text{TASK}]$ are similar to the ones used for generation.

Fixer LLM: When a candidate triggers compile/runtime errors, the Fixer LLM performs minimal edits to restore validity while preserving the required I/O signature and intended behavior.

4.2 MIMIC: MECHANISM INFERENCE & MESSAGING FOR INDIVIDUAL-TO-COLLECTIVE ALIGNMENT

MIMIC is designed to imitate a central planner that coordinates between agents by observing their locally optimal heuristics, computing their potentially globally optimal heuristics, and using this information to change their behavior in the right direction. To do so, it searches for natural-language mechanisms M_i that reliably steer agents from running $\hat{H}_{L,i}$ toward $\hat{H}_{G,i}^*$ (Stage 4). The population is textual candidates made of economic incentives, behavioral framings, and hybrids, generated/-modified by *Policy LLMs*. Each message is evaluated in a simulation with an *Agent LLM* (Farmer, EV Owner) that is initialized with both a persona and the program $\hat{H}_{L,i}$. To ensure robust evaluation, we construct agent personas by using traits relevant to the domain, which drive the agent’s decision process. We also implement an explicit refusal mechanism, where if a proposed message conflicts with the agent’s core values or constraints (as defined by its persona), the agent can reject the message and stick to its baseline heuristic $\hat{H}_{L,i}$. Therefore, upon reading M_i , the Agent LLM may propose edits to its code or make no changes, yielding $H_{\text{nudged},i}$, which outputs an action \tilde{a}_i . Fitness rewards messages that make \tilde{a}_i closely match $\hat{H}_{G,i}^*$ (Appendix B.2; Fig. 5b). Thus, MIMIC is effective because its objective is defined against ECHO’s executable heuristics and persuasion is measured as concrete code edits that change behavior.

We us the following LLMs in MIMIC to perform different actions:

270 **Policy Generator LLM:** To propose candidate nudges, the Policy Generator composes
 271

$$\mathcal{P}^{\text{pol-gen}} = [\text{SYSTEM/FRAMING}] \oplus [\text{TASK}] \oplus [\text{DECISIONCONTEXT} : S_{L,i}, \hat{H}_{L,i}, \hat{H}_{G,i}^*, \Theta] \\ \oplus [\Theta^{\text{mech}}],$$

275 where $[\Theta^{\text{mech}}]$ encodes mechanism constraints (e.g., budget caps). The model outputs a structured
 276 M_i tailored to the persona with framing as instructed.

277 **Policy Modifier LLM:** Given parent messages, the Policy Modifier applies constrained edits via
 278

$$\mathcal{P}^{\text{pol-mod}} = [\text{SYSTEM}] \oplus [\text{OPERATOR}] \oplus [\text{DECISIONCONTEXT}] \oplus [\Theta^{\text{mech}}] \oplus [\text{CANDIDATES}],$$

280 and returns M'_i that preserves constraints (budget honesty, no coercive framing) while increasing
 281 persuasion, measured downstream by induced $(H_{\text{nudged},i}, \tilde{a}_i)$ and fitness against $\hat{H}_{G,i}^*(S_{L,i})$.
 282

283 **Agent (Simulation) LLM:** We emulate an agent’s response to candidate nudges with an Agent
 284 LLM. The prompt is composed as
 285

$$\mathcal{P}^{\text{sim}} = [\text{SYSTEM/PERSONA}] \oplus [\text{DECISIONCONTEXT} : S_{L,i}, \hat{H}_{L,i}, \Theta] \oplus [\text{MESSAGE} : M_i],$$

286 where $[\text{SYSTEM/PERSONA}]$ fixes background, goals, and receptivity; $[\text{DECISIONCONTEXT}]$ specifies
 287 the local state $S_{L,i}$, the baseline heuristic $\hat{H}_{L,i}$, and constraints/parameters; and $[\text{MESSAGE}]$ is
 288 the candidate nudge from the Policy LLMs. The model returns $H_{\text{nudged},i}$ which when executed gives
 289 \tilde{a}_i , tying persuasion to code edits and actions that can be scored against $\hat{H}_{G,i}^*$.
 290

291 To summarize, we use ECHO to discover *what* to do and MIMIC to discover *how* to get people to
 292 do it. This coupling turns a challenging ISP into a chain of WSPs whose outputs are deployable, i.e.,
 293 communicate M_i^* to each agent to induce adoption of $\hat{H}_{G,i}^*$. Full prompt templates for the stages,
 294 LLM roles, operators, and personas for the farm domain are given in Appendix F.
 295

296 4.3 AUTOMATED DOMAIN CREATION AGENT

297 To enable our framework to generalize across domains without manual prompt engineering, we in-
 298 troduce a Domain Creation Agent. This agent takes as input a high-level domain schema of: a) *Agent*
 299 *State* ($S_{L,i}$): Description of local variables (e.g., crop yields, charging demand). b) *Action Space*
 300 (a_i): Allowable decisions (e.g., intervention length, slot usage). c) *Observability*: What neighbors
 301 or global signals are visible. d) *Constraints*: Budget, physical limits, or regulatory bounds. Using
 302 a meta-prompt, the agent generates the specific system instructions, task prompts, and evaluation
 303 harness for the ECHO and MIMIC stages. This ensures that the prompt and evaluation templates are
 304 modular and composable, automatically adapting to the specific terminology and logic of the new
 305 domain, allowing our framework to scale to new collective action problems.
 306

307 5 EXPERIMENTAL RESULTS

309 We demonstrate the application of our ECHO-MIMIC framework on two distinct collective action
 310 domains: agricultural landscape management and carbon-aware EV charging coordination.

312 **Agricultural Landscape Management:** In this domain, we follow models of ecological intensi-
 313 fication (Kremen, 2020; Bommarco et al., 2013; Dsouza et al., 2025) where biodiversity outcomes
 314 hinge on spatial configuration (Taylor et al., 1993). Each agent i (farmer) observes local state $S_{L,i}$
 315 consisting of plot-level agro-ecological and economic features (crop types, yields, prices). Actions
 316 a_i are farm interventions: (i) *margin intervention* (length, placement), and (ii) *habitat conversion*
 317 (area, orientation). The local objective $U_{L,i}$ is net present value (NPV) under farm-specific con-
 318 straints, while the global objective U_G prioritizes landscape-scale ecological connectivity, measured
 319 by the *Integral Index of Connectivity (IIC)* (Pascual-Hortal & Saura, 2006). We simulate an agri-
 320 cultural landscape of 5 farms (Fig. 2a) by generating synthetic farm and plot-level geo-spatial data
 321 based on real farm data from the 2022 Canadian Annual Crop Inventory (CACI) (Agriculture and
 322 Agri-Food Canada (AAFC), 2022).

323 **Carbon-Aware EV Charging Coordination:** In this domain, which models the challenge of coor-
 324 dinating distributed energy resources (Anderson et al., 2023; Cheng et al., 2022), each agent i (EV

324 Table 1: Mean accuracy (averaged over 5 agents and 2 seeds per domain) for ECHO-MIMIC, DSPy
 325 MIPROv2, and AutoGen across two domains (Farm, EV) and five models. ECHO (Stage 2+3)
 326 and MIMIC (Stage 4) together form the ECHO-MIMIC pipeline. The evolutionary algorithm is
 327 configured with a population of 25 individuals and run for 25 generations. G2.0-FT is omitted
 328 for the EV domain and AutoGen due to lack of reliable API access. Models: G2.0-FT = Gemini
 329 2.0 Flash Thinking, G2.5-F = Gemini 2.5 Flash, G2.5-P = Gemini 2.5 Pro, GPT5-n = GPT-5 nano
 330 (medium), GPT5-m = GPT-5 mini (medium).

Domain	Stage	Method	G2.0-FT	G2.5-F	G2.5-P	GPT5-n	GPT5-m
Farm	2	DSPy MIPROv2	0.41	0.46	0.53	0.45	0.55
	2	ECHO	0.93	0.94	0.95	0.94	0.95
	2	AutoGen	–	0.40	0.47	0.43	0.52
	3	DSPy MIPROv2	0.00	0.00	0.12	0.00	0.18
	3	ECHO	0.24	0.29	0.33	0.27	0.35
	3	AutoGen	–	0.08	0.10	0.05	0.14
	4	DSPy MIPROv2	0.33	0.35	0.43	0.38	0.43
	4	MIMIC	0.73	0.75	0.79	0.71	0.82
	4	AutoGen	–	0.33	0.44	0.37	0.46
	2	DSPy MIPROv2	–	0.51	0.60	0.58	0.62
EV	2	ECHO	–	0.95	0.96	0.95	0.97
	2	AutoGen	–	0.39	0.50	0.44	0.48
	3	DSPy MIPROv2	–	0.66	0.68	0.67	0.71
	3	ECHO	–	0.87	0.91	0.85	0.93
	3	AutoGen	–	0.38	0.47	0.40	0.44
	4	DSPy MIPROv2	–	0.70	0.75	0.72	0.76
	4	MIMIC	–	0.91	0.93	0.91	0.94
	4	AutoGen	–	0.78	0.82	0.79	0.83

351
 352 owner) observes local state $S_{L,i}$ consisting of base demand across time slots, preferred charging
 353 slots, and comfort penalties for non-preferred slots. Actions a_i are daily usage vectors (one per
 354 slot). The local objective $U_{L,i}$ minimizes electricity price and comfort penalties, while the global
 355 objective U_G minimizes carbon emissions, grid overload, and slot-usage constraints. We generate
 356 synthetic scenarios with 5 agents, 4 time slots, and 7-day horizons, with varying input data. See
 357 Appendix B.7 for more info on data generation for both domains.

359 5.1 ECHO-MIMIC OUTPERFORMS BASELINES AT DRIVING COLLECTIVE ACTION

360 As there is no direct comparison to ECHO-MIMIC driving collective action by working at both the
 361 system and agent levels, we assume system level breakdown into stages, and compare at the agent
 362 level against DSPy MIPROv2 (Opsahl-Ong et al., 2024), a strong LLM-native baseline, and Auto-
 363 Gen (Wu et al., 2024), a general multi-agent framework (Table 1). We do not compare to non-LLM
 364 program search as our goal is not merely to approximate a global planner but to induce human-
 365 readable heuristics that can be executed by agents and seamlessly verbalized into messages. Across
 366 both domains, ECHO-MIMIC outperforms both DSPy and AutoGen in all stages under identical
 367 input constraints. DSPy struggles to induce global-compatible local heuristics in stage 3, while Au-
 368 toGen, lacking the explicit evolutionary pressure on code/message structure, fails to consistently dis-
 369 cover high-performing policies. These results show consistent cross-domain and cross-LLM gains
 370 of ECHO-MIMIC in generating executable heuristics and messages, beyond what generic LLM
 371 program-synthesis or agent frameworks achieve. Finally, we noticed that though baselines perform
 372 better with more capable LLMs (G2.5-P, GPT5-m), their performance cannot match ECHO-MIMIC,
 373 which also benefits from higher capability.

374 375 5.2 ECHO DISCOVERS CONTEXT-AWARE HEURISTICS

376 ECHO reliably evolves Python heuristics that approximate local behavior across heterogeneous
 377 agents. In the farm domain, ECHO learns when to choose margin versus habitat conversion at

Figure 2: **Domain specific actions.** a) Interventions resulting from ECHO learned baseline heuristics in stage 2 for the farm domain. The interventions match the ground-truth baseline computed from stage 1 closely. For the comparison with ground-truth, ECHO stage 3 predictions, and synthetically generated farm geometries, see Appendix C. b) Synthetically generated EV charging spatio-temporal configuration. Five agents are placed in a line, each with their own charging demand, preferences, and carbon intensity. They are allowed to specify usage in four time slots for a week.

the plot level (Fig. 2b), improving fitness across generations for all farms (Fig. 4a). Farms 2 and 5 converge quickly, while Farms 1, 3, and 4 improve more gradually, indicating harder optimization landscapes. Lineage analysis of the best final heuristics for both the farm and EV charging domains show *Crossover* is both the most frequent operator and the largest contributor to cumulative fitness gains (Fig. 4b). *Mutate* is also common and adds steady improvements. *Reflect* appears infrequently in top lineages and adds little directly, suggesting it supports diversity rather than breakthroughs (Appendix C; Fig. 11b).

Across agents, fitness typically rises with code-complexity indicators (e.g., logical lines of code, Halstead difficulty, distinct (H1) operators up to an intermediate optimum; beyond that point, additional complexity correlates with lower fitness. We plot this phenomenon for the farm domain in Fig. 9c (also see Appendix C; Fig. 10). Maintainability tends to decline as fitness rises, consistent with more intricate logic being leveraged to capture hard cases. Farm 3, 4 show particularly steep gains at higher distinct-operator counts, suggesting that richer program vocabularies are necessary to escape performance plateaus (Fig. 9c, Appendix C; Fig. 10). On Farm 3, adding prompt instructions that explicitly encourage high Halstead distinct-operator counts and difficulty produces consistently higher accuracy, with a clear divergence after generation 15 (Fig. 9d). This indicates that seeding the search with more expressive building blocks expands the recombination space that operators can exploit later in evolution.

Evolved programs implement multi-layered logic, for instance in the EV charging domain, by calculating headroom safety and determining the allocation based on persona like below:

```

417 Inputs: capacity, baseline, base_demand, carbon, tariff
418 Outputs: usage_allocation, preference_score
419
420 headroom <- capacity - baseline - base_demand
421 preference_score <- carbon + (tariff * 1000)
422
423 if rationed_day is True and slot == 2:
424     headroom <- headroom - 2.0
425 if headroom > 0.05:
426     allocatable <- headroom - 0.05
427 if remaining_load > 0:
428     usage_allocation <- min(remaining_load, allocatable)
429     remaining_load <- remaining_load - usage_allocation

```

Other representative heuristics can be found in Appendix D, highlighting ECHO’s ability to integrate economic and spatial reasoning like computing tariff-weighted exponential demand or polygon orientation via PCA. In summary, ECHO discovers context-aware heuristics in both domains, operators play distinct roles, and controlled increases in code complexity can unlock superior performance.

Figure 3: **ECHO stage 2 results.** a) Accuracy ($1 - \text{error}$) over generations in stage 2 for the farm domain. Some farms are easier to make progress in (farms 2, 5) compared to others (farms 1, 3, 4), and distinct capabilities emerge in harder farms as generations progress. b) Total fitness ($1/\text{error}$) delta for both the domains together, resulting from LLM variation operators, summed across generations for the best performing program at the end. *Crossover* and *mutate* have the highest positive cumulative change in fitness. c) Accuracy versus normalized complexity metrics of the heuristics for farm 3 in the farm domain. Increased Halstead metrics are correlated with increased accuracy, upto a point, followed by a decrease. d) Accuracy over generations with and without Halstead instructions for farm 3 in the farm domain. Adding additional Halstead instructions to the prompt provides free gains in accuracy at the expense of interpretability.

5.3 MIMIC EVOLVES PERSONALITY-ALIGNED NUDGES

LLMs can produce persuasive text that draws on behavioral science to scale tailored messages (Matz et al., 2024; Rogiers et al., 2024). Yet nudge efficacy is highly context-dependent and hard to evaluate. MIMIC addresses this with a closed-loop search between two agents: a *Policy LLM* that generates candidate nudges and an *Agent LLM* that simulates agent responses and executes heuristics.

In the EV charging domain, with versatile personas (to model agent heterogeneity) and generic instructions (no specific framing), accuracy with respect to generated global heuristic actions from ECHO (stage 3) improves across generations and agents (Fig. 4a). In the farm domain we use three personas, *Resistant*, *Economic*, and *Social*, and two nudge types, *Economic* and *Behavioral* (choice-architecture levers such as social comparison, defaults, commitments, and framing (Byerly et al., 2018; Carlsson et al., 2021)). We see that social personas + behavioral nudges, and economic personas + economic nudges, perform the best (Fig. 4b), while economic personas also benefit from behavioral nudges after an initial lag. Both these experiments demonstrate the persona and framing specific targeting potential of MIMIC. Qualitatively, across both domains, we see that top behavioral nudges leverage social proof and low-risk trials, while top economic nudges offer subsidies/premiums with clear commitments. Full best-message exemplars are in Appendix G. In summary, MIMIC

Figure 4: **MIMIC nudge discovery and personalization.** Accuracy of nudges over generations a) for the EV charging domain with versatile personas and generic instructions. At different points MIMIC learns to use personalized benefits, social proof, and environmental impact framing. b) for the farm domain (hard farms) with persona and nudge type specific instructions. P refers to personas and N refers to nudge types. Personas are either Resistant, Economic, or Social. Nudge Types are either Behavioral or Economic.

adapts collective action nudges to context and persona, while traditional static mechanisms and purely economic incentives struggle with such heterogeneity (Knowler, 2014). Moreover, MIMIC (together with ECHO) is readily extensible to human-in-the-loop deployment, where real feedback replaces simulated responses for iterative refinement (Appendix E).

6 DISCUSSION AND FUTURE WORK

We introduced ECHO-MIMIC, a general end-to-end framework that addresses ill-structured collective action by converting the system-level design problem into a sequence of well-structured searches for the policymaker and by producing executable heuristics that render each agent’s local decision a WSP. Across both our agriculture and EV charging domains, ECHO learns heuristics that reproduce both personal preferences and globally important objectives. MIMIC then discovers messages that induce agents to adopt those executable targets. Together, these phases evolve *what* should be done and *how* to get it done, suggesting a practical path to scalable, adaptive policy design. Finally, our domain creation agent, by taking in input-output schema, observability, constraints, and domain specific details and automatically adapting the logic of the any domain to our framework, allows extension of our framework to any arbitrary collective action problem.

Despite the potential applications, there are some limitations of our current framework. First, the agent simulation abstracts human behavior. Personas and code-edit responses by a Farm LLM are proxies that require validation with real participants. Second, non-stationarity of prices, ecology, and policy can quickly stale learned heuristics and nudges. Distribution shift undermines both ECHO’s scripts and MIMIC’s messages. Third, persuasive mechanisms risk manipulation, unequal burden sharing, or disparate impacts on smallholders. Respecting privacy, transparency, and consent from the outset are essential. Finally, evolution can produce complex heuristics with deep branching and opaque feature engineering that erode interpretability/trust and create implementation frictions. This can potentially be alleviated by regularizing code complexity and enforcing functional signatures. Given these limitations, we see several directions for future work (see Appendix E.5 for more):

Field validation: conduct preregistered behavioral experiments and pilots with farmers to estimate heterogeneous treatment effects of nudge messages and to measure sim-to-real gaps.

Online iterative refinement with real-world feedback: although the EA selects high-fitness messages in simulation for each persona, post-deployment we can treat each rollout as a new generation and update the message and heuristic pool using real outcomes. See Appendix E for more details.

Interpretability of heuristics: curb complexity creep by adding complexity regularizers (e.g., functional signatures, MDL-style penalties, cyclomatic-complexity caps) and enforcing edit budgets.

540 7 ETHICS STATEMENT
541

542 Our study uses only synthetically generated data and simulated agents; no human participants, per-
543 sonally identifiable information, or proprietary private data were collected or analyzed. The syn-
544 thetic data were procedurally generated, as detailed in Appendix B.7. We evaluate policy *nudges*
545 exclusively in simulation via predefined agent personas and a closed-loop interaction between a
546 Policy LLM and an Agent LLM; we note that these are proxies and call for preregistered field
547 studies before any deployment. To mitigate foreseeable risks (e.g., manipulation, unequal burdens,
548 privacy harms, or distribution-shift failures), we propose governance measures, human-in-the-loop
549 approvals, privacy-preserving telemetry and opt-in consent, as outlined in Appendix E.4. We also
550 discuss value-laden choices and Goodhart risks of proxy objectives and recommend stress-testing
551 and transparency (Appendix E.5). Any funding or affiliations will be disclosed in the paper’s ac-
552 knowledgments.

553 8 REPRODUCIBILITY STATEMENT
554

555 We provide an anonymous supplementary zip with all source code to reproduce results. The pa-
556 per and appendix specify model choices (e.g., Gemini variants and evolutionary settings) and li-
557 braries/interfaces used, enabling replication of LLM-EA runs (Appendix B.1). Execution occurs
558 in a controlled environment (json/numpy/shapely I/O from input.geojson to output.*) with com-
559 prehensive logging of fitness scores, operator usage, candidate trajectories, and code-complexity
560 metrics, details that support exact reruns and diagnostics (Appendix B.4). Fitness definitions for all
561 stages (local/global heuristics and nudging) are formalized in B.5 with explicit error metrics, and
562 the fitness-evaluation loop is diagrammed (Figs. 5,6) for clarity. Data generation is fully specified
563 in B.7, enabling others to rebuild the synthetic datasets. Finally, we include representative heuristic
564 programs (Appendix D) and complete prompts (Appendix F) to aid verification.

565 566 REFERENCES
567

568 Agriculture and Agri-Food Canada (AAFC). Annual crop inventory 2022. <https://open.canada.ca/data/en/dataset/ee44d2d4-f887-47d1-9a5b-4c9c7b43bb46>,
569 2022. Open Government Portal, Government of Canada. Dataset.

570 John E Anderson, Moritz Bergfeld, Do Minh Nguyen, and Felix Steck. Real-world charging behav-
571 ior and preferences of electric vehicles users in germany. *International Journal of Sustainable
572 Transportation*, 17(9):1032–1046, 2023.

573 Riccardo Bommarco, David Kleijn, and Simon G Potts. Ecological intensification: harnessing
574 ecosystem services for food security. *Trends in ecology & evolution*, 28(4):230–238, 2013.

575 Edmund Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross, and Sonia Schulenburg.
576 Hyper-heuristics: An emerging direction in modern search technology. In *Handbook of meta-
577 heuristics*, pp. 457–474. Springer, 2003.

578 Hilary Byerly, Andrew Balmford, Paul J Ferraro, Courtney Hammond Wagner, Elizabeth Palchak,
579 Stephen Polasky, Taylor H Ricketts, Aaron J Schwartz, and Brendan Fisher. Nudging pro-
580 environmental behavior: evidence and opportunities. *Frontiers in Ecology and the Environment*,
581 16(3):159–168, 2018.

582 Fredrik Carlsson, Christina Gravert, Olof Johansson-Stenman, and Verena Kurz. The use of green
583 nudges as an environmental policy instrument. *Review of Environmental Economics and Policy*,
584 15(2):216–237, 2021.

585 Angelica Chen, David Dohan, and David So. Evoprompting: Language models for code-level neural
586 architecture search. *Advances in neural information processing systems*, 36:7787–7817, 2023.

587 Kai-Wen Cheng, Yuexin Bian, Yuanyuan Shi, and Yize Chen. Carbon-aware ev charging. In 2022
588 *IEEE International Conference on Communications, Control, and Computing Technologies for
589 Smart Grids (SmartGridComm)*, pp. 186–192. IEEE, 2022.

594 Pham Viet Thanh Dat, Long Doan, and Hoang Thi Thanh Binh. Hsevo: Elevating automatic heuristic
 595 design with diversity-driven harmony search and genetic algorithm using llms. In *Proceedings of*
 596 *the AAAI Conference on Artificial Intelligence*, volume 39, pp. 26931–26938, 2025.

597

598 Kevin B. Dsouza, Graham A. Watt, Yuri Leonenko, and Juan Moreno-Cruz. Bridging farm eco-
 599 nomics and landscape ecology for global sustainability through hierarchical and bayesian opti-
 600 mization. *arXiv preprint arXiv:2508.06386*, 2025.

601 Gerd Gigerenzer and Wolfgang Gaissmaier. Heuristic decision making. *Annual review of psychol-
 602 ogy*, 62(2011):451–482, 2011.

603

604 Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
 605 and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
 606 prompt optimizers. *arXiv preprint arXiv:2309.08532*, 2023.

607 Garrett Hardin. The tragedy of the commons: the population problem has no technical solution; it
 608 requires a fundamental extension in morality. *science*, 162(3859):1243–1248, 1968.

609

610 Edward Hughes, Joel Z Leibo, Matthew Phillips, Karl Tuyls, Edgar Dueñez-Guzman, Antonio
 611 García Castañeda, Iain Dunning, Tina Zhu, Kevin McKee, Raphael Koster, et al. Inequity aver-
 612 sion improves cooperation in intertemporal social dilemmas. *Advances in neural information
 613 processing systems*, 31, 2018.

614 Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
 615 Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
 616 reinforcement learning. In *International conference on machine learning*, pp. 3040–3049. PMLR,
 617 2019.

618 Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri
 619 Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy:
 620 Compiling declarative language model calls into self-improving pipelines. *arXiv preprint
 621 arXiv:2310.03714*, 2023.

622

623 Duncan Knowler. Farmer adoption of conservation agriculture: A review and update. *Conservation
 624 agriculture*, pp. 621–642, 2014.

625 Claire Kremen. Ecological intensification and diversification approaches to maintain biodiversity,
 626 ecosystem services and food production in a changing world. *Emerging Topics in Life Sciences*,
 627 4(2):229–240, 2020.

628

629 Robert Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies. In
 630 *Proceedings of the Genetic and Evolutionary Computation Conference Companion*, pp. 579–582,
 631 2024.

632 Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-agent
 633 reinforcement learning in sequential social dilemmas. *arXiv preprint arXiv:1702.03037*, 2017.

634

635 Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
 636 Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
 637 model. *arXiv preprint arXiv:2401.02051*, 2024a.

638 Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
 639 evolutionary optimizers. In *2024 IEEE Congress on Evolutionary Computation (CEC)*, pp. 1–8.
 640 IEEE, 2024b.

641

642 Sandra C Matz, Jacob D Teeny, Sumer S Vaid, Heinrich Peters, Gabriella M Harari, and Moran Cerf.
 643 The potential of generative ai for personalized persuasion at scale. *Scientific Reports*, 14(1):4692,
 644 2024.

645 Alexander Novikov, Ngan Vu, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
 646 Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
 647 et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. *arXiv preprint
 648 arXiv:2506.13131*, 2025.

648 Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia,
 649 and Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model
 650 programs. *arXiv preprint arXiv:2406.11695*, 2024.

651

652 Elinor Ostrom. *Governing the commons: The evolution of institutions for collective action*. Cam-
 653 bridge university press, 1990.

654

655 Lucía Pascual-Hortal and Santiago Saura. Comparison and development of new graph-based land-
 656 scape connectivity indices: towards the prioritization of habitat patches and corridors for conserva-
 657 tion. *Landscape ecology*, 21(7):959–967, 2006.

658

659 Alexander Peysakhovich and Adam Lerer. Prosocial learning agents solve generalized stag hunts
 660 better than selfish ones. *arXiv preprint arXiv:1709.02865*, 2017.

661

662 Walter R Reitman. Heuristic decision procedures, open constraints, and the structure of ill-defined
 663 problems. *Human judgments and optimality*, 282:283–315, 1964.

664

665 Alexander Rogiers, Sander Noels, Maarten Buyl, and Tijl De Bie. Persuasion with large language
 666 models: a survey. *arXiv preprint arXiv:2411.06837*, 2024.

667

668 Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
 669 M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
 670 Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
 671 *Nature*, 625(7995):468–475, 2024.

672

673 Herbert A Simon. The structure of ill structured problems. *Artificial intelligence*, 4(3-4):181–201,
 674 1973.

675

676 Herbert A Simon. A mechanism for social selection and successful altruism. *Science*, 250(4988):
 677 1665–1668, 1990.

678

679 Herbert A Simon and Allen Newell. Human problem solving: The state of the theory in 1970.
 680 *American psychologist*, 26(2):145, 1971.

681

682 Philip D Taylor, Lenore Fahrig, Krigen Henein, and Gray Merriam. Connectivity is a vital element
 683 of landscape structure. *Oikos*, pp. 571–573, 1993.

684

685 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
 686 Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
 687 agent conversations. In *First Conference on Language Modeling*, 2024.

688

689 Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
 690 Chen. Large language models as optimizers. In *The Twelfth International Conference on Learning
 691 Representations*, 2023.

692

693 Jiachen Yang, Ang Li, Mehrdad Farajtabar, Peter Sunehag, Edward Hughes, and Hongyuan Zha.
 694 Learning to incentivize other learning agents. *Advances in Neural Information Processing Sys-
 695 tems*, 33:15208–15219, 2020.

696

697 Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
 698 and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
 699 *Advances in neural information processing systems*, 37:43571–43608, 2024.

700

701 Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
 702 Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topolo-
 703 gies via graph neural networks. *arXiv preprint arXiv:2410.11782*, 2024.

698 **A SUBMISSION DETAILS**

699 **A.1 SOURCE CODE**

700 Source code associated with this project is attached as a supplementary zip file.

702 A.2 USE OF LARGE LANGUAGE MODELS
703

704 We used large language models (LLMs) in the following scoped, human-supervised ways: (i) Writing
705 polish. Draft sections were refined for clarity, structure, and tone; all technical claims, numbers,
706 and citations were authored and verified by us, and every LLM-suggested edit was line-reviewed
707 to avoid introducing errors or unsupported statements. (ii) Retrieval & discovery. We used LLMs
708 to craft and refine search queries to find related work and background resources; candidate papers
709 were then screened manually, with citations checked against the original sources to prevent hallu-
710 cinations. (iii) Research ideation. We used brainstorming prompts to surface alternative baselines,
711 ablation angles, and failure modes; only ideas that survived feasibility checks and pilot experiments
712 were adopted. (iv) Coding assistance (via Cursor, Gemini, and OpenAI). We used Cursor’s inline
713 completions and chat for boilerplate generation (tests, docstrings, refactors); We used Gemini-2.5-
714 pro and o3 to generate code snippets for different parts of the project; all code was reviewed before
715 inclusion. Across all uses, we ensured that LLM outputs never replaced human analysis, repro-
716 ducibility artifacts, or empirical validation.

717 B IMPLEMENTATION DETAILS
718719 B.1 MODELS
720

721 Our experimental setup leverages *gemini-2.0-flash-thinking-exp-01-21*, *gemini-2.5-flash*, *gemini-
722 2.5-pro*, *gpt-5-nano*, and *gpt-5-mini* models for the core tasks of heuristic generation, modification,
723 fixing, and agent simulation. We compare our method and baselines across these family of models.
724 The evolutionary algorithm was configured with a population size of 25 individuals and was run for
725 a maximum of 25 generations for ECHO and 10 generations for MIMIC.

727 B.2 OVERALL ECHO-MIMIC WORKFLOW AND COMPONENTS
728

729 Fig. 5 summarizes the complete ECHO-MIMIC pipeline. In ECHO (Fig. 5a), an LLM–evolutionary
730 loop proposes, executes, and scores human-readable farm heuristics against baseline (Stage 2) and
731 global (Stage 3) objectives under the same observability constraints used at deployment. In MIMIC
732 (Fig. 5b), the system translates the learned heuristics into actionable nudges: messages/mechanisms-
733 s/policies, then simulates agent responses to iteratively refine adoption.

734 The two reusable building blocks are detailed in Fig. 6: a robust fitness-evaluation-and-repair loop
735 that executes candidate programs on farm data, scores outcomes, and attempts automatic fixes on
736 failures (Fig. 6a), and an LLM-driven variation engine with mutation, crossover, exploration, and
737 reflection operators to generate improved candidates across iterations (Fig. 6b). Together, these
738 components enable end-to-end search over interpretable heuristics and their message-level imple-
739 ments while preserving decision-time observability constraints.

741 B.3 LLM-GUIDED EVOLUTIONARY OPERATORS
742

743 The evolutionary search in both the ECHO and MIMIC phases is driven by a set of variation op-
744 erators executed by a *Modifier LLM*. These operators take one or more parent candidates from the
745 population and generate a new offspring candidate.

- 746 • **Mutation:** The LLM receives a single parent candidate (either a Python script or a natural
747 language message) and is prompted to introduce a subtle mutation aimed at improving
748 performance while preserving the core structure and validity of the candidate.
- 750 • **Crossover:** The LLM is given two parent candidates and prompted to combine them in an
751 optimal way to cover heuristics/information from both. The goal is to produce a child that
752 synergistically integrates advantageous traits from both parents.
- 753 • **Exploration 1 (Diverge):** Given two parents, the LLM is prompted to generate a new
754 candidate that is as different as possible to explore new ideas. This operator encourages
755 diversification and prevents premature convergence by exploring novel regions of the search
space.

787
788
789 **Figure 5: ECHO–MIMIC framework.** a) ECHO uses an LLM-evolutionary search loop to pro-
790 pose, score, and select farm-level decision heuristics aligned with baseline (stage 2) and global
791 (stage 3) objectives. (b) MIMIC optimizes personalized nudges (e.g., messages/mechanisms/poli-
792 cies) using an LLM-evolutionary search loop, evaluates nudges using simulated agent responses,
793 and iteratively updates nudges to drive collective action. Illustration uses the farm domain as an
794 example. See Fig. 6 showing the two subroutines of fitness evaluation and LLM-driven variation.
795

796
797
798
799
800
801
802
803
804
805
806
807
808
809

- **Exploration 2 (Converge & Innovate):** The LLM receives two parents, identifies common ideas between them, and then designs a new candidate based on these shared concepts but also introduces novel elements. This balances the exploitation of successful ideas with the exploration of new variations.
- **Reflection:** The LLM is provided with the top k (e.g., 5) candidates from the current population, along with their fitness scores. It is prompted to analyze these heuristics/messages and craft a new one that is expected to have increased fitness. This allows the system to consolidate progress and make more informed, innovative leaps.

B.4 ENVIRONMENT MANAGEMENT DETAILS

Some management, execution, and tracking details are given below:

Selection: After generating offspring through the evolutionary operators, a selection strategy determines which individuals proceed to the next generation. This involves methods like elitism (pre-

Figure 6: **LLM-EA candidate generation and fitness evaluation.** (a) Fitness evaluation & repair loop: run candidate scripts on data, generate predicted interventions, compare with ground-truth labels, and compute a heuristic fitness score; if execution fails, a Fixing-LLM attempts repair and unrepaired scripts receive low fitness, otherwise the repaired script is re-executed and scored, and the final fitness is output. Illustration uses the farm domain as an example. (b) LLM-driven variation subroutine: four operator families, mutation (subtle edits), crossover (combine parents), exploration (diverse ideas + converge & innovate), and reflection (analyze elites, innovate), produce new candidate heuristics/messages.

serving the best-performing individuals) combined with score-based selection from the combined pool of parents and offspring, maintaining a constant population size.

Execution Environment: Candidate Python scripts are executed in a controlled environment. This environment is equipped with necessary libraries such as json (for handling data files), numpy (for numerical operations), and shapely (for geometric operations). The scripts perform file I/O, reading from input.geojson and writing to output.geojson or output.json.

Tracking: Comprehensive data is logged for analysis and monitoring of the evolutionary process. This includes: fitness scores of all candidates, the representation of each candidate (Python code or natural language message), counts of how often each evolutionary operator is used, cumulative fitness deltas achieved by each operator, indicating their effectiveness, candidate trajectories, showing the sequence of operators applied to generate them, code complexity metrics (e.g., cyclomatic complexity, Halstead metrics) for Python script candidates, computed using the radon library. This helps in understanding the nature of the evolved solutions.

Heuristics Explanation: The generation of heuristic explanations follows a systematic, multi-stage pipeline (Fig. 7). The process involves an iterative loop which processes each Farm ID sequentially. For every farm, the core heuristic analysis begins by identifying and loading the relevant heuristic files. Concurrently, two LLMs are initialized, an Explanation LLM for generating initial explanatory summaries from code or data segments, and a Merge LLM for consolidating these explanations. The loaded heuristic files are subsequently processed in designated groups, typically consisting of three files each. As the system iterates through these file groups, the Explanation LLM analyzes the content of each group to generate an initial heuristic explanation. This newly generated explanation is then integrated into a cumulative summary. The Merge Model is then employed to combine the new group-specific explanation with the existing summary compiled from previous groups. Following this integration, the overall summary is updated, and an intermediate group summary is saved, allowing for checkpointing. Once all files for a given farm have been analyzed and their explanations merged, a final consolidated summary, representing the comprehensive heuristic explanation for that farm, is saved. The entire procedure concludes after this iterative processing has been completed for all designated Farm IDs. See “Heuristics Explanation” section in supplementary for more full prompts used for the two LLMs.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 7: **Heuristic-explanation consolidation pipeline.** For each agent, initialize configs and load heuristic code files; then iterate over 3-file groups: an Explanation model analyzes each group to produce a draft, and, starting from the first group, a Merge model incrementally combines the running summary with each new explanation; intermediate group summaries are saved, followed by a final consolidated summary per agent. Illustration uses the farm domain as an example.

918 B.5 FITNESS FUNCTION DETAILS
919920 B.5.1 AGRICULTURAL DOMAIN
921922 Fitness for all candidates is calculated as the inverse of an error metric, with a small constant ϵ added
923 to prevent division by zero: $Fitness = 1/(Error + \epsilon)$. Ground truth is obtained by computing
924 results from existing ecological intensification and connectivity models (Dsouza et al., 2025).925 **ECHO Fitness (Local Heuristics):** $Fitness_{NPV}$ The error is the Mean Absolute Error (MAE)
926 between the intervention levels predicted by a candidate heuristic (m_{p_i}, h_{p_i}) and the ground-truth
927 NPV-optimal levels (m_{gt_i}, h_{gt_i}) across all N plots in a farm.
928

929
$$Error_{NPV} = \frac{1}{N} \sum_{i=1}^N (|m_{gt_i} - m_{p_i}| + |h_{gt_i} - h_{p_i}|)$$

930

931 **ECHO Fitness (Global Heuristics):** $Fitness_{CONN}$ The error is based on the Jaccard Dis-
932 tance between the sets of intervention directions predicted by the candidate (MD_{p_i}, HD_{p_i}) and
933 the ground-truth connectivity-optimal directions (MD_{gt_i}, HD_{gt_i}).
934

935
$$JaccardDist(A, B) = 1 - \frac{|A \cap B|}{|A \cup B|}$$

936

937
$$Error_{CONN} = \frac{1}{N} \sum_{i=1}^N (JaccardDist(MD_{gt_i}, MD_{p_i}) + JaccardDist(HD_{gt_i}, HD_{p_i}))$$

938

939 **MIMIC Fitness (Nudging):** $Fitness_{NUUDGE}$ The error measures the MAE between the interven-
940 tion amounts produced by the agent’s nudged heuristic (m_{p_i}, h_{p_i}) and the target fractional amounts
941 derived from the global connectivity-optimal directions.
942

943
$$Error_{NUUDGE} = \frac{1}{N} \sum_{i=1}^N \left(\left| \frac{|MD_{gt_i}|}{4} - m_{p_i} \right| + \left| \frac{|HD_{gt_i}|}{4} - h_{p_i} \right| \right)$$

944

945 B.5.2 EV CHARGING DOMAIN
946947 Fitness for all candidates is calculated as $1 - \text{MAE}$ (Mean Absolute Error) between the candidate’s
948 usage vector and the target usage vector, averaged across all days and slots.
949

950
$$Fitness = 1 - \frac{1}{D} \sum_{d=1}^D \frac{1}{S} \sum_{s=1}^S |u_{candidate}^{(d,s)} - u_{target}^{(d,s)}|$$

951

952 where D is the number of days, S is the number of slots per day, $u_{candidate}^{(d,s)}$ is the usage value of the
953 candidate for day d and slot s , and $u_{target}^{(d,s)}$ is the target usage value. The target usage vector varies
954 by phase: for Local Heuristics, it is the local optimum; for Global Heuristics and Nudging, it is the
955 global optimum.
956957 B.6 AGENT PERSONALITY AND NUDGE MECHANISM PROMPTS
958959 In the MIMIC phase, the Farm LLM’s persona and the Policy LLM’s nudge generation are guided
960 by specific system prompts.
961962

- **Agent Personalities:** The system prompt for the Agent LLM establishes its background,
963 goals, and receptiveness to advice. For example, the *Resistant* agent might be described
964 as skeptical of new methods and valuing traditional practices, while the *Economic* agent
965 is primarily focused on maximizing profit and return on investment. The *Social* agent is
966 described as influenced by the actions of neighbors and community norms.
- **Nudge Mechanisms:** The Policy LLM is prompted to generate messages of a specific type.
967 For an *Economic* nudge, the prompt might instruct it to design a financial incentive package
968 within a budget that encourages adopting globally optimal practices. For a *Behavioral*
969 nudge, the prompt instructs it to use principles like social proof, commitment, and framing
970 to craft a persuasive message, without offering significant new economic incentives.
971

972 B.7 DATA GENERATION

973

974 B.7.1 AGRICULTURAL DOMAIN

975

976 To simulate agricultural landscapes, synthetic farm and plot-level geo-spatial data were generated
 977 (Fig. 8). The process began by establishing the combined boundaries of a farm cluster, which was
 978 then broken into five distinct farms using Voronoi tessellation based on random points; the resulting
 979 Voronoi cells were clipped to the edge to create a set of non-overlapping farms that together spanned
 980 the selected area. Each of these individual farm polygons was subsequently subdivided into nine land
 981 use plots, again using Voronoi tessellation, to produce smaller, non-overlapping plot polygons that
 982 filled the entire farm. Following this spatial design, properties were attached to each plot. First, plots
 983 were randomly divided into either agricultural plot (with a 60% probability) or habitat plot (40%
 984 probability). Later, a particular land use label was assigned through a weighted random strategy
 985 depending on its primary type: agricultural plots received crop type labels (e.g., Spring wheat,
 986 Oats, etc.) and habitat plots received land use type labels (e.g., Broadleaf, Grassland, etc.), with
 987 weights reflecting distributions from the 2022 Canadian Annual Crop Inventory (CACI) (Agriculture
 988 and Agri-Food Canada (AAFC), 2022). Following this, a yield value, drawn from a distribution
 989 matching the CACI data for the assigned crop, was matched to each agricultural plot. Ultimately,
 990 each synthetic farm’s output was a GeoJSON FeatureCollection, detailing the geometric definitions
 991 (polygons) and the specific assigned attributes (type, label, yield) for every plot it contained.

991 B.7.2 EV CHARGING DOMAIN

992

993 For the EV charging coordination domain, synthetic scenarios were generated with the following
 994 structure: 5 agents (EV owners), 4 time slots (representing different times of day), and 7-day plan-
 995 ning horizons. Each agent was assigned a base demand profile (a 4-element vector representing
 996 charging needs across slots), a set of preferred charging slots (0-3 indices), a comfort penalty value
 997 (cost incurred when charging outside preferred slots), a persona, and a location on the grid feeder.
 998 Scenario-level parameters included slot-specific electricity pricing (varying by time of day), carbon
 999 intensity values (gCO₂/kWh per slot), baseline grid load (non-EV load per slot), grid capacity limits,
 1000 and slot-usage constraints (minimum and maximum number of agents allowed per slot). Multi-day
 1001 profiles were created by varying these parameters across the 7-day horizon to simulate realistic tem-
 1002 poral patterns (e.g., weekday vs. weekend pricing, weather-dependent carbon intensity). Neighbor
 1003 in-context learning examples were constructed by sampling from other agents’ configurations. All
 1004 scenarios were serialized as JSON files containing agent configurations, daily profiles, and global
 1005 parameters, enabling reproducible evaluation of evolved heuristics and nudges.

1006 B.8 DOMAIN CREATION AGENT

1007

1008 The Domain Creation Agent is a meta-level component designed to automate the adaptation of
 1009 ECHO-MIMIC to new domains. It bridges the gap between a high-level problem description and
 1010 the specific prompt templates required by the ECHO and MIMIC stages.

1011 B.8.1 WORKFLOW

1012

1. **Input Schema:** The user provides a JSON-like schema defining the agent’s state space, action space, and constraints.
2. **Meta-Prompting:** The Domain Creation Agent uses a meta-prompt that encodes the principles of good prompts (e.g., clear role definition and explicit constraints).
3. **Template Generation:** The agent generates:
 - *System Instructions:* Defines the role of the Policy LLM (e.g., “You are an expert in EV charging optimization...”).
 - *Task Prompts:* Formats the specific state variables into a natural language description (e.g., “The battery is at 20%...”).
 - *Operator Prompts:* Defines valid mutation operators for the code/text (e.g., “Change the threshold for urgent charging...”).
 - *Evaluation Harness:* Generates scoring functions and JSON schemas based on the domain’s objectives and evaluation criteria.

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 8: **Synthetic farms and plots.** a) Synthetically generated farm geometries and overall landscape configuration. Each farm is assigned its own distribution of crops, yields, and habitat plots. b) Each farm is assigned its own distribution of crops, yields, and habitat plots.

Figure 9: **Agricultural landscape and interventions.** a) Synthetically generated farm geometries and overall landscape configuration. Each farm is assigned its own distribution of crops, yields, and habitat plots (see Appendix B.7). b) Interventions resulting from ECHO after learning baseline heuristics in stage 2. The interventions match the ground-truth baseline computed from stage 1 closely. For a comparison see Appendix C, Fig. ??.

This automation reduces the setup time for a new domain from days of manual prompt engineering to minutes of schema definition.

C ADDITIONAL RESULTS

D SAMPLE HEURISTICS

ECHO heuristic EV charging: Tariff-weighted exponential demand sharpening

```
def calculate_policy():
    # Load scenario
    with open("scenario.json", "r") as f:
        scenario = json.load(f)
```


Figure 10: **ECHO accuracy on the farm domain against complexity metrics.** Accuracy versus normalized complexity metrics of the heuristics for farms 1(a), 2(b), 4(c), and 5(d). Increased complexity metrics are correlated with increased accuracy, upto a point, followed by a decrease.

Figure 11: **ECHO stage 2 operator counts and trajectory on the farm domain.** a) Total operator count for each of the LLM variation operators summed across generations for the best performing heuristic file at the end of the final generation. *Crossover* and *mutate* are the most used in high performing heuristics. b) The trajectory of the best performing heuristic file at the end of the final generation. We see that although *reflect* doesn't produce high positive fitness delta, the best performing heuristic in the end has it in its trajectory, pointing to its role in injecting diversity over generations.

```
base_demand = [1.20, 0.70, 0.80, 0.60]
```

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144

Recognize Dedication to Farming
 Acknowledging the farmer's commitment to efficient farming

Identify Lower Yield
 Recognizing the lower yield of the Spring wheat plot

Implement Margin Intervention
 Establishing a margin intervention along the plot edges

Enhance Resilience and Productivity
 Improving the plot's resilience and productivity

Observe Farming Trends
 Noting the adoption of ecological connectivity by neighbors

Propose Low-Commitment Trial
 Suggesting a trial to enhance connectivity

Convert to Habitat
 Converting areas to habitat to enhance connectivity

Provide Guidance and Support
 Offering guidance and support from experts

(a)

1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

Figure 12: Composition and trajectory of sample best messages on the farm domain. a) Best policy message communicated to a farmer with a resistant personality, using a behavioral nudge. b) Best policy message communicated to a farmer with an economics-oriented personality, using an economics-oriented nudge.

```

exponent = 4.0 # Sharpening factor to match neighbor intensity
(~0.7-0.8 peak usage)

daily_usage = []

for day_data in scenario["days"]:
    tariffs = day_data["tariff"]
    weights = []

    # Calculate raw utility for each slot
    for slot_idx in range(4):
        # Higher demand -> Higher utility
        # Lower tariff -> Higher utility
        utility = (base_demand[slot_idx] ** exponent) / tariffs
        weights.append(utility)

    total_weight = sum(weights)

    # Normalize to usage range [0, 1] summing to 1.0 (
    # representing total daily charge allocation)
    usage_vector = [w / total_weight for w in weights]

    # Round for cleanliness (4 decimal places)
    usage_vector = [round(u, 4) for u in usage_vector]

    # Floating point correction: ensure sum is exactly 1.0 by
    # adjusting the max element
    current_sum = sum(usage_vector)
    diff = 1.0 - current_sum
    max_idx = usage_vector.index(max(usage_vector))
    usage_vector[max_idx] += diff
    usage_vector[max_idx] = round(usage_vector[max_idx], 4)

    daily_usage.append(usage_vector)
  
```

ECHO heuristic Farm: NPV with decaying discount rate

```

discount_rate = initial_discount_rate * math.exp(-0.2 * year) +
long_term_discount_rate
  
```

```

1188
1189     discount_factor = 1 / (1 + discount_rate) ** year
1190
1191     # Ecosystem service gains (delayed benefits)
1192     pollination_increase_margin = 0.01 * (1 / (1 + math.exp(-0.1 * (
1193         year - 5)))) # delayed benefit
1194     pest_control_increase_margin = 0.005 * (1 / (1 + math.exp(-0.2 * (
1195         year - 2)))) # delayed benefit
1196     ecosystem_service_value_margin = (pollination_increase_margin +
1197     pest_control_increase_margin) * 500
1198
1199     # Monetary value
1200     revenue_margin += ecosystem_service_value_margin
1201     margin_npv += revenue_margin * discount_factor
1202
1203     # Decide conversion from NPV difference
1204     npv_difference = habitat_npv - margin_npv
1205     # Clip to avoid overflow in exp
1206     npv_difference = max(-100, min(100, npv_difference))
1207     # Sigmoid with steepness 0.1
1208     habitat_conversion = 1 / (1 + math.exp(-0.1 * npv_difference))
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

```

ECHO heuristic Farm: Polygon orientation via PCA

```

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

```

```

import math
import numpy as np

def calculate_eigenvectors(cov):
    M = np.array(cov, dtype=float)
    vals, vecs = np.linalg.eig(M)
    order = np.argsort(vals)[::-1] # descending by eigenvalue
    vals = vals[order]
    vecs = vecs[:, order]
    # as Python lists: first vector is the principal direction
    return vals.tolist(), [vecs[:, 0].tolist(), vecs[:, 1].tolist()]

def calculate_plot_orientation(geometry):
    if not geometry or geometry.get("type") != "Polygon" or "coordinates" not in geometry:
        return 0.0

    coords = geometry["coordinates"][0] # exterior ring
    if len(coords) < 3:
        return 0.0

    # coordinates
    x_coords = [c[0] for c in coords]
    y_coords = [c[1] for c in coords]

    # means
    x_mean = sum(x_coords) / len(x_coords)
    y_mean = sum(y_coords) / len(y_coords)

    # 2x2 covariance matrix (un-normalized; scale doesn't affect eigenvectors)
    cov = [[0.0, 0.0], [0.0, 0.0]]
    for xi, yi in zip(x_coords, y_coords):
        dx, dy = xi - x_mean, yi - y_mean
        cov[0][0] += dx * dx

```

```

1242
1243     cov[0][1] += dx * dy
1244     cov[1][0] += dy * dx
1245     cov[1][1] += dy * dy
1246
1247     # eigen decomposition
1248     eigenvalues, eigenvectors = calculate_eigenvectors(cov)
1249
1250     # angle of principal eigenvector (largest eigenvalue)
1251     vx, vy = eigenvectors[0][0], eigenvectors[0][1]
1252     orientation = math.atan2(vy, vx) # radians, in [-pi, pi]
1253     return orientation
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

```

E REAL-WORLD APPLICATION AND POTENTIAL EXTENSIONS

This section provides a blueprint for deploying the ECHO-MIMIC framework in real-world settings and outlines extensions that increase its scope. The workflow operationalizes the core idea: aligning individual, heuristic-driven decisions with global objectives, via an iterative feedback loop that alternates between *simulate* → *nudge* → *observe* → *refine* (Fig. 13).

E.1 FIELD DEPLOYMENT LOOP

Stage 1: Baseline Behavior (Observation & Variable Discovery): Establish typical behavior of local agents (e.g., farmers, EV drivers, depot managers) under current processes and states. Collect logs on decisions, constraints, and outcomes to (i) characterize baseline policies and (ii) identify salient decision variables to encode in heuristics.

Stage 2: Learn Baseline Heuristics (LLM–EA Imitation): Given Stage 1 data, the superagent trains an LLM-guided evolutionary algorithm (LLM–EA) to *codify* each local agent’s baseline heuristic. Prompts include: task instructions, in-context examples (possibly from community data), current agent/state descriptors, and economic/operational parameters organized around the Stage 1 variables. Output is an explicit, executable heuristic that reproduces observed baseline actions.

Stage 3: Learn Global Heuristics (Target Policy Search): Define global utility (e.g., ecological connectivity, grid stability, system-wide cost). Use LLM-guided EA to evolve explicit, actionable *global* heuristics approximating target behaviors that optimize the collective objective under constraints.

Stage 4: Nudge & Iterative Real-World Refinement: Design and deploy nudges that steer local heuristics toward the global target: a) *Initial Nudges*: Tailor messages/incentives using simulated preferences and learned baseline heuristics; optionally profile behavioral types (e.g., resistant, cost-focused, socially influenced) inferred from Stage 1/ongoing data to personalize nudges. b) *Deployment & Feedback*: Deploy nudges; observe agent responses and realized outcomes. c) *Refinement*: Feed observations back into the LLM–EA: update nudges, revise baseline heuristics, and (when needed) re-tune global heuristics. Repeat the loop at a cadence aligned to decision cycles.

Minimal Pseudocode for Implementation.

```

1286     Initialize data  $\mathcal{D}_{\text{obs}}$  from Stage 1; learn  $\hat{H}_{\text{baseline}}$  (Stage 2) and  $\hat{H}_{\text{global}}$  Stage 3.
1287     for round  $t = 1, 2, \dots$  do
1288         Synthesize nudges  $\mathcal{N}_t = \text{LLM-EA}(\hat{H}_{\text{baseline}}, \hat{H}_{\text{global}}, \text{profiles, constraints})$ 
1289         Deploy  $\mathcal{N}_t$ ; observe responses/actions  $\mathcal{A}_t$  and outcomes  $\mathcal{Y}_t$ 
1290         Update  $\hat{H}_{\text{baseline}}, \hat{H}_{\text{global}} \leftarrow \text{Refit/Retune}(\mathcal{D}_{\text{obs}} \cup \{(\mathcal{N}_t, \mathcal{A}_t, \mathcal{Y}_t)\})$ 
1291     end for
1292
1293
1294
1295

```

E.2 DATA, INSTRUMENTATION, AND METRICS

Operations should be grounded in three layers: *Data & Telemetry*, *Instrumentation*, and *Evaluation*. For *Data & Telemetry*, teams should collect operational logs of actions and costs, contextual state

1339 Figure 13: **Real-world iterative ECHO-MIMIC workflow.** Stage 1: collect real-world actions
1340 and context to identify key decision variables. Stage 2 (ECHO): use an LLM + evolutionary algorithms
1341 to elicit explicit baseline heuristics conditioned on those variables. Stage 3 (ECHO): learn
1342 global, outcome-aligned heuristics that approximate target collective behavior. Stage 4 (MIMIC):
1343 infer agent personas and design personalized nudges (e.g., advice, incentives, quotas), deploy in the
1344 field, observe feedback, evaluate effectiveness, and iteratively refine both nudges and data/variable
1345 selection to close the loop.

1346
1347 variables (environmental, network, demand), outcome measures (yields, reliability, risk proxies),
1348 and consented behavioral signals such as opt-in profiles and communication reach/uptake. Build-
1349 ing on that foundation, *Instrumentation* should provide stable unique agent identifiers, timestamp

1350 all actions and outcomes, record nudge delivery along with open/engagement rates, include ran-
 1351 domized holdouts or stepped rollouts for causal assessment, and maintain safe rollback controls for
 1352 rapid recovery. Finally, *Evaluation* should proceed along three complementary axes. At the *Lo-*
 1353 *cal* level, applications need to track utility/cost, the adherence shift from baseline → nudged, and
 1354 fairness across types/localities. At the *Global* level, the target metric (e.g., connectivity, peak reduc-
 1355 tion, system cost) needs to be monitored alongside constraint satisfaction; and at the *Causal* level,
 1356 applications should use A/B or stepped-wedge designs, estimate heterogeneous uplift by personali-
 1357 ty/type, and apply off-policy estimators when experimentation is limited. These practices create the
 1358 observability and methodological rigor needed for trustworthy implementation.

1359 E.3 ILLUSTRATIVE DOMAINS WHERE ECHO-MIMIC APPLIES

1362 Domain	1363 Superagent	1364 Example nudges / instru-	1365 Global objective
1366 Decentralized water or rangelands	1367 Water board / cooperative	1368 Dynamic quotas, tiered prices, targeted advisories, rotation schedules	1369 Equity, scarcity management, sustainability
1370 Supply chains & logistics	1371 Central logistics coordinator	1372 Congestion tolls, dynamic priority slots, routing prompts	1373 System cost, delay, carbon
1374 Local energy grids (EV charging)	1375 Grid operator / aggregator	1376 Time-varying tariffs, feed-in incentives, peak alerts	1377 Peak shaving, stability, emissions
1378 Disaster risk mitigation (wildfire/flood)	1379 Coordinating agency	1380 Risk-based cost-sharing, synchronized action windows, targeted alerts	1381 Vulnerability reduction
1382 Crowdsourcing / participatory governance	1383 Platform or municipality	1384 Gamified tasks, localized challenges, reputation credits	1385 Coverage/quality for collective goals
1386 Urban mobility (road & transit networks)	1387 Transit authority / traffic-management center (TMC)	1388 Time-varying congestion pricing, transit/EV priority, pooling/micromobility incentives	1389 Network throughput, emissions reduction

1383 E.4 PRACTICAL CONSIDERATIONS AND RISKS

1385 Responsible deployment should be underpinned by a coherent governance stack. First, for *Safety &*
 1386 *Governance*, teams should conduct pre- and post-deployment checks on nudge content, enforce rate
 1387 limits, require human-in-the-loop approval for high-impact changes, and maintain comprehensive
 1388 audit logs while regularly red-teaming LLM outputs. Second, to ensure *Incentive Compatibility*,
 1389 designers should avoid perverse incentives, cap payouts, and add guardrail constraints (e.g., mini-
 1390 mum service levels, environmental thresholds) so that local rewards do not undermine system goals.
 1391 Third, to protect *Privacy & Consent*, projects should apply differential privacy to telemetry, rely
 1392 on opt-in profiles, and practice data minimization with clear retention policies. Fourth, *Robustness*
 1393 should be maintained through continuous distribution-shift monitoring, well-tested fallback heuris-
 1394 tics, and stress tests under shocks such as demand spikes or outages. Finally, advancing *Equity* re-
 1395 quires tracking heterogeneous treatment effects and mitigating disparate impacts via fairness-aware
 1396 objective terms. Taken together, these measures would enable safe, effective, and socially respon-
 1397 sible deployment of the framework.

1398 E.5 POTENTIAL EXTENSIONS

1400 Looking ahead, apart from the future work mentioned in the main text (section 6), several other
 1401 extensions could further strengthen the framework. Validating the framework with *real-world data*
 1402 (e.g., farm plots, charging logs) featuring irregular and heterogeneous conditions will ensure robust-
 1403 ness beyond synthetic testbeds. *Adaptive Persona Modeling* can personalize nudges by embedding
 agents online and updating policies with Bayesian or meta-learning as evidence accumulates. A

1404 *Mechanism Design Layer* could jointly search over nudge forms (messages, prices, quotas) and
 1405 allocation rules while honoring budgetary and fairness constraints. *Multi-Level Governance* could
 1406 stack superagents from local to regional to national tiers, enforcing cross-scale consistency and man-
 1407 aging externalities across jurisdictions. *Causal Discovery Hooks* can integrate instrumental-variable
 1408 and DoWhy-style analyses, as well as synthetic controls, to attribute effects when full randomization
 1409 is infeasible. *Human-in-the-loop governance* can co-design panels to set acceptable trade-offs, audit
 1410 nudges for ethics and transparency, and publish policy cards for each heuristic/message detailing
 1411 scope, assumptions, and expected impacts. Global targets and fitnesses rely on proxy evaluators
 1412 (e.g., connectivity metrics such as IIC and error measures like MAE/Jaccard) and planner choices
 1413 (acceptable yield loss, budget constraints). These introduce *Goodhart risks and value-ladenness*
 1414 that should be stress-tested. *Adaptive operator design* like bandit or meta-learning over LLM op-
 1415 erators (generate, mutate, crossover, fix, reflect) and priors bootstrapped from successful edit traces
 1416 ΔH_i can potentially improve sample efficiency. Extending the evaluator and state/action schemas
 1417 to watersheds, urban mobility, supply chains, online governance, and disaster response, and testing
 1418 whether ECHO-MIMIC’s overall philosophy *transfers with minimal retuning* is also interesting.

1419 Future research can also examine the framework’s *multi-level structure* with formal tools, for ex-
 1420 ample by deriving bounds on the suboptimality of evolved heuristics relative to true optima and by
 1421 characterizing how global objectives constrain the design of optimal incentive mechanisms. Another
 1422 complementary direction is to increase the behavioral fidelity of *LLM-simulated agents*, endowing
 1423 them with learning dynamics, memory, and simple social interactions, to better approximate real
 1424 decision processes and thereby improve the policy-relevance of simulation results. It would be use-
 1425 ful to test whether a *Bag of Heuristics* curated from simpler configurations can act as a transferable
 1426 prior or curriculum, accelerating convergence in more complex scenarios. It would also be inter-
 1427 esting to evaluate whether heuristics articulated in natural language (e.g., chain-of-thought rendered
 1428 as *structured JSON* for direct execution) achieve performance on par with, or complementary to,
 1429 the Python-based heuristics explored here, thereby clarifying the trade-offs between interpretabil-
 1430 ity, flexibility, and execution efficiency. Finally, *Human Oversight & Preference Elicitation* can
 1431 institutionalize periodic Delphi-style panels or elections to update global objectives and normative
 1432 constraints. Together, these directions form a good roadmap for scaling the approach in capability,
 1433 reliability, and legitimacy.

1433 F PROMPT TEMPLATES

1435 All prompt templates used across domains, stages, LLM roles, operators, and personas can be found
 1436 in the attached code.

1439 G SAMPLE NUDGE MESSAGES

1441 Some sample messages generated by the Policy LLMs for some personality-nudge type combina-
 1442 tions are given below.

1443 Farm Domain: Personality-Resistant, Nudge-Behavioral

1444 Dear Farmer,

1445 We recognize your dedication to efficient farming, especially with
 1446 crops like Corn, Soybeans, Spring wheat, and Barley, alongside your
 1447 Broadleaf habitat. We’ve been observing trends among farms in the
 1448 area, and many, including your neighbors, are exploring ways to
 1449 improve resilience and productivity through ecological connectivity

1450 .
 1451 Like you, we have observed your neighbors farming Spring wheat.
 1452 Notably, Neighbor 1 has a Spring wheat plot (ID 4), just like yours
 1453 , with a significantly higher yield (2.52) compared to your plot
 1454 (0.5). Other neighbors have also adopted similar strategies with
 1455 success.

1458
 1459 Given this and the fact that your Spring wheat plot (ID 4)
 1460 currently has a lower yield, would you consider a low-commitment
 1461 trial to enhance connectivity? A common first step is establishing
 1462 a **0.5 margin intervention along the North-East and South-West
 1463 edges of your Spring wheat plot (ID 4), with habitat intervention
 1464 across all four sides (resulting in a habitat conversion of 1.0)**.
 1465 Many farmers in your community are finding that dedicating some
 1466 small sections to margin interventions and habitat conversion are a
 1467 practical way to start and have collectively decided that this
 1468 should be a default practice for everyone.
 1469
 1470 Based on ecological connectivity best practices and success in
 1471 farms like yours, we recommend that for your Corn plot (ID 2), you
 1472 establish margin interventions on all directions (north-west, north
 1473 -east, south-west, south-east, resulting in a margin intervention
 1474 of 1.0). For your Soybeans plot (ID 3), we recommend setting up
 1475 margin interventions on the south-west and south-east direction (/
 1476 resulting in a margin intervention of 0.5). Finally, for your
 1477 Barley plot (ID 5), we recommend setting up margin interventions on
 1478 the north-west, south-west, and south-east directions (resulting
 1479 in a margin intervention of 0.75), and habitat interventions on all
 1480 directions (north-west, north-east, south-west, south-east,
 1481 resulting in a habitat intervention of 1.0). For your Oats plot (ID
 1482 9) consider adding margin interventions on the north-west, north-
 1483 east, and south-east edges (amounting to an intervention of 0.75),
 1484 and habitat interventions across all directions (north-west, north-
 1485 east, south-west, and south-east, amounting to an intervention of
 1486 1.0).
 1487 This isn't just about the environment. It's about making your
 1488 Spring wheat plot (ID 4) more resilient, potentially improving its
 1489 yield, enhancing pest control, and boosting water infiltration.
 1490 Successfully implementing these changes can potentially open your
 1491 farm to existing general support programs.
 1492
 1493 We're here to provide guidance and support as you explore this
 1494 impactful change. We will set you up with agronomists and
 1495 ecologists so they can best advise you on what practices will suit
 1496 your farm's needs. Let us know if you'd like to discuss these
 1497 options further and tailor these strategies to your farm's specific
 1498 needs!
 1499 Sincerely,
 1500
 1501 [Your Organization]

1498 Farm Domain: Personality-Resistant, Nudge-Economic

1500
 1501 **Invest in a Connected & *Highly* Profitable Future!**
 1502 Dear Farmer,
 1503
 1504 We're committed to supporting your farm's success while enhancing
 1505 our community's ecological health. This enhanced program *
 1506 significantly* rewards you for creating strategically connected
 1507 habitats, improving pollination, pest control, water quality, and
 1508 the long-term resilience of our farms.
 1509
 1510 **Here's how you can *dramatically* benefit:**
 1511 * **Eco-Premiums Remain:** Continue to get a **20 percent** price
 1512 boost on Spring Wheat and Barley crops.
 1513 * **Tiered Subsidies for Margins:**

1512
 1513 * **Strategic Directional Margins:** Receive a **60 percent subsidy
 1514 ** on the cost of establishing new margins and a **25 percent
 1515 subsidy** on ongoing maintenance when you place these margins in
 1516 key locations (specified by our connectivity plan) to connect
 1517 habitats. We'll provide detailed guidance!
 1518 * **Other Margins:** Receive a 40 percent subsidy on establishment
 1519 and a **15 percent** subsidy on ongoing maintenance for margins
 1520 placed in other locations.
 1521 * **Tiered Subsidies for Habitats:**
 1522 * **Strategic Directional Habitats:** Get a **50 percent subsidy**
 1523 on habitat establishment and a **20 percent subsidy** on
 1524 maintenance when you strategically establish new habitat patches (specify
 1525 by our connectivity plan) that connect with existing
 1526 natural areas.
 1527 * **Other Habitats:** Receive a 30 percent subsidy on establishment
 1528 and **10 percent** on maintenance for habitat in other locations.
 1529 * **Connectivity Bonus!** Earn an extra **150** per hectare **on top*
 1530 **of the establishment subsidy for margins and habitats placed in*
 1531 **exact* directions recommended by our connectivity plan. This*
 1532 *ensures your efforts *maximize* ecological benefit *and your*
 1533 *financial returns!**
 1534 * **Get Paid to Convert:** Receive a payment of 80 per hectare for
 1535 converting suitable agricultural land into valuable habitat.
 1536 * **Minimum Requirements:**
 1537
 1538 To ensure everyone contributes to a healthier landscape, we're
 1539 setting a minimum standard of 2 hectares of habitat per farm and
 1540 0.1 hectares of margin along existing habitats. These minimums can
 1541 qualify for subsidies, but the **real** rewards come from strategic
 1542 connectivity!
 1543
 1544 **Why Participate?**
 1545 This program is about **more** than just meeting requirements. It's
 1546 about **maximizing** your farm's profitability while building a
 1547 resilient and thriving ecosystem. By strategically connecting
 1548 habitats, you contribute to a healthier landscape **and** unlock **the*
 1549 *highest** financial benefits.
 1550
 1551 **Ready to **maximize your returns?**** Contact us today to learn
 1552 more about the specific connectivity plan for your farm and how you
 1553 can participate!
 1554
 1555 Sincerely,
 1556
 1557 [Your Organization]

EV Charging Domain: Persona-Battery engineer balancing budget and solar backfeed

1555
 1556 Dear Engineer,
 1557
 1558 I have reviewed your current dispatch algorithm and identified a
 1559 significant risk in your weighting parameters. While prioritizing
 1560 tariff (weight 1.0) optimizes your immediate economic budget, your
 1561 heuristic assigns a negligible weight (0.001) to spatial carbon
 1562 intensity. This effectively blinds your system to real-time local
 1563 congestion, creating a vulnerability during this week's unique grid
 1564 events.
 1565
 1566 Specifically, your feeder faces high-stress scenarios on Day 2 (Evening Wind Ramps) and Day 6 (Maintenance Advisory), where the

1566
1567
1568
1569

valley transformer is explicitly capped. Your current logic ignores these physical constraints, pushing load during periods where your specific transformer is already thermally compromised.

1570
1571
1572
1573

The attached coordinated profile offers a strategic correction. We request you to shift your primary load into confirmed low-congestion windows specifically targeting the ~330g carbon intensity drops available in Slot 1 on Day 2 and Slot 2 on Day 3.

1574
1575
1576
1577
1578

Adopting this schedule safeguards your infrastructure. By aligning with actual thermal headroom rather than simple price arbitrage, you ensure your solar backfeed capabilities are not curtailed by upstream safety limits. Let us secure your budget by respecting the grid's physical constraints.

1579
1580
1581
1582
1583

Regards,

Grid Coordination System

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619