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Abstract

Many applications of representation learning, such as privacy preservation, algorithmic fairness, and
domain adaptation, desire explicit control over semantic information being discarded. This goal is
formulated as satisfying two objectives: maximizing utility for predicting a target attribute while
simultaneously being invariant (independent) to a known semantic attribute. Solutions to invariant
representation learning (IRepL) problems lead to a trade-off between utility and invariance when
they are competing. While existing works study bounds on this trade-off, two questions remain
outstanding: 1) What is the exact trade-off between utility and invariance? and 2) What are the
encoders (mapping the data to a representation) that achieve the trade-off, and how can we estimate
it from training data? This paper addresses these questions for IRepLs in reproducing kernel Hilbert
spaces (RKHS)s. Under the assumption that the distribution of a low-dimensional projection of high-
dimensional data is approximately normal, we derive a closed-form solution for the global optima
of the underlying optimization problem for encoders in RKHSs. This yields closed formulae for a
near-optimal trade-off, corresponding optimal representation dimensionality, and the corresponding
encoder(s). We also numerically quantify the trade-off on representative problems and compare
them to those achieved by baseline IRepL algorithms. Code is available at https://github.
com/human-analysis/tradeoff-invariant-representation-learning.

1 Introduction

Real-world applications of representation learning often have to contend with objectives beyond predictive perfor-
mance. These include cost functions corresponding to invariance (e.g., to photometric or geometric variations), se-
mantic independence (e.g., to age or race for face recognition systems), privacy (e.g., mitigating leakage of sensitive
information (Roy & Boddeti, 2019)), algorithmic fairness (e.g., demographic parity (Madras et al., 2018)), and gener-
alization across multiple domains (Ganin et al., 2016), to name a few.

At its core, the goal of the aforementioned formulations of representation learning is to satisfy two competing objec-
tives: Extracting as much information necessary to predict a target label Y (e.g., face identity) while intentionally and
permanently suppressing information about a given semantic attribute S (e.g., age or gender). See Figure 1 (a) for
illustration. Let Z be the encoding of the input data from which the target attribute Y can be predicted. When the
statistical dependency between Y and S is not negligible, learning a representation Z that is invariant to the semantic
attribute S (i.e., Z ⊥⊥ S) will necessarily degrade the performance of the target prediction, i.e., there exists a trade-off
between utility and invariance. The existence of a trade-off has been well established, both theoretically and empiri-
cally, under various contexts of representation learning such as fairness (Menon & Williamson, 2018; Zhao & Gordon,
2019; Gouic et al., 2020; Zhao, 2021), invariance (Zhao et al., 2020), and domain adaptation (Zhao et al., 2019b).
However, much of this body of work only establishes bounds on the trade-off rather than a precise characterization.
As such, two aspects of the trade-off in invariant representation learning (IRepL) are unknown, including i) exact
characterization of the trade-off inherent to IRepL and ii) a learning algorithm that achieves the trade-off. Under the
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Figure 1: (a): Invariant representation learning seeks a representation Z = f(X) that contains as much information
necessary for the downstream target predictor gY while being independent of the semantic attribute S. (b): The trade-
off (denoted by TOpt) between utility (target task performance) and invariance (measured by the dependence metric
Dep(Z, S)) is induced by a controlled representation learner in the hypothesis class of all Borel functions.

assumption that the distribution of a low-dimensional projection of high-dimensional data is approximately normal,
this paper studies and establishes the aforementioned properties by constraining function classes to reproducing kernel
Hilbert spaces (RKHS)s.

Ideally, the utility-invariance trade-off is defined as a bi-objective optimization problem:

inf
f∈HX , gY ∈HY

EXY [LY (gY (f(X)) , Y )] such that Dep (f(X), S) ≤ ϵ, (1)

where f is the encoder that extracts the representation Z = f(X) from X , gY predicts Ŷ from the representation Z,
HX and HY are the corresponding hypothesis classes, and LY is the loss function for predicting the target attribute Y .
The function Dep(·, ·) ≥ 0 is a parametric or non-parametric measure of statistical dependence, i.e., Dep(Q, U) = 0
implies Q and U are independent, and Dep(Q, U) > 0 implies Q and U are dependent with larger values indicating
greater degrees of dependence. The scalar ϵ ≥ 0 is a user-defined parameter that controls the trade-off between the
two objectives, with ϵ → ∞ being the standard scenario that has no invariance constraints with respect to (w.r.t.) S.
In contrast, ϵ → 0 enforces Z ⊥⊥ S (i.e., total invariance). Involving all Borel functions in HX and HY ensures that
the best possible trade-off is included within the feasible solution space. For example, when ϵ → ∞ and LY is MSE
loss, the optimal Bayes estimator, gY (f(X)) = E [Y | X] is attainable.

In this paper, we consider the linear combination of utility and invariance in (1) and define the optimal utility-invariance
trade-off (denoted by TOpt) as a single objective optimization problem:

Definition 1.

TOpt := inf
f∈HX

{
(1 − λ) inf

gY ∈HY

EX,Y [LY (gY (f(X)) , Y )] + λ Dep (f (X) , S)
}

, 0 ≤ λ < 1, (2)

where λ controls the trade-off between utility and invariance. For example, λ = 0 corresponds to ignoring the
invariance and only optimizing the utility, while λ → 1 corresponds to Z ⊥⊥ S.

The motivations behind considering this single-objective IRepL are (i) any solution to this simplified problem is a
solution to the bi-objective problem in (1), (ii) even (2) is challenging to solve, and (iii) existing works have not
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thoroughly investigated (2). An illustration of the utility-invariance trade-off is illustrated in Figure 1 (b). In this paper,
we restrict HX to be some RKHSs and Dep(Z, S) to be a simplified version of the Hilbert-Schmidt Independence
Criterion (HSIC) (Gretton et al., 2005a). Further, we replace the target loss function in (2) by Dep(Z, Y ) as presented
and justified in Sections 3.2 and 5.2.

Summary of Contributions: i) We design a dependence measure that accounts for all modes of dependence between
Z and S 1 (under a mild assumption) while allowing for analytical tractability. ii) We employ functions in RKHSs
and obtain closed-form solutions for the IRepL optimization problem. Consequently, we precisely characterize a
near-optimal approximation of TOpt via encoders restricted to RKHSs. iii) We obtain a closed-form estimator for the
encoder that achieves a near-optimal trade-off and establish its numerical convergence. iv) Using random Fourier
features (RFF) (Rahimi et al., 2007), we provide a scalable version (in terms of both memory and computation) of
our IRepL algorithm. v) We numerically quantify our TOpt (denoted by K-TOpt) on an illustrative problem as well as
large-scale real-world datasets, Folktables (Ding et al., 2021) and CelebA (Liu et al., 2015), where we compare K-TOpt
to those obtained by existing works.

2 Related Work

2.1 Invariant Representation Learning

The basic idea of representation learning that discards unwanted semantic information has been explored under many
contexts like invariant, fair, or privacy-preserving learning. In domain adaptation (Ganin & Lempitsky, 2015; Tzeng
et al., 2017; Zhao et al., 2018), the goal is to learn features that are independent of the data domain. In fair learning
(Dwork et al., 2012; Ruggieri, 2014; Feldman et al., 2015; Calmon et al., 2017; Zemel et al., 2013; Edwards & Storkey,
2015; Beutel et al., 2017; Xie et al., 2017; Zhang et al., 2018; Song et al., 2019; Madras et al., 2018; Bertran et al.,
2019; Creager et al., 2019; Locatello et al., 2019; Mary et al., 2019; Martinez et al., 2020; Sadeghi et al., 2019), the
goal is to discard the demographic information that leads to unfair outcomes. Similarly, there is growing interest in
mitigating unintended leakage of private information from representations (Hamm, 2017; Coavoux et al., 2018; Roy
& Boddeti, 2019; Xiao et al., 2020; Dusmanu et al., 2021).

A vast majority of this body of work is empirical. They implicitly look for single or multiple points on the trade-off
between utility and semantic information and do not explicitly seek to characterize the whole trade-off front. Overall,
these approaches are not concerned with or aware of the inherent utility-invariance trade-off. In contrast, with the cost
of restricting encoders to lie in some RKHSs, we precisely characterize the trade-off and propose a practical learning
algorithm that achieves this trade-off.

2.2 Adversarial Representation Learning

Most practical approaches for learning fair, invariant, domain adaptive, or privacy-preserving representations discussed
above are based on adversarial representation learning (ARL). ARL is typically formulated as

inf
f∈HX

{
(1 − λ) inf

gY ∈HY

EX,Y [LY (gY (f(X)) , Y )] − λ inf
gS∈HS

EX,S [LS (gS (f(X)) , S)]
}

, (3)

where LS is the loss function of a hypothetical adversary gS , who intends to extract the semantic attribute S through
the best estimator within the hypothesis class HS , and 0 ≤ λ < 1 is the utility-invariance trade-off parameter. ARL
is a special case of (2) where the negative loss of the adversary, − inf

gS∈HS

EX,S [LS (gS (f(X)) , S)] plays the role of

Dep(f(X), S). However, this form of adversarial learning suffers from a critical drawback. The induced independence
measure is not guaranteed to account for all modes of non-linear dependence between S and Z if the adversary loss
function LS is not bounded like MSE or cross-entropy (Adeli et al., 2021; Grari et al., 2020). In the case of MSE loss,
even if the loss is maximized at a bounded value, where the corresponding representation Z = f(X) is also bounded,
it still does not guarantee that Z ⊥⊥ S is attainable (see Appendix H for more details). This implies that designing
the adversary loss in ARL to account for all types of dependence is challenging and can be infeasible for some loss
functions.

1By “all modes of dependence" we mean all types of linear and non-linear relations, in contrast to only linear or monotonic relations.
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2.3 Trade-Offs in Invariant Representation Learning:

Prior work has established the existence of trade-offs in IRepL, both empirically and theoretically. In the following,
we categorize them based on properties of interest.

Restricted Class of Attributes: A majority of existing work considers IRepL trade-offs under restricted settings,
e.g., binary and/or categorical attributes Y and S. For instance, Zhao et al. (2019a) uses information-theoretic tools
and characterizes the utility-fairness trade-off in terms of lower bounds when both Y and S are binary labels. Later
McNamara et al. (2019) provided both upper and lower bounds for binary labels. By leveraging Chernoff bound,
Dutta et al. (2020) proposed a construction method to generate an ideal representation beyond the input data to achieve
perfect fairness while maintaining the best performance on the target task. In the case of categorical features, a lower
bound on utility-fairness trade-off has been provided by Zhao & Gordon (2019) for the total invariance scenario (i.e.,
Z ⊥⊥ S). In contrast to this body of work, our trade-off analysis applies to multi-dimensional continuous/discrete
attributes. To our knowledge, the only prior results under a general setting are Sadeghi et al. (2019) and Zhao et al.
(2020). However, in Zhao et al. (2020), both S and Y are restricted to be continuous/discrete or binary simultaneously
(e.g., it is not possible to have Y binary while S is continuous).

Characterizing Exact versus Bounds on Trade-Off: To the best of our knowledge, all existing approaches ex-
cept Sadeghi et al. (2019), which obtains the trade-off for the linear dependence only, characterize the trade-off in
terms of upper and/or lower bounds. In contrast, we precisely characterize a near-optimal trade-off with closed-form
expressions for encoders belonging to some RKHSs.

Optimal Encoder and Representation: Another property of practical interest is the optimal encoder that achieves the
desired point on the utility-invariance trade-off and the corresponding representation(s). Existing works which only
study bounds on the trade-off do not obtain the encoder that achieves those bounds. For example, Sadeghi et al. (2019)
develop a learning algorithm that obtains a globally optimal encoder, but only under a linear dependence measure
between Z and S. HSIC, a universal measure of dependence, has been adopted by prior work (e.g., Quadrianto et al.
(2019)) to quantify all types of dependencies between Z and S. However, these methods adopt stochastic gradient
descent for optimizing the underlying non-convex optimization problem. As such, they fail to provide guarantees that
the representation learning problem converges to a global optimum. In contrast, we obtain a closed-form solution for
the globally optimal encoder and its corresponding representation while detecting all modes of dependence between
Z and S.

2.4 Kernel Method

The technical machinery of our kernel method for representation learning is closely related to kernelized component
analysis (Schölkopf et al., 1998). Kernel methods have been previously used for fair representation learning by Pérez-
Suay et al. (2017) where the Rayleigh quotient is employed to only search for a single point in the utility-invariance
trade-off. To find the entire trade-off, Sadeghi et al. (2019) used kernelized ARL with a linear adversary and target
estimator. Kernel methods also have been used to measure all modes of dependence between two RVs, pioneered
by Bach & Jordan (2002) in kernel canonical correlation (KCC). Building upon KCC, later, Gretton et al. (2005a;b;
2006) have introduced HSIC, constrained covariance (COCO), and maximum mean discrepancy (MMD), to name a
few. Inspired by these works, a variation of HSIC is adopted as a measure of dependence in this paper.

3 Problem Setting

3.1 Notation

Scalars are denoted by regular lowercase letters, e.g., r, λ. Deterministic vectors are denoted by boldface lowercase
letters, e.g., x, s. We denote both scalar-valued and multidimensional random variables (RV)s by regular upper case
letters, e.g., X , S. Deterministic matrices are denoted by boldface upper case letters, e.g., H , Θ. The entry at i-th
row, j-th column of a matrix M is denoted by (M)ij or mij . In or simply I denotes an n × n identity matrix; 1n and
0n denote n-tuple vectors of ones and zeros, respectively. We denote the trace of a square matrix K by Tr[K]. The
pseudo-inverse of a matrix U is denoted by U †. We denote finite or infinite sets by calligraphy letters, e.g., H, A.

4



Published in Transactions on Machine Learning Research (12/2022)

X Z = f(X) = Θ kX(·, X)

Dep(Z, Y ) :=

r∑

j=1

∑

βY ∈UY

Cov2 (Zj , βY (Y )) βY (·) Y

Dep(Z, S) :=
r∑

j=1

∑

βS∈US

Cov2 (Zj , βS(S)) βS(·) S

Figure 2: Our IRepL model consists of three components: i) An r-dimensional encoder f belonging to the universal
RKHS HX . ii) A measure of dependence that accounts for all dependence modes between data representation Z and
semantic attribute S induced by the covariance between Z = f(X) and βS(S) where βS belongs to a universal RKHS
HS . iii) A measure of dependency between Z and the target attribute Y defined similarly as that for S.

3.2 Problem Setup

Consider the probability space (Ω, F ,P), where Ω is the sample space, F is a σ−algebra on Ω, and P is a probability
measure on F . We assume that the joint RV, (X, Y, S) containing the input data X ∈ RdX , the target label Y ∈
RdY , and the semantic attribute S ∈ RdS , is a RV on (Ω, F) with joint distribution pX,Y,S . Furthermore, Y and S
can also belong to any finite set, such as a categorical set. This setting enables us to work with both classification
and multidimensional regression tasks, where the semantic attribute can be either categorical or multidimensional
continuous/discrete RV.

Assumption 1. We assume that the encoder consists of r functions from RdX to R in a universal RKHS (HX , kX(·, ·))
(e.g., RBF Gaussian kernel), where universality ensures that HX can approximate any Borel function with arbitrary
precision (Sriperumbudur et al., 2011).

Hence, the representation RV Z can be expressed as

Z = f(X) := [Z1, · · · , Zr]T ∈ Rr, Zj = fj(X), fj ∈ HX ∀j = 1, . . . , r, (4)

where r is the dimensionality of the representation. As we will discuss in Corollary 4.1, unlike common practice
where r is chosen on an ad-hoc basis, it is an object of interest for optimization. We consider a general scenario where
both Y and S can be continuous/discrete or categorical, or one of Y or S is continuous/discrete while the other is
categorical. To accomplish this, we replace the target loss, inf

gY ∈HY

EX,Y [LY (gY (Z), Y )] in (2) by the negative of a

non-parametric measure of dependence, i.e., −Dep (Z, Y ). The main reason for this replacement is that maximizing
statistical dependency between the representation Z and the target attribute Y can flexibly learn a representation ap-
plicable to different downstream target tasks, including regression, classification, clustering, etc (Barshan et al., 2011).
Particularly, Theorem 6 in Section 5.2 indicates that with an appropriate choice of involved RKHS for Dep (Z, Y ),
we can learn a representation that lends itself to an estimator that performs as optimally as a Bayes estimator i.e.,
EX [Y |X]. Furthermore, in an unsupervised setting, where there is no target attribute Y , the target loss can be replaced
by Dep (Z, X), which implicitly forces the representation Z to be as dependent on the input data X . This scenario
is of practical interest when a data producer aims to provide an invariant representation for an unknown downstream
target task.

4 Choice of Dependence Measure

We only discuss Dep (Z, S) since we adopt the same dependence measure for Dep (Z, Y ). Accounting for all possible
non-linear relations between RVs is a key desideratum of dependence measures. A well-known example of such
measures is mutual information (MI) (e.g., MINE (Belghazi et al., 2018)). However, calculating MI for continuous
multidimensional representations is analytically challenging and computationally intractable. Kernel-based measures
are an alternative solution with the attractive properties of being computationally feasible/efficient and analytically
tractable (Gretton et al., 2005b).

Definition 2. Let D = {(x1, y1, s1), · · · , (xn, yn, sn)} be the training data, containing n i.i.d. samples from the
joint distribution pX,Y,S . Invoking the representer theorem (Shawe-Taylor & Cristianini, 2004), it follows that for
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each fj ∈ HX (j = 1, · · · , r) we have Zj = fj(X) =
∑n

i=1 θjikX(xi, X) where θijs are the learnable linear
weights. Consequently, it follows that

f(X) = Θ [kX(x1, X), · · · , kX(xn, X)]T , (5)

where Θ ∈ Rr×n and (Θ)ji = θji.

Principally, Z ⊥⊥ S if and only if (iff) Cov(α(Z), βS(S)) = 0 for all Borel functions α : Rr → R and βS : RdS → R
belonging to the universal RKHSs HZ and HS , respectively. Alternatively, Z ⊥⊥ S iff HSIC(Z, S) = 0 where
HSIC (Gretton et al., 2005a) is defined as

HSIC(Z, S) :=
∑

α∈UZ

∑
βS∈US

Cov2 (α(Z), βS(S)) , (6)

where UZ and US are countable orthonormal basis sets for the separable universal RKHSs HZ and HS , respectively.
However, since Z = f(X) where f is defined in (4), calculating Cov(α(Z), βS(S)) necessitates the application of
a cascade of kernels, which limits the analytical tractability of our solution. Therefore, we adopt a simplified version
of HSIC that considers transformation on S only but affords analytical tractability for solving the IRepL optimization
problem. We define this measure as

Dep(Z, S) :=
r∑

j=1

∑
βS∈US

Cov2 (Zj , βS(S)) , (7)

where Zj = fj(X) for fjs defined in (4). We note that Dep(·, ·), unlike HSIC and other kernelization-based de-
pendence measures, is not symmetric. However, symmetry is not necessary for measuring statistical dependence. To
guarantee the boundedness of Dep(Z, S) and f(X), we make the following assumption in the remainder of this paper.

Assumption 2. We assume that (HS , kS(·, ·)) and (HY , kY (·, ·)) are separable2 and the kernel functions are bounded:

EU [kU (U, U)] < ∞, for U = X, Y, S. (8)

The measure Dep(Z, S) in (7) captures all modes of non-linear dependence under the assumption that the distribution
of a low-dimensional projection of high-dimensional data is approximately normal (Diaconis & Freedman, 1984),
(Hall & Li, 1993). To see why this reasoning is relevant, we note from (5) that Z can be expressed as Z = ΘV , where
V ∈ Rn and Θ ∈ Rr×n. This indicates that for large n and small r (which is the case for most real-world datasets),
Z is indeed a low-dimensional projection of high-dimensional data. In other words, (Z, βS(S)) is approximately a
jointly Gaussian RV. In our numerical experiments in Section 6, we empirically observe that Dep(Z, S) enjoys an
almost monotonic relation with the underlying invariance measure and captures all modes of dependency in practice,
especially as Z ⊥⊥ S. Nevertheless, if the normality assumption on the distribution of (Z, βS(S)) fails, Dep(Z, S)
reduces to measuring the linear dependency between Z and βS(S) for all Borel functions βS . This corresponds to
measuring the mean independency of Z from S, i.e., how much information a predictor (linear and non-linear) can
infer (in the sense of MSE) about Z from S. See Appendix H for more technical details on mean independency.

Lemma 1. Let KX , KS ∈ Rn×n be the Gram matrices corresponding to HX and HS , respectively, i.e., (KX)ij =
kX(xi, xj) and (KS)ij = kS(si, sj), where covariance is empirically estimated as

Cov (fj(X), βS(S)) ≈ 1
n

n∑
i=1

fj(xi)βS(si) − 1
n2

n∑
i=1

n∑
k=1

fj(xi)βS(sk).

It follows that, the corresponding empirical estimator for Dep (Z, S) is

Depemp (Z, S) = 1
n2 ∥ΘKXHLS∥2

F , (9)

where H = In − 1
n 1n1T

n is the centering matrix, LS is a full column-rank matrix in which LSLT
S = KS (Cholesky

factorization), and KS is the Gram matrix corresponding to HS . Furthermore, the empirical estimator in (9) has a bias
of O(n−1) and a convergence rate of O(n−1/2).

2A Hilbert space is separable iff it has a countable orthonormal basis set.
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Proof. The main idea for proving equality (9) is to employ the representer theorem to express fj and βS . For the
bias and convergence rate, one can express equation (9) in terms of trace and then employ U-statistics together with
Hoeffdig’s inequality (Hoeffding, 1994). For complete proof, see Appendix B.

Finally, we note that the dependence measure between Z and Y can be defined similarly.

5 Exact Kernelized Trade-Off

Consider the optimization problem corresponding to TOpt in (2). Recall that Z = f(X) is an r-dimensional RV, where
the embedding dimensionality r is also a variable to be optimized. A common desideratum of learned representations is
that of compactness (Bengio et al., 2013) to avoid learning representations with redundant information where different
dimensions are highly correlated to each other. Therefore, going beyond the assumption that each component of f
(i.e., fjs) belongs to the universal RKHS HX , we impose additional constraints on the representation. Specifically, we
constrain the search space of the encoder f(·) to learn a disentangled representation (Bengio et al., 2013) as follows

Ar :=
{

(f1, · · · , fr)
∣∣ fi, fj ∈ HX , Cov (fi(X), fj(X)) + γ ⟨fi, fj⟩HX

= δi,j

}
. (10)

In the above set, the Cov (fi(X), fj(X)) part enforces the covariance matrix of Z = f(X) to be an identity matrix.
Such disentanglement is also used in principal component analysis (PCA). It encourages the variance of each entry
of Z to be one and different entries of Z to be uncorrelated with each other. The regularization part, γ ⟨fi, fj⟩HX

encourages the encoder components to be as orthogonal as possible to each other and to be of unit norm, which aids
with numerical stability during empirical estimation (Fukumizu et al., 2007). As the following theorem states formally,
such disentanglement is an invertible transformation; therefore, it does not nullify any information.
Theorem 2. Let Z = f(X) be an arbitrary representation of the input data, where f ∈ HX . Then, there exists an
invertible Borel function h, such that h ◦ f belongs to Ar.

Proof. The main idea is to search for an explicit expression for h in terms of the invertible operator ΣXX + γ IX ,
where ΣXX is induced by the bi-linear functional Cov (fi(X), fj(X)) = ⟨ΣXXfi, fj⟩HX

, and IX is the identity
operator from HX to itself. See Appendix C for complete proof.

This Theorem implies that the disentanglement preserves the performance of the downstream task since any target
network can revert the disentanglement h and access the original representation Z. In addition, any deterministic
measurable transformation of Z will not add any information about S that does not already exist in Z.

We define our K−TOpt as

sup
f∈Ar

{J (f , λ) := (1 − λ) Dep (f(X), Y ) − λ Dep (f(X), S)} , 0 ≤ λ < 1, (11)

where λ is the utility-invariance trade-off parameter. Fortunately, the above optimization problem lends itself to a
closed-form solution.
Theorem 3. Consider the operator ΣSX to be induced by the bi-linear functional Cov(α(X), βS(S)) =
⟨ΣSXα, βS⟩HS

and define ΣY X and ΣXX , similarly. Then, a global optimizer for the optimization problem in (11) is
the eigenfunctions corresponding to the r largest eigenvalues of the following generalized eigenvalue problem

((1 − λ) Σ∗
Y XΣY X − λ Σ∗

SXΣSX) f = τ (ΣXX + γ IX) f , (12)

where γ is the disentanglement regularization parameter defined in (10), and Σ∗ is the adjoint of Σ.

Proof. The first step is to express Dep(f(X), Y ) and Dep(f(X), S) in terms of ΣY X and ΣSX , respectively. The
resulting expression can be restated as a generalized Rayleigh quotient (Strawderman, 1999) which can be solved via
a generalized eigenvalue formulation. For complete proof, see Appendix D.

Remark 1. If the trade-off parameter λ = 0 (i.e., no semantic independence constraint is imposed) and γ → 0, the
solution in Theorem 3 is equivalent to a supervised kernel-PCA. On the other hand, if λ → 1 (i.e., utility is ignored
and only semantic independence is considered), the solution in Theorem 3 is the eigenfunctions corresponding to the
r smallest eigenvalues of Σ∗

SXΣSX , which are the directions that are the least explanatory of the semantic attribute S.
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Now, consider the empirical counterpart of the optimization problem (11),

sup
f∈Ar

{J emp(f , λ) := (1 − λ) Depemp (f(X), Y ) − λ Depemp (f(X), S)} , 0 ≤ λ < 1 (13)

where Depemp (f(X), S) is given in (9) and Depemp (f(X), Y ) is defined similarly.

Theorem 4. Let the Cholesky factorization of KX be KX = LXLT
X , where LX ∈ Rn×d (d ≤ n) is a full column-

rank matrix. Let r ≤ d, then a solution to (13) is

f opt(X) = Θopt [kX(x1, X), · · · , kX(xn, X)]T

where Θopt = UT L†
X and the columns of U are eigenvectors corresponding to the r largest eigenvalues of the

following generalized eigenvalue problem.

LT
X ((1 − λ)HKY H − λHKSH) LXu = τ

(
1
n

LT
XHLX + γI

)
u. (14)

Further, the objective value of (13) is equal to
∑r

j=1 τj , where {τ1, · · · , τr} are the r largest eigenvalues of (14).

Proof. The main idea is to employ empirical expressions obtained in equality 9. The resulting expression on (13)
can be expressed as a trace optimization problem which can be solved by eigenvalue formulation (Kokiopoulou et al.,
2011). See Appendix E for detailed proof.

Corollary 4.1. Embedding Dimensionality: A useful corollary of Theorem 4 is characterizing optimal embedding
dimensionality as a function of the trade-off parameter, λ:

rOpt(λ) := arg sup
0≤r≤d

{
sup

f∈Ar

{J emp (f , λ)}
}

= number of non-negative eigenvalues of (14).

To examine these results, consider two extreme cases: i) If there is no semantic independence constraint (i.e., λ =
0), all eigenvalues of (14) are non-negative since HKY H is a non-negative definite matrix and 1

n LT
XHLX + γI

is a positive definite matrix. This indicates that rOpt is equal to the maximum possible value (that is equal to d),
and therefore it is not required for Z to nullify any information in X . ii) If we are only concerned about semantic
independence and want to ignore the target task utility (i.e., λ → 1), all eigenvalues of (14) are non-positive and
therefore rOpt would be the number of zero eigenvalues of (14). This indicates that Depemp(Z, S) in (9) is equal to
zero, since ΘoptKX is zero for zero eigenvalues of (14) when λ → 1. In this case, adding more dimension to Z will
necessarily increase Depemp(Z, S).

The following Theorem characterizes the convergence behavior of empirical K−TOpt to its population counterpart.

Theorem 5. Assume that kS and kY are bounded by one and f2
j (xi) ≤ M for any j = 1, . . . , r and i = 1, . . . , n for

which f = (f1, . . . , fr) ∈ Ar. Then, for any n > 1 and 0 < δ < 1, with probability at least 1 − δ, we have∣∣∣∣∣ sup
f∈Ar

J(f , λ) − sup
f∈Ar

J emp(f , λ)

∣∣∣∣∣ ≤ rM

√
log(6/δ)
0.222 n

+ O
(

1
n

)
.

Proof. This Theorem can be proved by using the results of the convergence rate of Dep(Z, S) in Lemma 1. For
detailed proof, see Appendix F.

Note that, for any x in the training set, fj(x) can be calculated as fj(x) =
∑n

i=1 θjikX(xi, x). We can assume that
kX(·, ·) is bounded. For example, in RBF Gaussian and Laplacian RKHSs, both of which are universal, kX(·, ·) ≤ 1.
This implies that f2

j (x) ≤
√

n∥θj∥, where θj is j-th row of Θ in equation (5). One always can normalize fj(x) by
dividing it by the maximum of

√
n∥θj∥ over js, or by dividing by the maximum of |fj(xi)| over is and js. Notice

that this normalization is only a scalar multiplication and has no effect on the invariance of Z = f(X) to S and the
utility of any downstream target task predictor gY (Z).
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5.1 Numerical Complexity

Computational Complexity: If LX in (14) is provided in the training dataset, then the computational complexity of
obtaining the optimal encoder is O(l3), where l ≤ n is the numerical rank of the Gram matrix KX . However, the
dominating part of the computational complexity is due to the Cholesky factorization, KX = LXLT

X , which is O(n3).
Using random Fourier features (RFF) (Rahimi et al., 2007), kX(x, x′) can be approximated by rX(x)T rX(x′), where
rX(x) ∈ Rd. In this situation, the Cholesky factorization can be directly calculated as

LX =


rX(x1)T

...
rX(xn)T

 ∈ Rn×d. (15)

As a result, the computational complexity of obtaining the optimal encoder becomes O(d3), where the RFF dimen-
sion, d, can be significantly less than the sample size n with negligible error on the approximation kX(x, x′) ≈
rX(x)T rX(x′).

Memory Complexity: The memory complexity of (14), if calculated naively, is O(n2) since KY and KS are n by n
matrices. However, using RFF together with Cholesky factorization KY = LY LT

Y , KS = LSLT
S , the left-hand side

of (14) can be re-arranged as

(1 − λ)
(
LT

XL̃Y

) (
L̃T

Y LX

)
− λ

(
LT

XL̃S

) (
L̃T

S LX

)
, (16)

where L̃T
Y = HLY = LY − 1

n 1n(1T
n LY ) and therefore, the required memory complexity is O(nd). Note that L̃T

S

and HLX can be calculated similarly.

5.2 Target Task Performance in K−TOpt

Assume that the desired target loss function is MSE. Then, in the following Theorem, we show that maximizing
Dep (f(X), Y ) over f ∈ Ar can learn a representation Z that is informative enough for a target predictor on Z to
achieve the most optimal estimation, i.e., the Bayes estimator (E[Y | X]).
Theorem 6. Let f∗ be the optimal encoder by maximizing Dep(f(X), Y ), where γ → 0 and HY is a linear RKHS.
Then, there exist W ∈ RdY ×r and b ∈ RdY such that W f∗(X) + b is the Bayes estimator, i.e.,

EX,Y

[
∥W f(X)∗ + b − Y ∥2]

= inf
h is Borel

EX,Y

[
∥h(X) − Y ∥2]

= EX,Y

[
∥E[Y | X] − Y ∥2]

.

Proof. This Theorem corresponds to a linear least square target predictor on top of a kernelized encoder with a solu-
tion(s) similar to supervised kernel-PCA. Recall from Remark 1 that if λ = 0, optimizing Dep(f(X), Y ) will result
in a supervised kernel-PCA. See Appendix G for formal proof.

This Theorem implies that not only can Dep (f(X), Y ) preserve all the necessary information in Z to predict Y
optimally, the learned representation is simple enough for a linear regressor to achieve optimal performance.

6 Experiments

In this section, we numerically quantify our K−TOpt through the closed-form solution for the encoder obtained in
Section 5 on an illustrative toy example and two real-world datasets, Folktables and CelebA.

6.1 Baselines

We consider two types of baselines: (1) ARL (the main framework for IRepL) with MSE or Cross-Entropy as the
adversarial loss. Such methods are expected to fail to learn a fully invariant representation (Adeli et al., 2021; Grari
et al., 2020). These include (Xie et al., 2017; Zhang et al., 2018; Madras et al., 2018), and SARL (Sadeghi et al.,
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2019). Among these baselines, except for SARL, all baselines are optimized via iterative minimax optimization,
which is often unstable and not guaranteed to converge. On the other hand, SARL obtains a closed-form solution for
the global optima of the minimax optimization under a linear dependence measure between Z and S, which may fail
to capture all modes of dependence between Z and S. (2) HSIC-based adversarial loss that accounts for all modes of
dependence, and as such, is theoretically expected to learn a fully invariant representation (Quadrianto et al., 2019).
However, since stochastic gradient descent is used for learning, it lacks convergence guarantees to the global optima.

6.2 Datasets

Gaussian Toy Example: We design an illustrative toy example where X and S are mean independent in some
dimensions but not fully independent in those dimensions. Specifically, X and S are 4-dimensional continuous RVs
and generated as follows,

U = [U1, U2, U3, U4] ∼ N (04, I4) , N ∼ N (04, I4) , U ⊥⊥ N

X = cos
(π

6 U
)

+ 0.005N, S =
[
sin

(π

6 [U1, U2]
)

, cos
(π

6 [U3, U4]
)]

, (17)

where sin(·) and cos(·) are applied point-wise. To generate the target attribute, we define four binary RVs as follows.

Yi = 1{|Ui|>T }(Ui), i = 1, 2, 3, 4,

where 1B(·) is the indicator function, and we set T = 0.6744, so it holds that P[Yi = 0] = P[Yi = 1] = 0.5
for i = 1, 2, 3, 4. Finally, we define Y as a 16-class categorical RV concatenated by Yis. Since S is dependent on
X through all the dimensions of X , a wholly invariant Z (i.e., Z ⊥⊥ S) should not contain any information about
X . However, since [S1, S2] is only mean independent of [X1, X2] (i.e., E

[
S1, S2

∣∣ X1, X2
]

= E [S1, S2]), ARL
baselines with MSE as the adversary loss, i.e., Xie et al. (2017); Zhang et al. (2018); Madras et al. (2018) and SARL
cannot capture the dependency of Z to [S1, S2] and result in a representation that is always dependent on [S1, S2] (see
Section H for theoretical details). We sample 18, 000 instances from pX,Y,S independently and split these samples
equally into training, validation, and testing partitions.

Folktables: We consider a fair representation learning task on Folktables (Ding et al., 2021) dataset (a derivation of
the US census data). Specifically, we consider 2018-WA (Washington) and 2018-NY (New York) census data where
the target attribute Y is the employment status (binary for WA and 4 categories for NY and the semantic attribute S is
age (discrete value between 0 and 95 years). We seek to learn a representation that predicts employment status while
being fair in demographic parity (DP) w.r.t. age. DP requires that the prediction Ŷ be independent of S, which can be
achieved by enforcing Z ⊥⊥ S. The WA and NY datasets contain 76, 225 and 196, 967 samples, each constructed from
16 different features. We randomly split the data into training (70%), validation (15%), and testing (15%) partitions.
Further, we adopt embeddings for categorical features (learned in a supervised fashion to predict Y ) and normalization
for continuous/discrete features (dividing by the maximum value).

CelebA: CelebA dataset (Liu et al., 2015) contains 202, 599 face images of 10, 177 different celebrities with standard
training, validation, and testing splits. Each image is annotated with 40 different attributes. We choose the target
attribute Y as the high cheekbone attribute (binary) and the semantic attribute S as the concatenation of gender and
age (a 4-class categorical RV). The objective of this experiment is similar to that of Folktables. Since raw image data
is not appropriate for kernel methods, we pre-train a ResNet-18 (He et al., 2016) (supervised to predict Y ) on CelebA
images and extract features of dimension 256. These features are used as the input data for all methods.

6.3 Evaluation Metrics

We use the accuracy of the classification tasks (16-class classification for Gaussian toy example, employment pre-
diction for Folktables, and high cheekbone prediction for CelebA) as the utility metric. For Folktables and CelebA
datasets, we define DP violation as

DPV(Ŷ , S) := E
Ŷ

[
VarS

(
P[Ŷ | S]

)]
(18)

and use it as a metric to measure the variance (unfairness) of the prediction Ŷ w.r.t. the semantic attribute S. For the
Gaussian toy example, the above metric is not suitable since S is a continuous RV. To circumvent this difficulty, we
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Figure 3: Plots of rOpt(λ) versus the dependence trade-off parameter 1 − λ for (a) the Gaussian toy dataset and (b)
Folktables-NY dataset. There is a non-decreasing relation between rOpt(λ) and 1 − λ.

employ KCC (Bach & Jordan, 2002)

KCC(Z, S) := sup
α∈HZ ,β∈HS

Cov(α(Z), β(S))√
Var(α(Z))Var(β(S))

, (19)

as a measure of invariance of Z to S, where HZ and HS are RBF-Gaussian RKHS. The reason for using KCC instead
of HSIC is that, unlike HSIC, KCC is normalized. Therefore it is a more readily interpretable measure for comparing
the invariance of representations between different methods.

6.4 Choice of (Y, S) Pair

The existence of a utility-invariance trade-off ultimately depends on the statistical dependency between target
and semantic attributes. If Dep(Z, S) is negligible, a trade-off does not exist. Keeping this in mind, we first
chose the semantic attribute to be a sensitive attribute for Folktables (i.e., age) and CelebA (i.e., concatenation
of age and gender) datasets. Then, we calculated the data imbalance (i.e., |P[Y = 0] − 0.5|) and KCC(Y, S)
for all possible Y s. Finally, we chose Y with a small data imbalance and a moderate KCC(Y, S). For Folk-
tables dataset, |P[employment = 0] − 0.5| = 0.04 and KCC(employment, age) = 0.4. For CelebA dataset,
|P[high cheekbone = 0] − 0.5| = 0.05 and KCC(high cheekbone, [age, gender]) = 0.1.

6.5 Implementation Details

For all methods, we pick different values of λ (100 λs for the Gaussian toy example and 70 λs for Folktables and
CelebA datasets) between zero and one for obtaining the utility-invariance trade-off. We train the baselines that use a
neural network for encoder five times with different random seeds. We let the random seed also change the training-
validation-testing split for the Folktables dataset (CelebA and Gaussian datasets have fixed splits).

Embedding Dimensionality: None of the baseline methods have any strategy to find the optimum embedding di-
mensionality (r), and they all set r to a constant w.r.t. λ. Therefore, for baseline methods, we set r = 15 (i.e., the
minimum dimensionality required to classify 16 different categories linearly) for the Gaussian toy example and r = 3
(i.e., the minimum dimensionality required to classify 4 different categories linearly) for Folktables-NY dataset, that
is also equal to rOpt when λ = 0. For K-TOpt, we use rOpt(λ) in Corollary 4.1. See Figure 3 for the plot of rOpt versus
λ for the toy Gaussian and Folktables-NY datasets. For Folktables-WA and CelebA datasets, rOpt(λ = 0) is equal to
one, and therefore we let r = 1 for all methods and all 0 ≤ λ < 1.

K−TOpt (Ours): We let HX , HS , and HY be RBF Gaussian RKHS, where we compute the corresponding
band-widths (i.e., σs) using the median strategy introduced by Gretton et al. (2007). We optimize the regular-
ization parameter γ in the disentanglement set (10) by minimizing the corresponding target losses over γs in
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1} on validation sets. RFF (as discussed in Section 5.1) is adopted for all
datasets. For RFF dimensionality, we started with a small value. Then, we gradually increased it until we reached
the maximum possible performance for λ = 0 (i.e., the standard unconstrained representation learning) on the corre-
sponding validation sets. Through this process, the final RFF dimensionality is 100 for the Gaussian dataset, 5000 for
the Folktables dataset, and 1000 for the CelebA dataset.
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Figure 4: Utility versus invariance trade-offs obtained by K−TOpt and other baselines for (a) Gaussian, (b) Folktables-
WA, (c) Folktables-NY, and (d) CelebA datasets. K-TOpt stably spans the entire trade-off front and considerably
dominates other methods for all datasets. (a) ARL and SARL Sadeghi et al. (2019) span a small portion of the trade-off
front since S is mean independent (but not fully independent) of X in some dimensions for the Gaussian toy example.
Despite using a universal dependence measure, HSIC-IRepL Quadrianto et al. (2019) performs sub-optimally due to
the lack of convergence guarantees to the global optima.
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Figure 5: Dep(Z, Y ) versus Dep(Z, S) in K−TOpt for (a) Gaussian, (b) Folktables-WA, (c) Folktables-NY, and (d)
CelebA datasets. We can observe that there is the same trend in Dep(Z, Y )-Dep(Z, S) trade-off as utility-invariance-
trade-off in Figure 4.

SARL (Sadeghi et al., 2019): SARL method is similar to our K−TOpt except that HY and HS are linear RKHSs, and
therefore we set σX and γ similar to that of K−TOpt.

ARL (Xie et al., 2017; Zhang et al., 2018; Madras et al., 2018): The representation Z = f(X) is extracted via
the encoder f , which is an MLP (4 hidden layers and 15, 15 neurons for Gaussian data; 3 hidden layers and 128, 64
neurons for Folktables and CelebA datasets). The architectural choices were based on starting with a single linear
layer and gradually increasing the number of layers and neurons until over-fitting was observed. This results in the
number of encoder parameters for the Gaussian toy example to be 735, while K−TOpt has 100 = 100 ∗ rOpt(λ →
1) ≤ 100 ∗ rOpt(λ) ≤ 100 ∗ rOpt(λ = 0) = 1500. For Folktables and CelebA, number of parameters is 41, 024
and 15, 616, respectively, for ARL and 5000 and 1000 for K−TOpt. The representation Z is then fed to a target task
predictor gY and a proxy adversary gS , both of which are MLPs with 2 hidden layers with 16 neurons for Gaussian
data and 2 hidden layers with 128 neurons for Folktables and CelebA. All involved networks (f , gY , gS) are trained
end-to-end. We use stochastic gradient descent-ascent (SGDA) Xie et al. (2017) with AdamW (Loshchilov & Hutter,
2017) as an optimizer to alternately train the encoder, target predictor, and proxy adversary. We use a batch size of
500 for Gaussian data; and 128 for Folktables and CelebA. Then, the corresponding learning rates are optimized over{

10−2, 10−3, 5 × 10−4, 10−4, 10−5}
by minimizing the target loss on the corresponding validation sets.

HSIC-IRepL (Quadrianto et al., 2019): This method can be formulated as (2) where Dep(Z, S) is replaced by
HSIC(Z, S). The encoder and target predictor networks have the same architecture as ARL. And we use stochastic
gradient descent to train the involved neural networks.

6.6 Results

Utility-Invariance Trade-offs: Figures 4 and 5 show the utility-invariance and Dep(Z, Y )-Dep(Z, S) trade-offs for
the toy Gaussian, Folktables-WA, Folktables-NY, and CelebA datasets. The invariance measure for the Gaussian
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Figure 6: Invariance versus Dep(Z, S) of K−TOpt for (a) Gaussian, (b) Folktables-WA, (c) Folktables-NY, and (d)
CelebA datasets. Dep(Z, S) enjoys a monotonic relation with the underlying invariance measures.

toy example is KCC (19), and the invariance measure for Folktables and CelebA datasets is the fairness measure,
DPV (18). We make the following observations: 1) K−TOpt is highly stable and almost spans the entire trade-off
front for all datasets except Folktables-NY, which can be due to the inability of scalarized single-objective formulation
in (2), in contrast to the constrained optimization in (1), to find all Pareto-optimal points. 2) There is almost the same
trend in the trade-off between Dep(Z, Y ) and Dep(Z, S) (Figure 5) as the utility-invariance trade-off (Figure 4). This
is a desirable observation since Dep(Z, Y )-Dep(Z, S) trade-off is what we optimized in (11) as a surrogate to utility-
invariance trade-off. 3) The baseline method HSIC-IRepL, despite using a universal dependence measure, leads to a
sub-optimal trade-off front due to the lack of convergence guarantees to the global optima. 4) The baselines, ARL
and SARL, span only a small portion of the trade-off front in the Gaussian toy example since some dimensions of the
semantic attribute S in (17) are mean independent (but not entirely independent) to some dimensions of X . Therefore
the adversary does not provide any information to the encoder to discard [S1, S2] from the representation. Moreover,
in this dataset, ARL and SARL baselines do not approach Z ⊥⊥ S, i.e., KCC(Z, S) = 0 cannot be attained for any
value of the trade-off parameter λ. 5) ARL shows high deviation on the Folktables dataset due to the unstable nature
of the minimax optimization. 6) SARL performs as well as our K−TOpt for CelebA dataset. This is because both S
and Y are categorical for the CelebA dataset, and therefore linear RKHS on one-hot encoded attribute performs just
as well as universal RKHSs (Li et al., 2021).

Universality of Dep(Z, S): We empirically examine the practical validity of our assumption in Section 4 and verify if
our dependence measure Dep(Z, S), defined in (7), can capture all modes of dependency between Z and S. Figure 6
(a) shows the plot of the universal dependence measure KCC(Z, S) versus Dep(Z, S) for the Gaussian dataset and
Figures 6 (b, c) illustrate the relationship between DPV(Ŷ , S) and Dep(Z, S) for Folktables and CelebA datasets,
respectively. We observe a non-decreasing relation between the corresponding invariance measures and Dep(Z, S).
More importantly, as KCC(Z, S) → 0 (or DPV(Ŷ , S) → 0) so does Dep(Z, S). These observations verify that
Dep(Z, S) accounts for all modes of dependence between Z and S.

6.7 Ablation Study

Effect of Embedding Dimensionality: In this experiment, we examine the significance of the embedding dimension-
ality, rOpt(λ), discussed in Corollary 4.1. We obtain the utility-invariance trade-off when the embedding dimension-
ality is fixed to r = rOpt(λ = 0) = 15. A comparison between the utility-invariance trade-off induced by rOpt(λ)
and the fixed r = 15 is illustrated in Figure 7 (a). We observe that not only the utility-invariance trade-off for fixed
r is dominated by that of rOpt(λ), but also, using fixed r is unable to achieve the total invariance representation, i.e.,
Z ⊥⊥ S. Further, some of the largest eigenvalues of (14) versus the invariance trade-off parameter λ are plotted in
Figure 7 (b). We recall from Corollary 4.1 that, for any given λ, rOpt is the number of non-negative eigenvalues of (14).

Effect of Semantic Attribute Removal: In this experiment, we examine the effect of removing S (i.e., age) from
the input data in the Folktables-WA dataset and examine whether this removal helps the utility-invariance trade-off.
Figure 7 (c) shows the utility-invariance trade-off resulting from all methods, and Figure 7 (d) compares removing and
keeping the age information from the input data for K−TOpt. Observe that: 1) There is almost the same trend in both
keeping and removing the age attribute from the input data for all methods. 2) Removing the age attribute from input
data slightly degrades the utility-invariance trade-off due to the lower information contained in the input data.
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Figure 7: (a) Comparison between the utility-invariance trade-offs induced by the optimal embedding dimensionality
rOpt(λ) and that of fixed r = 15. Fixed r = 15 is significantly dominated by that of rOpt(λ) and fails to attain Z ⊥⊥ S.
(b) The first, fifth, tenth, and fifteenth largest eigenvalues in (14) versus 1 − λ. Given λ, rOpt is equal to the number of
non-negative eigenvalues. As 1 − λ decreases, the largest eigenvalues approach negative numbers. (c) Utility versus
invariance trade-offs for all methods when age (i.e., the sensitive attribute) is discarded from the input data. (d) A
comparison between trade-offs of K−TOpt when age is present versus age is discarded from the input data. Removing
the age attribute slightly degrades the trade-off due to information discarding.

7 Conclusion

Invariant representation learning (IRepL) often involves a trade-off between utility and invariance. While the existence
of such trade-off and its bounds have been studied, its exact characterization has not been investigated. This paper
took steps towards addressing this problem by i) establishing the exact kernelized trade-off (denoted by K−TOpt), ii)
determining the optimal dimensionality of the data representation necessary to achieve a desired optimal trade-off
point, and iii) developing a scalable learning algorithm for encoders in some RKHSs to achieve K−TOpt. Numerical
results on an illustrative example and two real-world datasets show that commonly used adversarial representation
learning-based techniques cannot attain the optimal trade-off estimated by our solution.

Our theoretical results and empirical solutions shed light on the utility-invariance trade-off for various settings, such as
algorithmic fairness and privacy-preserving learning under the scalarization of the bi-objective trade-off formulation.
Furthermore, the trade-off in IRepL is also a function of the involved dependence measure that quantifies the depen-
dence of learned representations on the semantic attribute. As such, the trade-off obtained in this paper is optimal
for HSIC-like dependence measures. Studying the bi-objective trade-off (rather than the scalarization) and employing
other universal measures are possible directions for future work.

Broader Impact

IRepL can enable many machine learning systems to generalize to the domains that have not been trained on or pre-
vent the leakage of private (sensitive) information while being effective for the desired prediction task(s). In particular,
IRepL has a direct application in fairness which is a significant societal problem. Even though this paper aims to char-
acterize the utility-invariance trade-off as a byproduct, our paper proposes an algorithm that learns fair representations
of data. More generally, these approaches can enable machine learning systems to discard specific data before making
predictions. We point out that demographic parity, the fairness criterion considered in this paper, can be unsuitable
as a fairness criterion in some practical scenarios (Hardt et al., 2016; Chouldechova, 2017) and other fairness criteria
like equalized odds (EO) or equality of opportunity (EOO) (Hardt et al., 2016) should be considered. The method
proposed in this paper can be extended to other notions of fairness, such as EO and EOO, by modifying Dep(Z, S) to
capture the dependency between Z and S, given Y . We leave this extension to future work.
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A A Population Expression for Definition in (7)

A population expression for Dep(Z, S) in (7) is given in the following.

Dep(Z, S) =
r∑

j=1

{
EX,S,X′,S′ [fj(X) fj(X ′) kS(X, X ′)] + EX [fj(X)]EX′ [fj(X ′)] ES,S′ [kS(X, S′)]

−2EX,S [fj(X)EX′ [fj(X ′)]ES′ [kS(S, X ′)]]
}

where (X ′, S′) is independent of (X, S) with the same distribution as pXS .

Proof. We first note that this population expression is inspired by that of HSIC (Gretton et al., 2005a).

Consider the operator ΣSX induced by the linear functional Cov (α(X), βS(S)) = ⟨βS , ΣSXα⟩HS
. Then, it follows

that

Dep(Z, S) =
r∑

j=1

∑
βS∈US

Cov2 (fj(X), βS(S))

=
r∑

j=1

∑
βS∈US

⟨βS , ΣSXfj⟩2
HS

=
r∑

j=1

∑
βS∈US

⟨βS , ΣSXfj⟩2
HS

(a)=
r∑

j=1
∥ΣSXfj∥2

HS

=
r∑

j=1
⟨ΣSXfj , ΣSXfj⟩HS

(b)=
r∑

j=1
Cov

(
fj(X),

(
ΣSXfj

)
(S)

)
=

r∑
j=1

Cov
(

fj(X), ⟨kS(·, S), ΣSXfj⟩HS

)
=

r∑
j=1

Cov (fj(X),Cov(fj(X ′), kS(S′, S)))

=
r∑

j=1
Cov ( fj(X), EX′,S′ [fj(X ′) kS(S, S′)] − EX′ [fj(X ′)]ES′ [kS(S, S′)] )

=
r∑

j=1

{
EX,S,X′,S′ [fj(X) fj(X ′) kS(S, S′)] + EX [fj(X)]EX′ [fj(X ′)] ES,S′ [kS(S, S′)]

−2EX,S [fj(X)EX′ [fj(X ′)]ES′ [kS(S, S′)]]
}

where (a) is due to Parseval relation for orthonormal basis and (b) is from the definition of ΣSX .

B Proof of Lemma 1

Lemma 1. Let KX , KS ∈ Rn×n be Gram matrices corresponding to HX and HS , respectively, i.e., (KX)ij =
kX(xi, xj) and (KS)ij = kS(si, sj), where covariance is empirically estimated as

Cov (fj(X), βS(S)) ≈ 1
n

n∑
i=1

fj(xi)βS(si) − 1
n2

n∑
i=1

n∑
k=1

fj(xi)βS(sk).
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It follows that, the corresponding empirical estimation for Dep (Z, S) is

Depemp (Z, S) := 1
n2 ∥ΘKXHLS∥2

F , (20)

where H = In − 1
n 1n1T

n is the centering matrix, and LS is a full column-rank matrix in which LSLT
S = KS

(Cholesky factorization), and KS is the Gram matrix corresponding to HS . Furthermore, the empirical estimator in
(9) has a bias of O(n−1) and a convergence rate of O(n−1/2).

Proof. Firstly, let us reconstruct the orthonormal set US when n i.i.d. observations {sj}n
j=1 are given. Invoking

representer theorem, for two arbitrary elements βi and βm in US , we have

⟨βi, βm⟩HS
=

〈
n∑

j=1
αjkS(sj , ·),

n∑
l=1

ηlkS(sl, ·)
〉

HS

=
n∑

j=1

n∑
l=1

αjηlkS(sj , sl)

= αT KSη

=
〈
LT

S α, LT
S η

〉
Rq

where LS ∈ Rn×q is a full column-rank matrix and KS = LSLT
S is the Cholesky factorization of KS . As a result,

searching for βi ∈ US is equivalent to searching for LT
S α ∈ Uq where Uq is any complete orthonormal set for Rq .

Using empirical expression for covariance, we get

Depemp(Z, S) :=
∑

βS∈US

r∑
j=1

{
1
n

n∑
i=1

fj(xi)βS(si) − 1
n2

n∑
i=1

fj(xi)
n∑

k=1
βS(sk)

}2

=
∑

LT
S

α∈Uq

r∑
j=1

{ 1
n

θT
j KXKSα − 1

n2 θT
j KX1n1T

n KSα
}2

=
∑

LT
S

α∈Uq

r∑
j=1

{
1
n

θT
j KXHKSα

}2

=
∑

LT
S

α∈Uq

r∑
j=1

{
1
n

θT
j KXHLSLT

S α

}2

=
∑

ζ∈Uq

r∑
j=1

{
1
n

θT
j KXHLSζ

}2

=
∑

ζ∈Uq

1
n2 ∥ΘKXHLSζ∥2

2

= 1
n2 ∥ΘKXHLS∥2

F ,

where f(X) = Θ
[
kX(x1, X), · · · , kX(xn, X)

]T
and Θ := [θ1, · · · , θr]T .
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We now show that the bias of Depepm(Z, S) for estimating Dep(Z, S) in (9) is O
( 1

n

)
. To achieve this, we split

Depepm(Z, S) into three terms as,

1
n2 ∥ΘKXHLS∥2

F = 1
n2 Tr

{
ΘKXHKSHKXΘT

}
= 1

n2 Tr
{

ΘKX

(
I − 1

n
11T

)
KS

(
I − 1

n
11T

)
KXΘT

}
= 1

n2 Tr
{

KXΘT ΘKXKS

}︸ ︷︷ ︸
I

− 2
n3 Tr

{
1T KXΘT ΘKXKS1

}︸ ︷︷ ︸
II

+ 1
n4 Tr

{
1T KXΘT ΘKX11T KS1

}︸ ︷︷ ︸
III

(21)

Let cn
p denote the set of all p-tuples drawn without replacement from {1, · · · , n}. Moreover, let Θ = [θ1, · · · , θr]T ∈

Rr×n and (A)ij denote the element of an arbitrary matrix A at i-th row and j-th column. Then, it follows that

(I):

E
[
Tr

{
KXΘT ΘKXKS

}]
=

r∑
k=1

E

Tr

KXθk︸ ︷︷ ︸
:=αk

θT
k KXKS




=
r∑

k=1
E

[
Tr

{
αkαT

k KS

}]
=

r∑
k=1

E

∑
i

(αkαT
k )ii(KS)ii +

∑
(i,j)∈cn

2

(αkαT
k )ij(KS)ji


= n

r∑
k=1

EX,S

[
f2

k (X)kS(S, S)
]

+ n!
(n − 2)!

r∑
k=1

EX,S,X′,S′ [fk(X)fk(X ′)kS(S, S′)]

= O(n) + n!
(n − 2)!

r∑
k=1

EX,S,X′,S′ [fk(X)fk(X ′)kS(S, S′)]

(22)

where (X, S) and (X ′, S′) are independently drawn from the joint distribution pXS .

(II):

E
[
1T KXΘT ΘKXKS1

]
=

r∑
k=1

E

1T KXθk︸ ︷︷ ︸
αk

θT
k KXKS1


=

r∑
k=1

E
[
1T αkαT

k KS1
]

=
r∑

k=1
E

 n∑
m=1

n∑
i=1

n∑
j=1

(αkαT
k )mi(KS)mj


=

r∑
k=1

E

∑
i

(αkαT
k )ii(KS)ii +

∑
(m,j)∈cn

2

(αkαT
k )mm(KS)mj


+

r∑
k=1

E

 ∑
(m,i)∈cn

2

(αkαT
k )mi(KS)mm +

∑
(m,j)∈cn

2

(αkαT
k )mj(KS)mj
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+
r∑

k=1
E

 ∑
(m,i,j)∈cn

3

(αkαT
k )mi(KS)mj


= n

r∑
k=1

EX,S

[
f2

k (X)kS(S, S)
]

+ n!
(n − 2)!

r∑
k=1

EX,S,S′
[
f2

k (X)kS(S, S′)
]

+ n!
(n − 2)!

r∑
k=1

EX,S,X′ [fk(X)fk(X ′)kS(S, S)]

+ n!
(n − 2)!

r∑
k=1

EX,S,X′,S′ [fk(X)fk(X ′)kS(S, S′)]

+ n!
(n − 3)!

r∑
k=1

EX,S [fk(X)EX′ [fk(X ′)]ES′ [kS(S, S′)]]

= O(n2) + n!
(n − 3)!

r∑
k=1

EX,S [fk(X)EX′ [fk(X ′)]ES′ [kS(S, S′)]] . (23)

(III):

E
[
1T KXΘT ΘKX11T KS1

]
=

r∑
k=1

E

1T KXθk︸ ︷︷ ︸
αk

θT
k KX11T KS1


=

r∑
k=1

E
[
1T αkαT

k 11T KS1
]

=
r∑

k=1
E

 ∑
i,j,m,l

(αkαT
k )ij(KS)ml


= O(n3) +

r∑
k=1

E

 ∑
(i,j,m,l)∈cn

4

(αkαT
k )ij(KS)ml


= O(n3) + n!

(n − 4)!

r∑
k=1

EX [fk(X)] EX′ [fk(X ′)] ES,S′ [kS(S, S′)]

(24)

Using above calculations together with Lemma 2 lead to

Dep(Z, S) = E [Depemp(Z, S)] + O
(

1
n

)
.

We now obtain the convergence of depemp(Z, S). Consider the decomposition in (21) together with (22), (23),
and (24). Let αk := KXθk , then it follows that

P {Dep(Z, S) − Depemp(Z, S) ≥ t}

≤ P


r∑

k=1
EX,S,X′,S′ [fk(X)fk(X ′)kS(S, S′)] − (n − 2)!

n!

r∑
k=1

∑
(i,j)∈cn

2

(αkαT
k )ij(KS)ji + O

(
1
n

)
≥ at


+ P


r∑

k=1
EX,S [fk(X)EX′ [fk(X ′)]ES′ [kS(S, S′)]] − (n − 3)!

n!

r∑
k=1

∑
(i,j,m)∈cn

3

(αkαT
k )mi(KS)mj + O

(
1
n

)
≥ bt


+ P

{
r∑

k=1
EX [fk(X)] EX′ [fk(X ′)]ES,S′ [kS(S, S′)]
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− (n − 4)!
n!

r∑
k=1

∑
(i,j,m,l)∈cn

4

(αkαT
k )ij(KS)ml + O

(
1
n

)
≥ (1 − a − b)t

}
,

where a, b > 0 and a + b < 1. For convenience, we omit the term O
( 1

n

)
and add it back in the last stage.

Define ζ := (X, S) and consider the following U-statistics (Hoeffding, 1994)

u1(ζi, ζj) = (n − 2)!
n!

∑
(i,j)∈cn

2

r∑
k=1

(αkαT
k )ij(KS)ij

u2(ζi, ζj , ζm) = (n − 3)!
n!

∑
(i,j,m)∈cn

3

r∑
k=1

(αkαT
k )mi(KS)mj

u3(ζi, ζj , ζm, ζl) = (n − 4)!
n!

∑
(i,j,m,l)∈cn

4

r∑
k=1

(αkαT
k )ij(KS)ml

Then, from Hoeffding’s inequality (Hoeffding, 1994) it follows that

P {Dep(Z, S) − Depemp(Z, S) ≥ t} ≤ e
−2a2t2

2r2M2 n + e
−2b2t2

3r2M2 n + e
−2(1−a−b)2t2

4r2M2 n,

where we assumed that kS(·, ·) is bounded by one and f2
k (Xi) is bounded by M for any k = 1, · · · , r and i = 1, · · · , n.

Further, if 0.22 ≤ a < 1, it holds that

e
−2a2t2

2r2M2 n + e
−2b2t2

3r2M2 n + e
−2(1−a−b)2t2

4r2M2 n ≤ 3e
−a2t2

r2M2 n.

Consequently, we have

P {|Dep(Z, S) − Depemp(Z, S)| ≥ t} ≤ 6e
−a2t2

r2M2 n.

Therefore, with probability at least 1 − δ, it holds

|Dep(Z, S) − Depemp(Z, S)| ≤
√

r2M2 log(6/σ)
α2n

+ O
(

1
n

)
. (25)

C Proof of Theorem 2

Theorem 2. Let Z = f(X) be an arbitrary representation of the input data, where f ∈ HX . Then, there exist an
invertible Borel function h, such that, h ◦ f belongs to Ar.

Proof. Recall that the space of disentangled representation is

Ar :=
{

(f1, · · · , fr)
∣∣∣ fi, fj ∈ HX , Cov (fi(X), fj(X)) + γ⟨fi, fj⟩HX

= δi,j

}
,

where γ > 0. Let IX denote the identity operator from HX to HX . We claim that h := [h1, · · · , hr], where

G0 =


⟨f1, f1⟩HX

· · · ⟨f1, fr⟩HX

...
. . .

...
⟨fr, f1⟩HX

· · · ⟨fr, fr⟩HX


G = G0

−1/2

hj ◦ f =
r∑

m=1
gjm (ΣXX + γIX)−1/2

fj , ∀j = 1, · · · , r
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is the desired invertible transformation. To see this, construct

Cov (hi(f(X)), hj(f(X))) + γ⟨hi ◦ f , hj ◦ f⟩HX

= ⟨hi ◦ f , (ΣXX + γIX) hj ◦ f⟩HX

=
〈

r∑
m=1

gim (ΣXX + γIX)−1/2
fi,

r∑
k=1

gjk(ΣXX + γIX) (ΣXX + γIX)−1/2
fj

〉
HX

=
r∑

m=1

r∑
k=1

gim gjk ⟨fi, fj⟩HX
= (G G0 G)ij = δi,j

The inverse of h is h′ := [h′
1, · · · , h′

r] where

H = G
1/2
0

h′
j ◦ h =

r∑
m=1

hjm (ΣXX + γIX)1/2
hj , ∀j = 1, · · · , r.

D Proof of Theorem 3

Theorem 3. Consider the operator ΣSX to be induced by the bi-linear functional Cov(α(X), βS(S)) =
⟨ΣSXα, βS⟩HS

and define ΣY X and ΣXX , similarly. Then, a global optimizer for the optimization problem in (11) is
the eigenfunctions corresponding to the r largest eigenvalues of the following generalized eigenvalue problem

((1 − λ) Σ∗
Y XΣY X − λ Σ∗

SXΣSX) f = τ (ΣXX + γ IX) f , (26)

where γ is the disentanglement regularization parameter defined in (10), and Σ∗ is the adjoint of Σ.

Proof. Consider Dep(Z, S) in (7):

Dep(Z, S) =
∑

βS∈US

r∑
j=1

Cov2 (fj(X), βS(S))

=
r∑

j=1

∑
βS∈US

⟨βS , ΣSXfj⟩2
HS

=
r∑

j=1
∥ΣSXfj∥2

HS
,

where the last step is due to Parseval’s identity for orthonormal basis set. Similarly, we have dep(Z, Y ) =∑r
j=1∥ΣY Xfj∥2

HY
. Recall that Z = f(X) = [(f1(X), · · · , fr(X)], then it follows that

J
(
f(X)

)
= (1 − λ)

r∑
j=1

∥ΣY Xfj∥2
HY

−λ

r∑
j=1

∥ΣSXfj∥2
HS

= (1 − λ)
r∑

j=1
⟨ΣY Xfj , ΣY Xfj⟩HY

− λ

r∑
j=1

⟨ΣSXfj , ΣSXfj⟩HS

=
r∑

j=1

〈
fj ,

(
(1 − λ)Σ∗

Y XΣY X − λ Σ∗
SXΣSX

)
fj

〉
HX

,

where Σ∗ is the adjoint operator of Σ. Further, note that Cov
(
fi(X), fj(X)

)
is equal to

〈
fi, ΣXXfj

〉
HX

. As a result,
the optimization problem in (26) can be restated as

sup
⟨fi,(ΣXX +γIX )fk⟩HX

=δi,k

r∑
j=1

⟨fj , ((1 − λ)Σ∗
Y XΣY X − λ Σ∗

SXΣSX) fj⟩HX
, 1 ≤ i, k ≤ r
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where IX denotes identity operator from HX to HX . This optimization problem is known as generalized Rayleigh
quotient (Strawderman, 1999) and a possible solution to it is given by the eigenfunctions corresponding to the r largest
eigenvalues of the following generalized problem

((1 − λ)ΣXY ΣY X − λ ΣXSΣSX) f = λ (ΣXX + γIX) f.

E Proofs of Theorem 4 and Corollary 4.1

Theorem 4. Let the Cholesky factorization of KX be KX = LXLT
X , where LX ∈ Rn×d (d ≤ n) is a full column-

rank matrix. Let r ≤ d, then a solution to (13) is

f opt(X) = Θopt [kX(x1, X), · · · , kX(xn, X)]T

where Θopt = UT L†
X and the columns of U are eigenvectors corresponding to the r largest eigenvalues of the

following generalized eigenvalue problem.

LT
X ((1 − λ)HKY H − λHKSH) LXu = τ

(
1
n

LT
XHLX + γI

)
u. (27)

Further, the supremum value of (13) is equal to
∑r

j=1 τj , where {τ1, · · · , τr} are r largest eigenvalues of (14).

Proof. Consider the Cholesky factorization, KX = LXLT
X where LX is a full column-rank matrix. Using the

representer theorem, the disentanglement property in (10) can be expressed as

Cov (fi(X), fj(X)) + γ ⟨fi, fj⟩HX

= 1
n

n∑
k=1

fi(xk)fj(xk) − 1
n2

n∑
k=1

fi(xk)
n∑

m=1
fj(xm) + γ ⟨fi, fj⟩HX

= 1
n

n∑
k=1

n∑
t=1

KX(xk, xt)θit

n∑
m=1

KX(xk, xm)θjm − 1
n2 θT

i KX1n1T
n KXθj + γ ⟨fi, fj⟩HX

= 1
n

(KXθi)T (KXθj) − 1
n2 θT

i KX1n1T
n KXθj + γ

〈
n∑

k=1
θikkX(·, xk),

n∑
t=1

θitkX(·, xt)
〉

HX

= 1
n

θT
i KXHKXθj + γ θT

i KXθj

= 1
n

θT
i LX

(
LT

XHLX + nγ I
)

LT
Xθj

= δi,j .

As a result, f ∈ Ar is equivalent to

ΘLX

( 1
n

LT
XHLX + γI

)
︸ ︷︷ ︸

:=C

LT
XΘT = Ir,

where Θ :=
[
θ1, · · · , θr

]T ∈ Rr×n.
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Let V = LT
XΘT and consider the optimization problem in (13):

sup
f∈Ar

{(1 − λ) Depemp(f(X), Y ) − λ Depemp(f(X), S)}

= sup
f∈Ar

1
n2

{
(1 − λ) ∥ΘKXHLY ∥2

F − λ ∥ΘKXHLS∥2
F

}
= sup

f∈Ar

1
n2

{
(1 − λ) Tr

{
ΘKXHKY HKXΘT

}
− λ Tr

{
ΘKXHKSHKXΘT

}}
= max

V T CV =Ir

1
n2 Tr

{
ΘLXBLT

XΘT
}

= max
V T CV =Ir

1
n2 Tr

{
V T BV

}
(28)

where the second step is due to (9) and

B := LT
X ((1 − λ)HKY H − λHKSH) LX

It is shown in Kokiopoulou et al. (2011) that an3 optimizer of (28) is any matrix U whose columns are eigenvectors
corresponding to r largest eigenvalues of generalized problem

Bu = τ Cu (29)

and the maximum value is the summation of r largest eigenvalues. Once U is determined, then, any Θ in which
LT

XΘT = U is optimal Θ (denoted by Θopt). Note that Θopt is not unique and has a general form of

ΘT =
(
LT

X

)†
U + Λ0, R(Λ0) ⊆ N

(
LT

X

)
.

However, setting Λ0 to zero would lead to minimum norm for Θ. Therefore, we opt Θopt = UT L†
X .

Corollary 4.1. Embedding Dimensionality: A useful corollary of Theorem 4 is characterizing optimal embedding
dimensionality as a function of trade-off parameter, λ:

rOpt(λ) := arg sup
0≤r≤l

{
sup

f∈Ar

{J emp (f , λ)}
}

= number of non-negative eigenvalues of (14)

Proof. From proof of Theorem 4, we know that

sup
f∈Ar

{(1 − λ) Depemp(f(X), Y ) − λ Depemp(f(X), S)} =
r∑

j=1
τj ,

where {τ1, · · · , τn} are eigenvalues of the generalized problem in (14) in decreasing order. It follows immediately that

arg sup
r


r∑

j=1
τj

 = number of non-negative elements of {τ1, · · · , τl}.

F Proof of Theorem 5

Theorem 5. Assume that kS and kY are bounded by one and f2
j (xi) ≤ M for any j = 1, . . . , r and i = 1, . . . , n for

which f = (f1, . . . , fr) ∈ Ar. Then, for any n > 1 and 0 < δ < 1, with probability at least 1 − δ, we have∣∣∣∣∣ sup
f∈Ar

J(f , λ) − sup
f∈Ar

J emp(f , λ)

∣∣∣∣∣ ≤ rM

√
log(6/δ)
0.222 n

+ O
(

1
n

)
.

3Optimal V is not unique.
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Proof. Recall that in the proof of Lemma 1 we have shown that with probability at least 1−δ, the following inequality
holds

|Dep(Z, S) − Depemp(Z, S)| ≤
√

r2M2 log(6/σ)
0.222 n

+ O
(

1
n

)
.

Using the same reasoning for dep(Z, Y ), with probability at least 1 − δ, we have

|Dep(Z, Y ) − Depemp(Z, Y )| ≤
√

r2M2 log(6/σ)
0.222 n

+ O
(

1
n

)
.

Since J(f(X)) = (1 − λ) dep(Z, Y ) − λ dep(Z, S) and J emp(f(X)) := (1 − λ) depemp(Z, Y ) − λ depemp(Z, S), it
follows that with probability at least 1 − δ,

|J(f , λ) − J emp(f , λ)| ≤ rM

√
log(6/σ)
0.222 n

+ O
(

1
n

)
.

We complete the proof by noting that, the following inequality holds for any bounded J and J emp:∣∣∣∣∣ sup
f∈Ar

J(f , λ) − sup
f∈Ar

J emp(f , λ)

∣∣∣∣∣ ≤ sup
f∈Ar

|J(f , λ) − J emp(f , λ)| .

G Optimality of Target Task Performance in K−TOpt

We show that maximizing dep
(
f(X), Y

)
can lead to a representation Z that is sufficient to result in the optimal Bayes

prediction of Y .

Theorem 6. Let f∗ be the optimal encoder by maximizing Dep(f(X), Y ), where γ → 0 and HY is a linear RKHS.
Then, there exist W ∈ RdY ×r and b ∈ RdY such that W f∗(X) + b is the Bayes estimator, i.e.,

EX,Y

[
∥W f(X)∗ + b − Y ∥2]

= inf
h is Borel

EX,Y

[
∥h(X) − Y ∥2]

= EX,Y

[
∥E[Y | X] − Y ∥2]

.

Proof. We only prove this theorem for the empirical version due to its convergence to the population counterpart. The
optimal Bayes estimator can be the composition of the kernelized encoder Z = f(X) and a linear regressor on top
of it. More specifically, Ŷ = W f(X) + b can approach to E[Y | X] if we optimize f , W , and b all together. This
is because f ∈ HX can approximate any Borel function (due to the universality of HX ) and, since r ≥ dy , W can
be surjective. Let Z := [z1, · · · , zn] ∈ Rr×n and Y := [y1, · · · , yn] ∈ Rdy×n. Further, let Z̃ and ỹ be the centered
(i.e., mean subtracted) version of Z and Y , respectively. We firstly optimize b for any given f , r, and W :

bopt := arg min
b

1
n

n∑
i=1

∥W zi + b − yi∥2

= 1
n

n∑
i=1

yi − W
1
n

n∑
i=1

zi.

Then, optimizing over W would lead to

min
W

1
n

∥∥W Z̃ − Ỹ
∥∥2

F
= 1

n
min
W

∥∥Z̃T W T − Ỹ T
∥∥2

F

= min
W

1
n

∥∥Z̃T W T − PZ̃Ỹ T
∥∥2

F
+ 1

n

∥∥PZ̃⊥Ỹ T
∥∥2

F

= 1
n

∥∥PZ̃⊥Ỹ T
∥∥2

F
= 1

n

∥∥Ỹ
∥∥2

F
− 1

n

∥∥PZ̃Ỹ T
∥∥2

F
,
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where PZ̃ denotes the orthogonal projector onto the column space of Z̃T and a possible minimizer is W T
opt =

(Z̃T )†Ỹ T or equivalently Wopt = Ỹ (Z̃)†. Since the MSE loss is a function of the range (column space) of Z̃T , we
can consider only Z̃T with orthonormal columns or equivalently 1

n Z̃Z̃T = Ir. In this setting, it holds PZ̃ = 1
n Z̃T Z̃.

Now, consider optimizing f(X) = Θ [kX(x1, X), · · · , kX(xn, X)]T . We have, Z̃ = ΘKXH where H is the
centering matrix. Let V = LT

x ΘT and C = 1
n LT

XHLX , then it follows that

min
ΘKX HKX ΘT =nIr

1
n

{∥∥Ỹ
∥∥2

F
−

∥∥PZ̃Ỹ T
∥∥2

F

}
= 1

n

∥∥Ỹ
∥∥2

F
− max

ΘKX HKX ΘT =nIr

1
n

∥∥PZ̃Ỹ T
∥∥2

F

= 1
n

∥∥Ỹ
∥∥2

F
− max

V T CV =Ir

1
n2 Tr

[
Ỹ HKXΘT ΘKXHỸ T

]
= 1

n2

∥∥Ỹ
∥∥2

F
− max

V T CV =Ir

1
n2 Tr

[
ΘKXHỸ T Ỹ HKXΘT

]
=

∥∥Ỹ
∥∥2

F
− max

V T CV =Ir

1
n2 Tr

[
V T LT

X Ỹ T Ỹ LXV
]

= 1
n

∥∥Ỹ
∥∥2

F
− 1

n2

r∑
j=1

λj ,

where λ1, · · · , λr are r largest eigenvalues of the following generalized problem

B0u = λ Cu

and B0 := LT
X Ỹ T Ỹ LX . This resembles the eigenvalue problem in Section E, equation (29) where λ = 0, HY is a

linear RKHS and γ → 0.

H Deficiency of Mean-Squared Error as A Measure of Dependence

Theorem. Let HS contain all Borel functions, S be a dS-dimensional RV, and LS(·, ·) be MSE loss. Then,

Z ∈ arg sup
{

inf
gS∈HS

EX,S [LS (gS (Z) , S)]
}

⇔ E[S | Z] = E[S].

Proof. Let Si, (gS(Z))i, and (E[S | Z] )i denote the i-th entries of S, gS(Z), and E[S | Z], respectively. Then, it
follows that

inf
gS∈HS

EX,S [LS (gS (Z) , S)] = inf
gS∈HS

dS∑
i=1

EX,S

[
((gS(Z))i − Si)2

]
=

dS∑
i=1

EX,S

[
((E[S | Z] )i − Si)2

]
≤

dS∑
i=1

ES

[
((E[S] )i − Si)2

]
=

dS∑
i=1

Var[Si],

where the second step is due to the optimality of conditional mean (i.e., Bayes estimation) for MSE (Jacod & Protter,
2012) and the last step is because independence between Z and S leads to an upper bound on MSE. Therefore, if
Z ∈ arg sup {infgS∈HS

EX,S [LS (gS (Z) , S)]}, then E[S | Z] = E[S]. On the other hand, if E[S | Z] = E[S], then it
follows immediately that Z ∈ arg sup {infgS∈HS

EX,S [LS (gS (Z) , S)]}.

This theorem implies that an optimal adversary does not necessarily lead to a representation Z that is statistically
independent of S, but rather leads to S being mean independent of the representation Z.
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