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Abstract

As multimodal large language models (MLLMs) advance, MLLM-based virtual agents
have demonstrated remarkable performance. However, existing benchmarks face signifi-
cant limitations, including uncontrollable task complexity, extensive manual annotation
with limited scenarios, and a lack of multidimensional evaluation. In response to these
challenges, we introduce OmniBench, a self-generating, cross-platform, graph-based
benchmark with an automated pipeline for synthesizing tasks of controllable complexity
through subtask composition. To evaluate the diverse capabilities of virtual agents on
the graph, we further present OmniEval, a multidimensional evaluation framework that
includes subtask-level evaluation, graph-based metrics, and comprehensive tests across
10 capabilities. Our synthesized dataset contains 36k graph-structured tasks across 20
scenarios, achieving a 91% human acceptance rate. Training on our graph-structured
data shows that it can more efficiently guide agents compared to manually annotated data.
We conduct multidimensional evaluations for various open-source and closed-source
models, revealing their performance across various capabilities and paving the way for
future advancements.

1 Introduction

With the development of MLLMs [9, 42], recent MLLM-based virtual agents [46, 11, 28] have demonstrated
promising performance in web navigation [38], mobile device control [14], and computer interaction [17].
To explore real-world values of visual agents, current research mainly evaluates their performance based on
offline trajectory similarity with human demonstrations [37, 27, 6] or by using expert-crafted functions in
interactive online environments [44, 48, 47].

However, these two types of benchmarks mentioned above still have notable limitations: 1) Uncontrollable
and fixed task complexity. Existing benchmarks typically propose tasks entirely rather than progressively
with fine-grained guidance, which results in uncontrollable and fixed task complexity. Uncontrollable task
complexity makes it hard to design fine-grained test data for various capabilities, while fixed complexity
makes it challenging for benchmarks to keep up with agents’ growing capabilities. 2) Extensive manual
labor and limited task scenarios. The existing benchmarks rely on manual annotations to synthesize
demonstration trajectories or evaluation functions, making the cost of designing benchmarks unaffordable and
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Figure 1: Overview of OmniBench, a systematic benchmark with five-dimensional task complexity
and bottom-up automatic task synthesis for generating structured task graphs. It evaluates ten virtual
agent capabilities using high-quality graph-based data, ensuring scalable and realistic task evaluation.

hindering the expansion of scale. Moreover, the annotated data with a limited amount is influenced by human
prior experience, making it difficult to cover comprehensive scenarios. 3) Absence of multidimensional
evaluation: Existing benchmarks commonly evaluate agents based on the final state of tasks, lacking
an evaluation of the intermediate steps in task execution. Additionally, the various capabilities required
by virtual agents to complete tasks (e.g., planning, instruction understanding, etc.) cannot be quantified
by coarse task success rates, failing to provide sufficient feedback for potential future improvements. In
summary, an ideal benchmark should include not only diverse task scenarios with controllable complexity,
but also a comprehensive evaluation across multiple dimensions.

To cost-effectively construct diverse task scenarios with complexity at multiple granularities for compre-
hensive agent evaluation, we propose a novel self-generating, graph-based benchmark, OmniBench. It
dynamically synthesizes tasks with controllable complexity based on a bottom-up pipeline. OmniBench
spans five fundamental types of task complexity to construct 10 evaluation dimensions (see Figure 1). Test
tasks across these dimensions are categorized based on combinations of complexity types. For example, a
long-range planning test task typically exhibits higher dependency complexity and hierarchy complexity.
OmniBench consists of 36k high-quality graph-structured tasks across 20 distinct scenarios (e.g. image
editing, video editing) derived from its self-generating framework, with the task scale being 40x larger
than most environment-based benchmarks, as shown in Table 1. This automated process opens up the
possibility of scaling up virtual agent evaluation in a low-resource manner. Therefore, OmniBench facilitates
the easy construction of agent benchmarks on desktop, mobile, and web platforms, as shown in Table 1. For
multidimensional task synthesis, we take motivations from the DAG topology [45] to design a bottom-up
pipeline. Specifically, we define five fundamental task complexities and synthesize tasks with controllable
complexity by constraining the DAG composition process. Notably, we extracted task intents to guide this
process to avoid composing meaningless tasks (e.g., opening a food delivery app and immediately closing
it). We further incorporate quality control modules to optimize subtasks and ensure semantic alignment. In
this way, we cost-effectively synthesize high-quality graph-structured tasks, significantly broadening task
scenarios without requiring human annotations.

Moreover, due to the inherent complexity of conducting comprehensive and fine-grained evaluations of
agents, we propose a graph-based multidimensional evaluation framework, OmniEval. In contrast to
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Table 1: Comparison of virtual agent benchmarks across environment, task, and evaluation dimensions.
Unlike previous benchmarks, OmniBench features automatic task composition, five-dimensional task
complexity, and a 10-capability evaluation framework.

Environment Task Evaluation

Interactive Real-World Platform # Instance # Compl.
Dimen.

Dyna.
Scale Intent # Scenario Demo.

Traj. Construction Instruction
Level

# Cap.
Dimen.

Eval.
Level

# Eval.
Func.

Evaluation
Strategy

AitW [37] ✗ ✗ 30378 - ✗ ✗ 5 ✓ Manual Annotation High & Low 1 Task - Trajectory-based
Mind2Web [6] ✗ ✗ 2350 - ✗ ✗ 5 ✓ Manual Annotation High 1 Task - Trajectory-based
MoTIF [2] ✗ ✗ 756 - ✗ ✗ - ✓ Manual Annotation High & Low 1 Task - Trajectory-based
OmniACT [19] ✗ ✗ 9802 - ✗ ✗ 6 ✓ Manual Annotation Low 1 Task - Trajectory-based
GUI Odyssey [27] ✗ ✗ 7735 - ✗ ✗ 6 ✓ Manual Annotation Low 1 Task - Trajectory-based

WebArena [48] ✓ ✗ 812 - ✗ ✗ 4 ✗ Manual Annotation Low 1 Task 5 Result-based
VisualWebArena [20] ✓ ✗ 910 2 ✗ ✗ 3 ✗ Manual Annotation Low 1 Task 6 Result-based
OSWorld [44] ✓ ✓ 369 - ✗ ✗ 5 ✓ Manual Annotation Low 1 Task 134 Result-based
Spider2-V [3] ✓ ✓ 494 1 ✗ ✗ 7 ✗ Manual Annotation High & Low 1 Task 151 Result-based
CRAB [45] ✓ ✓ 100 - ✓ ✗ - ✗ Manual Composition Low 1 Subtask 59 Graph-based

OmniBench (Ours) ✓ ✓ 36076 5 ✓ ✓ 20 ✓
Automatic Composition
& Human Verification High & Low 10 Subtask 255 Graph-based

previous coarse-grained evaluation methods, we introduce a graph-based evaluator that leverages subtask-
level evaluation functions synthesized in OmniBench. Specifically, we design two novel fine-grained metrics
to evaluate agents’ performance on graph-structured tasks and their alignment with human logic. Based on
OmniBench, we comprehensively evaluate 12 virtual agents, including both open-source and proprietary
models, across all 10 capability dimensions as shown in Figure 1, fully revealing the capability boundaries
and providing concrete directions for future improvement.

The performance comparison between various models provides valuable findings for future virtual agent
application. Specifically: 1) Existing agents struggle to handle graph-structured tasks. Compared to
tasks with linear structures, the agents fall significantly short when facing graph-structured tasks, with even
GPT-4o achieving only 20.5% performance, while humans can reach 80.1%. 2) Task intents are crucial for
task planning. Incorporating task intents into the prompt offers a plug-and-play improvement to planning
performance, with an average increase from 23.4% to 28.9%. Similarly, using task intents in fine-tuning data
improves planning performance from 30.5% to 31.9%. 3) Mainstream agents are sensitive to expression
order in task instructions. We observe significant performance fluctuations in existing agents when altering
the expression order of task instructions. In contrast, agents fine-tuned with graph-structured trajectories
exhibit more stable performance.

Furthermore, we fine-tune two open-source agents with distinct architectures on synthesized graph-structured
task trajectories. As shown in Figure 1, both agents exhibit performance improvements on AndroidControl
and OmniAct. Compared to agents trained on manually annotated datasets, our agents achieve better
performance across diverse benchmarks, benefiting from reasoning-rich trajectories that demonstrate their
broad applicability and strong potential.

2 Related Work

Virtual Digital Agents. With the development of MLLMs [34, 33, 22, 7], virtual agents have greatly
improved task automation across platforms. CogAgent [16] introduced an 18B visual language model for
GUI understanding, achieving state-of-the-art performance. SeeClick [5] developed a vision-only model
that interacts with GUIs via screenshots, eliminating the need for structured data. UGround [15] proposed a
universal grounding model, accurately mapping GUI elements across platforms. Iris [14] enhances GUI
automation by tackling challenges in complex digital environments. Evaluating these visual agents is crucial
for real-world applications.

Benchmarks for Virtual Agents. Mainstream benchmarks for virtual agents are generally categorized
into two types: trajectory-based and result-based. Trajectory-based benchmarks [37, 5, 6] compare agent
trajectories to human demonstrations but can be inaccurate due to the existence of multiple valid trajectories.
Result-based benchmarks [44, 48, 3] focus on the final state of the environment, overlooking the fine-grained
evaluation of intermediate processes. More recently, some studies [39, 45] have introduced graph-based
evaluations, which support both multiple feasible trajectories and the evaluation of intermediate processes.
TASKBENCH [39] evaluates agents for task automation, but its simplistic metrics fail to fully utilize
the potential of graph structures. CRAB [45] evaluates agents using handcrafted graphs, but it lacks a
systematic task analysis, limiting fine-grained capability assessment. Notably, to the best of our knowledge,
OmniBench is the only scalable benchmark for virtual agents that defines composable task complexity
using graphs to evaluate multiple essential capabilities.
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Figure 2: Bottom-up task synthesis pipeline

3 OmniBench

OmniBench consists of 36k high-quality graph-structured tasks across 10 evaluation dimensions to simulate
the way humans perceive the digital world, including planning, decision-making, etc. In this section, we first
introduce task graphs of OmniBench and systematically define corresponding task complexities (Section 3.1).
Then, we present the bottom-up data collection pipeline for controllably synthesizing tasks (Section 3.2).
Additionally, we explain how to control the quality of the synthesized data (Section 3.3). Finally, we
showcase the statistics of OmniBench (Section 3.4).

3.1 Task Complexity on Task Graph

In this section, we define task complexity on graphs, which is later constrained in Section 4.2 to construct
test tasks for multidimensional capability. We propose a new complexity definition because existing bench-
marks [40, 3, 20] typically define task complexity based on the number of steps in human demonstrations.
However, this approach has two limitations: 1) The inherent subjectivity of human demonstrations makes this
definition unreliable; 2) It is one-dimensional and fails to capture the multifaceted complexity of real-world
tasks. Inspired by previous works [45, 39] that represent tasks as graph structures, we introduced the concept
of the task graph and systematically defined five fundamental task complexities on the task graph.

Specifically, we define a subtask as a smaller, independent task that contributes to completing a more complex
task. Each subtask has input and output resources to constrain the dependencies between them. To formalize
this, we assume each subtask as s and define a task graph as G = {S,R}, where S = {s1, s2, . . . , sn} is
the collection of subtasks, and R is a set of relations {(sa, sb)} indicating that subtask sb depends on subtask
sa when the output resources of sa match the input resources of sb.

Table 2: Complexity Dimensions and Their Corre-
sponding Levels

Complexity Dimension Calculation Easy Medium Hard
Dependency Complexity Number of Edges ≤ 1 2 ∼ 3 ≥ 4
Instruction Complexity Number of Nodes ≤ 2 3 ∼ 4 ≥ 5
Knowledge Complexity Number of Application Categories ≤ 1 2 ∼ 3 ≥ 4
Hierarchy Complexity Depth ≤ 2 3 ∼ 4 ≥ 5

Branch Complexity Width ≤ 2 3 ∼ 4 ≥ 5

After representing the task as a graph, a natural idea
is to define task complexity based on the topology
of the task graph. We systematically analyzed five
characteristics of the graph and designed a corre-
sponding five-dimensional task complexity. Specifi-
cally: 1) Dependency Complexity. Since each edge
in the task graph represents a dependency between subtasks, we define dependency complexity based on
the number of edges. 2) Instruction Complexity. The semantics of a task instruction are composed of
all subtasks, with more subtasks leading to more complex instruction semantics. Therefore, we define
instruction complexity based on the number of nodes. 3) Knowledge Complexity. We categorize all 49
applications and define knowledge complexity based on the number of applications from different categories
(e.g., multimedia playback, productivity) in the task graph. The detailed categorization is provided in
Appendix A.4. 4) Hierarchy Complexity. The depth of the task graph represents the number of hierarchical
levels in the task structure. Thus, we define hierarchy complexity based on the depth. 5) Branch Complexity.
A wider task graph indicates more branches that can be executed concurrently. Therefore, we define branch
complexity based on the width. The classification criteria for three complexity levels are shown in Table 2.

3.2 Controllable Task Synthesis

Although we define five fundamental task complexities on the task graph, converting task instructions into
a graph remains challenging. A straightforward idea is to directly top-down decompose tasks into task
graphs. However, this process is typically based on uncontrollable MLLMs or expensive manual efforts.
Therefore, to effectively synthesize tasks with controllable complexity, we designed a bottom-up automated
task synthesis pipeline, as shown in Figure 2.
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Overview. The task synthesis pipeline we propose consists of four processes. First, we synthesize a series
of simple subtask instructions from the explorable environment. Then, we iteratively synthesize subtask
trajectories and evaluation functions. Next, the subtasks are combined into a task bottom-up. Finally, we
validate the semantics of the tasks.

Subtask Exploration. We designed an environment with 49 diverse applications, inspired by OSWorld [44],
enabling advanced MLLMs to explore them and propose diverse, feasible subtasks. During exploration, we
provide documentation and example subtasks for guidance. To synthesize dependencies between subtasks,
we offer a predefined resource list that MLLMs use to determine input and output resources. Implementation
details are in Appendix B.1.

Iterative Synthesis. We leverage advanced MLLMs to synthesize subtask trajectories and evaluation
functions. For trajectories, crafted prompts guide the MLLM to describe screenshots and output thoughts,
enhancing inference. For evaluation, we define 11 basic APIs (e.g., clicked text, keyboard input, file
existence), and use Claude-3.5-Sonnet, strong in coding, to compose them into subtask evaluation functions.
To further improve data quality, we introduce a cross-verification algorithm that iteratively refines synthesis.
Implementation details are in Appendix B.2.

Task Composition. High-quality subtasks that pass cross-verification are added to a subtask pool. Directly
composing them bottom-up via input and output resources may yield incoherent tasks (e.g., “opening a food
delivery app and immediately closing it”). To prevent this, we extract task intents from the pool (e.g., “create
a personal introduction PowerPoint for Emily,” shown in Figure 1). Each intent corresponds to a group
of subtasks, which are then combined into a task graph using input-output resources. As the composition
process is rule-based, the synthesis of task graphs remains controllable, allowing tasks of varying complexity.
Implementation details are in Appendix B.3.

Table 3: Ablation study evaluating the impact of
each quality control module on acceptability of the
synthesized tasks.

Cross-Verification Intent Extraction Consistency Validator Human Acceptance
✗ ✗ ✗ 41.2%
✗ ✓ ✓ 61.2%
✓ ✗ ✓ 82.7%
✓ ✓ ✗ 86.5%
✓ ✓ ✓ 90.7%

Task Validation. For composed task graphs, we
use GPT-4o to summarize task instructions from
subtask descriptions and graph structure. However,
instructions may lose nonlinear semantics and de-
grade into sequential tasks. To ensure quality, we
design a consistency validator to check semantic
alignment between the graph and the summarized
instruction. Specifically, GPT-4o infers subtask
dependencies solely from the instruction; if they
match the graph, the instruction is accepted, other-
wise it is re-summarized. Implementation details are in Appendix B.4.

3.3 Quality Control

Statistics Value
Total Tasks 36076 (100%)
- Network-dependent Real-world Tasks 16614 (46.05%)
- Network-independent Local Tasks 19462 (53.95%)
- Avg. Number of Used App Per Task 2.21

Task Instruction
- Avg. Words of High-level Instruction 51.7
- Avg. Words of Low-level Instruction 237.9

Total Task Scenarios 20

Total Subtasks 255

31.8%

18.5%

21.0%

31.4%

31.9%

32.2%

46.7%
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Figure 3: Statistics of OmniBench

Since the quality of graph-structured tasks is critical
to the accurate evaluation of the virtual agents, we
further introduce three designs to enhance the qual-
ity of synthesized data: a cross-verification mecha-
nism, an intent extraction module, and a consistency
validator. The cross-verification mechanism itera-
tively optimizes the demonstration trajectories and
evaluation functions of subtasks, the intent extrac-
tion module ensures that the tasks have coherent
goals, and the consistency validator aligns the se-
mantics of the task graph and task instructions. We
perform an ablation analysis of these three quality
control methods, validating their effectiveness, as
shown in Table 3. For each ablation shown in the
table, we sampled 400 task graphs and calculated
the average acceptance by three specially trained
annotators. The experiment shows that removing
any quality control module decreases human ac-
ceptance, with the removal of the cross-verification
algorithm resulting in the largest drop to 61.2%.
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3.4 OmniBench Statistics

OmniBench comprises a total of 36,076 task instances, spanning across 20 common interactive scenarios
and involving 49 diverse applications, as illustrated in Appendix A.4. In Section 3.1, we introduced the
five-dimensional complexity metrics for each task, with the distribution of different complexity levels for
each dimension shown in Figure 3.
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Figure 4: Comparison of mainstream virtual agent
evaluation strategies with the evaluation strategy
we propose.

To comprehensively analyze the limited capabilities
of existing agents, we further propose OmniEval,
a graph-based multidimensional evaluation frame-
work. In this section, we first introduce a graph-
based evaluator with two novel metrics for fine-
grained and diverse evaluation (Section 4.1). Then,
we describe the construction of test tasks designed
to evaluate 10 distinct capabilities by constraining
task complexity (Section 4.2).

4.1 Graph-based Evaluator

Currently, most benchmarks still evaluate agents
in a coarse-grained and unreasonable paradigm.
Specifically, result-based evaluations [44, 48] con-
sider whether the final environment state aligns
with expectations, lacking fine-grained intermedi-
ate evaluation. As shown in Figure 4, although both
trajectories ultimately fail to complete the task, the
progress of trajectory 2 is superior to trajectory 1,
and they should not simply be categorized as fail-
ures. While trajectory-based evaluations [37, 27]
compare the agents’ predicted actions to human
demonstrations at each step, they overlook multiple
feasible trajectories. As shown in Figure 4, both trajectories can accomplish the task, but trajectory 4 is
deemed a failure because it does not align with the demonstration trajectory, which is unreasonable.

Considering the limitations of these two evaluation paradigms, we introduce a graph-based multi-metric
evaluator inspired by previous research [45], as shown in Figure 4. Specifically, we define three evaluation
states for each node on the task graph: Completed, Evaluating, and Waiting. Initially, when the evaluator is
set up, nodes with an in-degree of 0 are marked as Evaluating, while the remaining nodes are marked as
Waiting. After the agent executes each action, it checks whether all Evaluating nodes have been completed.
Once a node is completed, it is marked as Completed, and new Evaluating nodes are added according to the
topological order. We set a maximum number of steps N , and if the agent does not complete any subtasks
within N steps, the entire task is considered a failure.

Additionally, to fully leverage the potential of the graph-based evaluator, we have designed two novel
graph-based metrics. Traditional metrics fail to evaluate intermediate processes and alignment with human
operational logic. For example, common metrics such as Success Rate (SR) [44] focus on task outcomes
rather than the process, while Action Match Score (AMS) [25] treats action sequences as strings and
compares the similarity between human demonstrations and agent predictions, rather than their logical
similarity. To comprehensively quantify agent performance on the task graph, we propose two novel metrics
inspired by its topology. The Coverage Rate (CR) assesses agent progress on the task graph, while the
Logical Consistency (LC) reflects the similarity in operational logic between agents and humans.

Coverage Rate (CR). It evaluates an agent’s progress on a task graph by weighting subtasks based on their
depth, where deeper subtasks are assigned higher weights due to their increased number of prerequisite
subtasks. Referring to the relevant definitions in Section 3.1, let d(si) denote the depth of subtask si. The
weight w(si) is:
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w(si) =
d(si)∑n
j=1 d(sj)

.

The Coverage Rate is then:

CR =

∑n
i=1w(si) · I(si)∑n

i=1w(si)
,

where I(si) = 1 if subtask si is completed, and 0 otherwise. This metric emphasizes deeper, more complex
subtasks, providing a refined measure of agent performance.

Logical Consistency (LC). It quantifies the operational logic similarity between agents and humans. This
metric is motivated by the observation that humans prefer to complete all possible subtasks within an
application before switching to another, unless necessary. It is computed as the ratio of the agent’s Coherency
Score (CS) to the maximum possible CS:

LC =
CSagent

CSmax
,

where CS quantifies the coherence of the subtask sequence. For each pair of adjacent subtasks (si, si+1)
in sequence, CS increases by 1 if both subtasks belong to the same application. CSagent is the coherence
score calculated from the executing subtask sequence, and CSmax is the maximum possible coherence
score calculated among all topological sequences.

4.2 Evaluation Strategy

Currently, there is limited discussion on the categorization of capabilities in the virtual agent field. The
previous mainstream classifications [26, 15] typically divided the capabilities into two simple categories:
grounding and planning. However, this simple classification is quite coarse and does not take into account
other essential and fine-grained capabilities for agents, such as decision-making and instruction understanding.
To address this, we propose 10 fine-grained capabilities, derived from five categories that we consider
essential, with each category contributing two capabilities for agents. Specific test tasks are constructed for
each capability based on the combination of five complexity dimensions, as shown in Figure 1.

Taking long-range planning capability as an example, we categorize tasks with higher dependency complexity
and hierarchy complexity as test tasks for this capability. This is because higher dependency complexity
means the task involves more dependencies, requiring stronger planning capability. Meanwhile, higher
hierarchy complexity indicates the task has deeper levels, which places higher demands on long-sequence
processing capability. Therefore, we select tasks with dependency complexity and hierarchy complexity at
the hard level as test tasks for long-sequence reasoning capability. For the test tasks of these 10 capabilities,
we engaged professionally trained annotators to filter and construct high-quality test data. The specific
definitions and corresponding explanations for the other 9 capabilities can be found in Appendix D.1.

5 Experiments

In this section, we first introduce the experimental setup (Section 5.1). Then, we comprehensively compare
the differences in capabilities across various models on OmniBench, along with several key findings (Sec-
tion 5.2). Finally, we provide an in-depth analysis of the reasons behind the poor performance and methods
for performance improvement (Section 5.3).

5.1 Experimental Setup

Settings. We evaluate various models including MLLMs and Virtual Agents on OmniBench. For all virtual
agents, we use the default prompt provided by each agent for inference, if available. If models do not
provide prompts for agent tasks, we use a unified prompt designed by us. We also report results trained on
OmniBench data for some selected models. All experiments are conducted with NVIDIA A100 80G GPUs.

Baselines. We conduct a comprehensive evaluation of the four types of models as shown in Table 4. The
specific details about the baselines can be found in Appendix D.2.2.
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Table 4: Performance of models on OmniBench. For each capability, we use the CR metric on test
tasks for quantification. Abbreviations adopted: PP for Parallel Planning; LRP for Long Range
Planning; CDDK for Cross-Domain Decision-Making; SDK for Sequential Decision-Making; SI
for Subtask Identification; DI for Dependency Identification; LSR for Long Sequence Reasoning;
LIF for Long Instruction Following; DSK for Domain-Specific Knowledge; CDK for Cross-Domain
Knowledge. An asterisk (*) indicates that the agent uses GPT-4o as the planner.

Overall Planning Decision-making Instruction
Understanding Long Context Generalist

Knowledge
CR LC PP LRP CDDK SDK SI DI LSR LIF DSK CDK

Human 80.1 92.8 80.1 76.9 91.9 93.0 69.1 72.1 79.5 66.1 89.4 71.5

Open-source Multimodal Large Language Models (A11Y+Screenshot)
Qwen2-VL-7B [41] 14.8 9.0 15.5 13.5 16.5 17.8 14.1 13.8 14.7 12.4 15.8 13.8
InternVL2-8B [4] 14.2 13.0 15.0 13.5 16.2 16.9 12.1 12.9 15.8 11.7 15.8 12.4
InternVL2.5-8B [4] 17.4 18.8 18.2 16.7 19.6 21.5 16.4 15.3 15.8 15.4 19.0 16.3

Closed-source Multimodal Large Language Models (A11Y+Screenshot)
Qwen-VL-Max [1] 18.4 23.3 18.7 19.4 19.6 23.3 15.0 16.7 18.3 16.1 19.6 17.3
Gemini-2.0-Flash 25.9 38.0 24.8 24.6 31.5 33.2 22.5 22.5 25.7 21.9 27.8 24.8
Claude-3.5-Sonnet 27.6 35.0 30.5 24.7 32.0 31.3 24.5 25.0 26.6 23.5 33.4 24.5
GPT-4o [18] 38.7 49.0 38.4 37.8 43.2 49.4 30.6 35.5 42.7 32.2 43.2 34.2

Visual Digital Agents (Screenshot)
Aguvis-7B [46] 22.9 27.1 21.2 23.5 25.5 28.1 20.2 20.0 22.8 20.1 26.3 21.6
OS-Atlas-Pro-4B [43] 19.1 23.9 20.6 17.6 22.9 23.6 15.0 17.7 18.7 15.9 22.0 16.8
ShowUI-2B* [26] 23.2 24.6 23.2 23.1 26.3 26.6 21.5 20.3 24.7 20.4 24.8 20.7
OS-Atlas-Base-4B* [43] 22.2 23.8 23.2 21.9 26.2 25.6 19.4 19.5 23.5 20.0 23.4 19.3
UGround-V1-7B* [15] 25.0 26.3 25.7 25.1 30.6 31.4 21.5 21.3 24.8 21.3 27.2 21.5

Supervised Fine-Tuning Agents (Screenshot)
Omni-OS-Atlas-Base-4B (Ours) 29.7 30.1 24.2 33.0 34.9 35.3 28.7 24.2 27.9 26.5 33.8 28.2
Omni-UGround-V1-7B (Ours) 34.4 37.4 33.2 31.3 43.1 42.4 21.9 35.0 40.3 31.7 36.7 27.6

5.2 Main Results

Figure 5: Correlation between Coverage Rate and
Logical Consistency with Human Evaluation.

Alignment Between OmniEval and Human
Evaluation. Before delving deeper into the con-
crete evaluation results, we first compare the align-
ment between OmniEval and human evaluation for
agent tasks. Specifically, we randomly sampled 50
trajectories from all models to calculate the corre-
lation between OmniEval and human evaluation.
Each trajectory was scored by two specially trained
annotators, who referenced the task instructions to
assign task completion scores and logical alignment
scores from {0%, 10%, ..., 90%, 100%}. The final
human evaluation score was determined by aver-
aging the scores given by the two annotators. In Figure 5, we present the Pearson correlation between
OmniEval and human evaluation. The results indicate a strong correlation between OmniEval and human
evaluation.
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Figure 6: Performance comparison of various mod-
els on chain-structured tasks and graph-structured
tasks.

Capability Boundaries of Mainstream Agents.
As detailed in Table 4, although advanced agents
such as GPT-4o and our supervised fine-tuning
models (e.g., Omni-UGround) demonstrate strong
performance in overall metrics and in capabilities
like planning and decision-making, clear limitations
remain in Subtask Identification (SI) and Long In-
struction Following (LIF). Specifically, even the
strongest models only achieve 30.6 (GPT-4o) and
21.9 (Omni-UGround) in SI, and 32.2 and 31.7
respectively in LIF, which are significantly lower
than the human baselines of 69.1 and 66.1. These
results highlight a persistent difficulty in decom-
posing complex instructions and maintaining coher-
ence over extended task flows. Compared to their
performance in other capabilities, the results suggest that instruction understanding in long and semantically
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Table 5: We compare the performance of different virtual agents on tasks with varying complexity
levels. Medium and Hard levels show performance drops compared to the previous level, with
downward arrows indicating the magnitude of decline.
Agents Dependency Comp. ↑ Branch Comp. ↑ Instruction Comp. ↑ Knowledge Comp. ↑ Hierarchy Comp. ↑

Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard

Aguvis-7B [46] 32.8 27.6 ↓5.2 24.3 ↓3.3 41.2 36.8 ↓4.4 30.6 ↓6.2 49.5 36.9 ↓12.6 25.3 ↓11.6 38.4 32.5 ↓5.9 27.6 ↓4.9 37.9 33.6 ↓4.3 29.7 ↓3.9

OS-Atlas-Pro-7B [43] 32.3 26.8 ↓5.5 23.7 ↓3.1 39.1 31.0 ↓8.1 25.4 ↓5.6 44.3 34.8 ↓9.5 21.8 ↓13.0 33.9 28.4 ↓5.5 24.3 ↓4.1 34.5 28.1 ↓6.4 25.6 ↓2.5

ShowUI-2B* [26] 34.0 28.3 ↓5.7 25.6 ↓2.7 41.3 32.7 ↓8.6 28.2 ↓4.5 45.9 36.6 ↓9.3 25.4 ↓11.2 37.8 32.6 ↓5.2 27.4 ↓5.2 37.6 32.0 ↓5.6 28.1 ↓3.9

OS-Atlas-Base-4B* [43] 32.7 29.1 ↓3.6 24.9 ↓4.2 35.2 32.4 ↓2.8 27.6 ↓4.8 48.2 37.5 ↓10.7 26.7 ↓10.8 39.1 34.2 ↓4.9 28.9 ↓5.3 43.1 38.4 ↓4.7 33.2 ↓5.2

UGround-7B* [15] 34.1 30.0 ↓4.1 27.1 ↓2.9 44.6 38.3 ↓6.3 32.4 ↓5.9 53.0 39.4 ↓13.6 27.2 ↓12.2 42.3 36.4 ↓5.9 32.6 ↓3.8 35.7 28.8 ↓6.9 25.5 ↓3.3

complex contexts remains a key bottleneck for current agents. Future improvements in agent performance
will likely depend on more robust handling of multi-step semantics and long-context alignment.

Challenges in Handling Graph-structured Tasks. We compared the performance differences of each
model on chain-structured tasks and graph-structured tasks. To eliminate the influence of other factors,
we utilized OmniBench’s controllable task synthesis mechanism to construct a set of chain-structured and
graph-structured tasks, each with the same number of nodes and edges. All tasks belong to the same
knowledge domain and share the same level of knowledge complexity. As shown in Figure 6, GPT-4o (with
A11Y), the most advanced agent, achieves only 20.5% accuracy on graph-structured tasks, far below the
human performance at 80.1%. This phenomenon can be attributed to the fact that most existing agents
are predominantly fine-tuned on chain-structured tasks, which may result in their tendency to interpret
graph-structured tasks as linear. Such misinterpretation can significantly impair the agents’ capability to
accurately identify the dependency relationships between subtasks, ultimately leading to task execution
failures.

5.3 In-Depth Analysis

Performance Differences Across Complexity Levels. As shown in Table 5, we analyze agent performance
across tasks grouped by complexity levels: Easy, Medium, and Hard. Unsurprisingly, all agents exhibit
significant performance drops as task complexity increases, with an average decrease of 6.19 points. This
trend is consistent across all five dimensions. Such systematic degradation in harder cases confirms
OmniBench’s effectiveness in scaling task difficulty. Furthermore, performance on hard tasks may serve as
a more accurate indicator of an agent’s expert capabilities than average scores, revealing the upper bounds of
its potential.

Effectiveness of Graph-Structured Task Trajectories. We follow the training details provided in the
OS-Atlas paper and adopt the same experimental setup to train our backbone models: OS-Atlas-4B and
UGround-7B-V1. As shown in Table 8, while agents such as OS-Atlas and UGround, which are pretrained
on GUI grounding tasks, exhibit strong GUI understanding capabilities, their limited planning capability
hinders their performance in complex action reasoning. In contrast, the high-quality multi-step navigation
dataset synthesized by OmniBench significantly enhances the model’s capability to make decisions regarding
action types, thereby improving the success rate in GUI navigation. Specifically, Omni-OS-Atlas-4B achieves
an average success rate improvement of 0.46 points on AndroidControl and 0.73 points on OmniAct, while
Omni-UGround-7B-V1 achieves improvements of 0.4 points on AndroidControl and 0.3 points on OmniAct.

Table 6: Average sensitivity across different mod-
els.

Models Backbone Avg. Sensitivity ↓

Human - 1.95

InternVL2-4B [4] InternVL2-4B 2.97
OS-Atlas-Pro [43] InternVL2-4B 9.07 ↑6.1

Omni-OS-Atlas (Ours) InternVL2-4B 3.49 ↓5.58

Qwen2-VL-7B [41] Qwen2-VL-7B 2.58
Aguvis [46] Qwen2-VL-7B 12.9 ↑10.32

Omni-Aguvis (Ours) Qwen2-VL-7B 2.67 ↓10.23

Sensitivity to Expression Order in Task Instruc-
tions. We define the impact of textual order on
the model as its instruction sensitivity, conducting
experiments with standard deviation as the metric.
We construct 10 specially designed test tasks, each
associated with three task instructions that are se-
mantically identical (based on the same task graph)
but differ in textual order. As shown in Table 6, the
original MLLMs tend to be less sensitive to instruc-
tion variations, but perform poorly overall. Though
fine-tuning them on navigation tasks enhances the performance, it also compromises the models’ robustness
to instructions. OS-Atlas-Pro and Aguvis exhibit significantly higher sensitivity, with an average increase of
8.21 points. Moreover, after incorporating graph-structured task samples from OmniBench into fine-tuning,
the models’ performance is further improved while largely preserving their robustness. Omni-OS-Atlas
and Omni-Aguvis exhibit reduced sensitivity, with an average reduction of 7.91 points. This indicates that
the diverse and structured task trajectories from OmniBench can help models better recognize complex
dependencies embedded in task instructions, improving their overall stability and performance.
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Table 8: Evaluation results on AndroidControl and OmniAct benchmarks. Bold values indicate the
best performance across all baselines.

Models AndroidControl-Low AndroidControl-High OmniAct-Web OmniAct-Desktop
Type Grounding SR Type Grounding SR Type Grounding SR Type Grounding SR

InternVL-2-4B [4] 90.94 84.05 80.10 84.09 72.73 66.72 47.51 51.34 24.39 67.00 44.47 29.80
Qwen2-VL-7B [41] 91.94 86.50 82.56 83.83 77.68 69.72 89.22 85.94 78.58 96.27 94.52 91.77
SeeClick [5] 93.00 73.42 75.00 82.94 62.87 59.11 86.98 75.48 68.59 96.79 70.22 72.59
OS-Atlas-4B [43] 91.92 83.76 80.64 84.69 73.79 67.54 88.56 82.00 73.91 96.51 85.53 84.78
UGround-7B-V1 [15] 92.15 87.17 83.29 84.72 78.85 70.31 90.16 86.98 79.85 97.13 94.79 91.89
Omni-OS-Atlas-4B (Ours) 92.49 83.51 81.38 84.86 73.81 67.71 89.96 82.74 74.62 97.64 86.37 85.53
Omni-UGround-7B-V1 (Ours) 92.37 87.24 83.57 84.89 78.97 70.83 91.24 87.35 80.24 97.93 95.21 92.10

Table 7: The effect of task intent on the planning
of open-source versus closed-source models.

Models Parallel Planning ↑ Long-Range Planning ↑ Overall ↑

Open-source Multimodal Large Language Models
Omni-OS-Atlas-Base-4B 24.2 33.0 28.6

+ intent tuning 25.7 ↑1.5 34.9 ↑1.9 30.3 ↑1.7

Omni-UGround-V1-7B 33.2 31.3 32.3
+ intent tuning 34.4 ↑1.2 32.6 ↑1.3 33.5 ↑1.2

Closed-source Multimodal Large Language Models
Qwen-VL-Max 21.9 20.8 21.4

+ intent prompt 24.5 ↑2.6 23.5 ↑2.7 24.0 ↑2.6

Gemini-2.0-Flash 23.1 22.7 22.9
+ intent prompt 28.9 ↑5.8 26.7 ↑4.0 27.8 ↑4.9

Claude-3.5-Sonnet 24.2 23.7 24.0
+ intent prompt 30.6 ↑6.4 28.1 ↑4.4 29.4 ↑5.4

GPT-4o 25.7 25.1 25.4
+ intent prompt 32.9 ↑7.2 35.7 ↑10.6 34.3 ↑8.9

The Effect of Task Intent on Planning. We de-
sign two experiments to explore the applicability of
task intent to both open-source and closed-source
models. 1) For open-source models, we conduct a
comparative experiment using two separate datasets
to fine-tune OS-Atlas-Base-4B and UGround-V1-
7B. One dataset includes task intent, while the other
does not. As shown in Table 7, incorporating task
intent in the training data significantly improves
the model’s planning performance on OmniBench.
Specifically, OS-Atlas-Base-4B improves its over-
all planning score from 28.6 to 30.3, an increase of
1.7 points, while UGround-V1-7B improves from 32.3 to 33.5, gaining 1.2 points. 2) For closed-source
models, we use Qwen-VL-Max, Gemini-2.0-Flash, Claude-3.5-Sonnet, and GPT-4o as planners, with
UGround-V1-7B serving as the grounding models. As shown in Table 7, all closed-source models exhibit
improved planning performance with the inclusion of task intent. GPT-4o shows the most significant
improvement, with its overall score rising from 25.4 to 34.3, a gain of 8.9 points. Claude-3.5-Sonnet
increases by 5.4 points, Gemini-2.0-Flash by 4.9 points, and Qwen-VL-Max by 2.6 points. This indicates
that closed-source models can enhance their planning through this plug-and-play approach.
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Figure 7: Distribution of five major errors in 100
failure instances for each model. An asterisk (*)
indicates that the agent uses GPT-4o as the planner.

Failure Analysis. In this section, we delve into
the analysis of errors encountered during the Om-
niBench evaluation. This analysis aims not only to
identify the current shortcomings of the agents but
also to inform future improvements in their design
and training. We carefully examine 100 randomly
sampled error instances for each model from the
OmniBench evaluation. These instances are ana-
lyzed by expert annotators who identify the root
causes of mispredictions based on their knowledge.
Specifically, there are five types of errors: 1) In-
struction Understanding. We observe that 23% of
the failures are due to the agent’s misunderstanding
of the instructions. For example, it overlooks the
final save file operation requested in the image edit-
ing instruction. 2) Lack of Knowledge. We find
that 21% of the failures are caused by the agent’s
lack of knowledge about the target application, such as being unfamiliar with how to create a reference list in
Zotero. 3) Environmental Error. We observe that 3% of the failures result from environmental interference,
such as network delays. 4) Grounding Error. We find that 17% of the failures are due to the model’s lack
of grounding ability, meaning the agent knows the target to click next but locates it in the wrong position.
5) Hallucinatory Success. Finally, 36% of the failures occur when the agent incorrectly assumes the task is
complete, which may stem from its weak contextual memory capabilities. The distribution of these errors is
shown in Figure 7.

6 Conclusion
In conclusion, we introduced OmniBench, a graph-based benchmark that addresses the limitations of exist-
ing evaluation frameworks by enabling controllable task complexity through automated subtask composition.
Along with OmniEval, a multidimensional evaluation framework, we evaluate virtual agents across 10
capabilities. Our results show that training on this data improves agent generalization, and our evaluations
provide valuable insights into the strengths and areas for improvement in MLLM-based virtual agents.
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A Environment Setup

OmniBench conducts agent evaluations across three categories of virtual environments: Desktop,
Mobile, and Web. Its automated data collection pipeline makes it easy to extend the benchmark to
additional environments with minimal effort. In the following section, we use the desktop environment
as a case study to illustrate the environment design in OmniBench in more detail.

A.1 Environment Infrastructure

Inspired by OSWorld [44], we design an interactive Windows-based environment using a virtual
machine to support GUI agent evaluation. The environment runs Windows 11 as the guest operating
system and uses VMware Workstation 17 Pro (version 17.5.1) as the virtualization platform. This
setup enables high compatibility with real-world desktop applications while maintaining full control
over the execution environment. The virtual machine allows us to simulate user interactions such
as mouse clicks, keyboard input, and file operations, which are essential for GUI agents. It also
supports real-time observation and logging of system states, facilitating fine-grained analysis and
reproducibility of agent behavior. All environments are initialized from a snapshot to ensure consistent
starting conditions for each evaluation episode.

A.2 Observation Space

In OmniBench, the observation space is designed to ensure comprehensive evaluation of GUI
agents by capturing both visual and structural aspects of desktop environments. It comprises two
complementary modalities: screen captures and accessibility trees. This dual-modality approach
reflects the varying grounding capabilities of different agent architectures. For example, agents that
have been specifically trained on GUI environments often possess strong grounding abilities and
can rely on screen captures alone. In contrast, MLLMs typically lack specialized pretraining for
GUI understanding, and therefore benefit significantly from the semantic and structural information
provided by the accessibility tree. By supporting both modalities, OmniBench enables fair and
informative evaluation across a wide range of agents, ensuring robust evaluation under diverse UI
layouts and application contexts.

A.3 Action Space

In OmniBench, the action space consists of three core types of user interactions that an agent can
perform. These actions, summarized in Table 9, enable the agent to effectively interact with graphical
user interfaces across a wide range of applications.

Table 9: Summary of action types in the desktop environment of OmniBench.
Action Description
click_input Simulates mouse clicks on UI control elements. Supports configurable

mouse buttons (left, right, middle, x) and can perform both single and
double clicks. Commonly used for selecting items, activating controls,
or opening folders.

wheel_mouse_input Scrolls vertically using the mouse wheel. Useful when target controls are
not immediately visible. The scroll direction and distance are adjustable,
allowing the agent to navigate long content or lists.

keyboard_input Simulates keyboard input for typing text, pressing keys, or invoking
shortcuts (e.g., Ctrl+C, Enter). Enables fine-grained control over ap-
plication behavior and supports both functional and textual input.

A.4 Categorization of Applications

The 49 applications in the environment are categorized into 12 distinct groups based on their
functionality: Social Communication, Multimedia Playback, Multimedia Editing, Office, Utility
Tools, Programming, System Management, Web Browsing, Screen Capture, Task Management,

16



Note Management, and Lifestyle. The specific applications belonging to each category are listed in
Table 10.

Table 10: Categorization of applications in the environment.

Category Applications
Social Communication (4) Zoom Workplace, Skype, People, Mail
Multimedia Playback (4) Media Player, Spotify, Photos, TuneIn
Multimedia Editing (6) Adobe Photoshop Express, Microsoft Clipchamp,

paint.net, Openshot, Handbrake, Paint
Office (3) Word, PowerPoint, Excel
Utility Tools (10) Calculator, 7-Zip, PDF24, Power Automate, Wikipedia,

BreeZip, Maps, Calendar, Zotero, DeepL
Programming (3) Visual Studio Code, Cursor, Windows PowerShell ISE
System Management (4) File Explorer, Settings, Control Panel, Microsoft Store
Web Browsing (2) Google Chrome, Microsoft Edge
Screen Capture (4) Record Screen, Snipping Tool, OBS Studio, ShareX
Task Management (3) Microsoft To Do, Todoist, Notion
Note management (4) Evernote, OneNote, Sticky Notes, Sticky Notes (New)
Lifestyle (2) Recipe Keeper, paisa

A.5 Definition of Scenarios

As shown in Table 10, we categorize the 49 applications into 12 groups. Based on these application
categories, we define 12 corresponding task scenarios. For example, applications in the “Multimedia
Playback” category correspond to the “Media Viewing” scenario. We then combine these 12 basic
task scenarios to form 7 more fine-grained task scenarios. For instance, the “Screen Recording”
scenario can be combined with the “Creative Editing” scenario to form a more detailed scenario called
“Screen Recording Editing.” Through such combinations, we obtain a total of 19 task scenarios. The
remaining tasks are grouped into an additional scenario, resulting in a final set of 20 task scenarios,
as illustrated in Figure 8.

B Data Collection

OmniBench introduces a bottom-up pipeline for automatic task synthesis, as illustrated in Figure 2.
The pipeline consists of two main stages: Subtask Synthesis and Task Synthesis. The Subtask
Synthesis stage includes two steps: Subtask Discovery and Iterative Synthesis, while the Task
Synthesis stage consists of Task Composition and Task Validation. In the following sections, we
provide a detailed explanation of each component in this data synthesis pipeline.

B.1 Subtask Discovery

To facilitate comprehensive subtask generation, we construct a dynamic environment that incorporates
49 heterogeneous applications, drawing inspiration from OSWorld [44]. This environment enables
MLLMs to interact with diverse functionalities, systematically analyze operational constraints, and
propose well-structured subtasks tailored to each application’s context. To support this process, we
provide detailed API documentation, user manuals, and curated example subtasks, ensuring that
MLLMs can infer practical usage scenarios. In addition, our approach emphasizes dependency model-
ing through a structured resource framework, where each subtask explicitly defines its required inputs
and expected outputs. This predefined resource list serves as a guiding constraint, allowing MLLMs
to reason about inter-subtask dependencies, avoid conflicts, and ensure smooth task execution. By
leveraging this controlled exploration, MLLMs generate coherent and executable subtask sequences
that align with real-world application workflows.
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Figure 8: Overview of the 20 defined task scenarios. The scenarios are derived from combinations of
application categories, where each box represents a task scenario with associated application icons.

B.2 Iterative Synthesis

Trajectory Synthesis. With the rapid development of MLLMs [21, 34, 31, 32], they are becoming
increasingly capable [24, 35, 30, 36]. We deploy state-of-the-art MLLMs to execute the synthesized
subtasks and record their execution traces as synthesized trajectories. Since subtasks are typically
composed of a sequence of relatively simple instructions, advanced MLLMs achieve high success
rates on these subtasks, making them suitable for generating an initial set of trajectories.

Evaluation Synthesis. Inspired by prior work [12, 13, 10, 8, 23, 29], we first manually designed
11 system-level APIs, such as retrieving the text under the mouse cursor, accessing the clipboard
content, and extracting visible text from the screen. We then provided the function signatures of these
APIs to Code LLMs, which generated evaluation functions used to determine the completion status
of sub-tasks. Since these evaluation functions are composed by invoking the designed APIs, we are
able to assign more fine-grained evaluation scores based on the number of successfully executed API
calls. Figure 9 illustrates the process of composing sub-task evaluation functions using these APIs.

Cross-Verification. We design a cross-verification algorithm to optimize synthesized subtasks.
Specifically, the algorithm performs N iterations, where an MLLM and a Code LLM specifically
synthesize trajectories and evaluation functions based on the feedback from the previous iteration. The
evaluation functions provide detailed failure feedback (e.g., failing to click the “save" button), while
the trajectories incorporate environmental state feedback, enabling an iterative refinement process
for both trajectories and evaluation functions. To ensure the evaluation functions maintain sufficient
discriminatory power, any function that passes cross-verification is further tested by evaluating three
additional trajectories from other tasks.

B.3 Task Composition

Environmental resources for task composition. To precisely capture the execution dependencies
between different subtasks, we propose a set of concepts for environmental resources, as shown in
Figure 10. Specifically, each environmental resource has a resource category and an actual parameter.
For example, we can use img_path to represent a category of images that exist locally, and the actual
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Figure 9: An overview of how predefined system-level APIs are composed into evaluation functions
using Code LLMs.

parameter /usr/example.png then instantiates this environmental resource. Each subtask has an
input resource list and an output resource list, which represent the prerequisite resources required
to execute the subtask and the new resources generated after execution, respectively. Through this
method of resource representation and the logic of resource transformation, we can clearly define the
dependencies between subtasks. A dependency relationship exists between two subtasks only if one
subtask can provide the resources in the input resource list of the other subtask.

Instruction:
Download the image from the {url} to 
{local_path}.
Input Resource:
{url}: img_url
Output Resource:
{local_path}: img_path
Parameter:
url = 'https://pics/example.png'
local_path = '/usr/example.png'

EnvironmentSubtask
Resource Pool:
[
    '/usr/photo.png': img_path,
    '/usr/pre.ppt': ppt_path,
    '/usr/grade.xlsx': xlsx_in_clipboard,
]

Execution failed

Instruction:
Download the image from the {url} to 
{local_path}.
Input Resource:
{url}: img_url
Output Resource: 
{local_path}: img_path
Parameter:
url = 'https://pics/example.png'
local_path = '/usr/example.png'

EnvironmentSubtask
Resource Pool:
[
   '/usr/photo.png': img_path,
   '/usr/pre.ppt': ppt_path,
   '/usr/grade.xlsx': xlsx_in_clipboard,
   'https://pics/example.png': img_url
]

Missing input resource: 
'https://pics/example.png':
img_url

Execution succeeded

Adding output resource:
'/usr/example.png':
img_path

+ '/usr/example.png': img_path

Figure 10: An overview of the constraint relationships among environmental resources.

Task Composition with Consistent Intent. To construct meaningful task graphs, we first curate
a subtask pool by filtering out low-quality samples through a cross-verification process. A naïve
bottom-up approach that directly connects subtasks based on shared input-output resources may
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generate incoherent tasks that lack a clear, unified goal. For example, an arbitrary combination might
result in a task that simultaneously plays media from different applications without a meaningful
relationship. To mitigate this issue, we explicitly extract overarching task intents from the subtask
pool, such as ‘create a personal introduction PowerPoint for Emily," as illustrated in Figure 1. Each
intent acts as an anchor, grouping subtasks that contribute to the same high-level objective. The
task graph is then constructed by linking these subtasks based on resource dependencies. Since
the bottom-up composition follows predefined rules, we maintain strict control over the synthesis
process, ensuring that the resulting task graphs exhibit logical coherence and adjustable complexity.
This structured approach prevents the generation of ill-formed tasks while supporting diverse and
meaningful compositions.

B.4 Task Validation

To generate concise yet accurate task instructions for graph-structured tasks, we utilize GPT-4o to
synthesize a task description by integrating subtask instructions and the structural information of the
task graph. However, direct summarization may introduce inconsistencies, such as misrepresenting
the graph’s dependency structure or oversimplifying it into a linear sequence, thereby distorting the
original task complexity. To address this issue, we designed a consistency validation mechanism
to evaluate the fidelity of the summarized instruction. In this process, GPT-4o is prompted to infer
subtask dependencies purely from the generated task instruction, without access to the original
task graph. The inferred dependency structure is then compared against the ground-truth graph. If
discrepancies arise—such as missing parallel execution paths or incorrect sequencing—the instruction
is flagged for revision and must be re-summarized to better preserve the intended graph structure.
This validation ensures that the final task instruction accurately reflects the hierarchical and branching
nature of the original task graph, improving the clarity and correctness of the synthesized tasks.

C Details of OmniBench

In this section, we provide a detailed description of the data formats used in OmniBench. The data in
OmniBench can be broadly categorized into five types: Subtask Metadata, Subtask Trajectory, Subtask
Evaluation, Task Metadata, and Task Trajectory. For each category, we present the corresponding
data schema along with representative examples. Finally, we provide a visualization example of a
task graph.

C.1 Subtask Metadata

Each subtask includes the following seven attributes:

• id: A UUID that uniquely identifies the subtask.
• instruction_template: A template of the subtask instruction containing parameter place-

holders.
• application: The name of the application to which the subtask belongs.
• available_parameters: A list of all configurable parameter sets used to instantiate diverse

instructions. Each element in the list represents one valid combination of parameters.
• OS: The operating system associated with the subtask.
• input_resources: A list of prerequisite resources required before executing the subtask.
• output_resources: A list of resources produced after the subtask is completed.

Example of Subtask Metadata

{
"id": "25e2a51e-c019-1a9a-0747-d6fe0e9d457d",
"instruction_template": "Open '{xlsx_path}', select the all data, and
copy it.",
"application": "Excel",
"available_parameters": [
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{
"xlsx_path": "C:\\Users\\user\\Desktop\\office\\The Evolution of
Urbanization Rate.xlsx"

}
],
"OS": "Windows",
"input_resources": [

"xlsx_path"
],
"output_resources": [

"table_in_clipboard",
"xlsx_in_processing"

]
}

C.2 Subtask Trajectory

Each subtask trajectory includes the following five attributes:

• trajectory_id: A unique identifier for the trajectory.
• instruction: The instantiated instruction, generated by applying a specific parameter set

from the subtask’s available_parameters.
• observations: A list of screenshots representing each step in the trajectory.
• actions: A list of actions taken at each step of the trajectory.
• subtask_id: The identifier of the subtask to which this trajectory corresponds.

Example of Subtask Trajectory

{
"trajectory_id": "XXX",
"instruction": "Using the file explorer, navigate to
C:\\Users\\user\\Desktop\\images\\ and new a Text Document named
introduction.txt",
"observations": [

"obs1.png", "obs2.png", "..."
],
"actions": [

{
"function": "click_input",
"args": {

"button": "left",
"double": false

},
"rect": [

124,
1020,
179,
1080

],
"description": "There are many application icons on the taskbar,
and I need to select the File Explorer to complete the task.",
"thought": "To fulfill 'Using the file explorer, navigate to
C:\\Users\\user\\Desktop\\images\\ and new a Text Document named
introduction.txt', I need to first click the 'File Explorer'
button to open the corresponding application.",
"control_text": "File Explorer"

},
{

"function": "...",
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"args": { "...": "..." }
}

],
"subtask_id": "XXX"

}

C.3 Subtask Evaluation

Each subtask evaluation is implemented as a Python function that checks for a sequence of expected
interaction outcomes based on predefined system-level APIs. The function returns an EvalResult
object containing three fields:

• success: A boolean value indicating whether the subtask was completed successfully.

• message: A string providing a human-readable explanation of the evaluation result.

• progress: A float or fraction representing the proportion of evaluation conditions that were
satisfied, enabling partial credit.

Each evaluation function typically performs multiple checks, such as verifying whether specific
UI elements were clicked, expected text appeared on the screen, or input was typed correctly.
These checks are implemented using task-agnostic API functions (e.g., check_mouse_clicks,
check_text_exists_via_control, check_keyboard_types). By combining these low-level
signals, the evaluation function provides a fine-grained and automated judgment of subtask execution.

Example of Subtask Evaluation

from collections import namedtuple

EvalResult = namedtuple('EvalResult', ['success', 'message', 'progress'])

def evaluate_agent_task_completion(csv_path: str) -> EvalResult:
if not check_mouse_clicks(text='More actions'):

return EvalResult(False, "Subtask execution failed because agent did
not click the 'More actions' button.", 0/4)

if not check_text_exists_via_control(text='Import tasks from a
spreadsheet using a CSV file.'):

return EvalResult(False, "Subtask execution failed because the import
tasks option was not accessed.", 1/4)

if not check_keyboard_types(text=csv_path):
return EvalResult(False, f"Subtask execution failed because the CSV
file path '{csv_path}' was not typed.", 2/4)

if not check_mouse_clicks(text='Open'):
return EvalResult(False, "Subtask execution failed because the 'Open'
button was not clicked to import the file.", 3/4)

return EvalResult(True, "Subtask completed successfully", 4/4)

C.4 Task Metadata

Each task includes the following four attributes:

• task_instruction: The natural language instruction that describes the overall task.

• dag: A directed acyclic graph (DAG) representing the structural dependencies among
subtasks within the task.

• task_intent: The high-level goal or intent that the task is designed to achieve.
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• successful_topo: All valid topological orders of the DAG that lead to successful task
completion.

Example of Task Metadata

{
"task_instruction": "In Excel, open
'C:\\Users\\user\\Desktop\\office\\The Evolution of Urbanization
Rate.xlsx', select the 'A' column, and center the content. Then, export
the document as a PDF named 'C:\\Users\\user\\Desktop\\pdf\\The Evolution
of Urbanization Rate.pdf'.",
"dag": {

"nodes": [
"a7310aa0-b194-77e3-5c36-996391a1bc7d",
"df3fc68b-fa76-4e19-7da6-aef17792523b"

],
"edges": {

"a7310aa0-b194-77e3-5c36-996391a1bc7d": [
"df3fc68b-fa76-4e19-7da6-aef17792523b"

],
"df3fc68b-fa76-4e19-7da6-aef17792523b": []

}
},
"task_intent": "Center Excel data and export to PDF",
"successful_topo": [

[
"a7310aa0-b194-77e3-5c36-996391a1bc7d",
"df3fc68b-fa76-4e19-7da6-aef17792523b"

]
]

}

C.5 Task Trajectory

Each task trajectory includes the following seven attributes:

• trajectory_id: The unique identifier of the trajectory. The suffix (0) indicates that it
corresponds to the first topological order in the successful_topo list.

• task_id: The identifier of the associated task.
• topological_order: The specific topological order followed in this trajectory.
• instruction: The instruction describing the overall task.
• intent: The high-level intent or goal of the task.
• observations: The sequence of visual observations recorded during task execution.
• actions: The sequence of actions taken during task execution.

Example of Task Trajectory

{
"trajectory_id": "12(0)",
"task_id": "12",
"topological_order": [

"a7310aa0-b194-77e3-5c36-996391a1bc7d",
"df3fc68b-fa76-4e19-7da6-aef17792523b"

],
"instruction": "In Excel, open the file, center the A column, and export as
PDF.",
"intent": "Center Excel data and export to PDF",
"observations": [

"obs1.png", "obs2.png", "..."
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],
"actions": [

{
"function": "click_input",
"args": {

"button": "left",
"double": true

},
"rect": [1520, 371, 1614, 458],
"description": "Double-click the 'Excel' icon on the desktop.",
"thought": "To begin the task, I need to open Excel.",
"control_text": "Excel"

},
{

"function": "...",
"args": { "...": "..." }

}
]

}

C.6 Example of Task Graph

To more clearly illustrate the relationships between subtasks and tasks, we provide an additional
visualization example of a task graph, as shown in Figure 11. Each node in the graph signifies a
distinct subtask, categorized by the application used: PowerPoint (orange), Outlook (blue), and
Photoshop Express (yellow). The directed edges denote the sequence of execution, where each
subtask must be completed before the subsequent ones can begin.
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PowerPoint

Task Graph Task Instruction:

Create a new PowerPoint file named ./Project_Proposal.pptx, insert the 

image from the email sent by Emily into the presentation, then 
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the PowerPoint file back to Emily

Task Intent:

Send the comparison PowerPoint to Emily
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3. ...
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D.trajectory  

Create a new PowerPoint file './Project_Proposal.pptx'

Insert the image './portrait.png' into the 
PowerPoint file './Project_Proposal.pptx'

Download the image from the email 
sent by 'Emily' to './portrait.png'

Send the PowerPoint file './Project_Proposal.pptx' 
to 'Emily'

Apply the filter 'Cartoon' to the './portrait.png'

C1 B

C2

Figure 11: A task example in OmniBench.
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D Details of OmniEval

In this section, we introduce the details of OmniEval, including the design of ten essential capabilities,
the experimental setup for evaluation, and implementation details during the evaluation.

D.1 Capability Design

As shown in Table 11, we construct 10 specialized sets of test tasks based on the five-dimensional
complexity, each set designed to evaluate one of the 10 capabilities required for agents to fulfill user
requests. The number of solid stars represents the level of complexity, while zero stars indicate that
the complexity in that dimension can be arbitrary.

Table 11: Constraining five fundamental task complexities (top) to construct test tasks across ten
capability dimensions (left).

Dependency Instruction Hierarchy Branch Knowledge
Parallel Planning ★★★ ✩✩✩ ✩✩✩ ★★★ ✩✩✩
Long-Range Planning ★★★ ✩✩✩ ★★★ ✩✩✩ ✩✩✩
Long-Sequence Reasoning ✩✩✩ ★★★ ★★★ ✩✩✩ ✩✩✩
Long Instruction Following ✩✩✩ ✩✩✩ ★✩✩ ★★★ ✩✩✩
Sequential Decision-Making ✩✩✩ ✩✩✩ ★★★ ★★★ ✩✩✩
Cross-Domain Decision-Making ✩✩✩ ✩✩✩ ✩✩✩ ★★★ ★★★
Subtask Identification ★✩✩ ★★★ ✩✩✩ ✩✩✩ ✩✩✩
Dependency Identification ★★★ ★✩✩ ✩✩✩ ✩✩✩ ✩✩✩
Cross-Domain Knowledge ✩✩✩ ★★★ ✩✩✩ ✩✩✩ ★★★
Domain-Specific Knowledge ✩✩✩ ★★★ ✩✩✩ ✩✩✩ ★✩✩

D.2 Experiment Setup

D.2.1 Settings

For the evaluation phase, we follow the practices of works such as Aguvis and UGround, ensuring
consistency in preprocessing and maintaining comparability across different models. Specifically,
we standardize the image resolution by scaling all input images to 1024 × 1024 pixels. This
resolution is chosen to balance computational efficiency and visual detail, ensuring that models
can effectively process graphical user interfaces (GUIs) without excessive memory overhead or
loss of important information. The decision to use a fixed resolution is motivated by several key
factors. First, many modern multimodal models and virtual agents, including those designed for
GUI interaction, are trained on datasets with varying resolutions. Standardizing the input resolution
reduces inconsistencies that may arise due to different input scales, helping models generalize better
across diverse GUI layouts. Additionally, this resolution aligns with commonly used image sizes
in recent benchmarks, facilitating direct comparison with prior works. Moreover, scaling images to
1024× 1024 ensures that finer details within the GUI, such as text labels, buttons, and icons, remain
distinguishable without introducing excessive noise or aliasing effects. Given that GUI elements
often contain intricate visual cues, a resolution that is too low may result in information loss, whereas
an excessively high resolution can increase computational costs without significant performance
benefits. To implement this resizing, we employ bicubic interpolation, which provides a good balance
between sharpness and smoothness, preserving critical GUI features while minimizing artifacts. We
also ensure that aspect ratios are maintained whenever possible by applying padding techniques if
necessary, preventing unintended distortions that could affect model predictions. By adopting this
resolution standard, we align our evaluation methodology with established works like Aguvis and
UGround, fostering reproducibility and enabling fair comparisons in GUI-based task assessments.

D.2.2 Baselines

We conducted a comprehensive evaluation of the following four types of models:

1) Closed-source MLLMs: These include GPT-4o [18], Qwen-VL-Max [1], Claude-3.5-Sonnet, and
Gemini-2.0-Flash, which are proprietary models developed by leading organizations. These models
are selected due to their state-of-the-art performance on a wide range of multimodal tasks, including
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vision-language understanding, reasoning, and instruction following. Closed-source MLLMs typically
benefit from large-scale pretraining on extensive proprietary datasets, incorporating a mixture of text
and images/videos, along with advanced optimization techniques. They often leverage reinforcement
learning from human feedback (RLHF) and continual updates to enhance their reasoning capabilities.
These models are accessible via APIs, which enforce constraints on inference settings such as token
limits, response latency, and proprietary decoding strategies. For our evaluation, we use their publicly
available APIs and follow their recommended inference settings. If the model does not provide a
specific prompt for agent tasks, we apply our unified prompt to ensure a fair comparison. Additionally,
since these models lack direct access to GUI-specific training data, we evaluate their adaptability by
providing structured information about the interface components.

2) Open-source MLLMs: We also evaluate open-source models such as Qwen2-VL-7B-Instruct [41],
InternVL2-8B [4], and InternVL2.5-8B [4], which are widely recognized in the research community
for their flexibility and strong performance. These models have been fine-tuned on large-scale multi-
modal datasets and provide strong generalization across diverse vision-language tasks. Open-source
MLLMs offer several advantages, including transparency in training methodologies, customizability
for domain-specific fine-tuning, and community-driven improvements. Unlike closed-source models,
researchers can inspect their architectures, modify their training pipelines, and deploy them on local
hardware without API restrictions. We use their fine-tuned weights and apply our unified prompt for
tasks where no default prompt is provided. Although some of these MLLMs demonstrate capabilities
in object recognition and grounding, directly instructing them to locate elements on graphical user
interfaces (GUIs) presents unique challenges. The subtle and abstract nature of GUI elements, which
differ significantly from natural objects in common vision datasets, makes accurate interpretation dif-
ficult. To mitigate this issue, we provide A11Y (accessibility) metadata, such as element descriptions
and structural information, to aid inference.

3) Virtual Agents: In addition to MLLMs, we also evaluate various virtual agents, such as Agu-
vis [46], OS-Atlas [43], and ShowUI [26]. These agents are designed for executing tasks and represent
the current state-of-the-art in the virtual agent domain. Unlike MLLMs, which primarily operate as
general-purpose multimodal models, virtual agents are often specialized for task execution. They
integrate structured knowledge representations, planning mechanisms, and fine-tuned models tailored
to interactive environments. Many virtual agents leverage reinforcement learning or hierarchical
decision-making frameworks to enhance their task completion efficiency. Some also incorporate
retrieval-based techniques to access domain-specific knowledge dynamically. Similar to the MLLMs,
we use the default prompts provided by each agent when available. For agents that do not specify
prompts for certain tasks, we apply our unified prompt to maintain consistency across experiments.
Given that virtual agents typically rely on structured inputs rather than free-form multimodal un-
derstanding, we evaluate their ability to process GUI environments by simulating real-world task
execution scenarios.

4) Supervised Fine-Tuning Agents: We selected two backbones, OS-Atlas-Base-4B [43] and
UGround-V1-7B [15], with different architectures and fine-tuned them using the synthetic data from
OmniBench. Supervised fine-tuning agents differ from pre-trained MLLMs and general-purpose
virtual agents in that they are explicitly optimized on curated datasets. The fine-tuning process
involves exposing the models to task-specific examples, allowing them to internalize structured
dependencies and improve generalization within the OmniBench framework. This approach enables
agents to learn robust action sequences, refine their perception of GUI elements, and enhance their
decision-making accuracy. By leveraging synthetic data, we ensure that these agents develop a
structured understanding of GUI tasks while minimizing biases inherent in real-world datasets. We
analyze their performance across varying task complexities, measuring improvements in execution
success rates, response coherence, and adaptability to unseen scenarios.

D.3 Evaluation Details

In this section, we outline the evaluation strategies adopted for different categories of models,
considering their architectural characteristics and observed behaviors.

For open-source MLLMs, we observe that models such as Qwen-VL exhibit limited ability to process
high-resolution content across multiple images, often resulting in severe hallucinations. To mitigate
this, we simplify the visual input by providing only a single high-resolution screenshot of the current
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state. This strategy reduces visual ambiguity and helps focus the model’s attention on the current
interaction context.

In contrast, closed-source MLLMs, which typically benefit from larger model capacities and more
extensive training data, demonstrate stronger capabilities in distinguishing differences across images.
For these models, we provide two concatenated images: (1) the screenshot of the previous click
location with red box annotations, and (2) the current high-resolution screenshot with similar markup.
These two images are horizontally stitched into a single input to highlight temporal context and action
history.

For OS-Atlas, we observe a consistent failure in zero-shot double-click interactions, even when the
prompt explicitly emphasizes the importance of double-clicking. This limitation is particularly critical
in the Windows environment, where double-clicking is often required for opening files or applications.
To address this, we enforce all click actions as double-clicks for OS-Atlas during evaluation to ensure
basic operability in such environments.

E Prompts

In this section, we present the prompts used for constructing subtask trajectories and subtask evalua-
tions.

E.1 Prompt for Subtask Trajectory Synthesis

Example Prompt

system: |-
You are now operating in Executable Language Grounding mode. Your task is
to help users accomplish their goals by suggesting executable actions based
on the provided task instructions and your observations of the current
situation.

## Environment Interaction Rules

### Screenshots
- You are provided two versions of screenshots of the current application
in a single image, one with annotation (right) and one without annotation
(left)
- The annotation is to help you identify the control elements on the
application
- The annotation is a small rectangle with a number in the center of the
rectangle in the top left corner of the control item. The number is the
label of the control item
- Different types of control items have different colors of annotation
### Control Items
- The control item is the element on the page that you can interact with,
such as button, input box, etc.
- You are given the information of all available control items in the
current application window in a list format:

{{
"label": <The annotated label of the control item>,
"control_text": <The text of the control item>,
"control_type": <The type of the control item>,
"parent_control_text": <The text of the parent control item. When you
are not sure which control to select, you can make a decision based on
their parent controls>,
"parent_control_type": <The type of the parent control item. When you
are not sure which control to select, you can make a decision based on
their parent controls>

}}
### Control Operations
- You are able to use pywinauto to interact with the control item
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{apis}

### Execution Status
- You are required to determine the status of the execution after
performing the current action. Choose from the following options and fill
in the "Status" field in the response:

- "CONTINUE": means the task is not yet completed and further actions are
required. This is typically chosen when the execution is still ongoing or
needs additional steps.
- "FINISH": means the task has been fully completed, and all necessary
actions have been carried out successfully. Only choose this when all
steps have been executed as planned and the task is considered finished.

### Other Guidelines
- You are required to respond in a JSON format, consisting of 8 distinct
parts with the following keys and corresponding content:

{{
"Status": <Specify the status of the exploration. If "Status" is
"FINISH", the "ControlLabel", "ControlText", "Function", and "Args"
should be empty>,
"Observation": <summarize the screenshot from the previous step, if it
exists. You can also compare the current screenshot with the one taken
at the previous step>,
"Thought": <Outline your thinking and logic of the current one-step
action required to seek inspiration for task design>,
"ControlLabel": <Specify the precise annotated label of the control
item to be selected, adhering strictly to the provided options in the
field of "label" in the control information. If you believe none of the
control items are suitable for the task or the task is complete, kindly
output an empty string ''>,
"ControlText": <Specify the precise control_text of the control item to
be selected, adhering strictly to the provided options in the field of
"control_text" in the control information. If you believe none of the
control items are suitable for the task or the task is complete, kindly
output an empty string ''. The control text must match exactly with the
selected control label>,
"Function": <Specify the precise API function name without arguments to
be called on the control item to complete the user request, e.g.,
click_input. Leave it an empty string "" if you believe none of the API
functions are suitable for the task or the task is complete>,
"Args": <Specify the precise arguments in a JSON object format of the
selected API function to be called on the control item to complete the
user request, e.g., {{"button": "left", "double": false}}. Leave it an
empty dictionary {{}} if the API does not require arguments, or you
believe none of the API functions are suitable for the task, or the
task is complete>,

}}

Make sure your answer is strictly in JSON format only, without other
redundant text such as json header. Your output must be able to be parsed
by json.loads(). Otherwise, it will crash the system and destroy the user's
computer.

user: |-
<Step History:> {action_history}
<Available Control Item:> {control_item}
<Task instruction:> {task_instruction}
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E.2 Prompt for Subtask Evaluation Synthesis

Example Prompt

system: |-
You are a coding assistant tasked with generating Python code to evaluate
if a digital agent has successfully completed a specific task. You will
receive a task description along with a set of APIs that you can use to
check different actions or conditions that indicate task completion. Your
goal is to write an evaluation function that returns True if the agent has
successfully completed the task and False otherwise.

### Available APIs:
```python
def check_mouse_clicks(text: str) -> bool:

"""Checks if the mouse has clicked on the specified text.
Parameters
---------
text: str

The text associated with the click.
Returns
---------
bool

True if the mouse has clicked on the specified text, False otherwise.
Examples
---------
>>> # Evaluate if the agent has successfully set the picture
'envelope.png' as background
>>> def evaluate_agent_task_completion():
>>> if not check_mouse_clicks(text='envelope.png'):
>>> return False
>>> if not check_mouse_clicks(text='set as background'):
>>> return False
>>> return True
"""

def check_keyboard_types(text: str) -> bool:
"""Checks if the keyboard has typed the specified text.
Parameters
---------
text: str

The text to be typed.
Returns
---------
bool

True if the keyboard has typed the specified text, False otherwise.
Examples
---------
>>> # Evaluate if the agent has successfully typed 'Hello, World!'
>>> def evaluate_agent_task_completion():
>>> if not check_keyboard_types(text='Hello, World!'):
>>> return False
>>> return True
"""

def check_file_exists(file_path: str) -> bool:
"""Checks if the specified file exists.
Parameters
---------
file_path: str

The path to the file to be checked.
Returns
---------
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bool
True if the file exists, False otherwise.

Examples
---------
>>> # Evaluate if the agent has successfully renamed 'cat.jpg' to 'cute
cat.jpg'
>>> def evaluate_agent_task_completion():
>>> if
check_file_exists(file_path='C:/Users/user/Desktop/images/cat.jpg'):
>>> return False
>>> if not
check_file_exists(file_path='C:/Users/user/Desktop/images/cute cat.jpg'):
>>> return False
>>> return True
"""

def check_text_exists_via_ocr(text: str) -> bool:
"""Checks if the specified text is present in the last screenshot using
OCR (Optical Character Recognition).
Parameters
---------
text: str

The text to be checked.
Returns
---------
bool

True if the text is present in the last screenshot, False otherwise.
Examples
---------
>>> # Evaluate if the agent has successfully set the clock to '9:00 AM'
>>> def evaluate_agent_task_completion():
>>> if not check_text_exists_via_ocr(text='9:00 AM'):
>>> return False
>>> return True
"""

def check_text_exists_via_control(text: str) -> bool:
"""Checks if the specified text is present in the last screenshot through
control information.
Parameters
---------
text: str

The text to be checked.
Returns
---------
bool

True if the text is present in the last screenshot, False otherwise.
Examples
---------
>>> # Evaluate if the agent has successfully input the code 'print("Hello
World!")'
>>> def evaluate_agent_task_completion():
>>> if not check_text_exists_via_control(text='print("Hello
World!")'):
>>> return False
>>> return True
"""

def check_text_exists(text: str) -> bool:
"""Checks if the specified text is included in the last screenshot.
Parameters
---------
text: str
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The text to be checked.
Returns
---------
bool

True if the text is present in the last screenshot, False otherwise.
Examples
---------
>>> # Evaluate if the agent has successfully created a new folder named
'Project Files'
>>> def evaluate_agent_task_completion():
>>> if not check_text_exists(text='Project Files'):
>>> return False
>>> return True
"""

```

### Other Guidelines
- You will be given a `Subtask Instruction Template` and `Parameters`. Use
the APIs provided to implement an `Evaluation Function` in Python.
- This agent will run on the `Windows 11` operating system, so please
consider how to cleverly design the evaluation function based on this
operating system.
- The evaluation function should return a namedtuple `EvalResult` with two
fields:

- `success`: A boolean indicating if all conditions are met (True) or not
(False)
- `message`: A string explaining why the evaluation succeeded or failed

- The evaluation function should check each required condition and return
appropriate success/failure messages.
- Please `directly output` the evaluation function, without any additional
comments or explanations.
- When you design a correct evaluation function, I will provide you with a
`$1000` tip.

user: |-
### Subtask Instruction Template
{instruction}

### Available Parameters
{parameters}

### Controls in Environment
{controls}
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and Section 1 (Introduction) of our paper clearly reflect the
contributions and scope, including the proposed method, addressed problems.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss the limitations of our work in the appendix within the
Supplementary Material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our work does not focus on theoretical proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide an anonymous link to the code in the Abstract, enabling experi-
mental result reproduction.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: An anonymous link to the code is provided in the Abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify our training and test details in the appendix within the Supplemen-
tary Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Following most previous related work, our experimental results do not include
error bars, confidence intervals, or statistical significance tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resource information for reproducing experiments is provided in
appendix within the Supplementary Material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not violate any NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of our work in the appendix within the
Supplementary Material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We discuss the safeguards in the appendix within the Supplementary Material.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all referenced works and adhere to their licenses and usage terms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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