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Abstract

Large language models (LLMs) excel in complex
reasoning tasks, and distilling their reasoning ca-
pabilities into smaller models has shown promise.
However, we uncover an interesting phenomenon,
which we term the Small Model Learnability Gap:
small models (<3B parameters) do not consis-
tently benefit from long chain-of-thought (CoT)
reasoning or distillation from larger models. In-
stead, they perform better when fine-tuned on
shorter, simpler reasoning chains that better align
with their intrinsic learning capacity. To address
this, we propose Mix Distillation, a simple yet ef-
fective strategy that balances reasoning complex-
ity by combining long and short CoT examples
or reasoning from both larger and smaller models.
Our experiments demonstrate that Mix Distilla-
tion significantly improves small model reasoning
performance compared to training on either data
alone. These findings highlight the limitations
of direct strong model distillation and underscore
the importance of adapting reasoning complexity
for effective reasoning capability transfer.

1. Introduction

Large language models (LLMs) (Anthropic, 2023; Brown
et al., 2020; OpenAl, 2023; Touvron et al., 2023) have
demonstrated remarkable performance in complex reason-
ing tasks, enabling advancements in mathematical problem-
solving, logical inference, and structured decision-making
(Cobbe et al., 2021; Shao et al., 2024; Yang et al., 2024).
A key advancement in improving LLM complex reasoning
capability is the chain-of-thought (CoT) prompting. This
technique decomposes complex problems into intermedi-
ate reasoning steps, enhancing both performance and inter-
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pretability. (Wei et al., 2023).
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Figure 1. Small student models (<3B parameters) do not consis-
tently benefit from long CoT reasoning or distillation from large
teacher models. Instead, they perform better when fine-tuned on
shorter CoT reasoning or distilled from smaller teachers, which
better matches their intrinsic learning capacity. We term this phe-
nomenon the Small Model Learnability Gap.

However, the high computational cost of LLMs hinders their
deployment on resource-constrained devices, motivating the
development of smaller models that offer similar capabilities
at reduced cost. A widely adopted strategy to achieve this is
distillation (Agarwal et al., 2024; Hinton et al., 2015b; Kim
et al., 2024a), where CoT sequences generated by a strong
teacher model are used to fine-tune a weaker student model.
Naturally, one might expect that distilling CoT sequences
from stronger models would consistently improve small
models’ complex reasoning capabilities (Agarwal et al.,
2024; DeepSeek-Al et al., 2024; Min et al., 2024; Tunstall
etal., 2023).

However, we reveal an interesting phenomenon, which we
term the Small Model Learnability Gap (Fig. 1): small mod-
els do not consistently benefit from the complex reasoning
sequences provided by strong teachers, such as long CoT
reasoning or distillation from large models. In our experi-
ments, we observe that when small models are exposed to
long and intricate reasoning traces, they struggle to inter-
nalize the multi-step logic due to their constrained ability.
Instead, small models perform better when fine-tuned on
shorter, simpler reasoning chains that align more closely
with their intrinsic learning capacity. This suggests that
small models struggle to process overly elaborate reason-
ing traces or adapt to the distribution shifts introduced by
stronger teachers, ultimately limiting their ability to gener-
alize effectively.
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To address the challenge described above, we propose Mix
Distillation, a simple yet effective approach that balances
reasoning complexity by blending different types of reason-
ing traces. Specifically, our method comprises two config-
urations: (1) Mix-Long — A combination of long and short
CoT examples, ensuring that small models are exposed to
both detailed and concise reasoning steps. (2) Mix-Large —
A mixture of responses from both larger and smaller models,
allowing small models to learn from reasoning chains that
are better suited to their capacity.

Our experiments demonstrate that Mix Distillation
consistently improves small model reasoning perfor-
mance compared to standard distillation. For in-
stance, Qwen2.5-3B-Instruct improves by more
than 8 points on MATH and AMC using Mix-
Long, compared to direct training on long CoT data.
Qwen2.5-3B-Instruct gains more than 7 points on
MATH, AIME and AMC using Mix-Large compared with
training on large teacher CoT data.

These findings highlight a fundamental limitation of di-
rect strong model distillation and emphasize the impor-
tance of adapting reasoning complexity for effective knowl-
edge transfer. By carefully designing fine-tuning strategies,
we provide new insights into overcoming the constraints
of small model learning, making them more effective at
reasoning-intensive tasks.

2. Preliminaries
2.1. Notation

Let x = (21, 22,...,T,) represent an input sequence (e.g.,
a prompt), and y = (y1, Y2, - - - , Ym ) be the corresponding
output sequence. We consider a LLM parameterized by
#, which predicts the next token following a conditional
distribution g (yt\x, y1;t—1)- We denote by CoT(y) C y
the subset of tokens in the generated output that encodes
a chain-of-thought, often serving as a reasoning trace or
explanatory sequence.

Throughout this work, we use the term short CoT, to de-
scribe concise reasoning paths to arrive at solutions (Min
et al., 2024; Yeo et al., 2025) and long CoT to describe
an extended reasoning sequence that is not only longer but
also demonstrates more complex reflective thoughts (Qwen,
2024a; Yeo et al., 2025). Additionally, we use the term
large teacher CoT to refer to the reasoning trace generated
by a larger teacher model, and the term small teacher CoT
for the reasoning steps produced by a smaller teacher model.
Please see Appendix D for more examples.

2.2. Supervised Fine-Tuning (SFT)

Supervised fine-tuning (SFT) is widely adopted to en-
hance reasoning capabilities of LLMs on a dataset D =
{(z*,y*)}¥ |, where y* can be short CoT, long CoT, strong
model CoT or weak model CoT sequences. The SFT process
updates the parameters 8 of a language model by minimiza-
tion the negative log-likelihood loss over the instruction
dataset D.

3. Small Model Learnability Gap

In this section, we fine-tune student models using different
CoT data. We then reveal the small model learnability gap
given the performance of fine-tuned models.

3.1. Experiment Setup

Datasets. We use the 7,500 prompt set of MATH
(Hendrycks et al., 2021). This dataset encompasses seven
math topics such as advanced calculus, geometry, and linear
algebra.

Student models. Our study considers ten student
models from the Qwen (Qwen, 2024b) and Llama
(Meta, 2024b;a) model families of varying sizes. These
models include the Instruct version of Qwen2.5-0.5B,
Qwen2.5-1.5B, Qwen2.5-3B, Qwen2.5-7B,
Qwen2.5-14B, and Qwen2.5-32B, and the In-
struct version of Llama3.2-1B, Llama3.2-3B,
Llama3.1-8B,and Llama3.3-70B. A comprehensive
overview of the student models is presented in Table 5 of
Appendix A.

Teacher models. To compare long CoT with short CoT,
we use QwQ—-32B-Preview (Qwen, 2024a) to generate
long CoT sequences and Qwen2.5-32B-Instruct
as the response generator for short CoT. Within each
model family, we designate the larger scale model as the
large teacher and the smaller scale model as the small
teacher. This includes Qwen2.5-72B-Instruct vs
QOwen2.5-3B-Instruct,Llama3.1-70B-Instruct
vs Llama3.1-8B-Instruct, and Gemma2—-27B—-it
vs Gemmaz2-9B-it.

Evaluation Benchmarks. We evaluate the reasoning ca-
pability of fine-tuned student models on a set of commonly
used benchmarks, including MATH (Hendrycks et al., 2021),
GSMSK (Cobbe et al., 2021), AMC 2023, AIME 2024,
and the English math subset of OlympiadBench (He et al.,
2024). These benchmarks span a wide range of challenge
levels, from elementary mathematics to advanced competi-
tion problems. We define the student model performance
as the average score on five benchmarks. Unless otherwise
specified, all fine-tuned models are evaluated in a zero-shot
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Figure 2. Long CoT Gap (Arong = Prong — Pshort) of student models with different models sizes for (a) Qwen family (b) Llama
family. For teacher models, QwQ-preview-32B is chosen to generate long CoT responses, while Qwen2 .5-32B-Instruct is
chosen to generate short CoT responses. Each student model is trained on the response generated by different teacher models. Negative
(Positive) Arong indicates that long CoT is worse (better) than short CoT. Our results demonstrate that short CoT is better for smaller
student models (indicated by Arong j 0), while long CoT is better for larger student models (indicated by Arong ¢ 0).
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Figure 3. Large model CoT Gap (Ararge = Prarge — Psmaur) of student models with different models sizes for (a) Qwen family
(b) Llama family. For teacher models, Qwen2.5-72B-Instruct is chosen as the large teacher to generate responses, while
Qwen2.5-3B-Instruct is chosen as the small teacher to generate responses. Each student model is trained on the response generated
by different teacher models. Negative (positive) Arqrge indicates that large teacher CoT is worse (better) than small teacher CoT. Our
results demonstrate that small teacher CoT is better for smaller student models (indicated by A qrge | 0), while large model CoT is better

for larger student models (indicated by Ararge ¢ 0).

setting using greedy decoding. We set the maximum gen-
eration tokens as 16k. Please see Appendix A for detailed
experimental setup.

We define the following performance scores:

* Prong: Performance score of a student model fine-
tuned on long CoT data.

¢ Pgport: Performance score of a student model fine-
tuned on short CoT data.

* Prgrge: Performance score of a student model fine-
tuned on CoT from a larger teacher.

* Pspau: Performance score of a student model fine-
tuned on CoT from a smaller teacher.

Training Setup. Teacher models generate responses by
rejection sampling (Dong et al., 2023; Gulcehre et al., 2023;
Tong et al., 2024; Yuan et al., 2023; Yue et al., 2023; Zelik-
man et al., 2022) By default, teacher models employ greedy
decoding. By combining the math problem instructions
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with corresponding solutions generated by teacher models,
we construct problem-solution pairs to fine-tune student
models. We train the models using the LLaMA-Factory
framework (Zheng et al., 2024). For student models of scale
less than 14B, we use full-parameter SFT and implement
a cosine learning rate schedule with a maximum learning
rate of 107 to fine-tune student models (NovaSky, 2025).
For student models larger than 14B, we adopt LoRA fine-
tuning with a learning rate of 10~ for two epochs. Detailed
hyperparameters and information about the experimental
platform are provided in Appendix A.

3.2. Long CoT Gap

This section evaluates the reasoning capabilities of student
models fine-tuned over long CoT data and short CoT data.
We quantify the performance difference between long and
short CoT data using long CoT gap Apong, defined as:

ALong = PLong - PShort~

Figure 2 provides a comprehensive overview of the long
CoT gap Aprong across different student models. The de-
tailed benchmark scores on MATH, GSMS8K, AIME, AMC,
and OlympiadBench are deferred to Table 9 in Appendix B.
We report the following key takeaways.

Takeaway 1: Long CoT Gap

Small student models tend to benefit more from
short CoT, while large student models gain greater
advantages from long CoT.

J

We observe that long CoT is more effective for larger mod-
els, consistently leading to improved performance across
most math benchmarks. For example, the student model
Qwen?2.5-32B-Instruct improves about 15 points
across all math metrics on average.

However, long CoT data is not effective for smaller mod-
els, yielding significantly less improvement compared to
short CoT. On the MATH and AMC benchmarks, student
model Qwen?2.5-1.5B-Instruct performs over 10
points lower when fine-tuned with long CoT data. This
shows that smaller models may not be able to effectively
learn and utilize the long CoT paradigm. We put more ab-
lation results of different training parameters in Appendix
B.4. Please see more attribution analysis in Section 3.4.

3.3. Large Teacher CoT Gap

We investigate how effective small models may learn from
large teacher and small teachers. We define a large teacher
CoT gap as:

ALamge = PLarge — Psmair-

Table 1. Comparison of the average performance between fine-
tuning with long CoT (Prong) and short CoT (Psport). We find
that small student models may struggle to learn from long CoT
data.

Student Model  Prong Pshort ALong Better?
Qwen2.5-0.5B 14.8 19.5 -4.7 Short
Qwen2.5-1.5B 27.0 342 PSR Short
Qwen2.5-3B 40.3 434 -3.1 Short
Qwen2.5-7B 48.9 472 1.7 Long
Qwen2.5-14B 59.2 54.3 4.9 Long
Qwen2.5-32B 73.0 59.3 13.7 Long
Llama-3.2-1B 15.8 19.5 -3.7 Short
Llama-3.2-3B 32.5 33.1 -0.6 Short
Llama-3.1-8B 35.2 31.5 3.7 Long
Llama-3.3-70B 58.2 54.3 3.8 Long

Table 2. Comparison of average performance between fine-tuning
with large teacher CoT (Prong) and small teacher CoT (Psmair)-
We find that small student models may struggle to learn from large
teacher CoT data.

Student Model Prarge Psmaii ArLarge Better?
Qwen2.5-0.5B 16.9 20.4 -3.5 Small
Qwen2.5-1.5B 322 33.0 -0.8 Small
Qwen2.5-3B 39.7 39.4 0.3 Large
Qwen2.5-7B 48.9 423 6.6 Large
Qwen2.5-14B 52.9 49.9 3.0 Large
Qwen2.5-32B 59.5 53.0 6.5 Large
Llama-3.2-1B 16.5 18.5 -1.9 Small
Llama-3.2-3B 32.8 31.2 1.6 Strong
Llama-3.2-8B 25.6 25.1 0.5 Strong
Llama-3.2-70B 57.6 53.3 4.3 Strong

Figure 3 provides a comprehensive comparison of the
AlLarge incurred by all student models. The detailed
benchmark scores of MATH, GSMS8K, AIME, AMC and
OlympiadBench are deferred to Table 8 in Appendix
B. More experimental results of different teacher mod-
els, including Llama3.1-70B vs Llama3.1-8B and
Gemma2-27B vs Gemma2-9B are in Table 10 of Ap-
pendix B.

We observe that larger student models learn
effectively  from  large  teacher  CoT. For
example, Qwen2.5-7B-Instruct and

Qwen?2.5-32B-Instruct student models improve over
5 points on average, with Qwen2.5-32B-Instruct
achieving more than a 15 point increase on the
AIMC benchmark. However, smaller models do not
learn effectively from large teacher models such as
Qwen?2.5-72B-Instruct. Instead, small teacher mod-
els such as Qwen2 . 5-3B-Instruct may serve as better
teacher models for small student models. For instance, the
performance of Qwen2.5-0.5B-Instruct degrades
by more than 10 points on the AMC benchmark.
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We remark that both larger teachers and small teachers gen-
erate short CoT data in this section to fine-tune student
models, with no significant difference in average length.
Specifically, the average token length is 432.98 for the 72B
teacher and 440.70 for the 3B teacher. This helps eliminat-
ing CoT length as a confounding variable in our results of
the large teacher CoT gap.

Note that prior studies (Kim et al., 2024b) also demonstrated
that stronger models are not necessarily stronger teachers,
emphasizing response generator and teacher-side factors.
Our work differs in that we attribute this phenomenon pri-
marily to the size of the student model.

Takeaway 2: Large Teacher CoT Gap

Small student models tend to learn better from small
teachers, while large student models benefit more
from large teachers.

3.4. Analysis of Small Model Learnability Gap

Domain knowledge affects learnability gap. We observe
that math expert models, in spite of small model size, ex-
hibit a smaller learnability gap for both long CoT and large
teacher CoT data compared to general models in Figure 4.
Specifically, we compare the learnability gaps between the
student models Qwen2 .5-Math-1.5B-Instruct and
Qwen?2.5-1.5B-Instruct. Our findings show that the
long CoT gap of the small math expert model is significantly
smaller than that of general small models. Furthermore,
the performance improvement of Qwen2.5-Math-1.5B
when fined-tuned with large teacher CoT exceeds that of
Qwen?2.5-1.5B, suggesting that math expert models bene-
fit more substantially from large teacher CoT. We conjecture
that a key factor leading to the small model learnability gap
is the limited in-domain knowledge of small student models.
We summarize this observation in the following takeaway.

Takeaway 3: Effect of Domain Knowledge

Limited domain knowledge of small models may
hinder their learning from strong reasoning teachers.

Distribution Gap between student and teacher models.
We suggest that the distribution gap between student mod-
els and teacher models is a key factor leading to the small
model learnability gap. To quantify the distribution gap be-
tween student and teacher models, we measured perplexity
(PPL) of teacher-generated training data on different student
models in Table 4. Lower PPL indicates better alignment
between the student model’s distribution and the training
data distribution. Our findings reveal that small student mod-
els assign significantly higher PPL to large teacher CoT or
long CoT sequences, indicating difficulty in modeling such

complex reasoning traces. However, as student model size
increases, the PPL gap between long and short CoT (and be-
tween large and small teacher CoT) shrinks, indicating that
larger students can more easily adapt to complex reasoning
distributions. We present additional experimental results in
Appendix B.3 to show the distribution gap between student
and teacher models.

Takeaway 4: Effect of Distribution Gap

Distribution gap between student models and
teacher models may be a factor leading to the small
model learnability gap.

Base models exhibit a more significant learnability gap.
We observe that base models generally exhibit a more signif-
icant learnability gap than Instruct models in Figure 5. This
suggests that it is more challenging for small base models to
effectively learn from long CoT data or large teacher CoT.

Takeaway 5: Base vs Instruct

Small base models experience more significant
learnability gap than Instruct models.

Speaking styles shift. We adopt the method from (Lin
et al., 2023) to evaluate the rank shift of each token before
and after fine-tuning on long CoT and Large teacher CoT
data. This allows us to compare the token distribution shifts
induced by the fine-tuning process. We then annotate the
tokens that exhibit the largest rank shifts as the most shifted
tokens. Our analysis reveals that these tokens are predom-
inantly associated with expressive and stylistic elements,
such as “wait”, “But”, and “Let”. Please see Appendix C
for more details.

Takeaway 6: Speaking Styles Shift

Long CoT and large teacher CoT primarily shift the
student model’s distribution of tokens associated
with speaking styles.

4. Mix Distillation: Bridge Small Model
Learnability Gap

This section presents our Mix Distillation approach to bridge
the small model learnability gap.

4.1. Mix Distillation

We propose Mix Distillation to address the learnability gap
observed in small models. This approach blends easier-to-
learn data with more challenging data for small models,
thereby leveraging the strengths of both.
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Student Model ~ Distillation Method MATH AMC GSMS8k Oggfc’;lad AIME  Average
Long CoT 56.2 37.5 80.0 24.4 33 40.3
Short CoT 61.0 37.5 82.0 26.4 10.0 434
Strong Model CoT 57.5 35.0 80.0 259 0.0 39.7
Weak Model CoT 60.3 27.5 79.5 26.4 33 394

Qwen2.5-3B Deepseek-R1-32B (Long CoT) 50.7 20.0 81.2 15.7 0.0 335
Ours
Mix-Long 64.7 45.0 1.4 28.6 10.0 45.9
Mix-Large 65.8 42.5 81.7 29.0 10.0 45.8
Long CoT 48.7 17.5 75.1 17.6 33 325
Short CoT 50.9 15.0 77.5 18.7 33 33.1
Strong Model CoT 474 25.0 71.2 16.9 33 32.8
Weak Model CoT 47.9 17.5 74.1 16.4 33 31.2

Llama3.2-3B Deepseek-R1-32B (Long CoT) 48.5 17.5 71.7 16.1 6.7 333
Ours
Mix-Long 53.0 22.5 79.4 17.2 33 35.1
Mix-Large 51.8 25.0 76.3 17.2 33 34.7

Table 3. Mix Distillation outperforms the baseline models across most metrics. We use Llama3.2-3B-Instruct and
Qwen2.5-3B-Instruct as the student model and 7.5k samples in MATH dataset as the training set. We distill different teacher
models to generate responses as the baseline. Our proposed Mix-Long combines long CoT data and normal CoT data in a 1:4 ratio, while
Mix-Large combines strong model response and weak model response with the same proportion. Experimental results demonstrate that
both Mix-Long and Mix-Large surpass baselines in most evaluation metrics. The highest score is bolded, and the second highest score is
underlined.
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Figure 4. Math expert models usually have a less significant Learnability Gap than the general models. A positive Gap means long CoT or
large teacher CoT is better while negative means worse. This indicates that the math expert model could more easily learn from long CoT
data or large teacher CoT.

Our insight is that small models tend to perform better on 4.2. Experiment Results
data that closely matches their inherent distribution (such
as short CoT or small teacher CoT), while they struggle
with data that exhibits greater distribution shifts. The token
distribution of the mixed long CoT and large teacher CoT
data may become closer to that of small models’ inherent
distribution, thereby enabling them to learn more effectively
from challenging datasets.

We use Qwen2.5-3B-Instruct as the student model and
MATH (7.5k) as the training set. We distill different teacher
models to generate responses as the baseline. They in-
clude QwQ-32B (long CoT), Qwen2 .5-32B (short CoT),
Qwen2 .5-72B (large teacher CoT), Qwen2 .5-3B (small
teacher CoT). We add Deepseek-R1-32B (DeepSeek-
Al 2025) as the teacher model to generate another set of
We propose Mix-Long, which combines long and short  long CoT data as baseline. We set @ = 0.2 in both configu-
CoT data with a weight of long CoT « and short CoT 1 — .. rations of Mix-Long and Mix-Large.

Similarly, we propose Mix-Large, which mixes large teacher
CoT with a weight of a and small teacher CoT with a weight
ofl —a.

Experimental results demonstrate that both Mix-Long and
Mix-Large surpass baselines in most evaluation metrics. We
show that the small student model could achieve improved
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Figure 5. Base models generally exhibit a more significant learnability gap than Instruct models. A positive gap indicates that long CoT
data or large teacher CoT enhance performance, whereas a negative gap suggests they have the opposite effect. This implies that it is more
challenging for small base models to effectively learn from long CoT data or large teacher CoT.

Table 4. PPL Analysis Results. We measured PPL of teacher-
generated training data on different student models. We observe
that small student models assign significantly higher PPL to large
teacher CoT or long CoT sequences, indicating difficulty in mod-
eling such complex reasoning traces. As student model size in-
creases, the PPL gap between long and short CoT (and between
large and small teacher CoT) shrinks, indicating that larger stu-
dents can more easily adapt to complex reasoning distributions.

Student Long Short Large Small

Model CoT CoT A (L5 Teacher Teacher A (Lg-Sm)
Qwen-0.5B 2.237 1.278 0.959 1.246 1.217 0.028
Qwen-1.5B  2.969 1.226 0.743 1.204 1.178 0.026
Qwen-3B 1.963 1.246 0.716 1.225 1.155 0.069
Qwen-7B 1.923 1.222 0.700 1.197 1.180 0.016
Qwen-14B  1.902 1.218 0.683 1.198 1.189 0.009
Qwen-32B  1.265 1.050 0.215 1.053 1.051 0.002

performance by Mix Distillation compared to training on
a single dataset. For instance, Qwen2.5-3B-Instruct
improves by more than 8 points on MATH and AMC using
Mix-Long, compared to direct training on long CoT data.
It also shows a more than 7-point gain on MATH, AIME
and AMC for Qwen2.5-3B-Instruct by Mix-Large
compared with training on large teacher CoT data. This
implies that it is easier for small student models to learn
from datasets generated by Mix Distillation.

Takeaway 7: Mix Distillation Bridges Gap

By mixing long CoT data (resp. large teacher CoTs)
and short CoT data (resp. small teacher CoT), the
small student model could achieve better perfor-
mance compared to training on either data alone.

J

Figure 6 shows the average performance when taking differ-
ent mix weight o of long CoT data or large teacher CoT. We
choose Qwen2.5-3B-Instruct as the student model
and find that a weight « of 0.2 achieves the highest average
performance across five benchmarks for both Mix-Long and
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Figure 6. The average performance varies with the mix weight of
long CoT or large teacher CoT data. Qwen2.5-3B-Instruct
is chosen as the student model. At a weight of 0.2, mix distillation
achieves the highest average performance.

Mix-Large.

Interestingly, we find that after mixing long CoT and short
CoT data, the small student model’s output incorporates
characteristics of long CoT, such as a branching process,
while maintaining a reduced token length and avoiding
overly elaborate thinking. This is illustrated in Figure 7.
We observed that the small student model fine-tuned on
long CoT data becomes overwhelmed by repeated thoughts
and fails to stop, whereas the model fine-tuned on short CoT
data produces incorrect answers. In contrast, our proposed
Mix-Long, which incorporates branching elements (e.g., the
use of “Alternatively”), delivers the correct answer. Addi-
tionally, the average token lengths of responses generated
by long CoT, short CoT, and Mix-Long are 3384.7, 575.7,
and 1248.9, respectively. We suggest that mixing long CoT
and short CoT data is a practical approach to achieving
a balanced CoT length, thereby enhancing the reasoning
capabilities of small student models.
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Figure 7. Case Study of Mix-Long. Models fine-tuned on long CoT
tended to overthink, while those trained on short CoT produced
incorrect answers. In contrast, Mix-Long, incorporating branching
elements (e.g., “Alternatively”), achieved a balanced reasoning
process and arrived at the correct answer.

5. Related Work
5.1. Distillation

Knowledge distillation has been extensively employed to
transfer knowledge from large teacher models to smaller
student models (Hinton et al., 2015a; Phan et al., 2024; Gou
et al., 2021; Xu et al., 2024b). Recent research in LLLMs has
increasingly adopted token-level distillation as an alternative
to traditional logit-level distillation approaches (Phan et al.,
2024; Ho et al., 2023; Agarwal et al., 2024). In conventional
classification tasks, several studies have investigated the
Capacity Gap phenomenon, where excessive differences in
capacity between teacher and student models can compro-
mise distillation effectiveness (Mirzadeh et al., 2019; Cho &
Hariharan, 2019; Zhang et al., 2023). However, these work
focused primarily on classification tasks. Our work inves-
tigates reasoning generation tasks, where student models
must internalize complex CoT reasoning traces.

5.2. Chain-of-Thought

Early research on CoT primarily focused on short CoT,
where models produce succinct reasoning paths to reach a
solution (Lambert et al., 2025; Longpre et al., 2023; Wei
et al., 2023; Yu et al., 2024). Recently, researchers have
turned to long CoT prompting, which encourages the gener-
ation of extended and detailed reasoning chains (DeepSeek-

Al 2025; Hou et al., 2025; Kimi Team, 2025; NovaSky,
2025; OpenAl, 2024; Pan et al., 2025; Zeng et al., 2025).
The model systematically explores multiple paths (branch-
ing) and reverts to earlier points if a particular path proves
wrong (backtracking). Although several studies have in-
vestigated methods such as distillation and reinforcement
learning to integrate long CoT capabilities into LLMs, these
efforts have predominantly concentrated on large models.
In contrast, our work specifically targets the challenges as-
sociated with training smaller models.

5.3. Synthetic Reasoning Data

Although human-crafted reasoning datasets have been used
to enhance LLLM reasoning capabilities (Hendrycks et al.,
2021; LI et al., 2024), their development is both time-
consuming and labor-intensive. Recent advancements have
streamlined this process by generating instructions or re-
sponses directly from LLMs (Hui et al., 2024; Toshniwal
et al., 2024; Xu et al., 2024a; Yue et al., 2023; Zhang et al.,
2025) or extracting data directly from web (Paster et al.,
2023; Yue et al., 2024), yielding more detailed and diverse
chain-of-thought reasoning pathways. Recent study has in-
vestigated the impact of various response generators (Kim
et al., 2024b), suggesting that in the domains of instruction
following and reasoning, responses from stronger teacher
models do not necessarily produce the most effective learn-
ing effects for student models. However, these investigations
have not recognized student model size as a critical factor
influencing this phenomenon, nor have they performed the
more attribution and mitigation analyses as in this paper.

6. Conclusion and Future Work

In this paper, we showed that long CoT data and large model
responses were not uniformly beneficial for small student
models. We found that small models may perform better
when fine-tuned with short CoT and small model CoT. We
termed this challenge as the Small Model Learnability Gap.
The reason behind it may be that small student models excel
on data that closely match their inherent distribution but
struggle with significant distribution shifts. To bridge the
gap, we introduced Mix Distillation, including Mix-Long,
which combined long CoT and short CoT data in a ratio,
and Mix-Large, which integrated large and small teacher
CoT. Experimental results showed that both Mix-Long and
Mix-Large outperform baselines across most evaluation met-
rics, which implied mix distillation outperforms training on
a single data distribution. This paper provided practical
insights for optimizing post-training strategies to enhance
small language model reasoning capability.

We will explore several promising directions as future work.
First, we will refine mix distillation by optimally combin-
ing diverse data sources and proposing more fine-grained
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mixing algorithms to boost reasoning capabilities. Second,
we propose to study how strong reasoning teachers can
generate data that is better suited for tuning small student
models, thereby facilitating more effective knowledge trans-
fer. Third, we will conduct further theoretical and model
interpolability studies on the small model learnability gap.
Lastly, we will investigate which SFT methods yield the
best initial policies for subsequent RL procedure.
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Small Models Struggle to Learn from Strong Reasoners

A. Detailed Experimental Setups

Category Models

Teacher Models
Long CoT vs QwQ-32B-Preview vs
ShortCoT Qwen2.5-32B-Instruct

Large Teacher vs
Small Teacher

QOwen Family Qwen2.5-72B-Instruct vs
Qwen2.5-3B-Instruct
Llama Family Llama3.1-70B-Instruct vs
Llama3.1-8B-Instruct
Gemma Family Gemma2-27B-it vs
Gemma2-9B-it
Student Models
QOwen Family Qwen2.5-0.5B-Instruct,

Qwen2.5-1.5B-Instruct,
Qwen2.5-3B-Instruct,
Qwen2.5-7B-Instruct,
Qwen2.5-14B-Instruct,
Qwen2.5-32B-Instruct
Llama Family Llama3.2-1B-Instruct,
Llama3.2-3B-Instruct,
Llama3.1-8B-Instruct,
Llama3.3-70B-Instruct

Table 5. Overview of Teacher and Student Models

A.1. Models

Table 5 presents a comprehensive overview of student and teacher models used in our paper.

A.2. Training Setup

Our model training is conducted using LLaMA-Factory (Zheng et al., 2024), on a server with four NVIDIA A100-SXM4-
80GB GPUs, an AMD EPYC 7763 64-Core Processor, and 512 GB of RAM. We use full parameter fine-tuning on student
models less than 14B parameters. When the student model is larger than 14B, we use LoRA fine-tuning (Hu et al., 2021).
Table 6 and Table 7 list hyper-parameters for full parameter fine-tuning and LoRA fine-tuning respectively.

Hyper-parameter Value
Learning Rate 1x107°
Number of Epochs 2
Number of Devices 4
Per-device Batch Size 2
Optimizer Adamw

Learning Rate Scheduler cosine
Max Sequence Length 16384

Table 6. This table shows the hyper-parameters for full parameter fine-tuning.

Teacher models generate responses by rejection sampling (Zelikman et al., 2022; Tong et al., 2024; Yue et al., 2023; Singh
et al., 2024; Gulcehre et al., 2023; Yuan et al., 2023; Dong et al., 2023). By default, teacher models employ greedy decoding.
By combining the math problem instructions with corresponding solutions generated by teacher models, we construct
problem-solution pairs to fine-tune student models. We perform pairwise comparisons of solutions generated by different
teacher models and filter out problem-solution pairs that are correct for both models to fine-tune student models.
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Hyper-parameter Value
Learning Rate 1x1074
Number of Epochs 2
Number of Devices 4
Per-device Batch Size 1

Lora Target full
Learning Rate Scheduler cosine
Warmup Ratio 0.03

Max Sequence Length 16384

Table 7. This table shows the hyper-parameters for LoORA fine-tuning.

A.3. Evaluation Setup

We evaluate the reasoning capability of fine-tuned student models on a set of commonly used benchmarks, including
MATH (Hendrycks et al., 2021), GSMS8K (Cobbe et al., 2021), AMC 2023, AIME 2024, and the English math subset of
OlympiadBench (He et al., 2024).

Unless otherwise specified, all fine-tuned models are evaluated in a zero-shot setting using greedy decoding. We set the
maximum generation tokens as 16k. The evaluation prompt is shown below.

Solve the following math problem and present the final answer in the format: Final Answer: ‘ {your answer} ‘

Problem: {problem}
Answer:

After extracting the final answer of the evaluated model, we first employ exact matching to determine the correctness of the
answer. If the answer is incorrect, we use Qwen-32B-Instruct as a judge to compare the extracted final answers against that
of the ground truth. The prompt is shown below.

Prompt

i

Given a math problem, its correct final answer, and the model’s generated final answer, determine if the model’s
answer is correct. Respond with *True’ if the it is correct and ’False’ if it is incorrect.

Problem: {problem}

Correct Final Answer: {ground truth}

Model’s Generated Final Answer: {resp answer}

Your Judgement:

B. More Experiments Results

In this section we present additional experiment results of long CoT gap and large teacher CoT gap.

B.1. Long CoT Gap: Additional Results

Table 9 shows the detailed performance scores and gap of each benchmark for different student models fine-tuned on long
CoT and short CoT. QwQ—-32B-Preview is chosen to generate long CoT and awhile Qwen-2.5-32B-Instruct is
chosen to generate short CoT. We observe that small student models tend to benefit more from short CoT, while large student
models gain greater advantages from long CoT.
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MATH GSMS8k AIME AMC Olympiad Zverage
Strong
Model Pstrong  Pweak  Astrong  Pstrong Pweak  Astrong  Pstrong PWeak  Astrong PStrong PWeak  Astrong  PStrong PWeak  AStrong
Llama-3.2-1B 29.8 29.6 0.160 44.4 47.5 -3.18 0.00 0.00 0.00 2.50 7.50 -5.00 6.07 7.70 -1.63 -1.93
Llama-3.2-3B 47.4 47.9 -0.500 71.2 74.1 -2.88 3.33 0.00 3.33 25.0 17.5 7.50 16.9 16.4 0.445 1.58

Llama-3.2-8B 37.6 37.6 -0.040 67.0 69.2 -2.20 6.67 0.00 6.67 7.50 7.50 0.00 9.19 11.0 -1.78 0.530
Llama-3.2-70B 74.5 72.2 2.28 92.0 92.2 -0.152 16.7 16.7 0.00 67.5 50.0 17.5 373 357 1.63 425

Qwen2.5-0.5B 30.0 31.0 -0.920 43.1 45.4 235 0.00 0.00 0.00 5.00 17.5 _ 6.52 8.30 -1.78 =39l
Qwen2.5-1.5B 50.3 50.7 -0.440 70.6 71.0 -0.455 0.00 3.33 -3.33 22.5 20.0 2.50 17.8 20.0 -2.22 -0.790
Qwen2.5-3B 57.5 60.3 -2.82 79.9 79.5 0.379 0.00 3.33 -3.33 35.0 27.5 7.50 25.9 26.4 -0.444 0.256
Qwen2.5-7B 71.3 63.6 7.66 87.8 84.1 3.72 6.67 0.00 6.67 40.0 35.0 5.00 38.8 29.0 9.78 6.56
Qwen2.5-14B 76.4 72.8 3.66 93.1 89.6 3.49 6.67 3.33 3.33 475 45.0 2.50 41.0 39.0 2.07 3.01

Qwen2.5-32B 80.5 76.8 3.72 922 92.7 -0.531 20.0 3.33 16.7 57.5 50.0 7.50 474 424 5.04 6.48

Table 8. This table summarizes the performance of models in Llama and Qwen families fine-tuned with large teacher CoT and small
teacher CoT when evaluated on MATH, GSMS8K, AIME, AMC, and OlympiadBench. Qwen-2.5-72B-Instruct is chosen as the
large teacher while Qwen-2.5-3B-Instruct is chosen as the small teacher. We observe that small student models may experience
degraded performance when distilled from a large teacher compared to a small teacher, whereas larger student models benefit more from
the distilling a large teacher.

MATH GSMS8K AIME AMC Olympiad Average Apong

Model Prong  Pshort  Avong  Prong  Pshort  ALong  PLong  Pshort  ALong  Prong  Pshort  ALong  Prong  Pshort  ALong
Llama-3.2-1B 28.6 334 -4.78 423 49.2 -6.90 0.00 0.00 0.00 2.50 7.50 -5.00 548 7.40 -1.92 -3.72
Llama-3.2-3B 48.7 50.9 -2.14 751 71.5 -2.42 3.33 3.33 0.00 17.5 15.0 2.50 17.6 18.7 -1.04 -0.619
Llama-3.1-8B 50.0 44.6 5.36 814 75.5 5.84 0.00 0.00 0.00 27.5 22.5 5.00 17.3 14.8 2.52 3.74
Llama-3.3-70B  75.3 74.9 0340 927 91.2 1.44 26.7 13.3 13.3 55.0 52.5 2.50 41.3 39.7 1.63 3.85
Qwen2.5-0.5B 23.0 31.5 -8.44 39.5 453 -5.84  0.00 0.00 0.00 7.50 15.0 -7.50 4.00 593 -1.93 -4.74
Qwen25-15B 416 523 638 717 [ <189 000 000 000 175 275 [RSl00N 123 194 S0 213
Qwen2.5-3B 56.2 61.0 -4.84 80.0 82.0 -1.98 333 10.0 -6.67 37.5 37.5 0.00 244 26.4 -1.93 -3.08
Qwen2.5-7B 68.2 67.8 0460 86.2 85.7 0.560 13.3 6.67 6.67 40.0 40.0 0.00 36.6 35.7 0.889 1.72
Qwen2.5-14B 78.3 76.2 2.04 93.3 92.5 0.760  20.0 6.67 13.3 60.0 55.0 5.00 44.4 40.9 3.56 4.94
Qwen2.5-32B 84.8 82.3 2.44 94.9 94.3 0.610 40.0 10.0 30.0 85.0 62.5 225 60.4 473 13.2 13.7

Table 9. This table summarizes the performance of models in Llama and Qwen families fine-tuned with long CoT and short CoT data.
They are evaluated on MATH, GSM8K, AIME, AMC, and OlympiadBench. QwQ-32B-Preview is chosen to generate long CoT and
awhile Qwen-2.5-32B-Instruct is chosen to generate short CoT. We observe that small student models tend to benefit more from
short CoT, while large student models gain greater advantages from long CoT.
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B.2. Large Teacher CoT Gap: Additional Results

Table 8 shows the detailed performance scores and gap of each benchmark for different student models distilled from large
teacher and small teacher. We summarize the performance of 10 student models from the Llama and Qwen families across
various model sizes. Qwen-2.5-72B-Instruct is chosen as the large teacher while Qwen-2.5-3B-Instruct
is chosen as the small teacher. The results are shown in Table 8. Our findings indicate that small student models may
experience degraded performance when distilled from a large teacher compared to a small teacher, whereas larger student
models benefit more from distilling a large teacher.

Table 10 shows more experiment results for teacher models in different model families, including Gemma—-27B-1it vs
Gemma-9B-it and Llama3.1-72B-Instruct vs Llama3.1-8B-Instruct.

Gemma?2-9B vs Gemma2-27B Llama3.1-8B vs Llama3.1-70B

Model MATH AMC Olympiad AIME GSM8k Average MATH AMC Olympiad AIME GSM8k Average
Llama3.2-1B -1.42  -7.50 0.00 0.00 -0.227 -1.83 -142  -5.00 -0.296 3.33 0.152 -0.646
Llama3.2-3B 2.08 -7.50 -0.888 0.00 1.67 -0.928 -0.14 10.0 -0.593 3.33 1.06 2.73
Llama3.1-8B 0.56 0.00 0.078 0.00 -0.516  0.0243 -2.18 7.50 2.67 0.00 -1.29 1.34
Llama3.1-70B 0.02 7.50 -0.741 10.0 0.152 3.39 2.72 17.5 5.48 6.67 0.986 6.67
Qwen2.5-0.5B  -4.56  0.00 0.741 0.00 0.592 -0.645 -1.88 0.00 0.185 0.00 -1.74 -0.688
Qwen2.5-1.5B  -1.20 2.50 -1.19 0.00 -0.986 -0.174 -1.48 5.00 -0.148 3.33 -1.14 1.11
Qwen2.5-3B 0.44 5.00 1.78 0.00 -0.758 1.29 -126  5.00 -0.741 -3.33 -1.29 -0.325
Qwen2.5-7B 0.22 5.00 1.04 -3.33 3.94 1.37 3.68 20.0 4.15 3.33 2.81 6.79
Qwen2.5-14B 1.32 2.50 -0.148 0.00 -0.986 0.537 2.18 0.00 0.445 333 -0.303 1.13
Qwen2.5-32B 0.10 2.50 1.48 3.44 1.36 1.78 272 =250 5.63 3.33 0.834 2.00

Table 10. This table presents the performance of student models distilled from different teacher models, including Gemma-27B-1t
vs Gemma-9B-it and Llama3.1-72B-Instruct vs Llama3.1-8B-Instruct. We observe that small student models may
experience degraded performance when distilled from a large teacher compared to a small teacher, whereas larger student models benefit
more from the distilling a large teacher.

B.3. Empirical Evidence for Distribution Gap Between Student and Teacher Models

We suggest that the distribution gap between student models and teacher models may be a key factor leading to the small
model learnability gap. We provide empirical evidence through perplexity measurements and text similarity comparisons.

Training Data Perplexity Analysis. To quantify the distribution gap between student and teacher models, we measured
perplexity (PPL) of teacher-generated training data on different student models in Table 11. Lower PPL indicates better
alignment between the student model’s distribution and the training data distribution. Our findings reveal several key
patterns:

1. Small students struggle with complex sequences: Small student models assign significantly higher PPL to large teacher
CoT or long CoT sequences, indicating difficulty in modeling such complex reasoning traces.

2. Aligned teacher-student pairs show better distribution matching. Small teacher CoT yields lower PPL in small students,
suggesting reduced distribution gap when teacher and student capacities are more aligned.

3. As student model size increases, the PPL gap between long and short CoT (and between large and small teacher CoT)
shrinks, indicating that larger students can more easily adapt to complex reasoning distributions.

Text Similarity Analysis. We conducted additional analyses comparing responses generated by student models with those
from small and large teachers using two text similarity metrics:

e TF-IDF cosine similarity: Measures lexical similarity between texts

¢ Embedding similarity: Uses all-mpnet-base-v2 to capture semantic similarity

15



Small Models Struggle to Learn from Strong Reasoners

Table 11. Perplexity Analysis Results
Student Long Short Large Small

Model CoT CoT A (L-5) Teacher Teacher A (Lg-Sm)
Qwen-0.5B 2.237 1.278 0.959 1.246 1.217 0.028
Qwen-1.5B 2.969 1.226 0.743 1.204 1.178 0.026
Qwen-3B 1.963 1.246 0.716 1.225 1.155 0.069
Qwen-7B 1.923 1.222 0.700 1.197 1.180 0.016
Qwen-14B  1.902 1.218 0.683 1.198 1.189 0.009
Qwen-32B  1.265 1.050 0.215 1.053 1.051 0.002

Table 12. Text Similarity Analysis Results
Student Model Metric Small Teacher Large Teacher

TF-IDF Similarity 0.8329 £0.004 0.8235 £+ 0.004
Embedding Similarity 0.9461 £ 0.002  0.9413 %+ 0.002

TF-IDF Similarity 0.7928 £0.003  0.7854 + 0.003
Embedding Similarity 0.9372 £0.001  0.9297 £ 0.002

Qwen2.5-1.5B

Qwen2.5-0.5B

The text similarity analysis provides interpretable evidence of the distribution gap in Table 12. We found that student
responses are consistently more similar to small teacher CoT than to large teacher CoT across both lexical and semantic
similarity metrics. The confidence intervals are tight and do not overlap, indicating that the observed differences are
statistically significant and not due to outlier effects.

B.4. Hyperparameter Sensitivity Analysis

To ensure that the suboptimal performance of long CoT training is not due to hyperparameter choices, we conducted
extensive experiments across different training configurations using Qwen2.5-1.5B-Instruct as the student model. We
systematically varied training epochs (2, 3, 4, and 5) with a fixed learning rate of 1 x 10, and learning rates (5 x 1075,
1 x1075,5 x 107>, and 1 x 10~%) with fixed 3 epochs.

Table 13. Hyperparameter sensitivity analysis for long CoT learnability gap
Configuration MATH GSM8k AIME AMC Olympiad Average

Long CoT - Epoch Variations

long_cot_epoch.2  0.416 0.638 0.000 0.175 0.122 0.270
long_cot_epoch.3  0.403 0.648 0.033 0.150 0.149 0.276
long_cot_epoch 4  0.404 0.669 0.033  0.175 0.149 0.286
long_cot_epoch.5  0.416 0.667 0.033  0.100 0.146 0.272
Long CoT - Learning Rate Variations
long_cot_Ir_le-4 0.244 0.325 0.000  0.050 0.047 0.133
long_cot_Ir_Se-5 0.322 0.489 0.000  0.000 0.087 0.179
long_cot_Ir_le-5 0.403 0.648 0.033  0.150 0.149 0.276
long_cot_Ir_Se-6 0.385 0.645 0.033  0.175 0.125 0.272
short_cot 0.522 0.717 0.000 0.275 0.194 0.341

Our results in Table 13 demonstrate that short CoT consistently outperforms long CoT for small student models, regardless
of hyperparameter settings. Across all tested configurations, long CoT training consistently underperformed short CoT
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training.

B.5. Large Teacher Prompting Analysis

To investigate whether the performance gap between large and small teachers can be mitigated through improved prompting
strategies, we tested the hypothesis that explicitly instructing large teachers to generate simpler, student-friendly responses
would improve their effectiveness for training small student models.

We revised the large teacher prompt to explicitly instruct the model to simplify its reasoning for better student comprehension:

Solve the following math problem. Your chain of thought responses will be used to teach a small model. Please
generate responses in a simpler and more concise manner for better student comprehension. Present the final answer

in the format: Final Answer: ‘ {your_answer} ‘

Problem: {problem}

Answer:
Table 14. Comparison of small teacher vs. large teacher with revised prompting
Student Teacher MATH GSM8k AIME AMC Olympiad Average
Qwen2.5-0.5B  Qwen2.5-3B-Instruct 0.310 0.454 0.000 0.175 0.083 0.204
Qwen2.5-0.5B  Qwen2.5-72B-Instruct (revised prompt)  0.269 0.399 0.000  0.075 0.064 0.161
Qwen2.5-1.5B Qwen2.5-3B-Instruct 0.507 0.710 0.033  0.200 0.200 0.330
Qwen2.5-1.5B  Qwen2.5-72B-Instruct (revised prompt)  0.467 0.678 0.000  0.175 0.160 0.296
Qwen2.5-3B Qwen?2.5-3B-Instruct 0.603 0.795 0.033  0.275 0.264 0.394
Qwen2.5-3B Qwen2.5-72B-Instruct (revised prompt)  0.552 0.773 0.033  0.325 0.224 0.382
Llama-3.2-1B  Qwen2.5-3B-Instruct 0.296 0.475 0.000 0.075 0.077 0.185
Llama-3.2-1B  Qwen2.5-72B-Instruct (revised prompt)  0.283 0.453 0.000  0.075 0.054 0.173
Llama-3.2-3B Qwen2.5-3B-Instruct 0.479 0.741 0.000 0.175 0.164 0.312
Llama-3.2-3B  Qwen2.5-72B-Instruct (revised prompt)  0.453 0.696 0.000 0.225 0.145 0.304

The results in Table 14 demonstrate that for small studetns, the small teacher (Qwen2.5-3B-Instruct) consistently outperforms
the large teacher (Qwen2.5-72B-Instruct) even when the large teacher uses the revised prompt designed for student-friendly
output generation. These findings reinforce our hypothesis that the fundamental issue lies in the inherent distribution
mismatch between large and small models, which cannot be fully addressed through prompting techer models alone.

C. Examples of Speaking Style Shift

We adopt the method from (Lin et al., 2023) to evaluate the most shifted tokens after fine-tuning on long CoT and Large
teacher CoT data. Figure 8 shows the calculation process. This allows us to compare the token distribution shifts induced by
the fine-tuning process. We annotate the tokens that exhibit the largest rank shifts as the most shifted tokens. We choose
Qwen?2.5-3B-Instruct as the student model. We put the results of most shifted tokens after fine-tuning on long CoT
data in Figure 9 and 10. The results of most shifted tokens after fine-tuning on large teacher CoT data are shown in Figure
11. Our analysis reveals that these tokens are predominantly associated with expressive and stylistic elements, such as
“wait”, “But”, and “Let”.

D. Examples of Various CoT Data

This section demonstrates examples of different CoT data including long CoT, short CoT, large teacher CoT and small
teacher CoT. See the following examples.
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| numbers that satisfies the equation x"2+y~2=14x+48y.

® | Problem: Let (x,y) be an ordered pair of real ‘
p\ what is the maximum value of y?

L}]
4 Fine-tuned
0 % on long CoT
{Text: Problem (p) + Solution from fine-tuned LLM (o) 1 -
I ¥
Student LLM But., let me double-check if this makes sense. The
Decoded by befi'—' equation is x* + yz = 14x + 48y, and I've transformed it
ore fine-tuning into (x - 702 + (y — 24)% = 625, which is indeed a circle
with center (7, 24) and radius 25.

_}-” S0, the maximum y would be 24 + 25 = 49,

But, wait, the problem says "the maximum value of y.," and

I've found that to be 49. But let me consider if there
are any other constraints or if I've missed something.

Let me think about the original equationi x? + y? = 14x +
48y.

But So Let
T /e

Most Shifted Tokens:
\ Top 100 tokens with the largest rank
“._shift. e

Figure 8. The process of calculating most shifted tokens. We decode each token generated by the fine-tuned LLM in the student model
before fine-tuning. Then we calculate the rank shift in the student model for each token generated by the fine-tuned model. We annotate

the tokens that exhibit the largest rank shifts as the most shifted tokens. We found that these tokens are predominantly associated with
expressive and stylistic elements, such as “But” and “Let”.

Problem

Let (x,y) be an ordered pair of real numbers that satisfies the equation 2% + y? = 14z + 48y. What is the maximum
value of y?
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Example of most shifted tokens after fine-tuning on long CoT data. (1/2) ]

So I've got this math problem here. It says: “Let (x, y) be an ordered pair of real numbers that satisfies the equation
2% 4 y? = 14z + 48y. What is the maximum value of y? Okay, let’s see how to approach this.
First, I need to understand what the equation is telling me. It’s an equation involving x and y, and it’s set equal to
Zero:

z? +y? — 14z — 48y = 0.

I need to find the maximum value of y for real numbers x and y that satisfy this equation.
Hmm, maybe I can rearrange this equation to make it easier to work with. Let’s see:

22 — 14z +y? — 48y = 0.

I can complete the square for both x and y terms.

For z: 22 — 14z, to complete the square, I take half of —14, which is —7, and square it to get 49. So, x? — 14z
becomes (z — 7)2 — 49.

For y: y? — 48y, half of —48 is —24, squared is 576. So, y? — 48y becomes (y — 24)% — 576.

Now, plugging these back into the equation:

(x—7)% =49+ (y — 24)? — 576 = 0.

Simplify:
(x—7)%+ (y —24)% — 625 =0,

So, (z —7)* + (y — 24)* = 625.

This looks like the equation of a circle with center at (7, 24) and radius 25.

Wait, but the problem is asking for the maximum value of y, and I have a circle equation. So, the maximum y would
be the y-coordinate of the highest point on the circle, which is the center plus the radius.

Wait, but the center is at (7,24), and the radius is 25, so the highest point would be at (7,24 + 25) = (7,49).

But, let me double-check if this makes sense. The equation is

22 4% = 14z + 48y,

and I’ve transformed it into
(x —T7)% + (y — 24)% = 625,

which is indeed a circle with center (7,24) and radius 25.

So, the maximum y would be 24 4 25 = 49.

But, wait, the problem says “the maximum value of y,” and I’ve found that to be 49. But let me consider if there are
any other constraints or if I’ve missed something.

Let me think about the original equation:

22 4% = 14z + 48y.

I can rearrange it to:
2 — 14z +y* — 48y = 0.

Figure 9. Example of most shifted tokens after fine-tuning on long CoT data. All the most shifted tokens are labeled as red.
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Example of most shifted tokens after fine-tuning on long CoT data (2/2) !

Then, completing the square:
(x—7)% —49 + (y — 24)* — 576 = 0,
(x—7)% + (y — 24)? = 625.
Yes, that’s a circle with center (7, 24) and radius 25.
So, the maximum y is indeed 24 + 25 = 49.
But, just to be thorough, let’s consider if there are any points on the circle where y is greater than 49. The center is at
(7,24), and the radius is 25, so the highest point is at (7, 49), and the lowest point would be at (7, — 1).

But, the problem is asking for the maximum value of y, and I've found that to be 49.
Therefore, the final answer is 49.

Final Answer:

Figure 10. Most shifted tokens after fine-tuning on long CoT data (2/2). All the most shifted tokens are labeled as red.
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Example of Most Shifted Tokens after fine-tuning on large model CoT !

To solve the problem, we start with the given equation:

2?2 4+ y?=14x + 48y

First, we rearrange the equation to bring all terms to oneside:

2 — 14z +y?> — 48y =0

Next, we complete the square for both = and .
For z:
x? — 14z

To complete the square, we add and subtract (12—4)2 = 49:
2?2 — 14z + 49 — 49

(x —T7)%* — 49

For y:
y® — 48y

To complete the square, we add and subtract (%)2 = 576:
y® — 48y + 576 — 576

(y — 24)? — 576

Now, substitute these completed squares back into the equation:
(x—T7)> =49+ (y —24)* =576 =0

(=72 +(y—24)2-625=0
(x —7)* 4 (y — 24)*> = 625
This is the equation of a circle with center (7, 24) and radius 25.
To find the maximum value of y, we need to find the highest point on the circle. The highest point on the circle is

directly above the center, which is at y = 24 4 25 = 49.

Thus, the maximum value of y is:
y=49

Final Answer:

Figure 11. Example of most shifted tokens after fine-tuning on large teacher CoT. All the most shifted tokens are labeled as red.

Problem
What is the sum of the positive odd divisors of 60?
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Long CoT Example }

To find the sum of the positive odd divisors of 60, I first need to understand what the divisors of 60 are and then
identify which of those are odd.
First, let’s find all the positive divisors of 60. To do this, I can start by factoring 60 into its prime factors.

60 = 2% x 3! x 5!
Now, to find all the positive divisors, I can take all possible products of these prime factors raised to their possible
exponents. For 2, the exponents can be 0, 1, or 2; for 3, 0 or 1; and for 5, 0 or 1. Listing them out:

1=20%3%x5°,

2 =21 % 3% x 59,

4=2%x3%%x5°

3=2%x3"x5°

6 =2 x 3! x 5°,

12 =22 x 3! x 5°,

5 =120 x 3% x 5!,

10 = 2" x 3% x 51,

20 = 22 x 3% x 51,

15 = 29 x 3! x 5t

30 = 2' x 3' x 5,

60 = 2% x 3! x 5'.
So, the positive divisors of 60 are:

1,2,3,4,5,6,10,12,15, 20, 30, 60.

Now, I need to identify which of these are odd. Odd numbers are not divisible by 2, so I can eliminate any divisors
that are even.
The odd divisors are:

1,3,5,15.

Now, I need to find the sum of these odd divisors: 1 + 3 4+ 5 + 15 = 24. Alternatively, using the prime factorization
approach: Since the odd divisors are those that do not include the factor 2, I can ignore the 2’s in the prime
factorization. The remaining odd part is:

3t x 5%
The sum of the divisors of this odd part is:

(1+3)(1+5)=4x6=24.

This matches the previous result.
Therefore, for 60 = 22 x 3! x 5!, the sum of the odd divisors is:

31]

Figure 12. Long CoT Example
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Short CoT Example ]

To find the sum of the positive odd divisors of 60, we first need to factorize 60 into its prime factors. The prime
factorization of 60 is:

60=22x3x%x5

Since we are only interested in the odd divisors, we can ignore the factor of 2. Therefore, we only consider the
factors 3 and 5. The odd divisors of 60 are the divisors of 3 x 5 = 15. The divisors of 15 are 1, 3, 5, and 15.
Next, we sum these divisors:

1+3+5+156=24

Therefore, the sum of the positive odd divisors of 60 is:

Figure 13. Short CoT example

Problem
Find the greatest a such that

7\/(2a)" + (1)° —4a® -1 _

2.
V1+4a% +3
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[ Large Teacher CoT Example (1/2) ]

7v/(2a)24+12—4a? -1

To solve the equatlon. NiEwreae
numerator. The equation becomes:

= 2, we start by simplifying the expression inside the square root in the

TVia® +1—4a* -1 )
V1+4a2 43
Let’s denote - = v/1 + 4a2. Then the equation transforms into:
Tx —4a® — 1
z+3 -
Next, we clear the fraction by multiplying both sides by = + 3:

2

Tr —4a® —1=2(x +3)
Expanding and simplifying the right side, we get:

Tr—4a®> —1=22+6
Rearranging terms to isolate = and a?, we have:

42
T —20—4a>—-1-6=0 = br—4a®>—-7=0 — br=4a’>+7 — z = a5+7

Recall that 2 = v/1 + 4a?. Therefore, we have:

2
\/1—|—4a2:4a5+7

To eliminate the square root, we square both sides:

2
1+4a2 = <4a2 +7)

)

Expanding the right side, we get:

(40> +7)%  16a* + 56a% + 49
25 25

Multiplying both sides by 25 to clear the denominator, we obtain:

1+4a® =

25 + 100a? = 16a* + 56a° + 49
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[ Large Teacher CoT Example (2/2) ]

Rearranging all terms to one side, we get a standard polynomial equation:

16a* + 56a® + 49 — 100a® — 25 = 0 = 16a* — 44a®> +24 =0
Let 4 = a?. Then the equation becomes a quadratic in y:
16y? — 44y +24 =0

We solve this quadratic equation using the quadratic formula y = =bEvb-—dac W’ where a = 16, b = —44, and ¢ = 24:

44+ V/(—44)2 —4-16 - 24 44 44/1936 — 1536 44 4++/400 44420
V= 216 - 32 I 7 D
This gives us two solutions for y:

64 24 3
y—§—2 and y—SE—Z

Since y = a?, we have a® = 2 or a® = 3. The corresponding values for a are a = /2 and a = :t@. The greatest

value of a is v/2.
Thus, the greatest a that satisfies the equation is:
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[ Small Teacher CoT Example (1/2) ]

7/ (2a)2+(1)2—4a%—1

1+4a2+3

To solve the equation

equation itself.
First, simplify the expression under the square root in the numerator:

= 2, we start by simplifying the expression inside the square root and the

(2a)? +1% = 4a® + 1

So the equation becomes:

TV4a2 +1 —4a® — 1 5
Vda? +1+3
Next, let z = v/4a? + 1. Then the equation transforms into:

Tr —4a? — 1 _
x4+ 3 N

Since x = v/4a? + 1, we can express 442 in terms of x:
40> = 2% -1
Substitute 4a? = 22 — 1 into the equation:

Tx— (2 —-1)—1
z+3 B

2

Simplify the numerator:
Tx—2?+1—1="Tz —2?

So the equation becomes:
2

Tr—x
r+3
Multiply both sides by = + 3 to clear the denominator:

Tx — 2% =2(x +3)

Expand and simplify:
Tx —x° =246

Rearrange all terms to one side:
—2®+Tx—22—-6=0

—2*+52-6=0
Multiply through by -1 to make the leading coefficient positive:

22 —5x+46=0
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| Small Teacher CoT Example (2/2) |

Factor the quadratic equation:
(x—2)(x—-3)=0

So, the solutions are:
r=2 or x=3

Recall that z = v/4a? + 1. We need to check both solutions:

1. For x = 2:
Vida2 +1=2

Square both sides:

40’ 4+1=14
4a® =3
3

2—7

@y

oo V3
)

2. For z = 3:

Vida?+1=3

Square both sides:
40> +1=9

4% =8
a’? =2
a::i:\/i

The greatest value of a among the solutions is v/2.
Thus, the final answer is:

Problem

What is the greatest common divisor of 128, 144 and 480?
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[ Large Teacher CoT Example ]
To find the greatest common divisor (GCD) of 128, 144, and 480, we can use the prime factorization method.

1. Prime Factorization:
128 = 27,
144 = 2% x 32,
480 = 2° x 3 x 5.
2. Identify the common prime factors:
The common prime factor among 128, 144, and 480 is 2.

3. Determine the lowest power of the common prime factor:
The lowest power of 2 in the factorizations is 2*.

4. Calculate the GCD:
The GCD is:
24 = 16.

Therefore, the greatest common divisor of 128, 144, and 480 is:
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[ Small Teacher CoT Example ]

To find the greatest common divisor (GCD) of 128, 144, and 480, we start by finding the prime factorization of each
number.
The prime factorization of 128 is:
128 -2 =64
64 +2 =232
32+2=16
16 +-2=28
8+2=14
4+2=2
2+-2=1
Thus,
128 =27,
The prime factorization of 144 is:
144 +2 =172
72+2=36
36 +2=18
18+2=9
9+-3=3
3+3=1
Thus,
144 = 2% x 32,
The prime factorization of 480 is:
480 =2 = 240
240 -2 =120
120 +2 =160
60 =2 =30
30+-2=15
15+3=5
5+5=1
Thus,
480 = 2° x 3 x 5.
Now, we identify the common prime factors. The factorizations are:
128 =27, 144 =2%x 3%, 480=2° x3 x 5.
The only common prime factor among all three numbers is 2.
Next, we determine the smallest power of the common prime factor. The lowest power of 2 among these factorizations
is 24,
Therefore, the GCD of 128, 144, and 480 is:
| Problem |
Rounded to 2 decimal places, what is §?
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[ Large Teacher CoT Example ]
To solve the problem, we need to divide 7 by 9 and then round the result to two decimal places.

7
—=0.777...
9

Rounded to two decimal places, this becomes 0.78.

Final Answer:

[ Small Teacher CoT Example ]

To solve the problem of finding the value of % rounded to 2 decimal places, we can follow these steps:
1. Perform the division: Calculate %
2. Convert to decimal: Perform the division to get the decimal equivalent.

3. Round to 2 decimal places: Round the decimal to 2 decimal places.

Let’s start with the division:

7
— =~ 0.7777 . ..
9

Next, we need to round this decimal to 2 decimal places. The digit in the third decimal place is 7, which is greater
than or equal to 5. Therefore, we round the second decimal place up from 7 to 8.

So, 0.7777 ... rounded to 2 decimal places is 0.78.

The final answer is:

0.78
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