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Abstract

Even when massively overparameterized, deep
neural networks show a remarkable ability to gen-
eralize. Research on this phenomenon has fo-
cused on generalization within distribution, via
smooth interpolation. Yet in some settings neural
networks also learn to extrapolate to data far be-
yond the bounds of the original training set, some-
times even allowing for infinite generalization,
implying that an algorithm capable of solving the
task has been learned. Here we undertake a case
study of the learning dynamics of recurrent neural
networks (RNNs) trained on the streaming parity
task in order to develop an effective theory of algo-
rithm development. The streaming parity task is a
simple but nonlinear task defined on sequences up
to arbitrary length. We show that, with sufficient
finite training experience, RNNs exhibit a phase
transition to perfect infinite generalization. Using
an effective theory for the representational dynam-
ics, we find an implicit representational merger
effect which can be interpreted as the construc-
tion of a finite automaton that reproduces the task.
Overall, our results disclose one mechanism by
which neural networks can generalize infinitely
from finite training experience.

1. Introduction
Examples of computational algorithms appearing in deep
networks are numerous (Olah et al., 2020; Goh et al., 2021;
Wang et al., 2022; Power et al., 2022; Nanda et al., 2023;
Zhong et al., 2023). Furthermore, recurrent neural networks
and transformers have shown a noteworthy ability to gener-
alize (Loula et al., 2018; Lake & Baroni, 2018; Brown et al.,
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Figure 1. Sequence length generalization of a recurrent network
on a simple task. Left: Example sequences of the streaming parity
task, from the training dataset (short sequences) and the validation
dataset (long sequences). Right: The mean squared loss of a
recurrent neural network during training on the streaming parity
task. Note that the loss also goes to zero for sequences much longer
than found in the training data. This was tested for sequences up
to length 10000.

2020) in particular to sequences with lengths not seen in
the training data (Dai et al., 2022; Abbe et al., 2023; Cohen-
Karlik et al., 2023). These results are surprising as gradient
descent provides no clear incentive to generalize beyond the
training domain. Why do deep learning systems sometimes
develop proper computational algorithms, instead of simply
interpolating the data? Understanding this is crucial for the
safe application of machine learning models, as for instance,
models can appear to generalize initially, but break after
moving too far away from the training domain (Anil et al.,
2022; Zhou et al., 2024). Similarly, in neuroscience, an
important goal is to try to figure out the types of algorithms
the brain employs. This is particularly difficult since the
brain is so complex, interconnected, and poorly understood
(Thompson & Best, 1989; Olshausen & Field, 2006) that it
is unclear how to even recognize an algorithm when we see
it. Instead, studying the dynamics of algorithm development
in the brain might be more tractable (Richards et al., 2019),
as learning rules may not be as complex as the learned algo-
rithm itself. Despite attempts to understand these dynamics
(Zhou et al., 2021; El-Gaby et al., 2024), it is still a highly
challenging problem by itself. Here we hope to provide a
better sense of what to look for in the brain, by answering
analogous questions in a simpler setting.
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Let us consider a relatively simple computational problem
for which algorithm development can still be studied: the
streaming parity task (Figure 1). Given a sequence of zeros
and ones with varying length, the aim of the task is to output
a zero when the number of ones is even and output a one
when the number of ones is odd. A recurrent neural network
trained only on sequences up to some short finite length
will sometimes generalize infinitely. It is able to solve the
task accurately for any sequence length no matter how large,
even for sequences thousands of times longer than shown in
the training data.

As longer sequences are not within the same domain as
shorter sequences, the generalization cannot simply be ex-
plained by interpolation. One can continue feeding in sym-
bols and the network will continue predicting correctly, sug-
gesting it has somehow learned a computational algorithm.
It is unclear how such an algorithm can develop during
training from gradient descent optimization. The network
is trained to reduce its loss only on the shorter sequence
dataset; it is not penalized for breaking after a certain length.

The main goal of this paper is to find simple mathematical
models able to explain this seemingly surprising behavior.
Our main contributions are as follows:

• In Section 3, we provide a local interaction theory for
representational learning dynamics in recurrent neural
networks.

• In Section 4, we explain how these interactions can
result in the development of an algorithm capable of
out-of-distribution generalization.

• In Section 5, we find automaton development occurs in
two phases: an initial tree fitting phase, and a secondary
generalization phase.

2. Automata and Recurrent Neural Networks
2.1. Interpreting Recurrent Neural Networks

The first step to understanding the development of computa-
tional algorithms in recurrent neural networks, is to choose
the right way of representing the information that defines
the network. The model’s parameters are a complete but
poor representation. They also contain a large amount of
redundant information, e.g. swapping the order of neurons
does not affect the encoded algorithm in any way.

For analyzing the inner structure of neural networks a better
approach is to consider the geometry of the representational
structure, i.e. how are the hidden activations correspond-
ing to the data structured in the network (Lin et al., 2019;
Williams et al., 2022; Lin & Kriegeskorte, 2023). This is
however, still not ideal in the context of computational algo-
rithms. Although understanding how data is represented in

the network may be helpful, it does not directly say much
about the nature of the computations being performed on
that representational space. Moreover, the representational
geometry can vary greatly across RNN architectures trained
on the same task (Maheswaranathan et al., 2019).

One common approach to interpret RNNs is with dynamical
systems (Sussillo & Barak, 2013; Laurent & Brecht, 2016;
Can et al., 2020; Driscoll et al., 2024). Here, due to our
focus on computational algorithms, we will instead be in-
terpreting the recurrent neural network using deterministic
finite automata (DFA), an approach also well known in the
RNN literature (Servan-Schreiber et al., 1989; Giles et al.,
1992; Omlin & Giles, 1996; Tino et al., 1999; Weiss et al.,
2020; Merrill & Tsilivis, 2022; Michaud et al., 2024), which
has also seen some applications in a neuroscience context
(Turner et al., 2021; Brennan et al., 2023).

A DFA consists of a set of states including an initial state,
transitions between the states given input symbols, and an
output symbol for each state. An example of such a DFA
solving the streaming parity task can be seen in Figure 2.

initial

output 0

1

1

00

output 1

Figure 2. Example of a two state DFA solving the streaming parity
task. Every time it receives a 1 as an input it alternates between
the state that will output 0 and the state that will output 1. When it
receives a 0 it remains in its current state.

2.2. Automaton Extraction

We will use a relatively simple method for constructing an
automaton from the representational space of an RNN, as
this will be enough for our purposes. Consider an abstract
recurrent neural network:

ht = fh(ht−1, xt)

yt = fy(ht)
, (1)

where the exact forms of the recurrent map fh and out-
put map fy will depend on the architectural details of the
network.

From the hidden representations of this network we can
extract a deterministic finite automaton. States are defined to
be the hidden representations after receiving each sequence,
transitions are determined by following where states go
after the network received an input symbol, and outputs are
simply the network’s output map evaluated at each state.
This procedure is illustrated in Figure 3.

When two different sequences of input symbols are assigned
the same internal activation vector, an additional application
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Figure 3. Example of the automaton extraction procedure. Before
the network has seen any input symbols the internal vector of
hidden activations has some initial value h0, which we will call the
initial state of the automaton. After seeing a symbol, say e.g. 1, the
hidden activations change to a different vector fh(h0, 1). We will
call this vector the state corresponding to input sequence 1, and
say that the initial state has a transition to the state 1 after receiving
the input symbol 1. We can repeat this procedure for all possible
sequences, to define a state for each one and transitions on each
state for every possible input symbol. We can assign an output
to each state by evaluating the output map on its corresponding
representation.

of the recurrent map will send them to the same internal
activation vector for any possible input symbol received.
Their activations will remain the same in the future, and the
output map will always assign them the same output from
that point on. They can no longer be distinguished, so we
will consider them to be the same state in the automaton.

If enough representations overlap, it may be the case that
all transitions go to already existing states. At this point, we
have a finite set of states capable of representing all possible
internal states of the network. These states, together with the
transitions between them and their outputs, form a discrete
computational algorithm capable of producing outputs on
input sequences, which match the outputs of the RNN. For
more details on automaton extraction, see Appendix A.

2.3. Automata During Training

In order to visualize the development of an algorithm, we
extract automata at each epoch from an RNN during training
on the streaming parity task (Figure 4). We can see that,
due to random small weights, the automaton initially has
few states and random outputs. As the model trains, the
automaton expands into a complete tree fitting the training
data. Then, right when the training loss becomes zero, states
in the automaton appear to merge until it becomes finite, and
we see generalization on all data. To understand this better,
we will first try to model the representational dynamics, and
then study the induced dynamics on the automaton.

3. Implicit State Merger
3.1. Intuition

Why would states merge during training? The represen-
tational space is typically high-dimensional, so it seems
statistically unlikely that many different representations end
up at the same vector by chance. The key insight here is that,
due to continuity, sometimes the fastest way for gradient
descent to minimize the loss is to merge nearby representa-
tions.

As an example for illustration, suppose that at some point
during training, two sequences in the dataset agree on target
outputs, and one already has the correct predicted output.
Then, if the recurrent map fh adjusts to move the other rep-
resentation closer, its target output will also move towards
the correct prediction, as the output map fy is continuous.
Continuity thus gives rise to an interaction effect between
nearby representations, potentially resulting in merging.

Implicit bias from gradient descent is a well-studied topic
in the deep learning literature (Neyshabur et al., 2015; Gu-
nasekar et al., 2018; Chizat & Bach, 2020; Soudry et al.,
2022). However, the relatively simple effect we are consid-
ering here will turn out to be particularly interesting in the
context of algorithm development in RNNs.

3.2. Interaction Model

Let us attempt to formalize this intuition by modeling
the interaction between two nearby states, using the
modeling approach from (van Rossem & Saxe, 2024),
adapted for recurrent networks. Suppose that we have
two input sequences x

(1)
1 · · ·x(m1)

1 and x
(1)
2 · · ·x(m2)

2 in
our dataset, with corresponding hidden representations
h(x

(1)
1 · · ·x(m1)

1 ), h(x(1)
2 · · ·x(m2)

2 ). We would like to un-
derstand the behavior of these representations when they
get near each other during training, in an arbitrary neural
network.

Arbitrary architecture with high expressivity. Instead
of analyzing this interaction for a specific recurrent architec-
ture, we model it for an arbitrary network with high expres-
sivity, meaning any network large and complex enough to
have the freedom to behave like a smooth map. Under this
assumption, we replace the effect of the assignment of hid-
den states by the network’s parameters with two arbitrarily
optimizable vectors h1, h2, and replace the effect of the net-
work assigning output prediction to those hidden states with
arbitrarily optimizable smooth maps y1, . . . , yN (schema-
tized in Figure 5). Note that because we are dealing with a re-
current architecture, there may be multiple data points which
have h(x

(1)
1 · · ·x(m1)

1 ) or h(x(1)
2 · · ·x(m2)

2 ) as intermediate
hidden states. Thus, we have N output maps, one for each
possible sequence after x

(1)
1 · · ·x(m1)

1 and x
(1)
2 · · ·x(m2)

2 .
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Figure 4. Automata extracted from the hidden layer of an RNN during training on the streaming parity task. First the model fits the
training data with a complete tree. After that states merge until the automaton becomes finite, which is when generalization occurs. The
RNN consisted of a single fully connected recurrent layer with 100 units and ReLU activation. It was trained on all examples of the
streaming parity task, up to length 10.

To simplify the theoretical analysis, we assume here that
any sequence x

(1)
1 · · ·x(m1)

1 x̃(1) · · · x̃(ni) in the dataset has
a matching sequence x

(1)
2 · · ·x(m2)

2 x̃(1) · · · x̃(ni) and vice
versa, as we do not expect pairs for which this is not the
case to contribute to the interaction.

h y

Figure 5. Schematic illustration of the interaction model be-
tween two nearby representations corresponding to sequences
x
(1)
1 · · ·x(m1)

1 and x
(1)
2 · · ·x(m2)

2 . The effect of the model as-
signing their representations is abstracted away with arbitrarily
optimizable vectors h1 and h2, and the effect of the model assign-
ing outputs for every of the N subsequent sequences in the training
data is abstracted away with arbitrarily optimizable smooth maps
y1, . . . , yN .

We will take gradients with respect to these arbitrary smooth
maps. While a neural network may not optimize with
smooth map dynamics and the gradient will depend on
the architectural details, universal approximation theorems
(Hornik et al., 1989; Csáji, 2001) tell us that an expressive
one is at least able to freely model smooth maps. Therefore,
we are modeling a simple behavior that, at least in princi-
ple, any expressive network can exhibit. The exact details
of the architecture are not required to understand the key
mechanisms by which the network learns to solve the task.
Abstracting them away may help to find simpler and more
intuitive explanations.

Note also that the maps h1, h2, y1, . . . yN may share param-
eters. They are not independent smooth maps. However, if
the network is expressive enough, it can still have enough
freedom to effectively optimize each map independently
at specific points, so we will choose to ignore potential
interaction effects arising from parameter sharing.

Local linear approximation. As we are trying to model
the interaction between two representations, we will con-
sider the case where the distance dh := h2 − h1 between
them is small. We can thus take linear approximations
of the maps y1, . . . , yN around the representational mean
1
2 (h2 + h1):
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y(x(1)
α · · ·x(nα)

α x̄
(1)
i · · · x̄(mi)

i ) ≈ ȳi +
1

2
Dyi(hα − h¬α),

(2)
where α ∈ 1, 2 and i ∈ 1, · · · , N .

In general, the dynamics are undefined without speci-
fying the parameterization. However, for the local lin-
earized system, there is a unique choice of parameter-
independent dynamics, namely by optimizing with re-
spect to the effective linear parameters of the network
h1, h2, ȳ1, . . . , ȳN , Dy1

, . . . , DyN
. For the mean squared

loss

L =
1

2
⟨||ȳi +

1

2
Dyi

(hα − h¬α)− y∗α,i||2⟩α=1,2,i=1...,N ,

(3)
after taking the continuous-time limit and considering so-
lutions where representations either move closer or further
away form each other, we find the self-contained 3-scalar
system

d

dt
||dh||2 = −1

2

1

τh
⟨wi⟩i

d

dt
⟨||dyi||2⟩i = −1

2
(

1

Nτy
||dh||2 + 1

τh

⟨||dyi||2⟩i
||dh||2

)⟨wi⟩i

d

dt
⟨wi⟩i = −1

4

1

Nτy
(3⟨wi⟩i − ⟨||dyi||2⟩i

+ ⟨||y∗2,i − y∗1,i||2⟩i)||dh||2

− 1

4

1

τh

⟨wi⟩i
||dh||2

(⟨||dyi||2⟩i + ⟨wi⟩i),

(4)

where ||dh||2 is the squared representational distance,
⟨||dyi||2⟩ is the average squared prediction distance, and
⟨wi⟩i := ⟨||dyi||2 − dy⊤i (y

∗
2,i − y∗1,i)⟩i the average of an

output alignment metric. The constants 1/τh and 1/τy are
the effective learning rates of the representational map and
output map respectively, as we are now optimizing with
respect to these smooth maps as opposed to the model’s
parameters. The derivation and more details can be found
in Appendix B.1.

Note that because we are considering the continuous-time
limit, no noise has been introduced, and we also did not
include any form of regularization. Any results in terms of
generalization are from inductive biases in gradient descent
alone, e.g. the intuition discussed in Section 3.1. Regulariza-
tion and noise may also play a crucial role in generalization
in some settings (Zhou et al., 2019; Ziyin et al., 2025).

3.3. State Merger Condition

The final representational distance is exactly solved in Ap-
pendix B.2 to find:

||dh||2 =
1

2
Ahigh +

√
1

4
A2

high +A2
low, (5)

where

Ahigh = ||dh(0)||2 − Nτy
τh

⟨ ||dyi(0)||
2

||dh(0)||2
⟩i

Alow =

√
Nτy
τh

·
√
⟨||y∗2,i − y∗1,i||2⟩i.

(6)

Note that these results are not dependent on the details
of the neural network architecture used here. They are
the results of an interaction effect locally present in any
smooth, expressive machine learning system with hidden
representations.

A merger occurs when the final representational distance is
zero, which is when

Alow = 0 and Ahigh < 0. (7)

Suppose the network’s parameters are initialized at some
scale G < 1, where G is the average decrease of represen-
tational distances when applying the recurrent map. We
roughly have

||dh(0)||2 ∝ Gm

⟨ ||dyi(0)||
2

||dh(0)||2
⟩i ∝ Gn

, (8)

where m = min (m1,m2) and n = min (n1, . . . , nN ) are
the minimal sequence lengths of the sequences correspond-
ing to the representations and their potential subsequences
respectively. Equation (7) then reduces to the condition

∀i y∗1,i = y∗2,i and C < N ·Gn−m, (9)

where C is an unknown constant depending on the network
architecture.

We can make three observations from this:

1. The only states that can merge are those which al-
ways agree on outputs after receiving both the same
sequence.

2. States only merge if the sequences they correspond to
are long enough.

3. Mergers only start to occur given enough data and
small enough initial weights.

We will study these observations and their implications in
more detail in the next section.
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4. Automaton Development
4.1. System of Interacting Particles

The interaction model requires the states to be close to each
other. It does not model the global behavior of the dataset
during training, only the local interaction between any two
states. Many other things may occur during training, which
are potentially more complex and exist on a global scale. We
will ignore these effects here and treat the representational
learning dynamics as a system of locally interacting particles
(Liu et al., 2022; Geshkovski et al., 2023). The aim is to
investigate how much of algorithm learning in recurrent
neural networks can already be explained from this simple
interaction alone.

4.2. Developing an Algorithm

We can see from Equation (9) that two states will only merge
if they agree on target outputs for any possible subsequence
in the data, i.e. they need not be distinguished in order to
solve the task1. Indeed, out of all 103460 pairs of repre-
sentations that ended up merging, all agreed on all possible
future outputs.

Once enough of such pairs merge, the automaton will be-
come finite. Because the merging of agreeing pairs does
not affect the output of the automaton, it will still predict
correctly on the training data. If, such as for the streaming
parity task, the task can be expressed with a finite automa-
ton, and the training dataset is large enough, the learned
automaton and task automaton must agree on all possible
sequences. In particular, as long as the training dataset con-
tains all sequences up to the length of the task automaton’s
size, it is guaranteed that the automata are equivalent, as all
its reachable states can be reached with the training data, on
which the two automata agree.

When the learned automaton becomes finite, the behavior
of the RNN becomes fixed for any sequence length, and we
should see instant generalization on all lengths. This sudden
complete generalization can be observed in Figure 6.

4.3. Redundant States

Since weights are initialized small, i.e. G < 1, it follows
from Equation (9) that the first pairs to merge when decreas-
ing the weight initialization are the ones for which n−m
is minimal. Therefore, representations corresponding to
shorter sequence pairs may not merge, even when enough
longer sequences do. For the training data used here, the
smallest possible n is 0, so we should start to see mergers
once m reaches a certain threshold, which can be observed
in Figure 7.

1In the language of automata theory, this is equivalent to the ab-
sence of a distinguishing extension on the pair of input sequences.
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Figure 6. Validation loss for sequences of varying lengths during
training on the streaming parity task. The validation loss initially
does not change while the training loss goes down, but at some
point it suddenly drops for all sequence lengths at the same time.
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Figure 7. Fraction of pairs agreeing on all future outputs that ended
up merging after training on the streaming parity task. We can see
that mergers only start to occur once m = min(m1,m2) reaches
a certain threshold.

Because not all pairs agreeing on all future outputs merge,
redundant states will be present in the learned automaton.
In fact, from Figure 7 it can be seen that not even all of the
agreeing pairs that reached the minimum length threshold
ended up merging. A possible explanation for this is that
some pairs that never end up getting close during training,
and therefore the effects from the interaction model do not
apply.

It is not necessary for all agreeing pairs to merge to fully
generalize, only enough for the final automaton to become
finite. Redundant states are consequently expected to be
learned. The final automaton in Figure 4 has far more states
than the minimal two required to solve the task. However, it
is still equivalent in computational function to the two-state
automaton shown in Figure 2, which can be seen by merging
all its redundant states (Figure 8).

Redundant states in the brain There is some evidence
of redundant states in the brain (Morcos & Harvey, 2016;
Marmor et al., 2023). From a functional perspective, it is
not so clear why these states may exist. However, as can
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Figure 8. Learned automaton in the RNN from Figure 4 after redun-
dant state reduction using Hopcroft’s Algorithm (Appendix A.3).
It is equivalent to the automaton representing the streaming parity
task Figure 2.

be seen from the above argument, purely from a learning
dynamics perspective, they are expected in the final learned
automaton. Similar representations containing seemingly
identical information have also been observed in other ma-
chine learning settings such as wide feed-forward networks
(Doimo et al., 2021).

4.4. Full Generalization Phase Transition

Finally, we can see from Equation (9) that the merger condi-
tion only holds given a small enough initial weight scale G
and a large enough number of datapoints N . As either the
weight initialization is decreased or the training set size is in-
creased, agreeing states will start to merge. This can be seen
on the left side of Figure 9. At some point, enough states
will have merged such that the automaton becomes finite,
and the RNN will generalize to all sequences. Since no state
mergers can occur before the merger condition is reached,
we see a sharp boundary in number of states and in particu-
lar in the validation accuracy on the right side of Figure 9,
splitting the training setting landscape into two regimes: one
where it fits the training data with a complete tree, and one
where it learns a finite, generalizing representation of the
task. Such a separation resembles the phenomenon of rich

Training data fractionTraining data fraction

In
it

ia
l 
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g
h
t 

sc
a
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In
it
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l 
w
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g
h
t 

sc
a
le

Validation accuracyNumber of states

Figure 9. Left: Number of states at convergence as function of
the training dataset size and initial weight scale used. Right:
Validation accuracy of 30 sequences of length 100. All trials
converged on the training set. Note the sudden jump from chance
(0.5) to complete generalization (1.0) at enough data and small
enough initial weights.

and lazy learning found in RNNs (Schuessler et al., 2024)
and other settings (Chizat et al., 2020; Flesch et al., 2021;
Atanasov et al., 2022).

5. Merger Dynamics
5.1. Two Development Phases

Something that remains unclear about the dynamics in Fig-
ure 4 is the presence of an initial phase where the automaton
expands into a complete tree of all possible sequences, be-
fore a phase of mergers resulting in a finite algorithm. Why
would the RNN learn to memorize individual outputs per
input sequence in the first place, only to collapse into a finite
automaton later?

5.2. Fixed Expansion Point Interaction Model

A relatively simple dynamical explanation for this behavior
can be found in the representational drift of each interaction
pair. If the two representations during an interaction start to
drift, and their effective learning rates 1/τh1 , 1/τh2 differ,
they will drift at different speeds. In this case, their distance
may initially start to increase as one outpaces the other.

The local interaction model we have considered does not
exhibit this behavior, as the linear expansion point is cho-
sen to be at the moving representational mean, enforcing a
representational movement symmetry. In Appendix B.3 the
analytical learning trajectory for an agreeing pair is solved
for in this model, and their representational distance can be
seen to decay exponentially.

To allow for enough freedom in the interaction model for
both representations to drift freely, we can instead keep the
expansion point fixed:

y(x(1)
α · · ·x(nα)

α x̄
(1)
i · · · x̄(mi)

i ) ≈ ȳi +Dyi
hα. (10)

The downside of this choice is that as the pair drifts far away
from the expansion point, the interaction model may lose
accuracy. In Appendix B.4 we use a similar approach as
before to reduce these dynamics to a self-contained system
of 9 variables.

5.3. Diverging Mergers

We can see from numerical solutions to this system (Fig-
ure 10) that agreeing pairs initially diverge before they end
up merging. This divergence is only present when the effec-
tive learning rates 1/τh1 , 1/τh2 differ. Experimentally, we
find qualitatively similar divergence behavior in the RNN
during training. We also see that the divergence occurs more
often in pairs with a higher effective learning rate difference
(Appendix D.3). Such an initial divergence of many agree-
ing pairs, may explain the tree fitting phase. A division
in two phases with some similarities has been studied in
feed-forward networks in (Shwartz-Ziv & Tishby, 2017).
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Figure 10. Left: Numerical solutions of the fixed expansion point interaction model. The representational distance of a pair agreeing on
all possible future outputs first diverges before finally merging, whereas a pair which disagrees on some outputs only diverges. Right:
Normalized experimentally observed representational distances from a randomly selected pair with agreeing outputs that ended up
merging, and a randomly selected pair with disagreeing outputs.

6. Other Settings
6.1. Random Regular Tasks

The ideas considered in this paper should be applicable to
any task that can be described by an automaton. Therefore,
all experiments were also performed on a set of tasks defined
by randomly generated automata. Similar results were found
as with the streaming parity task (Appendix D.5).

6.2. Architecture Independence

The local interaction models discussed here are universal
with respect to the neural network architecture. They rep-
resent intuitions that apply to any model with a smooth,
expressive recurrent map on some hidden space and a simi-
larly smooth and expressive output map on this space. To
illustrate this, we replaced the ReLU activation function
with a hyperbolic tangent and found similar qualitative re-
sults (Appendix D.6).

6.3. Transformers

Transformers have been shown to exhibit a similar ability to
learn computational algorithms. One may wonder to what
extent the ideas considered here for recurrent networks still
apply to the transformer architecture.

The interpretation of the internal structure via an automaton
is not as clearly applicable to a transformer. The recurrent
map was an essential ingredient in the understanding of the
formation of a finite automaton, as it allows for mergers
to result in automaton transitions going to previous states.
Interestingly enough, despite some generalization to larger
sequence lengths, transformers fail to fully generalize to
sequences of arbitrary length on parity computation (Anil
et al., 2022).

However, the intuition behind the local interactions from
continuity still applies, and so we may still find similar merg-

ing dynamics. To investigate this, we compute the number
of states in a transformer during training on the modular
subtraction task from (Power et al., 2022). As can be seen
from Figure 11, we do not find a clear state merger pattern
in the hidden representations of the transformer. However,
we do see a state merger pattern in the attention matrix that
is reminiscent of the two phases found in recurrent networks.
A similar pattern was found for a local complexity measure
in (Humayun et al., 2024).

The merging of attention patterns may possibly play an im-
portant role in out-of-distribution generalization, similar to
representation merger in recurrent neural networks. Other
phenomena observed here in RNNs also resemble behaviors
in transformers, such as the sudden transition to full gener-
alization (Hoffmann et al., 2024). The exact way in which a
transformer can learn an algorithm from mergers is not as
clear and requires further study.

Training loss

Validation loss

Number of states (attention)

Number of states (hidden)

Epochs

L
os

s

Figure 11. The training loss, validation loss, number of states in
the attention matrix, and number of states in the hidden layer of
a single layer transformer trained on modular subtraction. Note
that the pattern of state mergers after initially state splitting is only
present in the attention matrix, but is absent in the hidden space.
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6.4. Discontinuity

One of the assumptions in the interaction model is continuity
of the recurrent and output maps. This may not necessarily
be a reasonable assumption in the context of neuroscience,
as the spiking coupling between neurons is not typically
viewed as continuous. For the intuitions to work, however,
we only really need predictions of nearby representations to
move closer when the representations do on average. Conti-
nuity gives us this, but may not be a necessary condition. To
explore this, we add a step-continuity in the output map of
the recurrent network. We find qualitatively similar results,
albeit with noisier dynamics Appendix D.9.

7. Conclusion
Despite the surprising nature of infinite generalization from
finite data, there exists a setting in which it can be under-
stood through relatively simple intuitions about inductive
bias in gradient descent. In this setting, we found that al-
gorithm development occurs in two phases, an initial tree
fitting phase and a secondary merging phase that results in
generalization. The merging phase occurs via a phase transi-
tion, when the right training conditions are met. Therefore,
algorithm learning and infinite generalization can occur in
deep networks, but not consistently. We also saw that from
a dynamical perspective, redundant states are expected in
the final learned algorithm. This is of particular interest to
neuroscience, as it suggests that different animals may learn
different but equivalent versions of an algorithm, which is
something that should be taken into account when compar-
ing representations. Finally, we found that intuitions about
automaton formation do not apply as well to transformers,
and that at least for some specific tasks, recurrent networks
have an advantage in terms of infinite generalization.

Limitations The theoretical approach used here is rela-
tively simple and not necessarily a realistic model of the
complete learning dynamics. Higher-order local interac-
tions, global interactions, inductive biases from architectural
choices, regularization, and noise were ignored, but may
have additional effects on algorithm development worth
studying. Additionally, the interpretation of an RNN as an
automaton may provide incomplete information in more
complex or continuous data settings. Other mathematical
objects may be necessary to properly represent the internal
structure of an RNN in such settings.
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A. Automaton Extraction
A.1. Definition Deterministic Finite Automaton

Formally a deterministic finite automaton (Ashby, 1956) is a tuple (Q,Σ, δ, q0, F ), consisting of

1. A finite set of states Q

2. A finite set of possible input symbols Σ, called the alphabet

3. A transition function δ : Q× Σ → Q

4. An initial state q0

5. A subset of accepting states F

Given some string of input symbols x = x(1)x(2) . . . x(n) the automaton is said to accept the string x when there exists a
sequence of states r(0), . . . , r(n) ∈ Q such that

1. r(0) = q0

2. ∀i r(i+1) = δ(r(i), x(i+1))

3. r(n) ∈ F

In the context of the streaming parity task we can take the subset of accepting states to be precisely those for which the
model predicts an output 1.

A.2. Extraction Algorithm

In order to extract one from a recurrent neural network, we define the state corresponding to an input string x as the hidden
representation in the network after it received that string, i.e.

q0 := h0

qxn...x1 := fh(qxn−1...x1 , xn)
. (11)

When two states are on top of each other, i.e. the representations are within some small distance ϵ, we will consider them as
the same state. Given an evaluation dataset X of input sequences, the set of states can be defined as

Q := {qx|x ∈ X}/(q ∼ q′ ⇐⇒ ||q − q′|| < ϵ). (12)

The alphabet Σ is the set of all possible input symbols in the data. The transition function δ(q, σ) is given by the state
corresponding to fh(q, σ). The set of accepting states F are all states for which fy(q) is closest to the output 1. If we are
considering a task with more than two possible output symbols, we can generalize this definition using a Moore machine,
which replaces the set of accepting states with an output function.

A.3. State Reduction Algorithm

To help interpret the final learning automaton within the recurrent neural network, we can reduce it to a minimal state
automaton with equivalent outputs. For this we use Hopcroft’s Algorithm (Hopcroft, 1971) (see Algorithm 1), which returns
the unique smallest DFA, equivalent to the provided DFA. Essentially what this algorithm does is it merges all pairs of states
which are indistinguishable for any possible input string.
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Algorithm 1 Hopcroft’s Algorithm
Input: set of states Q with output 0, set of states F with output 1
Output: minimal state partition P
P := {F,Q \ F}
W := {F,Q \ F}
while W is not empty do

choose and remove a set A from W
for c in Σ do

let X be the set of states for which a transition on c leads to a state in A
for set Y in P for which X ∩ Y is nonempty and Y \X is nonempty do

replace Y in P by the two sets X ∩ Y and Y \X
if Y is in W then

replace Y in W by the same two sets
else

if |X ∩ Y | ≤ |Y \X| then
add X ∩ Y to W

else
add Y \X to W

end if
end if

end for
end for

end while
return P

B. Details Theoretical Analysis
B.1. Reduction to a 3-dimensional System

To model the two-point interaction we consider two sequences x(1)
1 . . . x

(m1)
1 and x

(1)
2 . . . x

(m2)
2 with nearby representations

h1 = h(x
(1)
1 . . . x

(m1)
1 ) respectively h2 = h(x

(1)
2 . . . x

(m2)
2 ). Let D = {(x1,i, y

∗
1,i), (x2,i, y

∗
2,i)}Ni=1 be the set of all

datapoints contained within the training dataset which have x
(1)
1 . . . x

(m1)
1 or x(1)

2 . . . x
(m2)
2 as a subsequence. Assuming

high expressivity, we model h1 and h2 as freely optimizable vectors and the output predictions of the network for each
subsequent sequence in D as given by smooth, freely optimizable maps yi : H → Y .

In contrast to (van Rossem & Saxe, 2024), we cannot use an optimizable linearized hidden map as here we cannot smoothly
vary the inputs for the hidden map. Since our input symbols are discrete, we can instead consider arbitrarily optimizable
hidden vectors, as no two differing input symbols can ever get arbitrarily close to each other in the input space.

As h1 and h2 are close, we take a linear approximation of each output prediction map around the representational mean:

y(xα,i) = ȳi +
1

2
Dyi(hα − h¬α). (13)

The mean squared loss in this approximation takes the form:

L =
1

2
⟨||ȳi +

1

2
Dyi

(hα − h¬α)− y∗α,i||2⟩D. (14)
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We apply gradient decent optimization directly with respect to Dyi
, hα and ȳi, resulting in the dynamics:

d

dt
ȳi = − 1

τȳi

∂L

∂ȳi

= − 1

τȳi

1

N
⟨ȳi +

1

2
Dyi

(hα − h¬α)− y∗α,i⟩α=1,2

= − 1

τȳi

1

N
(ȳi −

y∗2,i + y∗1,i
2

)

d

dt
h(α) = − 1

τhα

∂L

∂hα

= − 1

τhα

1

4
⟨D⊤

yi
(ȳi +

1

2
Dyi(hα − h¬α)− y∗α,i)−D⊤

yi
(ȳi +

1

2
Dyi(h¬α − hα)− y∗¬α,i)⟩i=1,...,N

= − 1

τhα

1

4
⟨D⊤

yi
(Dyi(hα − h¬α)− (y∗α,i − y∗¬α,i))⟩i=1,...,N

d

dt
Dyi = − 1

τyi

∂L

∂Dyi

= − 1

τyi

1

N

1

2
⟨(1
2
Dyi

(hα − h¬α)(hα − h¬α)
⊤ + (ȳi − y∗α,i)(hα − h¬α)

⊤)⟩α=1,2

= − 1

τyi

1

N

1

4
(Dyi(h2 − h1)− (y∗2,i − y∗1,i))(h2 − h1)

⊤,

(15)

where we used the matrix differentiation identities ∂a⊤Xb
∂X = ab⊤, ∂a⊤X⊤CXa

∂X = (C + C⊤)Xaa⊤ and ∂||Ax+b||2
∂x =

2A⊤(Ax+ b).

The ȳi dynamics are decoupled and can be solved directly:

ȳi(t) =
y∗2,i + y∗1,i

2
+ (yi(0)−

y∗2,i + y∗1,i
2

)e
− 1

τȳi

1
N t

, (16)

the solution of which takes the form of exponential decay towards each pairs target output mean.

Define dh := h2 − h1, dyi := Dyi(h2 − h1), wi := ||dyi||2 − dy⊤i (y
∗
2,i − y∗1,i). We take as an Anzats representational

movement of the two points towards or away from each other, i.e.

d

dt
dh ∝ dh =⇒

d
dtdh

|| ddtdh||
=

dh

||dh||
=⇒ d

dt
dh =

|| ddtdh||
||dh||

dh (17)

Applying this twice allows us to write

Dyi

d

dt
dh =

|| ddtdh||
||dh||

Dyi
dh =

|| d
dtdh||
||dh|| ||dh||2

||dh||2
Dyi

dh =
dh⊤(

|| d
dtdh||
||dh|| dh)

||dh||2
Dyi

dh =
dh⊤ d

dtdh

||dh||2
Dyi

dh =
1

2

d
dt ||dh||

2

||dh||2
Dyi

dh,

(18)

15



Algorithm Development in Neural Networks: Insights from the Streaming Parity Task

which we can use to find a self-contained scalar system:

d

dt
||dh||2 = 2dh⊤ d

dt
dh

= dh⊤(−1

2

1

τh
⟨D⊤

yi
(Dyidh− (y∗2,i − y∗1,i))⟩i=1,...,N )

= −1

2

1

τh
⟨||dyi||2 − dy⊤i (y

∗
2,i − y∗1,i)⟩i=1,...,N

= −1

2

1

τh
⟨wi⟩i=1,...,N

d

dt
||dyi||2 = 2dy⊤i

d

dt
dyi

= 2dy⊤i (Ḋyi
dh+

dh⊤ d
dtdh

||dh||2
Dyi

dh)

= 2dy⊤i (Ḋyi
dh+

1

2

d
dt ||dh||

2

||dh||2
Dyi

dh)

= 2dy⊤i (−
1

τyi

1

N

1

4
(dyi − (y∗2,i − y∗1,i))||dh||2 −

1

4

1

τh

⟨wi⟩i=1,...,N

||dh||2
dyi)

= − 1

τyi

1

N

1

2
(||dyi||2 − dy⊤i (y

∗
2,i − y∗1,i))||dh||2 −

1

2

1

τh
⟨wi⟩i=1,...,N

||dyi||2

||dh||2

d

dt
wi = (2dyi − (y∗2,i − y∗1,i))

⊤ d

dt
dyi

= (2dyi − (y∗2,i − y∗1,i))
⊤(− 1

τyi

1

N

1

4
(dyi − (y∗2,i − y∗1,i))||dh||2 −

1

4

1

τh

⟨wi⟩i=1,...,N

||dh||2
dyi)

= − 1

τyi

1

N

1

4
(3wi − ||dyi||2 + ||y∗2,i − y∗1,i||2)||dh||2 −

1

4

1

τh

⟨wi⟩i=1,...,N

||dh||2
(||dyi||2 + wi)

, (19)

where 1
τh

= 1
τh1

+ 1
τh2

.

In the case that the output effective learning rates are all equal, i.e. ∀iτyi
= τy , this system can be reduced to a 3-dimensional

scalar system:

d

dt
||dh||2 = −1

2

1

τh
⟨wi⟩i

d

dt
⟨||dyi||2⟩i = −1

2
(

1

Nτy
||dh||2 + 1

τh

⟨||dyi||2⟩i
||dh||2

)⟨wi⟩i

d

dt
⟨wi⟩i = −1

4

1

Nτy
(3⟨wi⟩i − ⟨||dyi||2⟩i + ⟨||y∗2,i − y∗1,i||2⟩i)||dh||2 −

1

4

1

τh

⟨wi⟩i
||dh||2

(⟨||dyi||2⟩i + ⟨wi⟩i).

(20)

B.2. Final Representational Structure

In order to study the final representational structure learned by the network, we solve the final representational distance for
the pair. Using the relationship

d

dt

⟨||dyi||2⟩i
||dh||2

=
||dh||2 d

dt ⟨||dyi||
2⟩i − ⟨||dyi||2⟩i d

dt ||dh||
2

||dh||4
= − 1

2Nτy
⟨wi⟩i =

τh
Nτy

d

dt
||dh||2, (21)

we can solve ⟨||dyi||2⟩i(t) as a function of ||dh||2(t):
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⟨||dyi||2⟩i(t) =
τh
Nτy

||dh||4(t) +
(
⟨||dyi(0)||2⟩i
||dh(0)||2

− τh
Nτy

||dh(0)||2
)
||dh||2(t), (22)

reducing the dynamics to a 2-dimensional system:

d

dt
||dh||2 = −1

2

1

τh
⟨wi⟩i

d

dt
⟨wi⟩i = −1

4
(− τh

N2τy2
||dh||6 + 1

Nτy
||y2 − y1||2||dh||2 +

4

Nτy
||dh||2⟨wi⟩i +

1

τh

⟨wi⟩2i
||dh||2

+

(
||dy(0)||2

||dh(0)||2
− τh

Nτy
||dh(0)||2

)
(
1

τh
⟨wi⟩i −

1

Nτy
||dh||4)).

(23)

This system has three fixed points

||dh||2 =
1

2
Ahigh −

√
1

4
A2

high +A2
low, ⟨wi⟩i = 0

||dh||2 =
1

2
Ahigh +

√
1

4
A2

high +A2
low, ⟨wi⟩i = 0

||dh||2 = 0, ⟨wi⟩i = 0

, (24)

where

Ahigh = ||dh(0)||2 − Nτy
τh

⟨||dyi(0)||2⟩i
||dh(0)||2

Alow =

√
Nτy
τh

·
√
⟨||y∗2,i − y∗1,i||2⟩i.

(25)

The first fixed point has negative representational distance and is thus not a valid solution.

The second fixed point has Jacobian

J =

[
0 − 1

τh
1
4

τh
N2τ2

y
(2A2

low + 1
2 (Ahigh +

√
A2

high + 4A2
low)

2) − 1
τy
( 12Ahigh +

√
A2

high + 4A2
low)

]
, (26)

with negative trace

Tr(J) = − 1

Nτy
(
1

2
Ahigh +

√
A2

high + 4A2
low), (27)

and positive determinant

det(J) =
1

4

1

N2τ2y
(2A2

low +
1

2
(Ahigh +

√
A2

high + 4A2
low)

2), (28)

and is therefore always stable.

The final fixed point has Jacobian

J =

[
0 − 1

τh
1
2 (

1
τh

⟨wi⟩2i
||dh||4 − 1

Nτy
⟨||y∗2,i − y∗1,i||2⟩i) ( 12

1
τy
Ahigh − 1

τh

⟨wi⟩i
||dh||2 )

]
, (29)

which cannot be directly evaluated at ⟨wi⟩i = 0, ||dh||2 = 0 because of the undetermined term ⟨wi⟩i
||dh||2 . By replacing ⟨wi⟩i

||dh||2

with the direction of approach b
a we can solve for eigenvectors[

0 − 1
τh

1
2 (

1
τh

b2

a2 − 1
Nτy

⟨||y∗2,i − y∗1,i||2⟩i) ( 12
1

Nτy
Ahigh − 1

τh
b
a )

] [
a
b

]
= λ

[
a
b

]
(30)
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to find

v± =

[
1

− τh
Nτy

Ahigh±
√

A2
high+4A2

low

2

]
(31)

with one positive and one negative eigenvalue

λ± =
1

Nτy

Ahigh ±
√

A2
high + 4A2

low

2
. (32)

There is always one direction along which perturbations increase, so this fixed point is not stable.

Only the second fixed point is valid and stable, hence we expect the final representational distance to reach it.

B.3. Agreeing Pair Dynamics

When the pair agrees on all possible future outputs, i.e. ∀i y∗2,i = y∗1,i we have that ⟨wi⟩i = ⟨||dyi||2⟩i, allowing us to
reduce the system Equation (20) to

d

dt
||dh||2 = −1

2

1

τh
⟨||dyi||2⟩i

d

dt
⟨||dyi||2⟩i = −1

2
⟨||dyi||2⟩i(

1

Nτy
||dh||2 + 1

τh

⟨||dyi||2⟩i
||dh||2

).

(33)

Using Equation (22) we can write a self-contained equation for ||dh||(t):

d

dt
||dh||2 = −1

2

1

Nτy
||dh||4 + 1

2

1

Nτy
Ahigh||dh||2, (34)

which is Bernoulli and has solution

||dh(t)||2 =
Ahigh

1 + (
Ahigh

||dh(0)||2 − 1)e
− 1

2
1

Nτy
Ahight

, (35)

which, as Ahigh ≤ ||dh(0)||2 exponentially decays towards the final representational distance ||dh(∞)||2 = Ahigh.

B.4. Fixed Expansion Point Interaction Model

We take the same approach before but instead keep the linear expansion point fixed during training:

y(xα,i) = bi +Dyihα. (36)

The mean squared loss in this approximation has the form:

L =
1

2
⟨||bi +Dyi

hα − y∗α,i||2⟩D. (37)

Motivated by the assumption of high model expressivity, we apply gradient decent optimization directly with respect to Dyi ,
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hα and bi, resulting in the dynamics:

d

dt
bi = − 1

τbi

∂L

∂bi

= − 1

τbi

1

N
⟨bi +Dyi

hα − y∗α,i⟩α=1,2

= − 1

τȳi

1

N
(bi +Dyi⟨hα⟩α − ⟨y∗α,i⟩α)

d

dt
hα = − 1

τhα

∂L

∂hα

= − 1

τhα

1

2
⟨D⊤

yi
(bi +Dyi

hα − y∗α,i)⟩i=1,...,N

d

dt
Dyi

= − 1

τyi

∂L

∂Dyi

= − 1

τyi

1

N
⟨Dyi

hαh
⊤
α + (bi − y∗α,i)h

⊤
α ⟩α=1,2

= − 1

τyi

1

N
(Dyi

⟨hαh
⊤
α ⟩α=1,2 + bi⟨h⊤

α ⟩α=1,2 − ⟨y∗α,ih⊤
α ⟩α=1,2).

(38)

We again try the Ansatz where the representations only move towards or away from each other, which, since we take the
expansion point to be the representational mean at t = 0, can be written by shifting coordinates without loss of generality as

hα ∝ hαv, (39)

for some vector v with ||v|| = 1. We define di := v⊤Dyi
v, bi := v⊤D⊤

yi
bi, allowing us write using the derivatives

d

dt
hα = − 1

τhα

1

2
⟨(Dyi

v)⊤(bi + hαDyi
v − y∗α,i)⟩i

d

dt
bi = − 1

τbi

1

N
(bi + ⟨hα⟩αDyiv − ⟨y∗α,i⟩α)

d

dt
Dyiv = − 1

τyi

1

N
(⟨h2

α⟩αDyiv + ⟨hα⟩αbi − ⟨hαy
∗
α,i⟩α),

(40)

a scalar system which takes the form

d

dt
hα = − 1

τhα

1

2
⟨b⊤i Dyi

v + hα||Dyi
v||2 − y⊤α,iDyi

v⟩i

d

dt
b⊤i Dyi

v = − 1

τbi

1

N
(b⊤i Dyi

v + ⟨hα⟩α||Dyi
v||2 − ⟨y⊤α,iDyi

v⟩α)−
1

τyi

1

N
(⟨h2

α⟩αb⊤i Dyi
v + ⟨hα⟩α||bi||2 − ⟨hαb

⊤
i y

∗
α,i⟩α)

d

dt
b⊤i y

∗
β,i = − 1

τbi

1

N
(b⊤i y

∗
β,i + ⟨hα⟩αy⊤β,iDyi

v − y⊤β,i⟨y∗α,i⟩α)

d

dt
||bi||2 = −2

1

τbi

1

N
(||bi||2 + ⟨hα⟩αb⊤i Dyiv − ⟨b⊤i y∗α,i⟩α)

d

dt
||Dyiv||2 = −2

1

τyi

1

N
(⟨h2

α⟩α||Dyiv||2 + ⟨hα⟩αb⊤i Dyiv − ⟨hαy
⊤
α,iDyiv⟩α)

d

dt
y∗⊤β,iDyi

v = − 1

τyi

1

N
(⟨h2

α⟩αy∗
⊤
β,iDyi

v + ⟨hα⟩αy∗⊤β,ibi − ⟨hαy
∗⊤
β,iy

∗
α,i⟩α)

.

(41)
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If the output effective learning rates are again all equal, i.e. ∀ τbi = τb, ∀ τyi
= τy , this system can be reduced to 9 scalars:

d

dt
hα = − 1

τhα

1

2
(⟨b⊤i Dyiv⟩i + hα⟨||Dyiv||2⟩i − ⟨y⊤α,iDyiv⟩i)

d

dt
⟨b⊤i Dyi

v⟩i = − 1

τb

1

N
(⟨b⊤i Dyi

v⟩i + ⟨hα⟩α⟨||Dyi
v||2⟩i − ⟨y⊤α,iDyi

v⟩α,i)

− 1

τy

1

N
(⟨h2

α⟩α⟨b⊤i Dyi
v⟩i + ⟨hα⟩α⟨||bi||2⟩i − ⟨hα⟨b⊤i y∗α,i⟩i⟩α)

d

dt
⟨b⊤i y∗β,i⟩i = − 1

τb

1

N
(⟨b⊤i y∗β,i⟩i + ⟨hα⟩α⟨y⊤β,iDyiv⟩i − ⟨y⊤β,iy∗α,i⟩α,i)

d

dt
⟨||bi||2⟩i = −2

1

τb

1

N
(⟨||bi||2⟩i + ⟨hα⟩α⟨b⊤i Dyi

v⟩i − ⟨b⊤i y∗α,i⟩α,i)

d

dt
⟨||Dyi

v||2⟩i = −2
1

τy

1

N
(⟨h2

α⟩α⟨||Dyi
v||2⟩i + ⟨hα⟩α⟨b⊤i Dyi

v⟩i − ⟨hα⟨y⊤α,iDyi
v⟩i⟩α)

d

dt
⟨y∗⊤β,iDyi

v⟩i = − 1

τy

1

N
(⟨h2

α⟩α⟨y∗
⊤
β,iDyi

v⟩i + ⟨hα⟩α⟨y∗⊤β,ibi⟩i − ⟨hα⟨y∗⊤β,iy∗α,i⟩i⟩α)

. (42)

Training loss The loss can be written expressed using the variables from this system

L =
1

2
(⟨||bi||2⟩i+⟨h2

α⟩α⟨||Dyi
v||2⟩i+⟨||y∗α,i||2⟩α,i+2⟨hα⟩α⟨b⊤i Dyi

v⟩i−2⟨hα⟨y∗α,i⊤Dyi
v⟩i⟩α−2⟨⟨y∗α,i⊤bi⟩i⟩α). (43)

Equal hidden effective learning rates When the pairs agree on all outputs,s we have

⟨y∗⊤1,iy∗α,i⟩α,i = ⟨y∗⊤2,iy∗α,i⟩α,i (44)

Assuming no correlation at initialization due to random weights

⟨b⊤i Dyi
v⟩i(0) = 0

⟨b⊤i y∗β,i⟩i(0) = 0

⟨y∗⊤β,iDyiv⟩i(0) = 0

, (45)

we find the relations

d

dt
⟨b⊤i y∗1,i⟩i =

d

dt
⟨b⊤i y∗2,i⟩i

d

dt
⟨y∗⊤1,iDyi

v⟩i =
d

dt
⟨y∗⊤2,iDyi

v⟩i
, (46)

such that

⟨b⊤i y∗1,i⟩i = ⟨b⊤i y∗2,i⟩i
⟨y∗⊤1,iDyi

v⟩i = ⟨y∗⊤2,iDyi
v⟩i

. (47)

From this it follows that

d

dt
(τ2h2 − τ1h1) = −1

2
((h2 − h1)⟨||Dyi

v||2⟩i). (48)

In the case of equal effective hidden learning rates τh1
= τh2

, the representational distance can only increase

d

dt
||h2 − h1||2 = −⟨||Dyi

v||2⟩i, (49)

so no initial divergence occurs for agreeing pairs in this case.
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C. Experimental Details
For all experiments, the PyTorch library was used to train the models.

C.1. Streaming Parity Task

Model The neural network architecture consists of a single fully connected recurrent layer with 100 hidden units, along
with a fully connected output layer, both with ReLU activation functions,

Training procedure The model was trained on all sequences up to length 10. We used 100 randomly selected sequences
of length 50 to compute the validation loss during training. Both the inputs and outputs were embedded in a 2-dimensional
space using a one-hot encoding.

Optimization was performed using stochastic gradient descent on the mean squared training loss. The model was trained
over 1000 epochs at a learning rate of 0.02 and a batch size of 128. No momentum or regularization was used. Weights were
initialized small using Xavier initialization at a gain of 0.1. Bias was initialized at zero.

Automata Automata were extracted using the complete training set. The merger cutoff was set at a factor of 0.01 of the
representational standard deviation.

C.2. Grokking

For the re-implementation of the grokking experiment, we made use of the following publicly available repository:
https://github.com/Sea-Snell/grokking.git

The data used is subtraction modulo 96, with a fraction of 0.6 of possible examples set aside for validation.

Every 250 epochs we evaluated the training loss, validation loss, number of states in the attention, and number of states in
the hidden layer.

To compute the number of states in the hidden activations, we considered the activations after the normalization layer, as
suggested in (Adriaensen & Maene, 2024). Next, we applied a principal component analysis to reduce the space to 512
dimensions and merged pairs with distance below a threshold to count the number of states. The number of states in the
attention matrix was computed in a similar manner.

The threshold was chosen to be 1.25 times the initial maximum distance, as states are expected to be close at initialization.
Any significantly larger or smaller choice for the threshold resulted in the counting of a single or all possible states at every
epoch.

D. Supplemental Figures
D.1. No Representational Contraction

One may wonder if the reduction in the number of automaton states during the second phase of learning is merely the result
of the whole representational space contracting, as the merger threshold is a fixed constant. To make sure this is not the case,
we computed the representational mean distance over time and found it always increases (Figure 12).

D.2. Validity Linear Approximation

The theoretical interaction model assumes close enough representations such that the first order term in the Taylor expansion
dominates higher order terms. One may wonder whether or not representations in practice are ever close enough for this to
be a reasonable assumption, especially since even pairs that end up merging still initially move apart from each other as can
be seen in Figure 10. To test this we compute the average ratio of the norm of the second-order Taylor term with respect to
the first-order term (Figure 13). We find that although the linear approximation does get worse when representations start to
move apart, the first-order term still remains dominant, and in the case of merging pairs by at least a factor of 10.
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Figure 12. The mean pairwise representational distance of training set during training on the streaming parity task. It never decreases
during training, hence state mergers cannot be entirely explained by representational contraction.
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Figure 13. The norms of the second-order term divided by the first-order term in the Taylor expansion of the output map during training,
averaged over all pairs that ended up below the merging threshold and all pairs that ended up above the merging threshold out of 100
randomly selected pairs. Note that this ratio increases around the point where pairs start to diverge, however, the first order term remains
dominant on average throughout the entire training procedure.

D.3. Diverging Mergers Occurrence Rates

As gradient descent scales with the number of parameters, the effective learning rates of representations should be
proportional to the sequence lengths.

1

τh
∝ n (50)

This is because for a hidden state corresponding to a sequence of length n, the map assigning that hidden state consists of
the recurrent map applied n times. Therefore, this map has nP parameters, where P is the number of parameters on the
recurrent map, and parameters that appear multiple times are double counted. Applying gradient descent will thus result in a
sum of nP terms, and this increases linearly with n.

From Equation (50) we would expect such mergers that initially diverge to be more prevalent among pairs with a large
difference in sequence lengths. Such a pattern was indeed observed in the experiment (Figure 14).
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Figure 14. Fraction of mergers that first move apart by least a factor 10 of the merging threshold, at some point during training, before
merging in the end. Displayed as a function of the sequence lengths of the points in each pair. We can see that pairs with a larger difference
in sequence length appear to diverge initially more often during merging.

D.4. State Change Patterns Due to Diverging Merger

According to the theory, the reason the number of states initially increases before decreasing is that pairs of datapoints
agreeing on all outputs will first move apart before they end up merging. As we can see Figure 15, the decrease of the
number of states after the initial increase can indeed be entirely explained by merging pairs that initially diverged.
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Figure 15. The number of pairs of datapoints whose representational distance are apart more than the merging threshold during training on
the streaming parity task, divided by whether or not they agree on all possible future outputs. We see that the drop in number of automaton
states can be explained by pairs agreeing on all outputs initially diverging before they end up merging.

D.5. Random Regular Tasks

We ran multiple experiments on randomly generated regular tasks with a number of states between 1 and 7. Tasks were
defined using random automata, which were generated by starting with an initial state and adding transitions for each input
symbol to either a new state with some probability which we set to 0.75, or a uniformly selected already existing state.
This procedure was iterated for each state until all transitions were assigned, or 7 states exist at which point all remaining
transitions would be assigned to already existing states. Results were found to be consistently qualitatively similar to the
streaming parity task. Initial weight gain was set to 0.025, the learning rate to 0.05. An example is shown in Figure 16.
Other samples of regular tasks provided qualitatively similar results.

D.6. Hyperbolic Tangent Activation Function

We reran the experiments on the same recurrent neural network architecture except with hyperbolic tangent non-linearity.
Initial weight gain was set to 0.01 and learning rate to 0.05. All other settings remained the same. Similar qualitative results
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were found as with the ReLU network (Figure 17).

D.7. Modular Addition

The single-layer transformer trained on modular subtraction has a much smoother transition to generalization than the RNN
trained on parity. Modular addition tends to have a sharper transition. To see if this changes any of the results we run the
experiment again. We still find similar merging patterns (Figure 18).

D.8. State Merging in the Value Matrix

Although less clear, we found something resembling a state merging effect in the value matrix of the transformer (Figure 19).
The key matrix did not show such an effect.

D.9. Discontinuity

We can break the assumption of continuity by adding a step discontinuity in the output map of the RNN.

f(x) =

{
0 if x < 0

x+ 1 if x > 0
(51)

We still find similar results albeit with nosier dynamics (Figure 20).
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Figure 16. Experimental results of a recurrent neural network trained on a randomly generated regular task. Note that the task automaton
and learned automaton are equal, but states are displayed in different locations.
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Figure 17. Experimental results of a recurrent neural network with hyperbolic tangent non-linearity trained on the streaming parity task.
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Figure 18. The training loss, validation loss, number of states in the attention matrix, and number of states in the hidden layer of a single
layer transformer trained on modular addition. Note that as with subtraction we see a pattern of initial attention pattern divergence
followed by mergers, while hidden states continue to increase.
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Figure 19. The training loss, validation loss, number of states in the key matrix, and number of states in the value matrix of a single layer
transformer trained on modular subtraction. Note that some amount of state merging appears to happen in the value matrix, but not for the
key matrix. Losses have been scaled down for visualization purposes.
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Figure 20. Experimental results of a recurrent neural network with a discontinuity in the output map trained on the streaming parity task.
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