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Abstract

Whole-slide images in digital pathology often contain large regions of irrelevant background,
making tissue segmentation an important preprocessing step in many applications. Tradi-
tional rule-based approaches to tissue segmentation often work quite well, but it is difficult
to create general rules that cover all instances. We here apply an unmodified nnU-Net
v2 training setup on downsampled whole-slide to develop and test an efficient and ro-
bust tissue segmentation model. The dataset contained nearly 30 000 images from slides
with different tissue types, imaged using different scanners, and annotated using a semi-
automatic workflow so that all annotations have been verified or made by human experts.
This large, diverse dataset enables the training of a tissue segmentation model that general-
izes well across different scanners and tissue types. We observed that our proposed model
achieves similar or better accuracy than other deep learning models, while offering bet-
ter robustness than simpler rule-based methods. The best compromise between inference
speed and accuracy was observed using images at 10 µm per pixel. Our approach can be
used as an efficient and well-suited preprocessing step for computational pathology. Source

©2025 Helgesen S. E. M. et al...

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v2/.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v2/.html


Helgesen S. E. M. et al..

code, Dockerfiles, and model weights are made publicly available at: https://github.

com/icgi/Reliable-and-Efficient-Tissue-Segmentation-in-Whole-Slide-Images.
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1 Introduction

Whole-slide images (WSIs) in digital pathology routinely exceed 100 000×50 000 pixels at
full resolution, which can make tissue segmentation a computationally burdensome pre-
processing step before further analysis. Classical rule-based methods, ranging from global
thresholding to stain-specific color deconvolution, are fast, but struggle to generalize across
different scanners, staining types, and tissue types, often requiring manual tuning for each
new dataset.
In this work, we demonstrate that unmodified nnU-Net v2 (Isensee et al. (2021)), orig-

inally developed for radiology tasks, also works well on downsampled WSIs in pathology.
To train the network and evaluate its performance, we curated a large, diverse dataset with
over 28 000 images. We evaluate our pipeline against both rule-based baselines and state-of-
the-art methods, showing that our streamlined approach matches or exceeds segmentation
accuracy while substantially cutting end-to-end processing time. Our main contributions
are as follows: (1) we demonstrate that the unmodified nnU-Net v2 achieves high-quality
tissue segmentation, without sacrificing inference speed; (2) we publish a simplified, easy-
to-use pipeline, and the trained model weights; (3) we analyze speed-accuracy trade-offs by
repeating the experiment at different input resolutions.

2 Materials and methods

2.1 Dataset preparation

In total, we put together a dataset consisting of 28 858 WSI scans from seven diverse pathol-
ogy projects, covering multiple scanner vendors, laboratories, tissue types, and nationalities
(Table 1). Hematoxylin and Eosin (H&E) staining was used for all slides. All scans were
shuffled and split 80/20 into a training set with 23 086 scans and a test set containing 5 772
scans. Our dataset uses 3 different scanners: Aperio AT2 (Leica, Germany), NanoZoomer
XR (Hamamatsu, Japan), and 3D-Histech (Pannoramic, Hungary).
Due to limitations in hardware and the input requirements of the model architecture,

we downsampled the raw WSIs to 10 µm per pixel. This significantly reduced file size
from several gigabytes per scan to approximately 1–10 MB, while preserving sufficient de-
tail for tissue segmentation. These downsampled images were used both for creating the
annotations and training the neural networks.

2.2 Annotation workflow

To efficiently generate tissue-background annotations to use for model development and
evaluation, we used a semi-automated workflow. First, we applied automatic tissue seg-
mentation methods to produce the initial annotation masks. These initial masks were then
manually reviewed to ensure quality and consistency. Out of 28 858 scans, 2 584 were identi-
fied as having inadequate annotations. These scans were re-evaluated by domain experts at
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Source institution Tissue type Scanner Patients Scans

University of Liverpool CRLM AT2, XR 151 2 952
Erasmus University Medical Center CRLM P1000 960 8 388
National Cancer Center Hospital East CRC XR 116 522
University College London Hospitals CRP AT2, XR 3 000 15 707
University of Leeds CRP AT2 291 299
University Medical Center Utrecht CRP AT2, XR 308 990

Total count 4 826 28 858

Table 1: Summary of datasets used in this study. CRC = colorectal cancer; CRP = col-
orectal polyp; CRLM = colorectal liver metastasis; AT2 = Aperio AT2; XR = NanoZoomer
XR; P1000 = Pannoramic 1000

the Institute for Cancer Genetics and Informatics at Oslo University Hospital, who manu-
ally corrected errors where the automated methods had failed to accurately mask the tissue.
The corrected masks were then merged with the initially accepted ones to form the final
annotation set used for training and evaluation.

2.3 Neural network architecture

To develop a robust and efficient pipeline for background tissue segmentation, we used the
standard nnU-Net v2 framework (Isensee et al. (2021)) from the GitHub repository https:

//github.com/MIC-DKFZ/nnUNet (commit hash: ac79a61). This architecture is designed
to work on various medical segmentation tasks. It automatically configures most training
parameters, e.g., input patch size and batch size, based on dataset characteristics such as
image dimensions, intensity distribution, and available computational resources.
In addition to the standard nnU-Net v2 architecture, we evaluated the residual encoder

(ResEnc) variant of nnU-Net (Isensee et al. (2024)), which adds residual blocks to help the
model learn better features and generalize better across harder segmentation tasks. This
architecture has demonstrated improved segmentation accuracy on several datasets, though
with the tradeoff of being more resource-demanding and with a slight increase in inference
time.

2.4 Baseline comparisons

For benchmarking, we compared our models against both rule-based and deep learning-
based segmentation methods. Rule-based baselines include Otsu’s method and two in-house
algorithms representing common simple approaches. For deep learning baselines, we eval-
uated against the tissue segmentation method implemented in the PathProfiler pipeline
(Haghighat et al. (2022)) and test the performance of one of the suggested nnU-Net config-
urations proposed by Spronck et al. (2023).

2.4.1 Non-deep learning based segmentation

As a reference point, we employed three purely rule-based segmentation pipelines that
rely on classical processing primitives. These methods build on classical computer vision
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techniques such as morphological filtering, edge detection, and thresholding. They are fast
and predictable, and serve as useful baselines for evaluating more advanced (e.g., machine
learning-based) segmentation models.
Otsu’s method. We applied Otsu’s thresholding method (Otsu et al. (1975)) to the 10

µm per pixel images, preceded only by a 5×5 smoothing filter to reduce noise. No additional
tuning was performed.
Canny-based segmentation. This method works on 5 µm per pixel images and uses

Canny’s algorithm (Canny (1986)) to detect edges in the input image. This is followed
by morphological closing with a 9×9 structuring element and filling of holes smaller than
10 000 pixels, before morphological opening and removal of foreground regions smaller than
1 600 pixels.
Intensity-based segmentation. This method converts RGB images to grayscale HSV

color space and segments tissue based on transforming intensities using percentiles and
thresholding the values. This process is followed by morphological closing and opening in
combination with removal of 4-connected background and foreground regions. A resolution
of 16.3745 µm per pixel was used for the input images.

2.4.2 Deep learning based segmentation

We compare against two deep learning based segmentation methods: PathProfiler segmen-
tation and Pathology nnU-Net.

PathProfiler. We used the tissue segmentation model from the PathProfiler pipeline,
introduced by Haghighat et al. (2022), as a deep learning baseline. PathProfiler uses a
U-Net-based architecture (Ronneberger et al. (2015)) for background tissue segmentation
and is designed to operate directly on WSIs. To ensure compatibility with our test data,
we implemented a data reader class to support the MRXS format used by 3DHISTECH
scanners. No changes were made to the model weights or its core configuration. PathProfiler
was initialized and evaluated using the pretrained model weights provided by Haghighat
et al. (2022), without further tuning. For fair comparison, we provided WSIs as input
instead of PNG images and let the PathProfiler pipeline handle downsampling to its desired
resolution. All pipeline parameters were left unchanged.

Pathology nnU-Net. nnU-Net for pathology by Spronck et al. (2023) is an initiative to
simplify and create a pipeline design for straight forward use of histopathology images with
the nnU-Net pipeline. The authors introduce a dynamical data loader to load the WSIs on
the fly, avoiding the memory issues related to the sheer size of WSIs, as well as other small
improvements, making it straightforward to use for pathology. In addition, the authors
suggest several modifications to the initial parameters that better fit pathology images.

While our approach shares goals with the Pathology nnU-Net framework, we applied a
simplified pipeline that avoids modifying the original code pipeline. For comparison, we
evaluated one of their reported high-performing configurations (Config E), which closely
matches our setup and can be performed using the standard nnU-Net pipeline. Config E
uses RGB to 0-1 normalization instead of Z-score normalization, a fixed batch size of 8,
and a patch size of 512. We trained this configuration on the same data split as our main
experiments, without any further tuning.
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2.5 Evaluation metrics

We use the Dice score (Sørensen (1948)) and IoU (Intersection over Union) averaged across
datasets to systematically evaluate model performance. Both the Dice score and IoU mea-
sure the overlap between the predicted mask and ground truth and are computed per scan.
We also analyze the distribution of Dice scores across the dataset and report score thresholds
in 10% increments to visualize the model’s performance.

3 Results

We evaluated segmentation accuracy and inference time across multiple resolutions and
model variants. Comparisons are made against classical rule-based methods and deep learn-
ing baselines. All models are evaluated on our test set of 5 772 image overviews of WSIs
taken from various datasets.
All models were trained on an NVIDIA RTX 3090 GPU with 24 GB of memory. We use

the official nnU-Net v2 implementation with default settings, and no architectural modi-
fications or custom preprocessing steps were applied. Each network was trained for 1 000
epochs, with the standard nnU-Net averaging 14.9 GPU-hours and consuming 4.87 kWh.
The ResEnc nnU-Net required 59.75 GPU-hours, with an overall energy consumption of
21.84 kWh. For fair benchmarking, input scans were resized to match the intended resolu-
tion and format of each method. Additionally, we do not perform any extra post-processing
to maintain consistency with other methods. A Docker project containing all the require-
ments and versions used in our experiments is included in our GitHub repository.

3.1 Inference time

We quantified the trade-off between resolution, speed, and accuracy by running nnU-Net
and its residual-encoder variant at 5, 10, and 20 µm per pixel, and compared against
PathProfiler (Table 2). PathProfiler works at different resolutions, but for simplicity we
use the default 8 µm per pixel resolution. Elapsed inference times were averaged over
100 random WSIs from different scanners and tissues, while the Dice and IoU scores were
averaged over all 5 772 WSIs. ResEnc yielded modest but consistent accuracy gains over the
original nnU-Net at increased computational cost. The two models trained at 5 µm per pixel
performed similarly to the two models trained at 10 µm per pixel but required substantially
more inference time. While the 20 µm model offered about a threefold speed gain, visual
inspection revealed an increased number of segmentation outliers caused by artifacts and
loss of details (see supplementary Figure S1). Therefore, the two models trained on 10
µm per pixel resolution were considered to be the best trade-off between inference speed
and segmentation accuracy, and were used in the further evaluations described below. Our
model runs at 10 µm versus PathProfiler’s 8 µm resolution, so downsampling the WSIs
before inference should be slightly faster for us.

3.2 Masking results

Figure 1 shows the distribution of Dice and IoU scores across all models. Our nnU-Net
models outperformed both rule-based baselines and PathProfiler, and showed similar results
as the Pathology nnU-Net variants. Visual comparisons of our nnU-Net models trained at
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Resolution (µm/px) Model Dice score (%) IoU score (%) Inference time (s)

5 nnU-Net 98.52 97.25 5.88
5 ResEnc 98.97 98.06 11.70

10 nnU-Net 98.54 97.26 1.42
10 ResEnc 98.96 98.02 3.09

20 nnU-Net 98.54 97.23 0.44
20 ResEnc 98.81 97.71 0.89

8 PathProfiler 94.51 89.94 2.25

Table 2: Segmentation performance and runtime for different resolutions.

10 µm per pixel vs the PathProfiler model suggest that the latter is less sensitive to detect
tissue with faint appearance, such as mucinous tissue (see Figure 2 for an example).

(a) Average Dice scores presented as percentages
above plot.

(b) Average IoU scores presented as percentages
above plot.

Figure 1: Distribution of Dice score (on the left) and IoU score (on the right) for different
models.

To investigate how often each segmentation approach fails to properly segment the tissue,
we evaluated the proportion of WSIs in the test set above specific Dice score thresholds.
The ResEnc nnU-Net model achieved Dice scores above 90% on over 99% of the WSIs,
while PathProfiler exceeded this threshold on just under 95% of the WSIs (Figure 3). This
reflects the increased average Dice score of our nnU-Net models, which is mainly related
to a coarse segmentation of tissue that match a manual annotation better. However, Path-
Profiler additionally exhibited several outlier cases with Dice scores below 50%, indicating
that PathProfiler fails to segment tissue more frequently than our nnU-Net models, which
were never observed to give this low Dice score. Also, the Pathology nnU-Net models were
observed to result in a few cases with very low Dice score. The rule-based baselines failed to
segment tissue properly more often than the deep learning-based models. From supplemen-
tary Figure S2, we see a case where all rule-based baselines and PathProfiler, oversegment,
and fail to separate the tissue from the gray regions with fecal matter.
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Original
scan

nnU-Net
(ours)

Pathology
nnU-Net

Canny PathProfiler

Ground
truth

nnU-Net
ResEnc
(ours)

Pathology
nnU-Net
ResEnc

Intensity
based

Otsu

Figure 2: Blue outlines of segmentations generated by different approaches when applied
to a WSI showing mucinous tissue.

4 Conclusion

We evaluated the tissue segmentation performance of an unmodified nnU-Net v2 pipeline
in digital pathology. Using a varied dataset of over 28 000 WSIs, we observed that our
nnU-Net model obtained an average Dice score of 98.97% and an average IoU score of
98.02%. In comparison, the rule-based segmentation methods performed worse on average
than the deep learning variants, and also had substantially more failed segmentations with
a Dice score below 50%. The U-Net from PathProfiler showed a lower Dice and IoU score
than the nnU-Net variants, which, in turn, were quite similar. Furthermore, an analysis
of inference time showed that we could obtain a good compromise between accuracy and
inference speed with a resolution of 10 µm per pixel. The results are based exclusively on
H&E-stained slides, and assessing the model’s generalizability to other stains, such as IHC,
remains an open direction for future work.
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Figure 3: Proportion of WSIs with Dice score above specific thresholds for different seg-
mentation approaches.
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Appendix A. Tissue segmentation examples

Original
scan

nnU-Net 5 µm nnU-Net 10 µm nnU-Net 20 µm

Ground
truth

nnU-Net 5 µm
ResEnc

nnU-Net 10 µm
ResEnc

nnU-Net 20 µm
ResEnc

Figure S1: Visual comparison of masks for each resolution for the nnU-Net models. Masks
are shown as outlines; the originals are filled. The tissue is taken from a colorectal primary
tumour, and a glass edge air bubble is present at the top of the scan.
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Original
scan

nnU-Net
(ours)

Pathology
nnU-Net

Canny PathProfiler

Ground
truth

ResEnc
(ours)

Pathology
nnU-Net
ResEnc

Intensity
based

Otsu

Figure S2: Example result of the different segmentation models presented in this study.
Masks are shown as outlines; the originals are filled. The scan show tissue from a low-grade
dysplasia colorectal polyp, and the shaded regions are fecal matter.
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