
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VISUAL PROMPTING REIMAGINED: THE POWER OF
ACTIVATION PROMPTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Visual prompting (VP) has emerged as a popular method to repurpose pretrained
vision models for adaptation to downstream tasks. Unlike conventional model fine-
tuning techniques, VP introduces a universal perturbation directly into the input
data to facilitate task-specific fine-tuning rather than modifying model parameters.
However, there exists a noticeable performance gap between VP and conventional
fine-tuning methods, highlighting an unexplored realm in theory and practice
to understand and advance (input-level) VP to reduce its current performance
gap. Towards this end, we introduce a generalized concept, termed activation
prompt (AP), which extends the scope of (input-level) VP by enabling universal
perturbations to be applied to activation maps within the intermediate layers of the
model. By using AP to revisit the problem of VP and employing it as an analytical
tool, we demonstrate the intrinsic limitations of VP in both performance and
efficiency, revealing why input-level prompting may lack effectiveness compared to
AP, which exhibits a model-dependent layer preference. We show that AP is closely
related to normalization tuning in convolutional neural networks (CNNs) and vision
transformers (ViTs), although each model type has distinct layer preferences for
prompting. We also theoretically elucidate the rationale behind such preference by
analyzing global features across layers. Through extensive experiments across 29
datasets and various model architectures, we provide a comprehensive performance
analysis of AP, comparing it with VP and parameter-efficient fine-tuning (PEFT)
baselines. Our results demonstrate AP’s superiority in both accuracy and efficiency,
considering factors such as time, parameters, memory usage, and throughput.

1 INTRODUCTION

Large pretrained models have emerged as fundamental components in deep learning (DL) (Brown
et al., 2020; Touvron et al., 2023; Chiang et al., 2023; Li et al., 2022; Bai et al., 2023a) in recent
years. Despite their exceptional performance, the substantial increase in computational demands,
as highlighted in recent studies (Frantar and Alistarh, 2023), has underlined the need for more
economical and lightweight fine-tuning approaches. Thus, the pretraining-finetuning paradigm rises,
allowing for quickly adapting a pretrained model to a plethora of downstream tasks (Jia et al., 2022;
Hu et al., 2021; Chen et al., 2022a; Cai et al., 2020; Sung et al., 2022; Pfeiffer et al., 2020; Chen
et al., 2023a). Among the various parameter-efficient finetuning (PEFT) methods (Hu et al., 2021;
Chen et al., 2022a; Pfeiffer et al., 2020; He et al., 2021; Xu et al., 2023), prompting technique has
been gaining popularity in the vision domain (Liu et al., 2023; Li and Liang, 2021).

Different from the model-centric PEFT techniques in computer vision (CV), the conventional visual
prompting (VP) crafts specific input perturbations (known as ‘prompts’) to reprogram the pretrained
model for a targeted task, without altering the model parameters. This offers a new data-centric
viewpoint to analyze, understand, and harness the pretrained model (Chen et al., 2023a). However,
despite the recent advancement, the performance of state-of-the-art (SOTA) VP methods still lags
behind model-based fine-tuning methods (Chen et al., 2023a; Wu et al., 2022). It appears that the
potential of VP has not been fully realized for vision models, particularly when considering its relative
progress compared to its counterpart in natural language processing (NLP) (Liu et al., 2023; Li and
Liang, 2021). In this work, we aim to provide a rigorous and comprehensive examination of VP and
explore its enhancement tailored for vision models, including convolutional neural networks (CNNs)
and vision Transformers (ViTs). In particular, we ask:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(Q) Is VP (visual prompting) truly beneficial for improving vision models and tasks, and under
what conditions does it prove effective or ineffective?

To tackle question (Q), we present a generalized variant of VP termed activation prompt (AP), which
involves the incorporation of learnable perturbations into the activation maps of intermediate layers,
rather than focusing solely on the input layer. See Fig. 1 for an illustration. The introduction of AP
allows us to study the (in)effectiveness of (input-level) VP, as VP can be treated as a specific realization
of AP. By employing AP as both a bridge and an analytical tool, we show that the conventional
input-based VP might not be the most effective or efficient design. In fact, appropriately implemented
AP can outperform traditional VP significantly. To shed light on the underlying mechanism of AP, we
present both empirical evidence and theoretical insights. It is also worth noting that, unlike VP, which
can be applied in a black-box model setting (Tsai et al., 2020; Oh et al., 2023), AP requires modifying
the parameters of intermediate activation maps and is only applicable in a white-box setting.

Frozen Model Parameters

Visual Prompt Activation Prompt

+ +

vs.

Figure 1: An illustration of the proposed activation
prompt vs. the conventional input-based prompt.

The work most relevant to ours is (Jia et al.,
2022), which also integrates prompts with inter-
mediate layers of ViTs, resulting in the method
known as visual prompt tuning (VPT). However,
our work has the following distinctions from
VPT. First, AP and VPT diverge in their designs.
AP concentrates on the targeted application of
prompts to a single model layer. In contrast,
VPT and its deep variant (termed VPT-deep)
apply prompts across multiple layers. Specifi-
cally, VPT-deep initiates prompts at one layer
and extends them across all subsequent layers.
The distinctive layer-prompting approach makes
VPT not covering VP as a special case. In con-
trast, AP serves as a generalized framework for VP, making it easier to analyze its effectiveness.
Second, this work identifies the layer preference of vision models regarding prompts. Through AP,
we can gain insights into these layer preferences on both CNNs and ViTs. In contrast, VPT does
not conduct a systematic analysis of layer and architectural type effects. Third, another notable
difference between our work and the VPT study is our theoretical analysis. We establish a connection
between AP and normalization tuning and theoretically validate the concept of layer preference and
its influence on various architectural designs. Our theoretical analysis also shows that the traditional
implementation of input-level VP could be suboptimal. In summary, our contributions include:

• We propose AP (activation prompt) as a valuable tool for gaining insights into VP (visual prompting).
And AP establishes itself as a versatile and effective prompting technique in its own right, revealing
a provable relationship with normalization tuning (Sec. 3).

• We offer an in-depth analysis of AP’s layer preference and its architecture effects. Through empirical
studies, we unveil the connection between the layer preference and the capacity for capturing global
features (Sec. 4). In addition, we theoretically validate those findings (Sec. 5).

• Through extensive experimentation involving 29 datasets across various benchmarks, we affirm
that AP enhances the input-level VP in diverse learning scenarios. Furthermore, AP narrows the
performance gap even when compared to 6 other stateful PEFT methods.

2 RELATED WORK

Visual prompting. VP was first proposed in (Bahng et al., 2022a; Jia et al., 2022) to extend the
prompting technique in NLP. A similar idea with a different name, known as adversarial reprogram-
ming, was also proposed earlier in CV (Elsayed et al., 2018; Chen, 2022; Neekhara et al., 2018; 2022;
Chen et al., 2021; Zhang et al., 2022a; Chen et al., 2022b). It aims at re-purposing a fixed pretrained
model to adapt to a new task. Recent advancement focuses on improved label mapping (Chen et al.,
2021; Yang et al., 2023) and normalization strategy (Wu et al., 2022) to enhance VP. Other works fur-
ther extend VP to areas like adversarial defense (Chen et al., 2023b; Mao et al., 2022) and distribution
shift (Huang et al., 2023a; Tsai et al., 2023), and vision-language models (Zhou et al., 2022).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Theoretical study on prompt engineering. Existing theoretical works on prompt engineering include
the expressive power of the introduced parameter (Wei et al., 2021; Bai et al., 2023b; Akyürek et al.,
2022), the optimization process (Ding et al., 2022; Von Oswald et al., 2023), and the generalization
analysis (Xie et al., 2021; Oymak et al., 2023; Zhang et al., 2023a; Li et al., 2023a; Huang et al.,
2023b; Li et al., 2024a;b). Most studies concentrate on in-context learning, a tuning-free hard prompt
method. In contrast, for soft prompt tuning, Wei et al. (2021) show that prompting is powerful enough
to remove nonessential information for the downstream task. Ding et al. (2022) interpret prompt
tuning as a subspace optimization method for the solution or functional space. Notably, there is solely
one study (Oymak et al., 2023) on the generalization dynamics of gradient-based prompt tuning but
relying on a single-layer Transformer architecture without the MLP layer, making it incapable of
examining the impact of multiple layers.

Parameter-efficient fine-tuning (PEFT). PEFT demonstrates that only finetuning a small part of a
large pretrained model can achieve outstanding performance. In the domain of CV, besides prompting-
based methods, PEFT methods can be roughly classified into two categories. The former (Basu et al.,
2023; Xu et al., 2023) focuses on identifying a small ratio of parameters to update from the pretrained
model, such as normalization tuning (Basu et al., 2023). The latter designs additional modules to the
original network backbone to adapt to downstream tasks (Hu et al., 2021; Chen et al., 2022a; Pfeiffer
et al., 2020; Xu et al., 2023; Karimi Mahabadi et al., 2021; Lian et al., 2022; Zhang et al., 2022b; Luo
et al., 2023). Examples include LoRA (Hu et al., 2021), adapter-based methods (Chen et al., 2022a;
Pfeiffer et al., 2020; Karimi Mahabadi et al., 2021; Luo et al., 2023), and FACT (Jie and Deng, 2023)
that tensorizes the ViT weights to a 3D tensor and reduces the tunable parameter ratio to less than
0.01%. We note that AP differentiates itself from the methods above by avoiding additional inference
overheads or any requirements on the model architectures.

3 ACTIVATION PROMPT: DESIGN AND RATIONALE

Preliminaries on classical VP. VP harnesses universal pixel-level perturbations applied to input
images as a means of model adaptation (Bahng et al., 2022b). For example, VP enables the transfer
learning of an ImageNet-trained source model to various downstream tasks without the need for fine-
tuning the model weights. It has sparked significant interest in the recent research (Chen et al., 2023a;
Wu et al., 2022; Zhang et al., 2022a; Bahng et al., 2022b; Tsai et al., 2020). Concretely, let fθ denote
the pre-trained source model parameterized by θ, and D = {(x1, y1), (x2, y2), . . . , (xN , yN)}
denote the fine-tuning dataset for a downstream task, with x and y being the data feature and label,
respectively. The objective of VP is to obtain a perturbation vector, denoted as δVP, which is tailored
to a specific task but remains agnostic to the input data. This vector is then used to transform the input
data x through the function g(x, δVP). Here g symbolizes the transformation template function that
molds the input image to fit the desired prompt pattern. Two prevalent templates include the addition
g(x, δVP) = x+ δVP (Zhang et al., 2022a; Bahng et al., 2022b), and the resize-and-concatenation
g(x, δVP) = [δVP,M(x)] (Chen et al., 2023a; Zhang et al., 2022a), where M is the resizing function.
Unless specified otherwise, we consider the additive VP formulation.

Activation prompt (AP): Generalizing VP in feature space. The conventional VP approach
primarily focuses on making direct modifications to the input data. However, this direct manipulation
may have two limitations. First, raw input data typically contains an abundance of details, which can
introduce complications for tasks like prompt generation due to issues such as background clutter
and semantic ambiguity (Yu et al., 2017). In contrast, intermediate features tend to encompass a
broader range of local and global attributes, preserving more class-discriminative information for
decision-making (Bau et al., 2017). Second, parameter updates in VP demand gradient propagation
throughout the entire network. Consequently, even with a lower number of tunable parameters, the
training cost may increase.

Motivated by the above, we broaden the scope of VP into the feature domain and introduce the
concept of activation prompting (AP), see Fig. 1 for an illustration. Given a neural network model
with L layers, represented as θ = [θ(1),θ(2), . . . ,θ(L)], the output from the l-th layer is denoted
as z(l) = fθ(l)(z(l−1)), where z(0) = x (i.e., the input date). Similar to VP, AP at the l-th layer is
defined by a perturbation vector δ(l) to the intermediate feature z(l), leading to the ‘prompted’ feature
map g(z(l), δ(l)) = z(l) + δ(l). We denote the output with the l-th-layer AP given θ as fθ(x, δ(l)).
The objective of AP is then to optimize δ(l) so as to facilitate the adaptation of the fixed source

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

model fθ for performing the downstream task on D. It is evident that AP can be conceptualized as
an extension of VP when we set the layer number l to 0. Moreover, the optimization process for
both VP and AP can be carried out similarly through empirical risk minimization (ERM) on D, i.e.,
minδ(l)

1
|D|

∑
(x,y)∈D ℓ(fθ(x, δ

(l)); y), where ℓ is the sample-wise cross-entropy loss.

AP also exhibits several notable attributes different from VP. First, the number of parameters in AP
directly relates to the size of the feature map z(l). Hence, a properly designed AP can substantially
reduce the parameter count. Second, while the optimization of AP mirrors that of VP, its parameter
update does not necessitate back-propagation throughout the entire network. For example, embedding
AP deeper within the architecture reduces computational demands during training.

VP 3 7 11 15 19 23 27 31
Layer Index

82

84

86

88

90

92

Te
st

 A
cc

ur
ac

y
(%

)

8

10

12

14

16

18

Tr
ai

n
Ti

m
e

(s
/e

po
ch

)

NT
VP
AP
Best AP
Train Time

Figure 2: Performance and effi-
ciency comparison of VP, NORM-
TUNE and AP over different lay-
ers of ResNet-101 on OxfordPets.

AP could be a better design than VP. Next, we present a pre-
liminary experiment that serves as a warm-up, demonstrating how
AP exhibits the potential to improve accuracy performance, as well
as enhance computation and parameter efficiency when compared
to VP. We examine the commonly used transfer learning scenario
for applying VP, in which the source model ResNet-101 (He et al.,
2016) is initially trained on ImageNet (Deng et al., 2009) and is
subsequently transferred to the CIFAR-10 dataset (Krizhevsky et al.,
2009). Fig. 2 presents a performance comparison between AP and
VP against the layer index on ResNet-101, at which AP is intro-
duced. The preliminary results provide several key insights, which
will be substantiated in more detail later. First, AP holds the poten-
tial to substantially enhance the accuracy of transfer learning when
compared to VP. For instance, when AP is applied at layer 31, it
achieves the highest accuracy in transfer learning, surpassing VP by approximately 5%. In fact,
more comprehensive experiments presented in Sec. 6 demonstrate that applying AP to a deeper layer
consistently produces the most significant accuracy improvements across a wide range of CNNs.
Second, due to the preference for deeper layers when utilizing AP in CNNs, there exists a computa-
tional advantage since back-propagation from the output to the input layer is not required. Third, AP
maintains the parameter efficiency merit compared to VP. For instance, at the layer that exhibits the
best performance, AP utilizes only 100k parameters, whereas VP employs 150k parameters. The
results from the warm-up experiment above indicate that AP has the potential to outperform VP,
offering not only improved accuracy but also greater efficiency.

CNN AP vs BatchNorm

ViT AP (ours)

Batch Size

Tok
en

Num
ber

D
'

CNN BatchNorm

Feat
ure

Map
 Size

C
ha

nn
el

N

um
.

Batch Size

CNN AP (ours)

Feat
ure

Map
 Size

C
ha

nn
el

N

um
.

Batch Size

ViT LayerNorm

Tok
en

Dim
.

To
ke

n
N

um
.

Batch Size

ViT AP (ours)

Tok
en

Dim
.

To
ke

n
N

um
.

Batch Size

CNN AP (ours)

!"
#

!

"
#

Figure 3: Tunable parameter shape compar-
ison between NORM-TUNE and AP (ours).
The same color indicates shared parameters
across different dimensions.

Understanding AP through its connection to normal-
ization tuning. Normalization tuning (NORM-TUNE), as
a PEFT technique, finetunes parameters within model’s
normalization layers, i.e., BatchNorm for CNNs (Ioffe
and Szegedy, 2015) and LayerNorm for ViTs (Ba et al.,
2016). For clarity, we denote the tunable parameters of
a normalization layer by γ = (γ1, · · · , γD′)⊤ for linear
coefficients and β = (β1, · · · , βD′)⊤ for biases, with
D′ representing the number of channels or the token di-
mension. Further, define µ and σ as the channel-wise
mean and standard deviation constants of z(l) for Batch-
Norm over the entire batch. For LayerNorm, they rep-
resent the data-wise mean and standard deviation of z(l)

across the embedding dimension. Given that both AP
and NORM-TUNE utilize a linear model for feature rep-
resentations, i.e., g(z(l), δ(l)) = z(l) + δ(l) for AP and
g(z(l),γ,β) = γ · (z(l) − µ)/

√
σ + β for NORM-TUNE, AP can be interpreted as a variant of

NORM-TUNE. Fig. 3 illustrates the connection; see elaboration below.

• CNNs: When AP’s perturbations are consistent across all feature map units, the unit-scaling
BatchNorm-based NORM-TUNE closely mirrors the formulation of AP, differentiated merely by a
linear mapping plus a bias. This equivalence becomes apparent when relating W (l)δ(l) to β − γ ·
µ/

√
σ, especially when γ/

√
σ = 1, supposing W (l) as the weight for the l-th layer.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• ViTs: Assuming uniform perturbations across tokens and consistent mean value across data
dimensions within a batch, AP reduces to the unit-scaling LayerNorm-based NORM-TUNE. This can
be represented as δ(l) = β − µ, given γ/

√
σ = 1.

Due to more flexible perturbations of AP, such a connection exhibits increased power of AP than
NORM-TUNE. We formally prove and summarize the proposed connection in Proposition 1 in
Appx. C.2. Meanwhile, we remark that another key difference of AP compared to NORM-TUNE
is that no parameters of the model backbone need to be altered during training. This differentiates
“prompting” from other PEFT methods, where the former keeps the pretrained model backbone intact.
In the realm of PEFT, recent research has also shown that LayerNorm-based NORM-TUNE serves as
a robust baseline of model adaptation for ViTs (Basu et al., 2023). Beyond that, we will show that
AP can surpass NORM-TUNE and remain effective for CNNs.

4 A DEEP DIVE INTO AP: LAYER AND ARCHITECTURE EFFECTS

VP 1 3 5 7 9 11 13 15
Layer Index

85.0

87.5

90.0

Te
st

 A
cc

ur
ac

y
(%

)

OxfordPets, ResNet-50
NT
VP
AP
Best AP

VP 3 7 11 15 19 23 27 31
Layer Index

86

88

90

Te
st

 A
cc

ur
ac

y
(%

)

OxfordPets, ResNet-101

VP1 2 3 4 5 6 7 8 9 101112
Layer Index

91

92

Te
st

 A
cc

ur
ac

y
(%

)

OxfordPets, ViT-Base/12

VP 3 7 11 15 19 23
Layer Index

91

92

93

Te
st

 A
cc

ur
ac

y
(%

)

OxfordPets, ViT-Large/16

Figure 4: Layer preference of AP with different model architectures on OxfordPets (Parkhi et al., 2012). CNNs
and ViTs exhibit opposite layer preferences. Results on more datasets are provided in Fig. A1.

Our preliminary findings in Fig. 2 suggest that the effectiveness of AP may be contingent on the
specific layer where it is installed. To acquire a deeper understanding of this characteristic and its
association with model architecture, we examine both ResNet and ViT model types.

Fig. 4 follows and expands Fig. 2 by covering the additional models, i.e., ResNet-50, ViT-Base/12,
and ViT-Large/16, and showcasing the transfer learning accuracy enabled by AP on the downstream
dataset OxfordPets as a function of the layer index to which AP is applied. As we can see, a key
observation is that ResNets and ViTs exhibit contrasting layer preferences for AP, where ★ indicates
the best performance of AP in Fig. 4 under each architecture. Specifically, CNNs exhibit a preference
for AP in their deeper layers, while ViTs tend to favor AP in their shallower layers. Moreover, within
the comfort layer zone, the performance of AP consistently outperforms NORM-TUNE.

1 6 11 16 21 26 31
ResNet-101 Layer Index

1

6

11

16

21

V
iT

-L
ar

ge
 L

ay
er

 In
de

x

0.3

0.6

0.9

Si
m

ila
rit

y
Sc

or
e

1 3 5 7 9 11 13 15 17 19
Layer Index

0.2

0.3

0.4

Av
g.

 A
ttn

. D
is

ta
nc

e

AP Comfort Zone

(A) (B)
Figure 5: Features dissection to understand the layer effect of AP
on OxfordPets dataset. (A) CKA-based feature similarity comparison
between ViT-Large/16 and ResNet-101. (B) The average attention distance
across all the heads of different layers of ViT-Large/16. A larger distance
signifies a more globally-focused attention, indicative of global features.

Dissecting CNNs and ViTs:
AP prioritizes ‘global’ fea-
tures over ‘local’ features. To
unpack the intriguing AP’s layer
preference behavior above, we
next examine the features cap-
tured by different layers of
CNNs and ViTs. To this
end, we first employ the Cen-
tered Kernel Alignment (CKA)-
based feature similarity analy-
sis (Cortes et al., 2012) to mea-
sure the layer-wise representa-
tion similarity between CNNs
and ViTs, e.g., ResNet-101 and
ViT-Large/16 in Fig. 5. As we
can see, the deep features of ResNet-101 predominantly align with the middle layers of ViT-Large/16.
This concurs with the observations made in (Raghu et al., 2021), which suggest that ViTs have the
capability to capture features reminiscent of the deeper layers of CNNs even within their relatively
early layers. In addition, as indicated by network dissection analysis for CNNs (Bau et al., 2017),
it is known that CNNs tend to prioritize low-level visual concepts, i.e., local features like color
and texture, in their shallower layers. In contrast, they transition to high-level, class-discriminative
concepts, encompassing global features like scenes and objects in deeper layers.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Drawing upon the analyses presented above and insights in Fig. 4, we hypothesize that AP exhibits a
preference for deep layers in CNNs and shallow layers in ViTs, which can be attributed to the models’
inclinations toward global features over local features. To bolster our hypothesis, we investigate how
global information is distributed across the layers of ViTs. We employ a methodology used in (Raghu
et al., 2021) and (Walmer et al., 2023) to compute the average attention distance between the position
of query tokens and the locations they attend to with the query within each self-attention head in ViTs.
This analysis unveils how each self-attention layer contributes to the balance between local and global
information in the overall representation. In Fig. 5 (B), we present the average attention distance
across 16 attention heads for with different layer indices of a pretrained ViT-Large/16. A general
trend can be observed: the distribution of the sorted attention distance moves firstly downwards (layer
index from 1 to layer 12). This implies that the ratio of the global features captured by attention in
general decreases. When the layer index is larger than 15, the global feature ratio slightly increases.
This trend roughly aligns well with the patterns observed in Fig. 4. These observations underscore
our claim that AP’s layer preference is influenced by the presence of global features. We provide
theoretical support in the following section to support the layer and architecture effect. In particular,
we focus on the more challenging part of ViTs, since the study on CNNs is abundant. Furthermore,
we provide theoretical support in the following section to support the layer and architecture effect.

Remark on the comparison of AP vs. VPT. While VPT (Jia et al., 2022) also suggests adding
extra tokens (prompts) to all intermediate layers of a ViT, our approach differs fundamentally. AP
was motivated to introduce a broader framework for VP, where prompts are applied to intermediate
activations at any single layer, rather than across multiple or all layers as in VPT. This allows us to
rigorously explore optimal layer selection for effective prompting, where (input-level) VP is covered
as a special case. Unlike VPT, AP uncovers new insights into layer-specific effects, architectural
dependencies, and their explanations, supported by both empirical and theoretical analyses (as will
be evident later). Furthermore, our findings show that strategic layer selection in AP can match or
surpass the effectiveness of VPT’s multi-layer prompting (See Tab. 4 in Sec. 6).

5 THEORETICAL ANALYSES FOR LAYER AND ARCHITECTURE EFFECTS

From a perspective of generalization, we focus on studying the layer and architecture effect for
ViTs: To achieve the desired generalization performance (or test accuracy), will shallow-layer AP
tuning require less sample complexity than deep-layer ones for ViTs? If so, with the same sample
complexity, shallow-layer AP could achieve better performance than deep-layer ones. To show this,
we present the theoretical setups that satisfy the conditions of global features for ViTs, followed by
the generalization analysis with sample complexity bound in Theorem 1.

Problem setup. Building on the theoretical frameworks for analyzing the training and generalization
of Transformers (Li et al., 2023b; Oymak et al., 2023; Tarzanagh et al., 2023), we derive theoretical
insights by considering a binary classification problem. We use a single-head, two-layer ViT (Huang
et al., 2023c; Tian et al., 2023; Nichani et al., 2024; Li et al., 2023b) as the pretrained model,
applied to the dataset {xn, yn}Nn=1. Here yn ∈ {+1,−1}, and each data xn ∈ Rd×P consists of P
tokens. The training is implemented by a mini-batch stochastic gradient descent (SGD) with the loss
ℓ(fθ(xn, δ); yn), where fθ and δ are the pretrained model and the trainable AP, respectively. The
generalization performance is evaluated by the population risk E[ℓ(fθ(x, δ); y)].

Data assumption. Each token of xn is formulated as a pattern added with a Gaussian noise following
N (0, σ2), σ ≤ O(1/P). We consider four patterns {v1,v2,v3,v4} in total. In each xn, only one
token corresponds to either v1 or v2, named discriminative patterns that decide the label. Other P − 1
tokens correspond to either v3 or v4, named non-discriminative patterns that are irrelevant ones for
the downstream task. For instance, if one token within xn is the noisy version of v1 (v2), then its
corresponding downstream task label yn = 1 (yn = −1).

Pretrained model assumption. We have mild assumptions on the MLP neuron weights and self-
attention matrices of the pretrained model, which have been used in existing works or verified in
numerical experiments. Specifically, recent SOTA theoretical findings (Shi et al., 2022; Li et al.,
2023b; Wen and Li, 2021) reveal, during the pretraining stage, the weights of each neuron in the
MLP tend to converge towards one of the patterns present in the raw data, e.g, v1,v3. Following
the observation above, we assume neuron weights in the ℓ-th MLP after pretraining to be one of the
patterns in {v1,v2,v3,v4}. Typically, v1 and v2 are patterns observed in the downstream task that

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

have relevance to the labels, while v3 and v4 are patterns also present in the downstream task but do
not bear a relation to the labels. In addition, as suggested by the global features introduced in Section
4 that make tokens attend to other tokens, we assume the key and value matrices to be scalings of
permutation matrices. The details about the data and model assumptions can be found in Appx. C.3.

Given a set of queries q1, · · · , qP and keys k1, · · · ,kP for an attention head, we formally define
the average attention distance mentioned in Fig. 5 as

∑P
i=1 |i− argmaxj∈[P] ⟨kj , qi⟩ |/P , i.e., the

average distance between the query qi and the key kj that has the largest inner product with qi,
i, j ∈ [P]. Assuming the discriminative key and value are away from the discriminative query with a
distance of dA ≥ 1, we have the following Lemma on decreasing the average attention distance.

Lemma 1 The average attention distance defined above decreases from (1 + dA)/P to 1/P after
the 1st layer of the simplified two-layer ViT.

Lemma 1 supports our empirical observation in Fig. 5 (B) of decreasing attention distance values
within deep layers in ViT. In addition, the reduction in the attention distance leads to an increased
sample complexity, as summarized in the following theorem.

Theorem 1 Training a two-layer ViT with SGD returns a model with zero generalization error,
as long as the batch size B ≥ Ω(1), and the required number of samples N satisfy either (i)
N ≥ N1 = Θ(P) if adding AP to the 1st layer; (ii) N ≥ N2 = Θ(P 2 logP) if adding AP to the
2nd layer. N2 is order-wise larger than N1.

5 10 15 20 35 50
Data Number per Class

84

86

88

90

92

Te
st

 A
cc

ur
ac

y
(%

)

Layer 1
Layer 5
Layer 10
Layer 15
Layer 20

Figure 6: Sample complexity
study of AP in different layers on
OxfordPets with ViT-Large/16.

Theorem 1 shows deep-layer AP requires more training samples
than the shallow one to achieve the same generalization, as shown
by the dashed line in Fig. 6. Accordingly, with the same number of
training samples and setup, shallow-layer AP generalizes better. The
proof of Theorem 1 can be found in Sec. C.4. The basic proof idea
is that for AP in the shallow layer, a trained prompt with a norm of
Θ(P) that removes non-discriminative patterns is enough to make all
tokens attend to discriminative tokens. Thus, the amount of global
features does not decrease. This can ensure zero generalization by
abundant global features. For AP in deep layers, however, given
Lemma. 1, a lack of global features leads to an evident mismatch
between discriminative tokens in the 2nd-layer self-attention. Hence,
a trained prompt with a norm of Θ(P 2 logP) is necessary to direct
the attention to focus on discriminative tokens. The proof concludes with the demonstration that the
sample complexity bound is proportional to the the trained prompts magnitude.

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

Datasets and models. We utilize two commonly used architectures for the source datasets: ResNet-
101 from the ResNet family (He et al., 2016) and ViT-Large/16 from the ViT family (Dosovitskiy
et al., 2020). Both are pretrained on ImageNet-1K (Russakovsky et al., 2015). In the target domain,
we consider over 20 datasets from transfer learning benchmarks FGVC (Maji et al., 2013) and VTAB
(Zhai et al., 2019). In VTAB, we consider both full-data and few-shot (VTAB-1k) regimes. In
addition, we also consider other commonly used datasets (Chen et al., 2023a) for transfer learning
like CIFAR-10 (Krizhevsky et al., 2009), UCF101 (Soomro et al., 2012), GTSRB (Houben et al.,
2013), Food101 (Bossard et al., 2014), and Waterbirds (Sagawa et al., 2019). More details on the
datasets and the benchmarks can be found in Appx. A.

We cover three types of baselines in transfer learning. First, we primarily compare AP to finetuning
methods designed for both CNNs and ViTs in transfer learning. These include LINEAR-PROBE that
only finetunes the classification head with a fixed feature extractor, the conventional (input-level) VP
(Bahng et al., 2022b) and NORM-TUNE (Basu et al., 2023) that tunes all the normalization layers in a
model. Second, we select FULL-FINETUNE as our reference method due to its superior accuracy,
which fine-tunes the entire pretrained model, albeit being the most computationally expensive
option. Third, we consider other 9 SOTA PEFT baselines used in ViTs: VPT (Jia et al., 2022),
GATEVPT (Yoo et al., 2023), E2VPT (Han et al., 2023), LORA (Hu et al., 2021), ADAPTER (Chen

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison of various methods on 19 datasets from different benchmarks. Three
parameter-efficient baselines (denoted by ◦) are compared to AP due to their high relevance, where the best
performance is highlighted in bold. The most computationally intensive FULL-FINETUNE (denoted by •) serves
as the performance reference. Each accuracy value is averaged over 5 independent trials, with the variance
omitted due to its negligible values (≤ 0.3%). The “Average” column represents the averaged accuracy of each
method over all the datasets in each row.

Benchmark FGVC VTAB Others

A
rc

hi
te

ct
ur

e

C
U

B
20

0

St
an

fo
rd

D
og

St
an

fo
rd

C
ar

s

N
A

-B
ir

ds

O
xf

or
dF

lo
w

er
s

C
IF

A
R

-1
00

C
al

te
ch

-1
01

D
T

D

Fl
ow

er
s1

02

O
xf

or
dP

et
s

SV
H

N

SU
N

39
7

C
am

el
yo

n

E
ur

oS
A

T

C
IF

A
R

-1
0

G
T

SR
B

U
C

F1
01

Fo
od

10
1

W
at

er
bi

rd
s

A
ve

ra
ge

R
es

N
et

-1
01

• FULL-FINETUNE 88.91 90.13 87.76 84.45 99.98 92.24 99.13 79.97 99.81 90.49 97.14 79.19 91.13 99.13 97.24 97.68 88.32 82.72 96.69 91.69

◦ LINEAR-PROBE 63.76 86.63 49.62 52.09 82.01 73.87 90.58 61.35 93.14 91.17 66.30 54.51 83.36 95.84 92.25 79.64 71.03 64.31 88.11 75.76
◦ NORM-TUNE 66.39 87.59 67.64 56.72 66.50 82.58 91.32 63.53 92.85 89.81 95.26 54.56 84.42 96.14 93.90 96.43 69.44 72.54 88.95 79.81
◦ VP 65.72 86.91 51.04 54.23 78.50 72.01 93.51 63.12 90.17 87.93 80.68 54.97 83.71 95.44 92.55 83.18 66.30 57.89 86.71 76.03
◦ AP (ours) 69.42 87.79 59.06 58.31 85.14 76.94 94.85 69.80 95.13 91.31 87.30 56.83 84.91 97.21 94.08 90.43 73.96 68.12 88.13 80.45

V
iT

-L
ar

ge
/1

6 • FULL-FINETUNE 89.79 93.31 89.42 84.75 99.91 93.19 99.25 75.30 99.39 93.35 98.13 79.31 91.93 97.92 98.30 97.90 89.25 86.16 97.93 92.34

◦ LINEAR-PROBE 84.69 86.11 65.24 75.71 99.40 88.55 97.01 73.31 99.24 91.15 65.79 72.37 84.05 97.26 98.13 80.72 83.02 83.02 94.16 85.20
◦ NORM-TUNE 85.90 89.76 75.61 78.78 99.35 90.69 98.01 78.90 99.76 92.88 88.30 73.57 79.82 97.17 98.44 90.86 85.15 83.21 94.36 88.45
◦ VP 85.24 87.02 67.64 76.20 99.32 89.44 97.81 77.72 99.72 91.31 85.70 74.33 84.27 97.85 98.80 89.09 84.67 82.23 95.03 87.54
◦ AP (ours) 86.74 90.83 69.41 79.83 99.70 90.96 98.99 78.96 99.84 93.89 88.87 75.44 86.99 98.33 98.54 91.49 86.80 84.04 94.60 89.17

et al., 2022a), BIAS (Zaken et al., 2021), NORM-TUNE (Basu et al., 2023), ATTNSCALE (Basu et al.,
2023), ADAPTERFORMER (Chen et al., 2022a), and SSF (Lian et al., 2022).

Implementation, training, and evaluations. We implement AP at the input of the third-to-last
ResNet block in ResNet-101 and the third Transformer block in ViT-Large/16, based on the layer
effect in Fig. 4. During training, all the methods are trained for 100 epochs using the Cross-Entropy
loss with an Adam optimizer (Kingma and Ba, 2015). Hyperparameters, including learning rates,
are determined through a search process for each method; see implementation details in Appx. A.
During evaluation, we compare different methods in terms of their performance (testing accuracy)
and efficiency. In particular, we depict the efficiency portrait of a method from the following 4
different perspectives: (1) tunable parameter number, (2) memory cost, (3) train time per epoch, and
(4) throughput for inference efficiency, as will be shown in Tab. 2.

6.2 EXPERIMENT RESULTS

AP is not only effective but also efficient. We examine the performance of the proposed AP in
the full-data regime below. Two key observations can be drawn from experiment results: (1) AP
consistently outperforms baselines across the majority of datasets, in particular with a significant
improvement over VP (Tab. 1); (2) AP demonstrates remarkable efficiency across various efficiency
metrics, establishing itself as a cost-effective method (Tab. 2).

Table 2: An overview of the methods considered in this
work. The efficiency analysis is based on the model-data
setting (ViT-Large, CIFAR-10) with a batch size of 128,
and time consumption is evaluated using a single RTX-
A6000 GPU. For each metric, we use ↑ or ↓ to indicate
whether a larger smaller value is favored for each metric.

Method
Param. Efficiency Train-Time Efficiency

Parameter
(M) ↓

Memory Cost
(G) ↓

Time Cost
(s/epoch) ↓

Troughput
(image/s) ↑

ResNet-101
FULL-FINETUNE 44.5 10.32 118 41.47
LINEAR-PROBE 0.02 6.2 39 41.33

NORM-TUNE 0.13 11.7 83 41.45
VP 0.12 12.2 72 40.59
AP 0.12 6.3 41 41.36

ViT-Large/16
FULL-FINETUNE 304.33 41.5 520 79.58
LINEAR-PROBE 0.01 9.7 121 79.64

NORM-TUNE 0.06 29.5 285 79.51
VP 0.11 35.9 280 77.14
AP 0.16 31.6 262 79.48

Tab. 1 shows the performance of AP vs. the
baselines: VP, NORM-TUNE, LINEAR-PROBE,
and FULL-FINETUNE. As we can see, AP con-
sistently outperforms VP in all the 19 datasets.
Notably, AP yields an increase in the average
accuracy of over 4% and 1.5% compared to VP
for both ResNet-101 and ViT-Large/16. In some
datasets, such as StanfordCars, SVHN and GT-
SRB using ResNet-101, this advantage can in-
crease to 7%∼9%. AP also remains effective
compared to NORM-TUNE, which has proven
to be a strong PEFT method for ViT families
in Basu et al. (2023). AP performs the best
in 13 and 15 out of 19 datasets for ResNet-101
and ViT-Large/16, respectively. Although FULL-
FINETUNE remains the best-performing in most
datasets, AP still manages to approach and surpass it; see OxfordPets for ResNet-101 and DTD for
ViT-Large/16. Importantly, AP is much more efficient than FULL-FINETUNE, as illustrated below.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance comparison of various methods in the few-shot setting on the VTAB-1K benchmark.
Other settings follow Tab. 1.

Benchmark VTAB-Natural VTAB-Specialized VTAB-Structured
A

rc
hi

te
ct

ur
e

C
al

te
ch

10
1

C
IF

A
R

-1
00

D
T

D

Fl
ow

er
s1

02

O
xf

or
dP

et
s

Su
n3

97

SV
H

N

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

dS
pr

-L
oc

dS
pr

-O
ri

K
IT

T
I-

D
is

t

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

v

A
ve

ra
ge

R
es

N
et

-1
01

• FULL-FINETUNE 89.99 45.17 63.78 84.29 89.82 41.09 67.79 84.92 74.57 91.37 74.14 58.11 60.99 43.61 67.05 40.45 78.34 33.64 36.38 64.50

◦ LINEAR-PROBE 83.87 39.13 53.09 70.89 85.15 28.14 43.44 78.65 69.43 90.78 69.31 35.91 36.48 35.75 34.76 19.51 65.68 16.91 23.39 51.12
◦ NORM-TUNE 85.61 35.78 47.71 56.64 78.10 10.10 68.67 83.16 61.10 90.50 72.44 37.54 55.24 40.04 60.89 20.33 65.54 24.86 25.96 53.70
◦ VP 84.73 43.01 57.55 76.91 87.03 28.75 55.47 75.15 70.27 89.26 69.08 36.70 54.24 34.48 42.41 20.32 63.71 17.93 26.93 54.42
◦ AP 87.49 39.80 63.62 81.44 88.74 34.83 65.92 78.91 74.19 91.44 71.18 40.20 55.26 38.95 54.68 21.98 72.86 26.24 28.77 58.76

V
iT

-L
ar

ge
/1

6 • FULL-FINETUNE 93.34 76.03 75.74 99.88 93.72 59.06 68.70 86.70 82.84 93.54 82.22 55.42 60.33 48.23 83.62 52.77 78.06 30.40 29.95 71.08

◦ LINEAR-PROBE 89.37 62.98 70.02 93.42 91.22 53.68 45.28 80.52 80.34 91.64 70.43 38.15 35.26 40.74 21.84 29.42 62.54 14.59 23.09 57.60
◦ NORM-TUNE 91.10 65.20 72.36 98.64 91.38 55.14 47.21 82.50 82.34 93.94 71.74 42.83 44.59 41.21 35.64 32.08 63.43 16.52 24.12 60.68
◦ VP 90.06 63.16 71.59 95.35 91.20 54.45 46.26 81.82 81.45 92.25 71.03 41.03 45.49 39.94 32.52 30.29 62.68 15.59 23.13 59.96
◦ AP 91.40 64.40 72.61 99.50 91.46 56.67 49.43 81.41 82.76 93.14 71.99 43.26 38.09 40.57 42.44 31.83 65.40 18.29 25.96 61.06

Tab. 2 demonstrates the efficiency profile of different methods under different metrics. Two key
insights can be drawn from the results. First, in comparison to VP, AP demonstrates superior
efficiency in terms of memory (reduced memory overhead), time (decreased training duration),
and inference (increased throughput) for both ResNet-101 and ViT-Large/16. This superiority is
maintained while operating at a comparable parameter efficiency, marked by a negligible tunable ratio
difference of less than 0.05%. This trend is amplified for ResNet-101, as evidenced by the significant
reductions in memory usage (6.3 G for AP vs. 12.2 G for VP) and training duration (41 s/epoch for
AP vs. 72 s/epoch for VP). This efficiency arises from the AP’s preference towards deeper layers
over shallower ones in ResNet-101, resulting in reduced back-propagation overhead for most of the
network. Second, when compared to NORM-TUNE, although AP consumes slightly higher memory
cost for ViT-Large/16, it achieves higher training efficiency for ResNet-101 and ViT-Large/16. This
is due to that, while NORM-TUNE possesses a small tunable parameter ratio, these parameters are
dispersed throughout the network, leading to a more expensive back-propagation process. Although
no significant difference is observed in throughput, we will show later in Tab. 4 that AP enjoys high
throughput efficiency compared to other PEFT methods.

How does the downstream dataset scale affect AP? To study the effect brought by the downstream
data scales, we follow the setting of Jia et al. (2022) and examine the performance of different
methods under the few-shot setting on VTAB-1K. In particular, for each of the 19 datasets in the
VTAB benchmark, only 1000 data samples are available for training. Tab. 3 shows that AP makes a
distinguishable improvement over the baselines VP and NORM-TUNE in the few-shot setting. As we
can see, AP achieves a performance boost of over 1% than VP using ViT-Large/16 and this advantage
increases to 4.3% in the case of ResNet-101. This demonstrates that directly steering the intermediate
features can be more effective when facing data scarcity.

Table 4: Performance of AP and more SOTA PEFT
methods on ViT-Large/16. Settings follow Tab. 1.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.23 78.90 87.81 0.01 9.7 121 79.64

BIAS 85.32 89.84 90.41 0.29 32.9 297 79.43
LORA 86.87 89.81 91.45 1.00 33.1 363 79.43
VPT 86.34 89.24 90.14 0.25 33.7 334 76.35
GATEVPT 86.31 89.14 91.11 3.14 34.9 395 61.34
E2VPT 89.93 90.12 91.45 1.21 33.4 369 52.32
ADAPTER 87.06 89.44 91.21 2.17 32.4 357 63.39
ADAPTERFORMER 89.18 90.69 92.08 0.65 32.3 289 23.69
SSF 87.32 89.43 92.21 0.48 34.7 299 79.49
AP(Ours) 85.30 90.25 91.09 0.16 31.6 262 79.43

Comparing AP with VPT and more PEFT
baselines. As VP is introduced as a generaliza-
tion of the conventional (input-level) AP, we do
not anticipate it to outperform all model-based
PEFT methods. Yet, to demonstrate its potential,
Tab. 4 compares the performance of AP with
that of PEFT baselines, in particular with VPT
(Jia et al., 2022). As we can see, even when
compared to the stateful PEFT methods, AP
still yields competitive performance in terms of
both accuracy and efficiency. For example, AP
ranks roughly 2∼4 in terms of accuracy among
the 8 PEFT methods considered in this work. In
addition, AP ranks the first from the efficiency perspective. In contrast, the best accuracy performance
of ADAPTERFORMER comes at a cost of three times lower throughput efficiency. This is due to that
extra modules introduce significantly more computations during the inference.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Performance comparison of VP and the proposed AP on
CLIP and Swin-Transformer model with different datasets. CLIP
with ViT-B/32 and Swin-B with 12 Swin-Transformer blocks pre-
trained on ImageNet are tested. Other settings follows Tab. 1.

Dataset OxfordPets DTD EuroSAT Flowers102 UCF101 Food101 Waterbirds

CLIP

VP 81.97 64.43 95.54 83.74 70.42 79.61 72.42
AP (Ours) 83.82 69.42 96.43 85.52 76.42 82.43 79.32

Swin-Transformer

VP 80.42 65.39 97.23 84.48 74.41 75.72 75.22
AP (Ours) 82.29 69.13 96.45 84.98 75.92 81.38 78.99

Applying AP to various model ar-
chitectures. To ensure that our con-
clusions generalize well, we shift our
focus from the vision source model
to the vision-language model, spe-
cific to CLIP (Radford et al., 2021),
and the multi-scale transformer struc-
ture, i.e., Swin-Transformer (Liu et al.,
2021), which have both received in-
creasing attention in the area of VP
(Bahng et al., 2022a). Our experi-
ments demonstrate that the proposed idea of AP works well even on steering a pretrained CLIP model
and Swin-Transformer without changing its parameters. In Fig. 7 and Tab. 5, we demonstrate that our
main conclusions about AP still holds for these two architectures well on various datasets. Specifi-
cally, in Fig. 7, we show that the layer effect of AP still exists. As both CLIP and Swin-Transformer
uses a ViT as its backbone, the observed layer effect mimics that of a ViT-Large/16 as observed
before. Specifically, AP prefers to be installed on shallow layers to deep ones in order to obtain the
best performance. In Tab. 5, we demonstrate that in various datasets, AP can significantly outperform
VP by 1% ∼ 6%. These experiments demonstrate the applicability of AP on various model types.

VP1 2 3 4 5 6 7 8 9 101112
Layer Index

82

83

84

Te
st

 A
cc

ur
ac

y
(%

) VP
AP
Best AP

VP1 2 3 4 5 6 7 8 9 101112
Layer Index

81

82

Te
st

 A
cc

ur
ac

y
(%

)

(a) CLIP (b) Swin-Transformer
Figure 7: The layer effect of AP applied to a (a) CLIP model and
(b) Swin-Transformer on the OxfordPets dataset.

Ablation studies and additional ex-
periments. We provide abundant ad-
ditional experiment results in Appx. B
in order to provide discussions on
the design of AP and also a compre-
hensive performance comparison with
other methods. In particular, we jus-
tified the layer effects more (dataset,
model architecture) combinations in
Fig. A1 similar to Fig. 4. Besides, we
also studied various variants of AP,
including AP with different prompt
types in Tab. A3, and AP installed in
multiple layers in Tab. A4. A detailed comparison between AP and other PEFT methods in various
experimental settings is also provided, including VPT (Jia et al., 2022) (Tab. A2, Tab. A6, and Fig. A2),
LoRA (Hu et al., 2021) (Tab. A8), and SST (Lian et al., 2022) (Tab. A7).

Limitations and discussions. We acknowledge a potential limitation of AP lies in its implicit reliance
on the size of the pretrained model as a factor for achieving superior accuracy. For compact models
like ResNet-18 and ViT-Tiny, while AP enhances the performance of VP, it does not outperform
NORM-TUNE. This observation suggests that AP may primarily utilize downstream data to guide or
“direct” the existing learned knowledge obtained during pretraining, rather than actively acquiring new
knowledge. However, we believe that this limitation does not prevent AP from future applications to
larger foundational vision models. We also note that, unlike VP, AP cannot be applied in black-box
settings where parameters are inaccessible. However, the primary motivation of this work is to
explore the conditions under which VP is effective or ineffective, using AP as an analytical tool to
study layer selection preferences for prompting. By doing so, AP broadens the scope of VP, providing
deeper insights into its underlying mechanisms under different model settings.

7 CONCLUSION

In this paper, we delve into AP (activation prompt) as a means to enhance the conventional input-level
VP. We unveil that extending VP to AP yields improved empirical performance and establishes a
connection with normalization tuning. Additionally, we investigate the layer preference of AP on
CNNs and ViTs both empirically and theoretically. Our experiments demonstrate the superiority of
AP over VP, highlighting its efficiency advantages, and showcasing comparable performance to the
staet-of-the-art PEFT methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April 2023), 2023.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International Conference on
Machine Learning, pages 12888–12900. PMLR, 2022.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023a.

Elias Frantar and Dan Alistarh. Massive language models can be accurately pruned in one-shot.
arXiv preprint arXiv:2301.00774, 2023.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. arXiv preprint arXiv:2203.12119, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems, 35:16664–16678, 2022a.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce memory, not parameters for
efficient on-device learning. Advances in Neural Information Processing Systems, 33:11285–11297,
2020.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. Advances in Neural Information Processing Systems, 35:12991–13005,
2022.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers. arXiv
preprint arXiv:2007.07779, 2020.

Aochuan Chen, Yuguang Yao, Pin-Yu Chen, Yihua Zhang, and Sijia Liu. Understanding and
improving visual prompting: A label-mapping perspective. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 19133–19143, 2023a.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Chengming Xu, Siqian Yang, Yabiao Wang, Zhanxiong Wang, Yanwei Fu, and Xiangyang Xue.
Exploring efficient few-shot adaptation for vision transformers. arXiv preprint arXiv:2301.02419,
2023.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9):1–35, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Junyang Wu, Xianhang Li, Chen Wei, Huiyu Wang, Alan Yuille, Yuyin Zhou, and Cihang Xie.
Unleashing the power of visual prompting at the pixel level. arXiv preprint arXiv:2212.10556,
2022.

Yun-Yun Tsai, Pin-Yu Chen, and Tsung-Yi Ho. Transfer learning without knowing: Reprogramming
black-box machine learning models with scarce data and limited resources. arXiv preprint
arXiv:2007.08714, 2020.

Changdae Oh, Hyeji Hwang, Hee-young Lee, YongTaek Lim, Geunyoung Jung, Jiyoung Jung, Hosik
Choi, and Kyungwoo Song. Blackvip: Black-box visual prompting for robust transfer learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
24224–24235, 2023.

Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts
for adapting large-scale models. arXiv preprint arXiv:2203.17274, 1(3):4, 2022a.

Gamaleldin F Elsayed, Ian Goodfellow, and Jascha Sohl-Dickstein. Adversarial reprogramming of
neural networks. arXiv preprint arXiv:1806.11146, 2018.

Pin-Yu Chen. Model reprogramming: Resource-efficient cross-domain machine learning. arXiv
preprint arXiv:2202.10629, 2022.

Paarth Neekhara, Shehzeen Hussain, Shlomo Dubnov, and Farinaz Koushanfar. Adversarial repro-
gramming of text classification neural networks. arXiv preprint arXiv:1809.01829, 2018.

Paarth Neekhara, Shehzeen Hussain, Jinglong Du, Shlomo Dubnov, Farinaz Koushanfar, and Julian
McAuley. Cross-modal adversarial reprogramming. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 2427–2435, 2022.

Lingwei Chen, Yujie Fan, and Yanfang Ye. Adversarial reprogramming of pretrained neural networks
for fraud detection. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, pages 2935–2939, 2021.

Guanhua Zhang, Yihua Zhang, Yang Zhang, Wenqi Fan, Qing Li, Sijia Liu, and Shiyu Chang.
Fairness reprogramming. Advances in Neural Information Processing Systems, 35:34347–34362,
2022a.

Aochuan Chen, Peter Lorenz, Yuguang Yao, Pin-Yu Chen, and Sijia Liu. Visual prompting for
adversarial robustness. arXiv preprint arXiv:2210.06284, 2022b.

Ziqing Yang, Zeyang Sha, Michael Backes, and Yang Zhang. From visual prompt learning to
zero-shot transfer: Mapping is all you need. arXiv preprint arXiv:2303.05266, 2023.

Aochuan Chen, Peter Lorenz, Yuguang Yao, Pin-Yu Chen, and Sijia Liu. Visual prompting for
adversarial robustness. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1–5. IEEE, 2023b.

Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-shot
adversarial robustness for large-scale models. arXiv preprint arXiv:2212.07016, 2022.

Qidong Huang, Xiaoyi Dong, Dongdong Chen, Weiming Zhang, Feifei Wang, Gang Hua, and
Nenghai Yu. Diversity-aware meta visual prompting. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10878–10887, 2023a.

Yun-Yun Tsai, Chengzhi Mao, Yow-Kuan Lin, and Junfeng Yang. Self-supervised convolutional
visual prompts. arXiv preprint arXiv:2303.00198, 2023.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Colin Wei, Sang Michael Xie, and Tengyu Ma. Why do pretrained language models help in
downstream tasks? an analysis of head and prompt tuning. Advances in Neural Information
Processing Systems, 34:16158–16170, 2021.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023b.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2022.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Delta tuning: A comprehensive study of parameter
efficient methods for pre-trained language models. arXiv preprint arXiv:2203.06904, 2022.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pages 35151–35174. PMLR, 2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,
2021.

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role
of attention in prompt-tuning. arXiv preprint arXiv:2306.03435, 2023.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023a.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, 2023a.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. arXiv preprint
arXiv:2310.05249, 2023b.

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. Training nonlinear
transformers for efficient in-context learning: A theoretical learning and generalization analysis.
arXiv preprint arXiv:2402.15607, 2024a.

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. How do nonlinear trans-
formers acquire generalization-guaranteed cot ability? In High-dimensional Learning Dynamics
2024: The Emergence of Structure and Reasoning, 2024b.

Samyadeep Basu, Daniela Massiceti, Shell Xu Hu, and Soheil Feizi. Strong baselines for parameter
efficient few-shot fine-tuning. arXiv preprint arXiv:2304.01917, 2023.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022–1035,
2021.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features: A
new baseline for efficient model tuning. Advances in Neural Information Processing Systems, 35:
109–123, 2022.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural prompt search. arXiv preprint
arXiv:2206.04673, 2022b.

Gen Luo, Minglang Huang, Yiyi Zhou, Xiaoshuai Sun, Guannan Jiang, Zhiyu Wang, and Ron-
grong Ji. Towards efficient visual adaption via structural re-parameterization. arXiv preprint
arXiv:2302.08106, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning for lightweight adaptation on vision transformer.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 1060–1068,
2023.

Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts
for adapting large-scale models. arXiv preprint arXiv:2203.17274, 2022b.

Wei Yu, Kuiyuan Yang, Hongxun Yao, Xiaoshuai Sun, and Pengfei Xu. Exploiting the complementary
strengths of multi-layer cnn features for image retrieval. Neurocomputing, 237:235–241, 2017.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 6541–6549, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
cs.utoronto.ca, 2009.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pages 448–456.
pmlr, 2015.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pages 3498–3505. IEEE, 2012.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based on
centered alignment. The Journal of Machine Learning Research, 13(1):795–828, 2012.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
Do vision transformers see like convolutional neural networks? Advances in Neural Information
Processing Systems, 34:12116–12128, 2021.

Matthew Walmer, Saksham Suri, Kamal Gupta, and Abhinav Shrivastava. Teaching matters: Investi-
gating the role of supervision in vision transformers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7486–7496, 2023.

Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow vision
transformers: Learning, generalization, and sample complexity. arXiv preprint arXiv:2302.06015,
2023b.

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token
selection in attention mechanism. CoRR, 2023.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. arXiv preprint
arXiv:2310.05249, 2023c.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Understanding
training dynamics and token composition in 1-layer transformer. Advances in Neural Information
Processing Systems, 36:71911–71947, 2023.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
networks: Emergence from inputs and advantage over fixed features. In International Conference
on Learning Representations, 2022.

Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning, pages 11112–11122.
PMLR, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification of
aircraft. arXiv preprint arXiv:1306.5151, 2013.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detection of
traffic signs in real-world images: The German Traffic Sign Detection Benchmark. In International
Joint Conference on Neural Networks, 2013.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In European conference on computer vision, pages 446–461. Springer,
2014.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
arXiv preprint arXiv:1911.08731, 2019.

Seungryong Yoo, Eunji Kim, Dahuin Jung, Jungbeom Lee, and Sungroh Yoon. Improving visual
prompt tuning for self-supervised vision transformers. In International Conference on Machine
Learning, pages 40075–40092. PMLR, 2023.

Cheng Han, Qifan Wang, Yiming Cui, Zhiwen Cao, Wenguan Wang, Siyuan Qi, and Dongfang
Liu. Eˆ 2vpt: An effective and efficient approach for visual prompt tuning. arXiv preprint
arXiv:2307.13770, 2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2015 ICLR, arXiv
preprint arXiv:1412.6980, 2015. URL http://arxiv.org/abs/1412.6980.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

15

http://arxiv.org/abs/1412.6980

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pages 722–729. IEEE, 2008.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
ing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3606–3613, 2014.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In 4th International IEEE Workshop on 3D Representation and Recognition
(3dRR-13), Sydney, Australia, 2013.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pages 3485–3492. IEEE, 2010.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology,
2011.

Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In CVPR, pages 595–604, 2015.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. Novel dataset for
fine-grained image categorization. In First Workshop on Fine-Grained Visual Categorization, IEEE
Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, June 2011.

Fei-Fei Li, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE TPAMI,
2006.

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equiv-
ariant cnns for digital pathology. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, 2018.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
and state of the art. Proceedings of the IEEE, 2017.

Kaggle and EyePacs. Kaggle diabetic retinopathy detection, July 2015.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In CVPR, 2017.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti
dataset. International Journal of Robotics Research, 2013.

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement
testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic object recognition with
invariance to pose and lighting. In CVPR, 2004.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Shuai Zhang, Meng Wang, Pin-Yu Chen, Sijia Liu, Songtao Lu, and Miao Liu. Joint edge-model
sparse learning is provably efficient for graph neural networks. In The Eleventh International
Conference on Learning Representations, 2023b.

Hongkang Li, Meng Wang, Tengfei Ma, Sijia Liu, ZAIXI ZHANG, and Pin-Yu Chen. What
improves the generalization of graph transformer? a theoretical dive into self-attention and
positional encoding. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023c. URL
https://openreview.net/forum?id=BaxFC3z9R6.

Hongkang Li, Meng Wang, Songtao Lu, Hui Wan, Xiaodong Cui, and Pin-Yu Chen. Transformers
as multi-task feature selectors: Generalization analysis of in-context learning. In NeurIPS 2023
Workshop on Mathematics of Modern Machine Learning, 2023d. URL https://openreview.
net/forum?id=BMQ4i2RVbE.

Hongkang Li, Meng Wang, Shuai Zhang, Sijia Liu, and Pin-Yu Chen. Learning on transformers is
provable low-rank and sparse: A one-layer analysis. arXiv preprint arXiv:2406.17167, 2024c.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction heads: Provable
training dynamics and feature learning in transformers. In ICML 2024 Workshop on Theoretical
Foundations of Foundation Models.

17

https://openreview.net/forum?id=BaxFC3z9R6
https://openreview.net/forum?id=BMQ4i2RVbE
https://openreview.net/forum?id=BMQ4i2RVbE

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

APPENDIX

A EXPERIMENT SETTING DETAILS

Datasets. We consider 29 downstream image classification tasks in the target domain across various
domains. We show each dataset’s attributes in Tab. A1.

Dataset Train Size Test Size Class Number Batch Size Reference
Full-Data Setting

Flowers102 4093 2463 102 128 (Nilsback and Zisserman, 2008)
DTD 2820 1692 47 128 (Cimpoi et al., 2014)
UCF101 7639 3783 101 128 (Soomro et al., 2012)
Food101 50500 30300 101 128 (Bossard et al., 2014)
SVHN 73257 26032 10 128 (Netzer et al., 2011)
GTSRB 39209 12630 43 128 (Houben et al., 2013)
EuroSAT 13500 8100 10 128 (Helber et al., 2019)
OxfordPets 2944 3669 37 128 (Parkhi et al., 2012)
StanfordCars 6509 8041 196 128 (Krause et al., 2013)
SUN397 15888 19850 397 128 (Xiao et al., 2010)
CIFAR10 50000 10000 10 128 (Krizhevsky et al., 2009)
CIFAR100 50000 10000 100 128 (Krizhevsky et al., 2009)
CUB-200-2011 5394 5794 200 128 (Wah et al., 2011)
NA-Birds 21536 24633 55 128 (Van Horn et al., 2015)
StanfordDog 10800 8580 120 128 (Khosla et al., 2011)
OxfordFlowers 1020 6149 102 128 (Nilsback and Zisserman, 2008)
Waterbirds 4795 5794 2 128 (Sagawa et al., 2019)
Caltech101 4128 2465 102 128 (Li et al., 2006)
Camelyon 262144 32768 2 128 (Veeling et al., 2018)

Few-Shot Setting (VTab-1k)
CIFAR-100 1000 10000 100 128 (Krizhevsky et al., 2009)
Caltech101 1000 6084 102 128 (Li et al., 2006)
DTD 1000 47 1880 128 (Cimpoi et al., 2014)
Flowers102 1000 6149 102 128 (Nilsback and Zisserman, 2008)
OxfordPets 1000 3669 37 128 (Parkhi et al., 2012)
SVHN 1000 26032 10 128 (Netzer et al., 2011)
Sun397 1000 21750 397 128 (Xiao et al., 2010)
Patch Camelyon 1000 32768 2 128 (Veeling et al., 2018)
EuroSAT 1000 5400 10 128 (Helber et al., 2019)
Resisc45 1000 6300 45 128 (Cheng et al., 2017)
Retinopathy 1000 42670 5 128 (Kaggle and EyePacs, 2015)
Clevr/count 1000 15000 8 128 (Johnson et al., 2017)
Clevr/distance 1000 15000 6 128 (Johnson et al., 2017)
DMLab 1000 22735 6 128 (Beattie et al., 2016)
KITTI/distance 1000 711 4 128 (Geiger et al., 2013)
dSprites/location 1000 73728 16 128 (Matthey et al., 2017)
dSprites/orientation 1000 73728 16 128 (Matthey et al., 2017)
SmallNORB/azimuth 1000 12150 18 128 (LeCun et al., 2004)
SmallNORB/elevation 1000 12150 9 128 (LeCun et al., 2004)

Table A1: Dataset attributes and training configs through 29 target image-classification datasets.

Implementation details. As we stated in the main manuscript, we, by default, install AP to
the input of the thrid-to-last ResNet block and the third Transformer block in ViT-Large/16. For
LoRA (Hu et al., 2021), we use the rank r = 10 by default. For VPT (Jia et al., 2022), we use
a prompt length of 10. We train all the methods for 1000 epochs using an Adam optimizer. For
AP, we adopt a learning rate of 0.001 for ResNet family and 0.01 for ViT family without weight
decay. For baselines, we adopt the learning rate suggested in the papers or official code repositories.
In order to align with the settings of the most parameter efficient fine-tuning methods, for all the
prompting-based methods we also tune the classification head as LINEAR-PROBE throughout this
work.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENT RESULTS

Layer effect study on more datasets. In Fig. A1, we demonstrate that the layer effects of AP
demonstrated in Sec. 4 is general and apply to multiple datasets.

VP 1 3 5 7 9 11 13 15
Layer Index

85.0

87.5

90.0

Te
st

 A
cc

ur
ac

y
(%

)

OxfordPets, ResNet-50
NT
VP
AP
Best AP

VP 3 7 11 15 19 23 27 31
Layer Index

86

88

90

Te
st

 A
cc

ur
ac

y
(%

)

OxfordPets, ResNet-101

VP1 2 3 4 5 6 7 8 9 101112
Layer Index

91

92

Te
st

 A
cc

ur
ac

y
(%

)

OxfordPets, ViT-Base/12

VP 3 7 11 15 19 23
Layer Index

91

92

93

Te
st

 A
cc

ur
ac

y
(%

)

OxfordPets, ViT-Large/16

VP 3 7 11 15 19 23 27 31
Layer Index

90

92

94

Te
st

 A
cc

ur
ac

y
(%

)

Flower102, ResNet-50
NT
VP
AP
Best AP

VP 3 7 11 15 19 23 27 31
Layer Index

90

92

94

Te
st

 A
cc

ur
ac

y
(%

)

Flower102, ResNet-101

VP1 2 3 4 5 6 7 8 9 101112
Layer Index

96

97

Te
st

 A
cc

ur
ac

y
(%

)

Flower102, ViT-Base/12

VP 3 7 11 15 19 23
Layer Index

99.4

99.6

99.8

Te
st

 A
cc

ur
ac

y
(%

)

Flower102, ViT-Large/16

VP 3 7 11 15 19 23 27 31
Layer Index

53

54

55

Te
st

 A
cc

ur
ac

y
(%

)

Sun397, ResNet-50
NT
VP
AP
Best AP

VP 3 7 11 15 19 23 27 31
Layer Index

55

56

Te
st

 A
cc

ur
ac

y
(%

)

Sun397, ResNet-101

VP1 2 3 4 5 6 7 8 9101112
Layer Index

66.5

67.0

67.5

Te
st

 A
cc

ur
ac

y
(%

)

Sun397, ViT-Base/12

VP 3 7 11 15 19 23
Layer Index

74

75

Te
st

 A
cc

ur
ac

y
(%

)

Sun397, ViT-Large/16

VP 3 7 11 15 19 23 27 31
Layer Index

70

71

Te
st

 A
cc

ur
ac

y
(%

)

UCF101, ResNet-50
NT
VP
AP
Best AP

VP 3 7 11 15 19 23 27 31
Layer Index

67.5

70.0

72.5

Te
st

 A
cc

ur
ac

y
(%

)

UCF101, ResNet-101

VP1 2 3 4 5 6 7 8 9 101112
Layer Index

78

79

80

81

Te
st

 A
cc

ur
ac

y
(%

)

UCF101, ViT-Base/12

VP 3 7 11 15 19 23
Layer Index

84

85

86

Te
st

 A
cc

ur
ac

y
(%

)
UCF101, ViT-Large/16

VP 3 7 11 15 19 23 27 31
Layer Index

64

66

68

70

Te
st

 A
cc

ur
ac

y
(%

)

DTD, ResNet-50
NT
VP
AP
Best AP

VP 3 7 11 15 19 23 27 31
Layer Index

64

66

68

70

Te
st

 A
cc

ur
ac

y
(%

)

DTD, ResNet-101

VP1 2 3 4 5 6 7 8 9101112
Layer Index

73.5

74.0

74.5

75.0

Te
st

 A
cc

ur
ac

y
(%

)

DTD, ViT-Base/12

VP 3 7 11 15 19 23
Layer Index

77

78

79

Te
st

 A
cc

ur
ac

y
(%

)

DTD, ViT-Large/16

Figure A1: Layer preference of AP with different model architectures on different datasets. CNNs and ViTs
exhibit opposite layer preferences.

Performance of AP in the original experiment setting of VPT. We conduct an ablation study
to strictly follow the experiment settings of VPT, with these results included in Tab. A2. The
performance of VPT is directly sourced from Tab. 1 of (Jia et al., 2022). As we can see, the
performance as well as efficiency of AP positions itself between VPT-Shallow and VPT-Deep, with
an average of 3% performance gain over VPT-Shallow and an average of 3.5% drop compared to
VPT-Deep. Regarding these results, we would like to mention that the results of VPT reported in
Table 1 of (Jia et al., 2022) are selected based on its best prompt length per dataset, while AP sticks
to the same hyper-parameters across all the datasets.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table A2: Performance comparison of AP with other methods in the setting of VPT (Jia et al., 2022).
Specifically, ViT-B/16 pretrained on supervised ImageNet-21k is adopted as the pretrained model.
The numbers except AP are directly sourced from VPT (Jia et al., 2022).

ViT-B/16
(85.8M)

Total
Params FGCV VTAB-1k

Natural Specialized Structured

FULL-FINETUNE 24.02× 88.54 75.88 83.36 47.64
LINEAR-PROBE 1.02× 79.32 68.93 77.16 26.84

VPT-SHALLOW 1.04× 84.62 76.81 74.66 46.98
VPT-DEEP 1.18× 89.11 78.48 82.43 54.98

AP (Ours) 1.11× 87.33 76.59 79.32 49.98

Ablation study on additional prompt types in AP. We conduct additional experiments, with the
findings presented in Tab. A3. We observed that the originally proposed AP outperforms its new
prompt variants studied in Tab. A3 (AP-Product and AP-Concate). We speculate that the advantage
of the originally proposed AP may stem from its intrinsic connection to NORM-TUNE, as discussed
in the concluding part of Sec. 3.

Table A3: Ablation study on AP with more prompt types. Specifically, instead of using additive prompt in the
intermediate layer, AP-PRODUCT uses feature-wise product and AP-CONCATE adopts concatenating prompt.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.23 78.90 87.81 0.01 9.7 121 79.64

BIAS 85.32 89.84 90.41 0.29 32.9 297 79.48
LORA 86.87 89.81 91.45 1.00 33.1 363 79.43
VPT 86.05 89.97 90.64 1.24 38.6 397 72.84
ADAPTER 87.06 89.44 91.21 2.07 32.4 357 63.39
ADAPTERFORMER 89.18 90.69 92.08 0.65 32.3 289 23.69

AP-PRODUCT 84.20 85.36 90.15 0.16 31.6 262 79.43
AP-CONCATE 83.29 82.42 89.13 0.12 31.4 261 79.47
AP 85.30 90.25 91.09 0.16 31.6 262 79.43

Application of AP to multiple layers. We implement AP with multiple layers, and we show the
results in Tab. A4. Our findings indicate that the layer addition of AP does not yield significant
improvements in performance. This observation is significant as it suggests that applying AP to a
single, carefully selected layer can achieve comparable performance to more extensive applications.
This underscores the efficiency of AP, affirming its value in settings where computational resources
are a concern.

Table A4: Ablation study on the number of layers installed with AP. In particular, for AP-3 and AP-5,
AP are installed on the input of the first 3 and 5 blocks of the pretrained ViT-L. Other experiment
settings follow Tab. 1, and Tab. 2.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.23 78.90 87.81 0.01 9.7 121 79.64

BIAS 85.32 89.84 90.41 0.29 32.9 297 79.48
LORA 86.87 89.81 91.45 1.00 33.1 363 79.43
VPT 86.05 89.97 90.64 1.24 38.6 397 72.84
ADAPTER 87.06 89.44 91.21 2.17 32.4 357 63.39
ADAPTERFORMER 89.18 90.69 92.08 0.65 32.3 289 23.69

AP-3 85.41 90.38 91.21 0.46 47.8 297 79.43
AP-5 85.49 90.49 91.31 0.76 69.7 348 79.43

AP 85.30 90.25 91.09 0.16 31.6 262 79.43

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Performance comparison with re-initialized classification head. We carried out an ablation
experiment using re-initialized classification head. This will influence the tunable parameter counts
of LINEAR-PROBE and other methods involved. As we can see, the results in Tab. A5 are nearly
identical to our previous findings in Tab. 4 that AP shows a competitive performance and efficiency
compared with other strong PEFT baselines.

Table A5: Performance comparison between AP and SOTA PEFT methods on ViT-Large/16 with re-initialized
classification head. Experiment settings follow Tab. 1, and Tab. 2.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.31 78.43 87.71 0.01 8.1 121 79.69

BIAS 85.49 89.47 90.85 0.29 27.4 297 79.51
LORA 86.49 89.74 91.49 1.00 32.5 363 71.47
VPT 86.15 90.13 90.88 1.24 37.2 397 72.91
ADAPTER 87.14 89.12 91.01 2.07 31.1 357 63.78
ADAPTERFORMER 89.24 90.49 92.21 0.65 31.1 289 23.82

AP 85.32 90.12 91.11 0.16 30.2 262 79.54

Comparison to VPT with other prompt lengths. We conducted an experiment to implement VPT-
Deep using a smaller prompt token length 10 (VPT-10). The results, presented in Tab. A6, indicate
that VPT-10’s performance is comparable to VPT-50 in Tab. 4, albeit with enhanced efficiency.

Table A6: Performance comparison between AP and VPT with different prompt lengths on ViT-Large/16.
Experiment settings follow Tab. 1, and Tab. 4.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.23 78.90 87.81 0.01 9.7 121 79.64

VPT-10 86.34 89.24 90.14 0.25 33.7 334 76.35
VPT-50 86.05 89.97 90.64 1.24 38.6 397 72.84

AP 85.30 90.25 91.09 0.16 31.6 262 79.43

Layerwise comparison between AP and VPT-Deep. We conduct an experiment for a more detailed
layer-wise evaluation in Fig. A2. These additional results highlight a consistent layer-architecture
influence on VPT-Deep, akin to what we initially observed in our original AP design. This outcome
is not unexpected, considering that the implementation of VPT-Deep essentially converges with that
of AP when a specific network layer is selected for prompting. The key divergence lies in the prompt
design approach: VPT-Deep favors concatenation, whereas AP opts for addition in prompt design. It
is worth noting that, in the context of single-layer prompting, the efficacy of concatenation in prompt
design is comparatively lower than that of addition.

Comparison with additional PEFT methods. We conduct an experiment and report the results of
SSF in Tab. A7. In particular, we can see SSF is also a competitive method among all the baselines
but is still under AdapterFormer. Compared to AP, SSF yields better performance for the FGVC
benchmark but leads to slightly worse accuracy for the VTAB benchmark. In general, SSF ranks
approximately the second or the third place among all the PEFT methods.

Comparison with LoRA of different rank values. We conduct additional experiments on the
hyper-parameters of LoRA, namely the rank r. In Tab. 4, the rank r is adopted to 10 by default.
In Tab. A8, we explore more rank values varying from 1 to 50. We can see that the performance
of LoRA increases with the larger rank values, but the difference between r = 10 and r = 50 is
insignificant. In contrast, the efficiency of LoRA will drop significantly with a rank larger than 10. In

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

VP 3 7 11 15 19 23
Layer Index

91

92

93

Te
st

 A
cc

ur
ac

y
(%

)

OxfordPets, ViT-Large/16
AP
VPT
NT
VP

Figure A2: Layer-wise performance comparison between AP and VPT on OxfordPets.

Table A7: Performance comparison of AP with more PEFT methods (SSF (Lian et al., 2022)). Experiment
settings follow Tab. 1 and Tab. 4.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.23 78.90 87.81 0.01 9.7 121 79.64

BIAS 85.32 89.84 90.41 0.29 32.9 297 79.48
LORA 86.87 89.81 91.45 1.00 33.1 363 79.43
VPT 86.05 89.97 90.64 1.24 38.6 397 72.84
ADAPTER 87.06 89.44 91.21 2.17 32.4 357 63.39
ADAPTERFORMER 89.18 90.69 92.08 0.65 32.3 289 23.69
SSF 87.32 89.43 92.21 0.48 34.7 299 79.49
AP 85.30 90.25 91.09 0.16 31.6 262 79.43

order to strike a balance between performance and efficiency, we adopt the rank value of 10 as the
default value in this work.

Ablation study on the influence of different data sizes. We recognize that data size significantly
influences performance. To ensure that our conclusions generalize well, we conducted an ablation
study on FULL-FINETUNE, VP, and AP, varying the training data ratio from 10% to 100% on datasets
with large training sizes (Camelyon, FOOD101, CIFAR10). The results are shown in Figure A3.
Results show that FULL-FINETUNE benefits the most from larger datasets. However, AP consistently
outperforms VP, regardless of data size, reinforcing that AP is a better design than VP for both few-
and many-shot settings.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table A8: Ablation study on performance of LORA with different rank values. Experiment settings follow
Tab. 1 and Tab. 4.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.23 78.90 87.81 0.01 9.7 121 79.64

LORA-1 84.43 88.21 90.07 0.04 10.43 139 79.43
LORA-10 86.87 89.81 91.45 1.00 33.1 363 79.43
LORA-20 86.93 90.23 91.35 4.38 33.1 443 79.43
LORA-50 87.23 90.41 91.97 12.22 57.2 589 79.43

AP 85.30 90.25 91.09 0.16 31.6 262 79.43

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Training Data Ratio

40
50
60
70
80
90

100

Te
st

 A
cc

ur
ac

y
(%

)

Full-Finetune
VP
AP (Ours)

(a) CIFAR10

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Training Data Ratio

30
40
50
60
70
80

Te
st

 A
cc

ur
ac

y
(%

)

Full-Finetune
VP
AP (Ours)

(b) Food101

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Training Data Ratio

40
50
60
70
80
90

Te
st

 A
cc

ur
ac

y
(%

)

Full-Finetune
VP
AP (Ours)

(c) Camelyon

Figure A3: Performance of ResNet101 trained with varying sizes of available training data on (a)
CIFAR10, (b) Food101, and (c) Camelyon. All other experimental settings strictly follow those in
Tab. 1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C THEORETICAL DETAILS

C.1 MODEL ARCHITECTURE

We define the general definition of the model architecture CNN, ViT in this section.

CNN: We follow the architecture of ResNet (), which stacks multiple residual blocks plus an input
and an output layer. Each residual block includes several convolutional layers and a skip connection.
For the input z(l)

in to the l-th convolutional layer, where l ∈ [L], the output z(l)
out can be computed as

z(l) = Conv(z(l)
in ;W

(l)
1), z

(l)
out = relu(BN(z(l))) (A1)

where z
(0)
in = x. Conv(·) and BN denote the Convolution operation and the Batch Normalization,

respectively. The output ŷ = FC(Pooling(z(L)
out)), where FC(·) denotes fully-connected layer.

ViT: The architecture of Vision Transformer is defined in (). For the input z(l)
in to the l-th Transformer

layer, we first let z(l) = z
(l)
in . Then, the output z(l)

out can be computed as

z(l) = MSA(LN(z(l))) + z(l), z
(l)
out = MLP(LN(z(l))) + z(l), (A2)

where z
(0)
in = x. MSA(·) and LN(·) denote the Multi-Head Self-attention and Layer Normalization,

respectively. For an L-layer ViT, the output ŷ = Out(H(L)
out), where Out(·) denotes the output layer.

C.2 PROPOSITION 1 AND ITS PROOF

We first provide a full definition of NORM-TUNE.

NORM-TUNE is a method where only the Batch Normalization layers for CNNs or Layer Normaliza-
tion for ViTs are trainable. Consider a batch of the l-th-layer features z(l)

1 , z
(l)
2 , · · · , z(l)

B defined in
(A1) and (A2), where z

(l)
b = [z

(l)
b,·,1, z

(l)
b,·,2, · · · , z

(l)
b,·,P ′] =∈ RD′×P ′

, z(l)
b,·,p ∈ RD′

for b ∈ [B] and
p ∈ [P ′]. B is the batch size, D′ denotes the number of channels or token dimension, and P ′ denotes
the size of the feature map or token length. We can formulate the Normalization on h

(l)
b,d,p, the d-th

dimension of h(l)
b,·,p, as follows.

BN : µd =

B∑
b=1

P ′∑
p=1

z
(l)
b,d,p

BP ′ , σ
2
d =

B∑
b=1

P ′∑
p=1

(z
(l)
b,d,p − µd)

2

BP ′ , BN(z
(l)
b,d,p) = γd

z
(l)
b,d,p − µd

σd
+ βd,

LN : µb,p =

D′∑
d=1

z
(l)
b,d,p

D′ , σ2
b,p =

D′∑
d=1

(z
(l)
b,d,p − µb,p)

2

D′ , LN(z
(l)
b,d,p) = γd

z
(l)
b,d,p − µb,p

σb,p
+ βd,

(A3)
where γd, βd are trainable parameters for d ∈ [D′]. Then, we present a full statement of Proposition
1.

Proposition 1 Without the assumption that the input to the batch (or layer) normalization layer has
zero mean and unit variance for each dimension (or token), we have the following conclusion:

AP on the l-th layer is the same as NORM-TUNE on the l-th layer, if

• for CNNs, γd/σd = 1, and all δp’s added to z
(l)
b are the same as δ, βd = w

(l)
d δ∗ + µd for

all d ∈ [D′], where δ∗ = δ
(l)
i for i ∈ [P ′];

• for ViTs, γd/σb,p = 1, and µb,p’s are the same as µp, p ∈ [P ′] among all b ∈ [B] for ViTs,
βd = δ

(l)
p,d + µp for all d ∈ [D′], p ∈ [P ′].

Proof:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

For BN, note that

BN(z
(l)
b,d,p) = γd

z
(l)
b,d,p − µd

σd
+ βd =

γd
σd

z
(l)
b,d,p + βd −

µdγd
σd

(A4)

where
z
(l)
b,d,p = w

(l)
d z

(l−1)
b,·,p , z

(l−1)
b,·,p = xb,·,p (A5)

When adding the prompt δ(l)p , we have the output

w
(l)
d (z

(l−1)
b,·,p + δ(l)p) (A6)

We then need the equation
γd
σd

z
(l)
b,d,p + βd −

µdγd
σd

= w
(l)
d (z

(l−1)
b,·,p + δ(l)p) (A7)

Given γd/σd = 1, we have
βd = w

(l)
d δ(l)p + µd (A8)

Suppose that µd = 0 for d ∈ [D′] and δ
(l)
p = δ∗ for p ∈ [P ′], we can obtain

βd = w
(l)
d δ∗ (A9)

For LN, we need

LN(z
(l)
b,d,p) = γd

z
(l)
b,d,p − µb,p

σb,p
+ βd =

γd
σb,p

z
(l)
b,d,p + βd −

γdµb,p

σb,p
= z

(l)
b,d,p + δ

(l)
p,d (A10)

Given γd/σb,p = 1 and µb,p = µp for b ∈ [B], we have

βd = δ
(l)
p,d + µp (A11)

Suppose that µp = 0, p ∈ [P ′] and let δ(l)p = δ∗, p ∈ [P ′], we can obtain

β = δ∗ (A12)

C.3 PROOF OF LEMMA 1

Before we provide the proof, we state the formulation of a single-head and two-layer ViT, the full
assumption on the data model, and the pretrained model in detail.

Let xn(·,j) be the j-th patch/token of xn, j ∈ [P]. The corresponding 1-st-layer output is zn(·,j).
Denote the j-th patch/token of xn or zn after introducing the AP, δ(h), as xn[δ

(h)
j] and zn[δ

(h)
j] =

(zn[δ
(h)
1], · · · , zn[δ(h)P]), respectively.

Following (Dosovitskiy et al., 2020), we consider a single-head self-attention parameterized by W
(l)
Q ,

W
(l)
K , and W

(l)
V in the l-th layer. The shapes of these matrices are m by d if l = 1 and m by m if

l = 2. Denote W (l) = W
(l)
K

⊤
W

(l)
Q , l = 1, 2. The MLP layer is a two-layer perceptron with m×m-

dimensional parameters W (l)
O , W (l)

U , and Relu activation. The output layer is a fully-connected layer
with a1, · · · ,aP where al ∈ Rm. Then, a two-layer ViT can be written as

fθ(xn, δ
(h)) =

P∑
k=1

a⊤
k W

(2)
U Relu(W (2)

O W
(2)
V zn[δ

(h)]softmax(zn[δ(h)]⊤W (2)zn[δ
(h)
k])),

zn[δ
(h)
k] = W

(1)
U Relu(

P∑
s=1

W
(1)
O W

(1)
V xn[δ

(h)
s]softmax(xn[δ

(h)
s]⊤W (1)xn[δ

(h)
k])),

(A13)

The AP is restated as{
xn[δ

(h)
j] = xn(·,j) + δ

(h)
j , zn[δ

(h)
j] as defined in (A13), if h = 1,

xn[δ
(h)
j] = xn(·,j), zn[δ

(h)
j] = zn(·,j) + δ

(h)
j , if h = 2,

(A14)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

We use Hinge loss ℓ(xn.yn) = max{0, 1/P − ynfθ(xn, δ
(h))} as the loss function.

Data model The patch/token xn(·,j) is a noisy version of patterns, i.e., xn(·,j) = vl + ϵnj , where
vl, l = 1, 2, 3, 4 is a pattern and ϵnj ∼ N (0, σ2) is a Gaussian noise, σ ≤ O(1/P). v1, v2, v3, v4

are all unit norm and orthogonal to each other except the pairs of v3 and v4. v⊤
3 v4 = ζ ∈ (−1, 0).

In each sample xn, only one patch/token xn(·,j) corresponds to either v1 or v2, while other P − 1
patches/tokens correspond to either v3 or v4. v1,v2 are called discriminative patterns that decide the
label. v3,v4 are non-discriminative patterns that work as the image background. For instance, if one
patch is the noisy version of v1 (v2), then yn = 1 (yn = −1).

Pretrained model The pretraining stage is assumed to learn a task where all patterns {v1,v2,v3,v4}
are key features, where each data contains two types of patterns. The label is determined by the
number of v1 or v3 compared with the number of v2 or v4. Inspired by the finding that some trained
“lucky” hidden neurons represent discriminative features from existing theoretical works (Li et al.,
2023b) on VITs, we accordingly set the neurons of feed-forward-networks W (i)

O in (A13), i = 1, 2
as pattern representations of that layer and ignore “unlucky” neurons, which has a trivial effect on the
output. To be more specific, for the 1st layer, we set a 1/4 fraction of neurons to be vi, i = 1, 2, 3, 4,
and for the 2nd layer, we set a 1/4 fraction of neurons to be ei, i = 1, 2, 3, 4, i.e., the 2nd-layer
pattern representations. W

(1)
U = W

(2)
U = I . al(i) equal 1/(mP) for neurons of e1 and e3, and

they equal −1/(mP) for neurons of e2 and e4. For ViTs, we follow the orthogonal embedding
assumption in (Oymak et al., 2023; Li et al., 2023b; Zhang et al., 2023b; Li et al., 2023c; Huang et al.,
2023b; Li et al., 2023d; 2024a;b;c; Chen et al.) and set W (1)

Q = β1I , W (1)
K = β1P

(1)
x , W (2)

Q = β2I ,

W
(2)
K = β2P

(2)
x , W (1)

V = P
(1)
x , W (2)

V = P
(2)
x for simplicity, where β1 = Θ(1), β2 = Θ(1), I is

the identity matrix, and P
(1)
x and P

(2)
x are permutation matrices.

Then, we present the proof of Lemma 1.

Proof:

Without loss of generality, we focus on studying the data where v1 is the discriminative pattern, and
v4 is the non-discriminative pattern.

For ViTs, note that the permutation matrix P
(1)
x changes the location of the pattern v1 to another

place with a distance of at least dA. By computing the feature correlation for the pattern v1, we have

β2
1 > 0, (A15)

which means the the pattern v1 has the largest correlation with v1. Hence, the pattern of v1 is a
global feature. For the feature correlation of the pattern v4, we have

β2
1 > 0, (A16)

which means the the pattern v4 has the largest correlation with v4. Hence, the pattern of v4 is a
global feature because the distance between two v4 patterns is at most 1. Since that there will be one
v4 token corresponding to a v1 token after the permutation, there will be a contribution of distance 1
to the average distance. The average attention distance of the first layer is

1

P

P∑
i=1

|i− arg max
j∈[P]

⟨kj , qi⟩ | =
1 + dA

P
(A17)

After the first layer, the feature of the v1 token becomes

eβ
2
1

eβ
2
1 + P − 1

v1 +
P − 1

eβ
2
1 + P − 1

v4 := λ1v1 + (1− λ1)v4, (A18)

while the feature of the v4 token becomes

1

(P − 1)eβ
2
1 + 1

v1 +
(P − 1)eβ

2
1

(P − 1)eβ
2
1 + 1

v4 := λ2v1 + (1− λ2)v4, (A19)

Here 1/2 > λ1 > λ2 > 0. Therefore, we have

(λ1v1 + (1− λ1)v4)
⊤(λ1v1 + (1− λ1)v4 − λ2v1 − (1− λ2)v4)

=(2λ1 − 1)(λ1 − λ2) < 0
(A20)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(λ2v1 + (1− λ2)v4)
⊤(λ2v1 + (1− λ2)v4 − λ1v1 − (1− λ1)v4)

=(2λ2 − 1)(λ2 − λ1) > 0
(A21)

Therefore, the feature from the token of v4 has the largest correlation with the token of both v1 and
v4. Since there exists a v4 token close to v1 token with a distance of at most 1, we have that both v1

and v4 tokens become local features. Then, the average attention distance of the second layer is

1

P

P∑
i=1

|i− arg max
j∈[P]

⟨kj , qi⟩ | =
1

P
(A22)

C.4 PROOF OF THEOREM 1

We first present two lemmas. One can observe that Theorem 1 is a combination of these two lemmas.
Therefore, the proof of Theorem 1 is exactly the same as the proof of these two lemmas.

Lemma 2 For a two-layer single-head Transformer

fθ(xn, δ) =
P∑
l=1

m∑
i=1

a⊤l(i)Relu(
P∑

j=1

WO2(i,·)WV2
(zn(·,j) + δ

(h)
j)

· softmax((zn(·,j) + δ
(h)
j)⊤W⊤

K2
WQ2

(zn(·,l) + δ
(h)
l)))

(A23)

where

zn(·,j) = Relu(
P∑

s=1

WO1
WV1

xn(·,s)softmax(xn(·,s)
⊤W⊤

K1
WQ1

xn(·,j))) (A24)

as long as the batch size and the required number of iterations satisfy

B ≥ Ω(1), T =
η−1P 2 logP

(1− σ)−1
, (A25)

where σ ≤ Θ(P−1), training δ(h), h = 2 with SGD returns a model with zero generalization error.

Lemma 3 For a two-layer single-head Transformer

fθ(xn, δ) =

P∑
l=1

m∑
i=1

a⊤l(i)Relu(
P∑

j=1

WO2(i,·)WV2
zn(·,j)softmax(zn(·,j)⊤W⊤

K2
WQ2

zn(·,l)))

(A26)
where

zn(·,j) = Relu(
P∑

s=1

WO1
WV1

(xn(·,s)+δ(h)s)softmax((xn(·,s)+δ(h)s)⊤W⊤
K1

WQ1
(xn(·,j)+δ

(h)
j)))

(A27)
as long as the batch size and the required number of iterations satisfy

B ≥ Ω(1), T =
η−1P

(1− Pσ)−1(1 + γ)
, (A28)

where σ ≤ O(P−1), training δ(h), h = 1 with SGD returns a model with zero generalization error,
where γ := v⊤

3 v4 ∈ (−1, 0).

C.4.1 PROOF OF LEMMA 2

Proof:

For h = 2,

fθ(xn, δ
(h)) =

P∑
l=1

m∑
i=1

a⊤l(i)Relu(
P∑

s=1

WO(i,·)WV (zn(·,s) + δ(h)s)

· softmax((zn(·,s) + δ(h)s)
⊤
W⊤

KWQ(zn(·,s) + δ
(h)
l))),

(A29)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

we have WK = β2 · Px, WQ = β2 · I , and WV = Px where β2 = Θ(1). To avoid multiple
superscripts, we use δ to denote δ(h) since that h is fixed in this proof. We use δ(t) to denote the
update of δ at t-th iteration. Then,

∂fθ(xn, δ)

∂δj

=

P∑
l=1

m∑
i=1

al(i)1[

P∑
s=1

WO(i,·)(zn(·,Ps,2) + δPs,2)softmax((zn(·,Ps,2) + δPs,2)
⊤
(zn(·,s)

+ δl)) ≥ 0] ·
(

softmax((zn(·,Ps,2) + δPs,2
)
⊤
(zn(·,s) + δl))WO(i,·)

+ 1[j ̸= l]WO(i,·)(zn(·,j) + δj) · (zn(·,j) + δl) · (−softmax(β2
2(zn(·,j) + δj)

⊤

· (zn(·,l) + δl)))softmax(β2
2(zn(·,l) + δl)

⊤
(zn(·,l) + δl))

+ 1[j = l]WO(i,·)(zn(·,l) + δl)softmax(β2
2(zn(·,l) + δl)

⊤
(zn(·,l) + δl))

· (1− softmax(β2
2(zn(·,l) + δl)

⊤
(zn(·,j) + δl)))(zn(·,l) + δl)

(A30)

Let t = 0. For yn = +1, Note that if zn = [e3, e3, · · · , e3, e1, e3, · · · , e3] without noise, the loss is
0. Hence, we compute the loss from zn = [e4, e4, · · · , e4, e1, e4, · · · , e4].

E[1[
P∑

s=1

WO(i,·)(xn(·,s) + δ(t)s)softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l) + δ

(t)
l)) ≥ 0]

=Pr(

L∑
s=1

WO(i,·)(zn(·,Ps,2) + δ
(t)
Ps,2

)softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l) + δ

(t)
l)) ≥ 0)

(A31)

for WO(i,·) = e1 or e4. We can finally show that with a high probability, the above indicator is close
to 1. Meanwhile, for WO(i,·) = e2 or e3, the indicator equals 0 or 1 with half probability when t = 0.
Consider that zn(·,j) comes from v4, which means zn(·,j) is close to v4 by a noisy term. In this case,
if zn(·,l) comes from v1,

softmax(β2
2(zn(·,l) + δ

(t)
l)

⊤
(zn(·,l) + δ

(t)
l)) ≥ 1

P
(A32)

softmax(β2
2(zn(·,j) + δj)

⊤
(zn(·,l) + δ

(t)
l)) = Θ(

1

P
) (A33)

If zn(·,l) comes from v4, then

softmax(β2
2(zn(·,l) + δ

(t)
l)

⊤
(zn(·,l) + δ

(t)
l)) ≥ 1

P
(A34)

softmax(β2
2(zn(·,j) + δ

(t)
j)

⊤
(zn(·,l) + δ

(t)
l)) = Θ(

1

P
) (A35)

Then we consider that zn(·,j) comes from e1. In this case, if zn(·,l) comes from v1, then

softmax(β2
2(zn(·,j) + δ

(t)
j)

⊤
(zn(·,l) + δ

(t)
l)) ≥ 1

P
(A36)

If zn(·,l) comes from v4,

softmax(β2
2(zn(·,j) + δ

(t)
j)

⊤
(zn(·,l) + δ

(t)
l)) ≤ 1

P
(A37)

Therefore, if zn(·,j) comes from v1,

∂fθ(xn, δ
(t))

∂δ
(t)
j

=
1

4P
λe1 +Θ(

1

P
)(−e2 + e3 − e4), (A38)

and if zn(·,j) comes from v4,

∂fθ(xn, δ
(t))

∂δ
(t)
j

= − 1

4P
λe4 +Θ(

1

P
)(−e2 + e3 + e1), (A39)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

where λ = µ = Θ(1). The last terms in (A38) and (A39) come from the indicators from other WO

neurons, which may become 1 because of feature noises. Note that when t ≥ 2, since the data which
contains e2 and e3 would similarly contribute to the overall gradient, there will be a close amount of
e1 and e2 in δ

(t)
j and a close amount of e3 and e4 in δ

(t)
j . Hence, when kµ < Θ(1),

E[δ(t)j] = E[δ(0)j]− E[η
t∑

b=1

1

B

∑
n∈Bb

∂

∂δj
ℓ(fθ(xn, δ

(b)), yn)]

= ηt
1

4P
(λe1 + λe2 − µe3 − µe4)

= k(λe1 + λe2 − µe3 − µe4),

(A40)

δ
(t)
j = E[δ(t)j] +

ηt

L

√
logBt

Bt
(±e1 ± e2 ± e3 ± e4) (A41)

where λ ≥ Θ(1) · (1− σP), µ ≥ Θ(1) · (1− σP) for t ≥ 2. The term (1− σP) comes from that
for WO(i,·) = e1 or e4,

E[1[
P∑

s=1

WO(i,·)(zn(·,Ps,2) + δ
(t)
Ps,2

)softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l) + δ

(t)
l)) ≥ 0]

≥1− e
(Bt)2

σ2P2 ≥ 1− σP
(A42)

given B ≥ Θ(1) by Hoeffding inequality. When kµ ≥ Θ(1), for zn =
[e4, e4, · · · , e4, e1, e4, · · · , e4],

zn(·,j) + δ
(t)
j = kλ(e1 + e2)− kµe3 + (1− kµ)e4 (A43)

for zn(·,j) from v4. Then,

E[1[
P∑

s=1

e1(zn(·,Ps,2)+δ
(t)
Ps,2

)softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l)+δ

(t)
l))]] ≥ 1−e

(Bt)2

σ2 ≥ 1−σ

(A44)

Pr(

P∑
s=1

e4(zn(·,Ps,2) + δ
(t)
Ps,2

)softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l) + δ

(t)
l))) ≤ e−

1
σ2 ≤ e−P 2

(A45)
Hence, with a probability at least 1− e−P 2

, no patches is activated by e4. For zn(·,k) from v1 and
zn(·,j) from v4, we have

softmax((zn(·,k) + δ
(t)
k)⊤(zn(·,k) + δ

(t)
k)) ≥ 1

P
(A46)

softmax((zn(·,j) + δ
(t)
j)⊤(zn(·,k) + δ

(t)
k)) = Θ(

1

P
) (A47)

softmax((zn(·,j) + δ
(t)
j)⊤(zn(·,j) + δ

(t)
j)) ≥ 1

P
(A48)

softmax((zn(·,k) + δ
(t)
k)⊤(zn(·,j) + δ

(t)
j)) = Θ(

1

P
) (A49)

Therefore, when kµ > Θ(1), i.e., t ≥ t0 = 4Pη−1(1− σP)−1 we have

δ
(t)
j =E[δ(t)j] +

ηt

P

√
logB(t− t0)

B(t− t0)
(±(e1 + e2)±

1

P
e−P 4

(e3 + e4))

=E[δ(t0)j]− E[η
t∑

b=t0

1

B

∑
n∈Bb

∂

∂δj
ℓ(fθ(xn, δ

(b)), yn)]±
ηt

P

√
logB(t− t0)

B(t− t0)
(e1 + e2)

=E[δ(t0)j] +
η(t− t0)

4P
(λe1 + λe2 + µe3 + µe4)±

ηt

P

√
logB(t− t0)

B(t− t0)
(e1 + e2),

(A50)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

where λ ≳ (1− σ)−1. Then,∣∣∣e⊤3 E[η t∑
b=t0

1

B

∑
n∈Bb

∂

∂δ
ℓ(fθ(xn, δ

(b)), yn)]
∣∣∣ ≲ η(t− t0)

1

P
·

√
logB(t− t0)

B(t− t0)
(A51)

∣∣∣e⊤4 E[η t∑
b=t0

1

B

∑
n∈Bb

∂

∂δ
ℓ(fθ(xn, δ

(b)), yn)]
∣∣∣ ≲ η(t− t0)

1

P
·

√
logB(t− t0)

B(t− t0)
(A52)

and thus |µ| ≤ Θ(1/
√
B(t− t0)). Hence, for zn(·,k) from v1 and zn(·,j) from v4,

(zn(·,k) + δ
(t)
k)⊤(zn(·,k) + δ

(t)
k)− (zn(·,k) + δ

(t)
k)⊤(zn(·,j) + δ

(t)
j)

=Θ(1) · eβ
2
2

eβ
2
2 + P − 1

(
eβ

2
2

eβ
2
2 + P − 1

+ e⊤1 δ
(t))

(A53)

(zn(·,j) + δ
(t)
j)⊤(zn(·,k) + δ

(t)
k)− (zn(·,j) + δ

(t)
j)⊤(zn(·,j) + δ

(t)
j)

=Θ(1) · eβ
2
2

eβ
2
2 + P − 1

· e⊤1 δ(t)
(A54)

Since that β2 = Θ(1), we have

softmax((zn(·,k) + δ
(t)
k)⊤(zn(·,k) + δ

(t)
k)) =

eΘ(1)· e
⊤
1 δ(t)

P

P − 1 + eΘ(1)· e
⊤
1 δ(t)

P

(A55)

softmax((zn(·,k) + δ
(t)
k)⊤(zn(·,j) + δ

(t)
j)) =

eΘ(1)· e
⊤
1 δ(t)

P

P − 1 + eΘ(1)· e
⊤
1 δ(t)

P

(A56)

To make
fθ(xn, δ

(t)) ≥ 1/P, (A57)

we require that

eΘ(1)· e
⊤
1 δ(t)

P

P − 1 + eΘ(1)· e
⊤
1 δ(t)

P

· eβ
2
2

eβ
2
2 + P − 1

+
P − 1

P − 1 + eΘ(1)· e
⊤
1 δ(t)

P

· 1

eβ
2
2 (P − 1) + 1

≥ 1

P
(A58)

As a result, we finally need

eΘ(1)· e
⊤
1 δ(t)

P ≳ P (A59)

which holds as long as t− t0 ≳ P 2η−1(1− σ)−1 logP . Therefore, we have

fθ(xn, δ) ≥ 1/P (A60)

for xn that contains a patch from v1. We similarly have

fθ(xn, δ) ≤ −1/P (A61)

for xn that contains a patch from v2. To sum up, we need t ≥ Θ(η−1P 2(1− σ)−1 logP) iterations.

C.4.2 PROOF OF LEMMA 3

Proof:
To avoid multiple superscripts, we use δ to denote δ(h) since that h is fixed in this proof. We use δ(t)
to denote the update of δ at t-th iteration. For the network

fθ(xn, δ) =

P∑
l=1

m∑
i=1

a⊤l(i)Relu(
P∑

j=1

WO2(i,·)WV2
zn(·,j)softmax(zn(·,j)⊤W⊤

K2
WQ2

zn(·,l)))

(A62)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

where

zn(·,j) = Relu(
P∑

s=1

WO1
WV1

(xn(·,Ps,1) + δs)softmax((xn(·,Ps,1) + δs)
⊤W⊤

K1
WQ1

(xn
j + δj))),

(A63)
we have

∂fθ(xn, δ)

∂δs
=

P∑
j=1

∂fθ(xn, δ)

∂zn(·,j)

∂zn(·,j)

∂δs
(A64)

Note that WQ2
= β2I , WQ1

= β1I , WK2
= β2Px, WK1

= β1Px„ WV2
= Px, WV1

= Px,
where β1 = Θ(1) and β2 = Θ(1). Therefore,

∂fθ(xn, δ)

∂zn(·,j)

=

P∑
l=1

m∑
i=1

a⊤
(l)i

1[

P∑
s=1

WO2(i,·)zn(·,Ps,2)softmax(β2
2zn(·,Ps,2)

⊤zn(·,l))]
(

softmax(β2
2zn(·,j)

⊤zn(·,l))

·WO2(i,·) + 1[j ̸= l]WO2(i,·)zn(·,j) · zn(·,l) · (−softmax(β2
2zn(·,j)

⊤zn(·,l)))

· softmax(β2
2zn(·,l)

⊤zn(·,l)) + 1[j = l]WO2(i,·)zn(·,l)softmax(β2
2zn(·,l)

⊤zn(·,l))

· (1− softmax(β2
2zn(·,l)

⊤zn(·,l)))zn(·,l)

)
(A65)

∂zn(·,j)

∂δk

=1[

P∑
s=1

WO1
(xn(·,Ps,1) + δs)softmax((xn(·,Ps,1) + δs)

⊤(xn
j + δj))]

(
softmax((xn

j + δj)
⊤

· (xn(·,l) + δl))WO1
+ 1[k ̸= l]WO1

(xn(·,k) + δk) · (xn(·,l) + δl)
⊤

· (−softmax(β2
1(x

n
j + δj)

⊤
(xn(·,l) + δl)))softmax(β2

1(xn(·,l) + δl)
⊤
(xn(·,l) + δl))

+ 1[k = l]WO1
(xn(·,l) + δl)(xn(·,l) + δl)

⊤

· softmax(β2
1(xn(·,l) + δl)

⊤
(xn(·,l) + δl))

· (1− softmax(β2
1(xn(·,l) + δl)

⊤
(xn(·,l) + δl)))

)
(A66)

Let t = 0. For yn = +1, Note that if xn = [e3, e3, · · · , e3, e1, e3, · · · , e3] without noise, the loss
is 0. Hence, we compute the loss from xn = [e4, e4, · · · , e4, e1, e4, · · · , e4].

E[1[
P∑

s=1

WO(i,·)(xn(·,Ps,1) + δ
(t)
Ps,1

)softmax(β2
1(xn(·,Ps,1) + δ

(t)
Ps,1

)
⊤
(xn(·,l) + δl)) ≥ 0]

=Pr(

P∑
s=1

WO(i,·)(xn(·,Ps,1) + δ
(t)
Ps,1

)softmax(β2
1(xn(·,Ps,1) + δ

(t)
Ps,1

)
⊤
(xn(·,l) + δl)) ≥ 0)

(A67)

for WO(i,·) = e1 or e4. We can finally show that with a high probability, the above indicator is close
to 1. Meanwhile, for WO(i,·) = e2 or e3, the indicator equals 0 or 1 with half probability when t = 0.
Consider that xn(·,j) comes from v4. In this case, if xn(·,l) comes from v1,

softmax(β2
1(xn(·,l) + δl)

⊤
(xn(·,l) + δl)) ≥

1

P
(A68)

softmax(β2
1(x

n
j + δ

(t)
j)

⊤
(xn(·,l) + δl)) = Θ(

1

P
) (A69)

softmax(β2
2zn(·,l)

⊤zn(·,l)) ≥
1

P
(A70)

softmax(β2
2zn(·,j)

⊤zn(·,l)) = Θ(
1

P
) (A71)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

If xn(·,l) comes from v4, then

softmax(β2
1(xn(·,l) + δ

(t)
l)

⊤
(xn(·,l) + δ

(t)
l)) ≥ 1

P
(A72)

softmax(β2
1(x

n
j + δ

(t)
j)

⊤
(xn(·,l) + δ

(t)
l)) = Θ(

1

P
) (A73)

softmax(β2
2zn(·,l)

⊤zn(·,l)) ≥
1

P
(A74)

softmax(β2
2zn(·,j)

⊤zn(·,l)) = Θ(
1

P
) (A75)

Then we consider that xn(·,j) comes from v1. In this case, if zn(·,l) comes from v1, then

softmax(β2
1(xn(·,j) + δ

(t)
j)

⊤
(xn(·,l) + δ

(t)
l)) ≥ Θ(

1

P
) (A76)

softmax(β2
2zn(·,j)

⊤zn(·,l)) ≥ Θ(
1

P
) (A77)

If xn(·,l) comes from v4,

softmax(β2
1(xn(·,j) + δ

(t)
j)

⊤
(xn(·,l) + δ

(t)
l)) = Θ(

1

P
) (A78)

softmax(β2
2zn(·,j)

⊤zn(·,l)) = Θ(
1

P
) (A79)

Therefore, if xn(·,j) comes from v1,

∂fθ(xn, δ)

∂δ
(t)
j

= P · 1

4P
λ(e⊤1 · 1

P
WO1)

⊤ =
1

4P
v1 +Θ(

1

P
)(−v2 + v3 − v4), (A80)

and if xn(·,j) comes from v4,

∂fθ(xn, δ)

∂δ
(t)
j

= − 1

4P
µv4 +Θ(

1

P
)(−v2 + v3 + v1), (A81)

where λ = µ = Θ(1). Note that when t ≥ 2, since the data which contains v2 and v3 would similarly
contribute to the overall gradient, there will be a close amount of v1 and v2 in δ

(t)
s and a close amount

of v3 and v4 in δ
(t)
s . Hence, when kµ < Θ(1),

E[δ(t)s] = E[δ(0)s]− E[η
t∑

b=1

1

B

∑
n∈Bb

∂

∂δs
ℓ(fθ(xn, δ

(b)
s), yn)]

= ηt
1

4P
(λv1 + λv2 − µv3 − µv4)

= k(λv1 + λv2 − µv3 − µv4),

(A82)

δ(t)s = E[δ(t)s] +
ηt

P

√
logBt

Bt
(±v1 ± v2 ± v3 ± v4) (A83)

where λ ≥ Θ(1) · (1− σP), µ ≥ Θ(1) · (1− σP) for t ≥ 2. The term (1− σP) comes from that
for WO2(i,·) = v1 or v4,

E[1[
P∑

s=1

WO1(i,·)(xn(·,Ps,1) + δ
(t)
Ps,1

)softmax(β2
1(xn(·,Ps,1) + δ

(t)
Ps,1

)
⊤
(xn(·,l) + δ

(t)
l)) ≥ 0]

≥1− e
(Bt)2

σ2P2 ≥ 1− σP
(A84)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

given B ≥ Θ(1) by Hoeffding inequality. When kµ ≥ Θ(1)
1+γ , we have that for xn(·,j) from v4,

1[

P∑
s=1

WO1(xn(·,Ps,1) + δs)softmax(β2
1(xn(·,Ps,1) + δs)

⊤(xn(·,j) + δ
(t)
j)) ≥ 0]

≥[1, 1,−kµ+ (1− kµ)γ + v⊤
3 a,−kµγ + 1− kµ+ v⊤

4 a]
⊤

≥[1, 1, 0, 0]⊤

(A85)

where a ∼ N (0, σ2I) in the first step, and the last step holds with probability at least

Pr(v⊤
4 a− kµγ + 1− kµ ≤ 0) ≤ 1− Pr(v⊤

4 a ≥ Θ(1)) ≤ 1− e
1
σ2 ≤ 1− e−P 2

(A86)

Pr(v⊤
3 a− kµ+ (1− kµ)γ ≤ 0) ≤ 1− Pr(v⊤

3 a ≥ Θ(1)) ≤ 1− e
1
σ2 ≤ 1− e−P 2

(A87)
Hence, for xn(·,k) from v1 and xn(·,j) from v4,

(xn(·,k) + δ
(t)
k)⊤(xn(·,k) + δ

(t)
k)− (xn(·,k) + δ

(t)
k)⊤(xn(·,j) + δ

(t)
j) = Θ(1) · (1+ 2(kµ)2) (A88)

(xn(·,j) + δ
(t)
j)⊤(xn(·,k) + δ

(t)
k)− (xn(·,j) + δ

(t)
j)⊤(xn(·,j) + δ

(t)
j) = Θ(1) · (2kµ− 1) (A89)

Since that β1 = Θ(1), we have

softmax(β2
1(xn(·,k) + δ

(t)
k)⊤(xn(·,k) + δ

(t)
k)) =

eΘ(1)·(kµ)2)

P − 1 + eΘ(1)·(kµ)2) (A90)

softmax(β2
1(xn(·,k) + δ

(t)
k)⊤(xn(·,j) + δ

(t)
j)) =

eΘ(1)·kµ

P − 1 + eΘ(1)·kµ (A91)

To make
fθ(xn, δ

(t)) ≥ 1/P, (A92)
we require that

eΘ(1)·(kµ)2)

P − 1 + eΘ(1)·(kµ)2) · 1 ≥ 1

P
(A93)

or
eΘ(1)·kµ

P − 1 + eΘ(1)·kµ · 1 ≥ 1

P
(A94)

As a result, we finally need
eΘ(1)·kµ ≳ 1 (A95)

which holds as long as t ≳ Pη−1(1 − Pσ)−1(1 + γ)−1). With the same condition, we also have
that for all yn = −1,

fθ(xn, δ) ≤ −1/P (A96)
To sum up, we need t ≥ Θ(Pη−1(1− Pσ)−1(1 + γ)−1)).

33

	Introduction
	Related Work
	Activation Prompt: Design and Rationale
	A Deep Dive into AP: Layer and Architecture Effects
	Theoretical Analyses for Layer and Architecture Effects
	Experiments
	Experiment Setup
	Experiment Results

	Conclusion
	Experiment Setting Details
	Additional Experiment Results
	Theoretical details
	Model architecture
	Proposition 1 and its proof
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Lemma 3

