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Abstract
As Large Language Models (LLMs) are increas-
ingly being employed in real-world applications
in critical domains such as healthcare, it is impor-
tant to ensure that the Chain-of-Thought (CoT)
reasoning generated by these models faithfully
captures their underlying behavior. While LLMs
are known to generate CoT reasoning that is ap-
pealing to humans, prior studies have shown that
these explanations do not accurately reflect the ac-
tual behavior of the underlying LLMs. In this
work, we explore the promise of three broad
approaches commonly employed to steer the
behavior of LLMs to enhance the faithfulness
of the CoT reasoning generated by LLMs: in-
context learning, fine-tuning, and activation edit-
ing. Specifically, we introduce novel strategies
for in-context learning, fine-tuning, and activation
editing aimed at improving the faithfulness of the
CoT reasoning. Our empirical analyses on multi-
ple benchmarks indicate that these strategies offer
limited success in improving the faithfulness of
the CoT reasoning, with only slight performance
enhancements in controlled scenarios. In sum-
mary, our work underscores the inherent difficulty
in eliciting faithful CoT reasoning from LLMs,
suggesting that the current array of approaches
may not be sufficient to address this complex chal-
lenge.

1. Introduction
Large Language Models (LLMs) are increasingly being
employed in diverse real-world applications ranging from
content generation and education to commerce and health-
care (Kaddour et al., 2023). One of the primary reasons
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behind the widespread adoption of these models is their
enhanced reasoning capabilities, which enable them to gen-
erate responses that appeal to human end users (Brown et al.,
2020b; Wei et al., 2022). Furthermore, these models are
also capable of explaining the rationale behind the responses
they generate, in a manner that is appealing to humans.
Despite the aforementioned advantages, LLMs also suffer
from some critical drawbacks. For instance, while LLMs
are adept at producing explanations that cater to human
preferences, recent research (Lanham et al., 2023; Turpin
et al., 2023) demonstrated that the explanations generated
by these models – e.g., Chain-of-Thought (CoT) reasoning
– do not faithfully capture their underlying behavior. The
faithfulness of the generated explanations turns out to be
an important desideratum in high-stakes applications such
as medical diagnostics and legal counseling. Ensuring the
faithfulness of LLM-generated CoT reasoning is crucial for
decision-makers, such as doctors, who rely on them to deter-
mine if, when, and how much to trust the recommendations
made by these LLMs.

Despite the criticality of the faithfulness of LLM-generated
reasoning, there is very little research on measuring and en-
hancing this aspect of LLMs. Recently, Lanham et al. (2023)
introduced a slew of metrics for measuring the faithfulness
of the CoT reasoning generated by LLMs. For instance,
they propose an early answering metric, which considers a
generated CoT to be faithful if truncating that CoT causes
the model to change its final response. While measuring the
faithfulness of an LLM-generated CoT is one critical aspect,
another piece of this puzzle is figuring out ways to improve
the faithfulness of the CoT reasoning generated by LLMs.
While prior works have developed approaches to make CoT
more aligned with human understanding or knowledge (Lyu
et al., 2023), there are no solutions that focus on improv-
ing the faithfulness of LLM-generated CoTs in such a way
that they accurately capture the behavior of the underlying
model (please refer to Appendix for a more detailed discus-
sion on related work). Furthermore, it remains unclear how
difficult it is to improve the faithfulness of LLM-generated
CoT reasoning.

Present work. In this work, we address the aforemen-
tioned challenges by exploring the promise of three broad
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approaches—activation editing, fine-tuning, and in-context
learning—to enhance the faithfulness of the CoT reasoning
generated by LLMs. Activation editing (Li et al., 2024)
involves probing the internal structures of LLMs and strate-
gically updating them to improve certain properties, while
fine-tuning focuses on updating model parameters by lever-
aging curated datasets. In-context learning, on the other
hand, involves providing a handful of samples to the model
at inference time to tweak its behavior. These three ap-
proaches represent different classes of interventions com-
monly employed in the literature to steer the behavior of
LLMs in a desired direction, such as reducing biases and hal-
lucinations. While these approaches have previously been
utilized for various tasks (Tonmoy et al., 2024; Liu et al.,
2024b), including the reduction of biases and hallucinations,
they have not been explored in the context of improving the
faithfulness of LLM-generated CoT reasoning.

Despite the promise of these techniques, our findings reveal
that none of them significantly enhance the faithfulness of
the CoT reasoning generated by LLMs. While activation
editing approach demonstrates limited success in amplify-
ing faithful behavior of CoT reasoning, the fine-tuning and
ICL approaches slightly improved CoT faithfulness in con-
trolled scenarios but did not generalize well across diverse
datasets. Our results underscore the inherent difficulty in
eliciting faithful reasoning from LLMs, suggesting that the
current array of techniques available to us is insufficient for
addressing this complex challenge. Our research empha-
sizes the need for fundamentally new methodologies that
can delve into the inner workings of LLMs to enhance the
faithfulness of reasoning, ensuring that LLMs are not only
generating correct responses but also doing so in a manner
that faithfully reflects their internal reasoning processes.

2. Preliminaries
Next, we define the notion of faithfulness we use to quantify
the reasoning of LLMs and then discuss some notations
used to describe different strategies for eliciting faithful
reasoning from LLMs.

Chain-of-Thought. CoT reasoning in LLMs provides a
structured response where the model explicitly generates
the step-by-step thought process leading to its final re-
sponse. This technique is particularly useful in complex
reasoning tasks, such as solving math problems or logi-
cal question-answering scenarios, and high-stakes decision-
making, where transparency in decision-making is crucial.
See Sec. B and Fig. 6 in the Appendix for examples of
CoT reasoning. This CoT reasoning makes the LLM’s pro-
cess more transparent and easier to trust. Formally, let
F : Q → A denote a large language model that maps a se-
quence of n input tokens Q = (q1, q2, . . . , qn) to sequence
of m answer tokens A = (a1, a2, . . . , an), where qi and

ai are text tokens belonging to the model vocabulary V .
For CoT reasoning, we append the input tokens Q with a
prompt that follows the template: “Read the question, give
your answer by analyzing step by step, . . . ”.

Notations. For the activation editing of LLMs, we train dif-
ferent linear classifiers f : x → y, where x ∈ Rdl

head are the
intermediate layer activations of model F for a given input
sequence X , dlhead is the dimension of the model activations
at layer l and attention head, and y is the respective label
associated with the input. We define sampling functions
S(τ, p, mode) and S(τ, nshot, mode) that we use to
sample different fine-tuning and in-context examples in our
strategies in Sec. 3, where τ determines the temperature
parameter of the LLM used to control the randomness in
the generated answers by using the probability distribution
of each generated token, p denotes the percentage of train-
ing examples we use in fine-tuning, nshot denotes the
number of training examples we use in the ICL prompting,
and mode denotes the sampling technique, i.e., whether we
want to randomly sample examples from the train split or
select the examples with most faithful explanation.

Measuring Faithfulness. We utilize faithfulness metrics
proposed in Lanham et al. (2023) that quantify the faithful-
ness of CoT reasoning from LLMs. Specifically, we employ
the Early Answering strategy, which evaluates the faithful-
ness of a CoT by sequentially adding each CoT step to the
question and querying the LLM for its answer, conditioned
on the truncated set of CoT steps. If the answer from the
LLM converges towards the final answer as it encounters
more CoT steps, it indicates that the CoT explanation is
guiding the answer and is more likely to be faithful. Measur-
ing faithfulness is described in detail in Fig. 8 and Sec. C.

3. Eliciting Faithful Reasoning from LLMs
Next, we describe three strategies to improve the faithfulness
of CoT reasoning generated by LLMs focusing on different
aspects (data, weight, activations) of an LLM, i.e., in-context
examples (Sec. 3.1), fine-tuning weights (Sec. 3.2), and
activation editing (Sec. 3.3).

3.1. Faithful Reasoning via In-Context Learning

In contrast to traditional ML approaches that require explicit
training or fine-tuning on task-specific data, In-Context
Learning (ICL) allows an LLM to generalize and adapt
its knowledge by learning patterns from a limited set of
demonstrations added within the prompt during inference.
ICL is a computationally efficient technique that shows an
LLM’s capability to transfer knowledge to novel tasks with-
out additional parameter updates and can be used for both
open and closed-source LLMs.

In particular, we consider N in-context examples, each rep-
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resented as a triple (Qi, Ei, Ai) for 1 ≤ i ≤ N , where
Qi and Ai represents the question and answer associated
with the i-th example, while Ei denotes a ‘faithful’ CoT
reasoning for the question Qi and answer Ai. Mathemati-
cally, we can express the set of N in-context examples as
{(Q1, E1, A1), (Q2, E2, A2), . . . , (QN , EN , AN )}.

The N demonstrations chosen for ICL impact both the ac-
curacy and faithfulness of answers and CoT reasoning. In
order to systematically assess the influence of the specific
ICL examples chosen, we propose the following sampling
strategies.

1) Deterministic Uniform (DU). Here, we query the
LLM deterministically with temperature τ = 0
to yield (Q,E,A) triplets over the full training
set. We then uniformly sample N demonstrations
for ICL. Mathematically, this can be expressed as
S(τ=0, nshot=N, mode=‘uniform’) (see Sec. 2).

2) Deterministic Faithful (DF). As above, except
we select the N most faithful CoT reason-
ing across the (Q,E,A) triplets, expressed as
S(τ=0, nshot=N, mode=‘faithful’).

3) Stochastic Uniform (SU). With this approach, we in-
troduce diversity in eliciting CoT reasoning by sam-
pling at τ > 0, generating 10 samples per question and
retaining only the most faithful sample. We then uni-
formly sample N demonstrations for ICL, expressed
as S(τ > 0, nshot=N, mode=‘uniform’).

4) Stochastic Faithful (SF). Here, we combine stochastic
sampling with most faithful selection and select the N
most faithful demonstrations for ICL, expressed as
S(τ > 0, nshot=N, mode=‘faithful’).

Note that we use these strategies in our empirical analy-
sis and use a superscript c notation to indicate that only
(Q,E,A) triplets with correct answers are used, e.g., SFc

indicates that we stochastically generate CoT reasoning, and
select N most faithful triplets that yielded correct answers.

3.2. Faithful Reasoning via Fine-Tuning

Recent progress in LLMs has led to a paradigm shift from
the traditional development of models from scratch to an
adoption of shared pre-trained LLMs, e.g., BERT (Devlin
et al., 2019), GPT (Brown et al., 2020a), Llama (lla),
that can readily be fine-tuned for specific downstream
applications. We utilize a combination of recent techniques
like Parameter-Efficient Fine-Tuning (PEFT) (Mangrulkar
et al., 2022) and Low-Rank Adaptation (LoRA) (Hu et al.,
2021) that allows efficient fine-tuning LLMs on smaller
datasets and reduces the number of trainable parameters
by learning low-rank adaptation matrices, making the

fine-tuning process more memory and computationally
efficient while retaining information that is important for
downstream performance.

Our exploration of faithful CoT reasoning via fine-tuning
is motivated by Liu et al. (2024a); Ding et al. (2023) which
argues that few-shot PEFT are more effective and cost-
efficient as compared to ICL. Hence, we investigate the
possible benefits of fine-tuning techniques to elicit more
faithful CoT reasoning from LLMs. Our study explores a
series of selection strategies aimed at enhancing the faithful-
ness of CoT reasoning. To this end, we curate a variety of
datasets for fine-tuning state-of-the-art LLMs with the goal
of fine-tuning LLMs with different question, answer, and
CoT reasoning examples and understanding their effects on
the faithfulness of CoT reasoning generated by the LLM for
test samples during inference. In particular, the strategies
we employ for the selection of (Q,E,A) triplets used in
finetuning are directly analogous to their ICL counterparts
described in Sec. 3.1, and detailed in Appendix Sec. D.

3.3. Faithful Reasoning via Activation Editing

Seminal works in explainable artificial intelligence have
shown that probing analysis (Alain and Bengio, 2016) can
find vectors in the activation space of deep neural networks
that correlate to specific properties learned by the underly-
ing model. Formally, editing activations to steer a LLM’s
behavior involve two key steps - a probing analysis step to
identify which components of the model to intervene on,
and an editing step which manipulates the activations at
run-time. These two steps are detailed below.

Step 1: Probing for Faithfulness. Analyzing a model’s
internal structures, such as individual neurons or specific
mechanisms like convolution or attention, can offer insights
into the inner workings of LLMs (Li et al., 2024). A
standard tool to understand a model’s inner workings is
a “probe” (Alain and Bengio, 2016). Probes are linear
classifiers trained on a model’s intermediate activations to
predict a property like factual correctness, harmful biases,
etc. By assessing how well these probes perform, we can
infer the extent to which certain types of (mis)information
is encoded at different layers or components of the model.
Specifically, we aim to identify attention heads that
encode information for faithful reasoning. Fig. 2 shows
the accuracies of linear probes trained on intermediate
activations of LLAMA-3-8B-INSTRUCT on three reasoning
and math word problem datasets (discussed at detail in
Sec. 4). We observe a significant variance in probing
accuracy, suggesting that certain attention heads capture
more information about faithful reasoning than others. The
process of training linear probes is described below.

Using a probing dataset of questions, we collect intermedi-
ate activations at all layers and attention heads in a LLM,
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and create a dataset {(xi, yi)}ni=1 for each head h and each
layer l, where xi ∈ Rdl

head represents the intermediate activa-
tion at a particular layer and attention head of ith question in
the probing dataset and yi represents the faithfulness (mea-
sured using approaches described in Sec. 2) of reasoning
generated for ith question. The probing dataset is split into
4:1 training and validation sets, and the probe is a logistic
regression classifier σ(θlh

T
x) to predict faithfulness. As

faithfulness is a continuous value, we binarize it using me-
dian value as threshold. For a model with L layers and H
attention heads, we train a total of L×H linear probes.

Step 2: Activation Editing. Activation editing is a tech-
nique to control the post-training behavior of models by
using steering intermediate activation vectors, i.e., simple
manipulations like translation, scaling, zeroing out, and
clamping, on the internal activations of a model at inference
time to achieve a desired outcome. By manipulating specific
activations associated with certain behaviors, we can alter
the LLM’s responses without requiring further training.

As shown in 2, we first identify specific attention heads that
encode information about faithful CoT reasoning. We then
use this information to steer the LLM in the direction that
amplifies faithful reasoning. Following Li et al. (2024), we
translate the activations of a head by a fixed vector during
inference.

To avoid causing OoD inputs for subsequent layers by inter-
vening on every head, we do not translate the activations of
all attention heads and focus on the top-K heads ranked by
the faithfulness metric (Sec. 2), thereby intervening on the
LLM’s behavior in a minimally invasive manner. The pa-
rameters of the linear probe classifier indicate the direction
in which faithful and unfaithful reasoning are maximally
separable. Thus, we translate in the direction represented by
the linear probe parameters θ. where θlh denotes the linear

Attention(Q′,K′,V′) = softmax

(
Q′K′⊤
√
dk

)
V′+α θlh σl

h,

(1)

Figure 1. Attention mechanism used for intervention on attention
heads. Q′, K′, and V′ represent query, key, and value matrices
respectively. α denotes the intervention strength, θlh represents the
learned parameters from linear probe at layer l and attention head
h. σl

h is a scaling factor.

probe classifier trained on the activations on layer l and
attention head h and α is a hyper-parameter to control the
strength of intervention. The direction vector θlh is scaled
by σl

h, representing the standard deviation of projections of
activations in the direction of θlh, ensuring that translation is
in the same scale as activations.

4. Experiments
We describe the experimental setup used in our analysis
before proceeding to discuss the results.

4.1. Experimental Setup

Datasets. We conduct experiments using math word prob-
lems, commonsense reasoning, and factuality-based bench-
mark datasets. i) the AQUA (Ling et al., 2017) dataset
contains 100,000 algebraic word problems with natural lan-
guage rationales, where each problem consists of a question
– a definition of the problem to solve, options – five pos-
sible answer options, where one is correct, rationale – a
description of the solution to the problem and correct – a
correct option), ii) the LOGIQA (Liu et al., 2021) consists
of 8,678 question-answer instances, covering multiple types
of deductive reasoning, where each question has four possi-
ble answer options, and iii) the TRUTHFULQA (Lin et al.,
2022) dataset contains 817 questions in total, spanning 38
categories (e.g., logical falsehoods, conspiracies, and com-
mon points of confusion). Each question comes with an
average of 3.2 truthful answers, 4.1 false answers, and a
gold standard answer supported by an online source.

Models. We generate and evaluate the faithfulness of rea-
soning generated by three large language models – LLAMA-
3-8B-INSTRUCT, GPT-3.5-TURBO, and GPT-4.

Baselines. We use three baselines to evaluate the effec-
tiveness of the ICL, fine-tuning, and activation editing
strategies. 1) Zero-shot (ZS): Here, we assess the accuracy
performance of the LLM by just asking the question with
invoking CoT reasoning, 2) Zero-shot CoT (ZS-CoT): We
invoke the CoT reasoning capability in LLMs by prompting
the LLM to think step-by-step (see Fig. 6) before answering
the question, and 3) Ground Truth Answers (GTA): We
provide a random set of ground truth question and answer
pairs during ICL and fine-tuning, and evaluate whether it
aids the LLM in generating more faithful CoT reasoning.

4.2. Results

Next, we discuss the impact of in-context learning, fine-
tuning, and activation editing on the faithfulness of CoTs.
Our findings indicate that current techniques do not conclu-
sively improve faithfulness of CoT reasoning in LLMs.

4.2.1. IN-CONTEXT LEARNING ANALYSIS

Using ICL, we aim to address the question: Can an LLM
learn to elicit faithful CoT reasoning by simply looking at
some faithful CoT examples during inference? We inves-
tigate this question using the sampling strategies detailed
in Sec. 3.1, and different datasets and LLMs described in
Sec. 4.1.
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Figure 2. We probe the attention heads across all layers of LLAMA-3-8B-INSTRUCT to assess their predictive power regarding faithfulness.
We show the attention heads in each layer sorted by accuracy, clearly indicating that certain attention heads are more responsible for
generating faithful explanations.
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Figure 3. Faithfulness vs Accuracy relationship of CoT reasoning generated by LLAMA-3-8B-INSTRUCT using different baseline (in
red) and ICL strategies (in blue). Results show that none of the baseline or sampling strategy consistently achieve high accuracy and
faithfulness.

More accurate LLMs are less faithful. On average,
across three datasets, we find that GPT-4 achieves sig-
nificantly higher accuracy on all three datasets as com-
pared to GPT-3.5-TURBO and LLAMA-3-8B-INSTRUCT
(see Figs. 10,11,3), but it exhibits poor faithfulness per-
formance. For instance, in TRUTHFULQA, we find that
GPT-4 provides correct answers to questions without using
CoT reasoning (i.e., accuracy difference between non-CoT
and CoT prompting is zero), resulting in low faithfulness
by definition. Also, larger LLMs like GPT-4 are increas-
ingly optimized for dialogue and generating conversational
responses where RLHF rewards coherence to a human eval-
uator, which may conflict with generating faithful CoT rea-
soning.

In-context learning (ICL) improves faithfulness, albeit
with a trade-off in accuracy. On all datasets and mod-
els, we observe that in-context learning improves faithful-
ness compared to zero shot baseline for almost all sampling
strategies as shown in Figs. 10,11,3. Using faithful samples
in-context particularly enhances faithfulness, as evidenced
by a rise in faithfulness compared to the uniform counter-
part, i.e., faithfulness of DF > DU and SF > SU. While
ICL improves faithfulness, this often comes with a drop
in accuracy as shown in Figs. 10,11,3. In summary, our
results show that we cannot elicit faithful CoT reasoning
from LLMs by simply using examples from different ICL
strategies during inference without sacrificing accuracy.

4.2.2. FINE-TUNING ANALYSIS

Here, we aim to investigate the possible benefits of fine-
tuning techniques to elicit more faithful CoT reasoning from
LLMs. We fine-tune LLAMA-3-8B-INSTRUCT and GPT-
3.5-TURBO models1 using different baselines (Sec. 4.1) and
sampling techniques (Sec. 3.2).

Fine-tuned LLMs show contrasting faithfulness perfor-
mance. Our results in Figs. 4 and 9 for AQUA and LOGIQA
show that while some sampling strategies lead to improve-
ment in faithfulness of CoT reasoning for fine-tuned GPT-
3.5-TURBO, they obtain lower faithfulness than GTA base-
line for fine-tuned LLAMA-3-8B-INSTRUCT. In addition,
we observe that the baseline GTA achieves a good accuracy-
faithfulness trade-off for the LOGIQA dataset (Fig. 9), it
does not follow the same trend for fine-tuned GPT-3.5-
TURBO (Fig. 4). Further, our fine-tuning results on TRUTH-
FULQA show that while we can force an LLM to generate
faithful CoT reasoning via fine-tuning (verified by an in-
crease in their faithfulness performance), it significantly
impacts the accuracy of the model (∼20% drop in accuracy)
(see TRUTHFULQA; Fig. 9).

Fine-tuning using most faithful explanations achieve bet-
ter accuracy-faithfulness trade-offs. For the fine-tuned
GPT-3.5-TURBO on LOGIQA dataset, we find that sam-
pling strategies like DF and SF achieve higher faithful-

1Due to OpenAI API errors at the time of experimentation (Ope-
nAI Community, 2024), we were unable to access or evaluate
fine-tuned versions of GPT-4.
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Figure 4. Faithfulness vs Accuracy relationship of CoT reasoning generated by fine-tuned GPT-3.5-TURBO using different baselines (in
red) and sampling strategies (in blue). Results show that while the baseline GTA achieves good accuracy-faithfulness trade-off (top-right
corner) for AQUA and TRUTHFULQA dataset, it achieves the worst trade-off (bottom-left corner) for LOGIQA dataset.

AQUA TRUTHFULQA

ACCURACY FAITHFULNESS ACCURACY FAITHFULNESS

Figure 5. Accuracy and Faithfulness of reasoning for different intervention configurations (α,K). The difference in accuracy and
faithfulness performance of LLAMA-3-8B-INSTRUCT and highlights that none of the intervention configuration leads to improvement of
both accuracy and faithfulness across datasets compared to ZS-CoT ( and markers). Refer to Fig. 12 for LOGIQA dataset.

ness as compared to the baselines (in red), highlighting
that selecting examples with faithful explanations for fine-
tuning can help in generating faithful CoT reasoning from
the fine-tuned LLMs. Notably, we observe a better accuracy-
faithfulness trade-offs when fine-tuning using only the cor-
rectly predicted question-answer pairs with CoT reasoning
(see Fig. 4; DFc in AQUA and SFc in LOGIQA).

4.2.3. ACTIVATION EDITING ANALYSIS

Through activation editing, we aim to understand the effect
of intervening on a model to amplify faithful behavior. The
intervention equation described in 1 has a hyperparameter
α indicating the intervention strength. Furthermore, we
intervene only on the top-K faithful heads (as identified in
Fig. 2) in order to be minimally invasive.

Intervening on attention heads leads to a drop in
accuracy with a marginal gain in faithfulness. The
results in Fig. 5 show that intervening on the most faithful
attention heads of LLAMA-3-8B-INSTRUCT doesn’t yield
a significant boost in the faithfulness of its CoT reasoning.
Interestingly, as compared to the ZS-CoT performance
of LLAMA-3-8B-INSTRUCT (AQUA: {Accuracy: 0.49;
Faithfulness: 0.627} and TRUTHFULQA: {Accuracy: 0.57;
Faithfulness: 0.232}), we find no significant improvement
in both accuracy (Fig. 5; columns (a),(c)) and faithfulness
(Fig. 5; columns (b),(d)). Moreover, the identified faithful
attention heads, optimal value of intervention strength (α),

and optimal number of intervened heads (K) are not consis-
tent across different datasets, highlighting the lack of gener-
alization of activation editing strategies to various datasets.

5. Conclusion
In this study, we investigated the challenge of eliciting faith-
fulness chain-of-thought reasoning in Large Language Mod-
els (LLMs). We explored three widely used techniques: acti-
vation editing, fine-tuning, and in-context learning (ICL) in
our empirical analysis. Our results indicate that while these
methods provided marginal improvements, none were suffi-
cient to consistently enhance the CoT faithfulness across di-
verse datasets and LLMs. Our findings highlight the critical
need for novel methodologies and a deeper understanding
of LLMs’ internal reasoning processes to generate more
faithful CoT explanations.
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Appendix

A. Impact Statement
Our work focuses on exploring whether we can improve
the faithfulness of the CoT reasoning generated by state-of-
the-art LLMs. This has significant positive implications for
societal benefit. For instance, if CoT reasoning output by
LLMs faithfully captures the underlying model behavior,
decision-makers and relevant stakeholders can leverage this
to determine if, when, and how much to rely on the recom-
mendations provided by LLMs. Therefore, our exploration
itself is very valuable and has a substantial positive societal
impact. Our analyses and findings indicate that existing tech-
niques commonly used to steer behavior in LLMs are not
effective in enhancing the faithfulness of LLM-generated
CoT reasoning. While this finding is not particularly posi-
tive, we believe it is a step in the right direction, informing us
of the complexity of the problem and underscoring the need
for fundamentally different frameworks to address it. As
far as we understand, our work does not have any potential
negative societal impacts, as it is mainly an exploration to
improve the faithfulness of LLM-generated CoT reasoning.

B. Chain-of-Thought
CoT reasoning in LLMs provides a structured response
where the model explicitly generates the step-by-step
thought process leading to its final response. This technique
is particularly useful in complex reasoning tasks, such as
solving math problems or logical question-answering scenar-
ios, and high-stakes decision-making, where transparency in
decision-making is crucial. By eliciting intermediate steps,
CoT significantly improves the accuracy of LLMs on reason-
ing tasks and simultaneously leads to greater user trust and
understanding. A relevant stakeholder can now see how the
LLM processes the input information and relies on it to gen-
erate the final output response. See Fig. 6 for examples of
CoT reasoning. This CoT reasoning makes the LLM’s pro-
cess more transparent and easier to trust. Further, this also
mimics human problem-solving approaches, allowing for
easier debugging and refinement of model reasoning. For-
mally, let F : Q → A denote a large language model that
maps a sequence of n input tokens Q = (q1, q2, . . . , qn) to
sequence of m answer tokens A = (a1, a2, . . . , an), where
qi and ai are text tokens belonging to the model vocabulary
V . For CoT reasoning, we append the input tokens Q with a
prompt that follows the template: “Read the question, give
your answer by analyzing step by step, . . . ”.

C. Measuring Faithfulness
While faithfulness is formally defined as how well an ex-
planation accurately reflects the reasoning process of the
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Question: Find a sum for first 5 prime numbers? Read the question, give 
your answer by analyzing step by step.

(A) 24    (B) 28    (C) 30    (D) 32    (E) 34

Response:

Step 1: Identify the first 5 prime numbers. Prime numbers are numbers that 
have only two distinct positive divisors: 1 and the number itself. The first 5 
prime numbers are 2, 3, 5, 7, and 11. 

Step 2: Add these numbers together. 2 + 3 + 5 + 7 + 11 equals 28.

Final Answer: (B) 28

Faithfulness = 0.00

Question: Find a sum for first 5 prime numbers? Read the question, give 
your answer by analyzing step by step.

(A) 24    (B) 28    (C) 30    (D) 32    (E) 34

Response:

Step 1: 2 is the first prime number.

  
Step 2: 3 is the second prime number.

 
Step 3: 5 is the third prime number.

Step 4: 7 is the fourth prime number.

Step 5: 11 is the fifth prime number.

Step 6: Add all these prime numbers: 2 + 3 + 5 + 7 + 11 = 28

Final Answer: (B) 28

Faithfulness = 0.92

Intermediate Answer: B; Prob(B) = 0.97

Intermediate Answer: B; Prob(B) = 0.99

Intermediate Answer: A; Prob(B) = 0.05

Intermediate Answer: A; Prob(B) = 0.17

Intermediate Answer: A; Prob(B) = 0.23

Intermediate Answer: A; Prob(B) = 0.20

Intermediate Answer: A; Prob(B) = 0.25

Intermediate Answer: B; Prob(B) = 0.99

Zero-Shot Answer: B; Prob(B) = 0.97 Zero-Shot Answer: A; Prob(B) = 0.30

Figure 6. Examples for Unfaithful (left) and Faithful (right) expla-
nations generated by state-of-the-art GPT-4 (left) and LLAMA-3-
8B-INSTRUCT (right) LLMs. The faithfulness score is calculated
using the early answering metric proposed in Lanham et al. (2023).
We observe a faithful CoT reasoning gradually improves the pre-
diction probability of the correct answer with an increase in CoT
steps.

underlying LLM, operationalizing this definition in the con-
text of LLMs is non-trivial, partly due to the billion param-
eter scale, black-box nature of LLMs, and partly due to
the internal reasoning (typically a combination of multiple
complex nonlinear functions) being in a different represen-
tation space from textual CoT reasoning (Agarwal et al.,
2024). We utilize faithfulness metrics proposed in Lanham
et al. (2023) that quantify the faithfulness of CoT reasoning
from LLMs. Specifically, we employ the Early Answer-
ing strategy, which evaluates the faithfulness of a CoT by
sequentially adding each CoT step to the question and query-
ing the LLM for its answer, conditioned on the truncated
set of CoT steps. If the answer from the LLM converges
towards the final answer as it encounters more CoT steps,
it indicates that the CoT explanation is guiding the answer
and is more likely to be faithful.

To evaluate the faithfulness of a CoT E shown in Fig. 7,
the early answering strategy involves providing different
truncated versions of E and analyzing how the LLM
responds to it. For example, if we provide just the first
step of E, i.e., Prompt = “5! equals what ? 1: 5! =
1×2×3×4×5.” and the LLM does not return 120, but
it returns 120 when provided with all the steps in E, i.e.,
Prompt = “5! equals what ? Step 1: 5! = 1×2×3×4×5.
Step 2: 1×2×3×4×5 = 120. Step 3: So the final answer
is 120”, then we can conclude that E is likely to be faithful.
Finally, faithfulness is quantified by the area over the curve
(AOC) of explanation fraction vs. the percentage of answers
consistent with a full explanation. Note that Lanham et al.
(2023) measures the faithfulness of CoT reasoning at a
dataset level. In contrast, we measure faithfulness of each
CoT reasoning using probability scores rather than binary
correct or incorrect assessments. Following (Lanham et al.,

2023), faithfulness is quantified by the area over the curve
(AOC) of explanation fraction vs. probability of final
answer consistent with a full explanation as shown in Fig. 8.

D. Selection Strategies for Fine-tuning
1) Deterministic Uniform (DU). Selecting all examples

(instead of N random examples) for the finetuning
dataset: S(τ=0, p=100%, mode=‘uniform’).

2) Deterministic Faithful (DF). Selecting a percentage
of the most faithful examples (instead of the top N ) for
finetuning: S(τ=0, p < 100%, mode=‘faithful’).

3) Stochastic Uniform (SU). Selecting all examples (in-
stead of N random examples) for the finetuning dataset:
S(τ > 0, p=100%, mode=‘uniform’).

4) Stochastic Faithful (SF). Selecting a percentage of
the most faithful examples (instead of the top N ) for
finetuning: S(τ > 0, p < 100%, mode=‘faithful’).

As in Sec. 3.1, the superscript c notation in the empirical
analysis indicates that only (Q,E,A) triplets with correct
answers were used for fine-tuning.

E. Accuracy v/s Faithfulness in Fine-tuning
Fig. 4, Fig. 9 show the faithfulness and accuracy of different
fine-tuning approaches on three datasets.

F. Related Work
Chain-of-Thought Reasoning Large Language Models
(LLMs) produce Chain-of-Thought (CoT) reasoning (Wei
et al., 2022; Agarwal et al., 2024) to help provide end users
with a peak into the reasoning process leading up to their
response. While the CoT reasoning generated by these
models is often appealing to human end users (Wei et al.,
2022; Krishna et al., 2024), prior research has argued that
LLM-generated CoT reasoning does not faithfully capture
the underlying behavior of these models and that this is a
critical challenge particularly in applications involving high-
stakes decision making (Agarwal et al., 2024). For instance,
as discussed in Agarwal et al. (2024), a doctor would benefit
from seeing an explanation that faithfully captures why an
LLM is recommending a particular diagnosis for a patient,
as opposed to seeing some plausible explanation that could
lead to the diagnosis at hand. In the former case, the doctor
can actually use this faithful explanation to determine if and
how much to rely on the model’s recommendation.

Evaluating the Faithfulness of CoT Reasoning Despite
the criticality of the faithfulness of LLM-generated CoT
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Question (Q): 5! equals what ?

Explanation (E):

Step 1: 5! = 1×2×3×4×5.

Step 2: 1×2×3×4×5 = 120.

Step 3: Final answer is 120

Figure 7. Example of CoT reasoning
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Figure 8. Measuring faithfulness using the early answering strategy from (Lanham et al., 2023).

AQUA LOGIQA TRUTHFULQA

0.3 0.4 0.5
Accuracy

0.575

0.600

0.625

0.650

0.675

Fa
ith

fu
ln

es
s

ZS

ZS-CoT

GTA

DU

DUc

DF
DFc

SU

SUc
SF

SFc

0.36 0.38 0.40 0.42 0.44 0.46
Accuracy

0.40

0.45

0.50

0.55

0.60

0.65

Fa
ith

fu
ln

es
s

ZS

ZS-CoT

GTA

DU

DUc

DF

DFc

SU
SUc

SFSFc

0.5 0.6 0.7
Accuracy

0.22

0.24

0.26

0.28

0.30

Fa
ith

fu
ln

es
s

ZS

ZS-CoT
GTA

DU

DUc

DF

DFc

SU

SUc

SF SFc

Figure 9. Faithfulness vs Accuracy relationship of CoT reasoning generated by fine-tuned LLAMA-3-8B-INSTRUCT using different
baselines (in red) and sampling strategies (in blue). On average, across all datasets, we find that none of the baseline or sampling strategies
achieve high faithfulness.

reasoning, there is very little work on analyzing and mea-
suring this aspect of LLMs. Turpin et al. (2023) were the
first to demonstrate that CoT explanations may not faith-
fully capture the behavior of the underlying models. They
showed that these explanations can be heavily influenced
by biasing model inputs e.g., by reordering multiple-choice
options in a few-shot prompt to always make the answer
“(A)”—which these models systematically fail to mention in
their explanations. Lanham et al. (2023) extended the above
work and proposed novel metrics to measure the faithfulness
of an LLM-generated CoT explanation. For instance, they
propose an early answering metric, which considers a gen-
erated CoT to be faithful if truncating that CoT causes the
model to change its final response. Similarly, if adding mis-
takes in a generated CoT causes the model to change its final
response, then the original CoT can be considered faithful.
Analogously, they proposed other metrics to measure faith-
fulness based on paraphrasing the beginning portions of the
original CoT as well as replacing the CoT with filler tokens
(e.g., ellipses). Using these metrics, they demonstrated that

the CoT reasoning produced by state-of-the-art LLMs does
not faithfully capture the behavior of the underlying models.

Enhancing the Quality of CoT Reasoning While there
are some prior works that tackled the problem of improving
the quality of CoT reasoning (Lyu et al., 2023), their focus
was on improving its quality vis-a-vis human knowledge or
understanding. For example, Lyu et al. (2023) focused on
generating a reasoning chain that could then be put through
a deterministic math solver, and the resulting answer from
this solver was compared to the answer produced by the
LLM. The reasoning chain was considered to be faithful if
the answers of the solver and the LLM matched. Note that
this approach does not account for ensuring that the internal
computations or the underlying behavior of the LLM was
captured in the reasoning chain, which is the focus of our
work.

In summary, our work makes one of the initial attempts at
exploring the promise of various popular paradigms, namely,
activation editing, fine-tuning, and in-context learning, to

11
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improve the faithfulness of the CoT reasoning generated by
LLMs.

G. Experiments
Here, we provide additional results of our experiments in
tabular format and perform significance testing of all our
empirical analysis.

12
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Table 1. GPT-3.5-Turbo Faithfulness for Different Fine-tuning Approaches

Approach AQuA LogiQA TruthfulQA
Accuracy Faithfulness Accuracy Faithfulness Accuracy Faithfulness

ZS-CoT 0.60 ± 0.05 0.64 ± 0.02 0.47 ± 0.05 0.40 ± 0.03 0.64 ± 0.05 0.30 ± 0.02
GTA 0.60 ± 0.05 0.65 ± 0.02 0.38 ± 0.05 0.38 ± 0.03 0.83 ± 0.04 0.35 ± 0.03

DU 0.57 ± 0.05 0.62 ± 0.02 0.46 ± 0.05 0.49 ± 0.03 0.65 ± 0.05 0.29 ± 0.03
DUc 0.61 ± 0.05 0.60 ± 0.03 0.46 ± 0.05 0.43 ± 0.03 0.65 ± 0.05 0.32 ± 0.03
DF 0.58 ± 0.05 0.62 ± 0.02 0.43 ± 0.05 0.51 ± 0.03 0.63 ± 0.05 0.32 ± 0.03
DFc 0.63 ± 0.05 0.64 ± 0.02 0.43 ± 0.05 0.44 ± 0.03 0.64 ± 0.05 0.33 ± 0.03
SU 0.61 ± 0.05 0.66 ± 0.02 0.45 ± 0.05 0.48 ± 0.03 0.61 ± 0.05 0.36 ± 0.03
SUc 0.57 ± 0.05 0.65 ± 0.02 0.44 ± 0.05 0.47 ± 0.03 0.67 ± 0.05 0.33 ± 0.02
SF 0.58 ± 0.05 0.64 ± 0.02 0.45 ± 0.05 0.51 ± 0.02 0.62 ± 0.05 0.35 ± 0.03
SFc 0.59 ± 0.05 0.64 ± 0.02 0.49 ± 0.05 0.48 ± 0.03 0.63 ± 0.05 0.34 ± 0.02

Table 2. Llama-3-8B-Instruct Faithfulness for Different Fine-tuning Approaches

Approach AQuA LogiQA TruthfulQA
Accuracy Faithfulness Accuracy Faithfulness Accuracy Faithfulness

ZS-CoT 0.43 ± 0.05 0.61 ± 0.02 0.38 ± 0.05 0.41 ± 0.03 0.56 ± 0.05 0.23 ± 0.03
GTA 0.43 ± 0.05 0.68 ± 0.01 0.44 ± 0.05 0.65 ± 0.01 0.75 ± 0.04 0.23 ± 0.03

DU 0.45 ± 0.05 0.62 ± 0.02 0.42 ± 0.05 0.48 ± 0.02 0.51 ± 0.05 0.27 ± 0.03
DUc 0.52 ± 0.05 0.57 ± 0.02 0.41 ± 0.05 0.43 ± 0.03 0.52 ± 0.05 0.24 ± 0.03
DF 0.43 ± 0.05 0.63 ± 0.02 0.45 ± 0.05 0.44 ± 0.02 0.55 ± 0.05 0.31 ± 0.03
DFc 0.54 ± 0.05 0.62 ± 0.02 0.40 ± 0.05 0.43 ± 0.03 0.54 ± 0.05 0.29 ± 0.03
SU 0.50 ± 0.05 0.67 ± 0.01 0.43 ± 0.05 0.45 ± 0.03 0.53 ± 0.05 0.28 ± 0.03
SUc 0.47 ± 0.05 0.61 ± 0.02 0.42 ± 0.05 0.45 ± 0.03 0.54 ± 0.05 0.24 ± 0.03
SF 0.39 ± 0.05 0.61 ± 0.02 0.40 ± 0.05 0.44 ± 0.03 0.50 ± 0.05 0.27 ± 0.03
SFc 0.50 ± 0.05 0.62 ± 0.02 0.39 ± 0.05 0.44 ± 0.03 0.61 ± 0.05 0.27 ± 0.03

Table 3. GPT-4 Faithfulness for Different In-Context Learning Approaches

Approach AQuA LogiQA TruthfulQA
Accuracy Faithfulness Accuracy Faithfulness Accuracy Faithfulness

ZS-CoT 0.64 ± 0.05 0.49 ± 0.03 0.56 ± 0.05 0.21 ± 0.03 0.90 ± 0.03 0.04 ± 0.01
GTA 0.68 ± 0.05 0.50 ± 0.03 0.67 ± 0.05 0.25 ± 0.03 0.92 ± 0.03 0.06 ± 0.02

DU 0.63 ± 0.05 0.51 ± 0.03 0.65 ± 0.05 0.24 ± 0.03 0.93 ± 0.03 0.04 ± 0.01
DUc 0.65 ± 0.05 0.48 ± 0.03 0.66 ± 0.05 0.22 ± 0.02 0.90 ± 0.03 0.05 ± 0.01
DF 0.66 ± 0.05 0.50 ± 0.03 0.61 ± 0.05 0.21 ± 0.02 0.81 ± 0.04 0.09 ± 0.02
DFc 0.68 ± 0.05 0.52 ± 0.03 0.66 ± 0.05 0.23 ± 0.03 0.84 ± 0.04 0.08 ± 0.02
SU 0.58 ± 0.05 0.50 ± 0.03 0.64 ± 0.05 0.26 ± 0.03 0.89 ± 0.03 0.09 ± 0.02
SUc 0.66 ± 0.05 0.51 ± 0.03 0.66 ± 0.05 0.23 ± 0.03 0.84 ± 0.04 0.08 ± 0.02
SF 0.63 ± 0.05 0.51 ± 0.03 0.55 ± 0.05 0.21 ± 0.02 0.82 ± 0.04 0.07 ± 0.02
SFc 0.65 ± 0.05 0.51 ± 0.03 0.60 ± 0.05 0.28 ± 0.03 0.82 ± 0.04 0.11 ± 0.02
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Table 4. GPT-3.5-Turbo Faithfulness for Different In-Context Learning Approaches

Approach AQuA LogiQA TruthfulQA
Accuracy Faithfulness Accuracy Faithfulness Accuracy Faithfulness

ZS-CoT 0.60 ± 0.05 0.64 ± 0.02 0.47 ± 0.05 0.40 ± 0.03 0.64 ± 0.05 0.30 ± 0.02
GTA 0.56 ± 0.05 0.64 ± 0.02 0.48 ± 0.05 0.44 ± 0.03 0.69 ± 0.05 0.33 ± 0.02
DU 0.55 ± 0.05 0.67 ± 0.02 0.48 ± 0.05 0.40 ± 0.03 0.65 ± 0.05 0.32 ± 0.02

DUc 0.64 ± 0.05 0.64 ± 0.02 0.40 ± 0.05 0.44 ± 0.03 0.75 ± 0.04 0.30 ± 0.03
DF 0.57 ± 0.05 0.67 ± 0.02 0.54 ± 0.05 0.47 ± 0.03 0.74 ± 0.04 0.30 ± 0.02
DFc 0.62 ± 0.05 0.65 ± 0.02 0.44 ± 0.05 0.45 ± 0.03 0.73 ± 0.04 0.34 ± 0.03
SU 0.59 ± 0.05 0.66 ± 0.02 0.43 ± 0.05 0.46 ± 0.03 0.78 ± 0.04 0.30 ± 0.03
SUc 0.61 ± 0.05 0.65 ± 0.02 0.44 ± 0.05 0.45 ± 0.03 0.73 ± 0.04 0.32 ± 0.02
SF 0.59 ± 0.05 0.67 ± 0.02 0.48 ± 0.05 0.46 ± 0.03 0.70 ± 0.05 0.30 ± 0.02
SFc 0.62 ± 0.05 0.66 ± 0.02 0.39 ± 0.05 0.44 ± 0.03 0.70 ± 0.05 0.31 ± 0.03

Table 5. Llama-3-8B-Instruct Faithfulness for Different In-Context Learning Approaches

Approach AQuA LogiQA TruthfulQA
Accuracy Faithfulness Accuracy Faithfulness Accuracy Faithfulness

ZS-CoT 0.43 ± 0.05 0.61 ± 0.02 0.38 ± 0.05 0.41 ± 0.03 0.56 ± 0.05 0.23 ± 0.03
GTA 0.48 ± 0.05 0.64 ± 0.02 0.47 ± 0.05 0.40 ± 0.03 0.57 ± 0.05 0.26 ± 0.03

DU 0.44 ± 0.05 0.65 ± 0.02 0.43 ± 0.05 0.38 ± 0.03 0.59 ± 0.05 0.24 ± 0.03
DUc 0.55 ± 0.05 0.63 ± 0.02 0.47 ± 0.05 0.43 ± 0.03 0.65 ± 0.05 0.23 ± 0.03
DF 0.43 ± 0.05 0.63 ± 0.02 0.35 ± 0.05 0.43 ± 0.03 0.59 ± 0.05 0.24 ± 0.03
DFc 0.37 ± 0.05 0.64 ± 0.02 0.42 ± 0.05 0.39 ± 0.03 0.64 ± 0.05 0.21 ± 0.03
SU 0.52 ± 0.05 0.62 ± 0.02 0.45 ± 0.05 0.42 ± 0.03 0.60 ± 0.05 0.25 ± 0.03
SUc 0.45 ± 0.05 0.63 ± 0.02 0.44 ± 0.05 0.42 ± 0.03 0.57 ± 0.05 0.23 ± 0.03
SF 0.43 ± 0.05 0.64 ± 0.02 0.41 ± 0.05 0.39 ± 0.03 0.58 ± 0.05 0.23 ± 0.03
SFc 0.42 ± 0.05 0.65 ± 0.02 0.47 ± 0.05 0.41 ± 0.03 0.58 ± 0.05 0.23 ± 0.03

Table 6. GPT-3.5-Turbo p-values of Faithfulness for Different Fine-tuning Approaches

Comparing AQuA LogiQA TruthfulQA
ZS-CoT GTA ZS-CoT GTA ZS-CoT GTA

DU 0.1946 0.2247 0.0000 0.0005 0.6353 0.1101
DUc 0.0718 0.0974 0.2141 0.0597 0.3573 0.4600
DF 0.3640 0.2610 0.0000 0.0000 0.3607 0.4292
DFc 0.9523 0.7473 0.0917 0.0201 0.2364 0.6090
SU 0.4740 0.7740 0.0014 0.0010 0.0473 0.9173
SUc 0.8063 0.9671 0.0088 0.0028 0.2353 0.5102
SF 0.8789 0.6707 0.0000 0.0000 0.0579 0.9934
SFc 0.8324 0.6255 0.0006 0.0001 0.1071 0.7794
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Table 7. Llama-3-8B-Instruct p-values for Different Fine-tuning Approaches

Comparing AQuA LogiQA TruthfulQA
ZS-CoT GTA ZS-CoT GTA ZS-CoT GTA

DU 0.4325 0.0062 0.0027 0.0000 0.1835 0.1687
DUc 0.0845 0.0000 0.5589 0.0000 0.7541 0.7380
DF 0.3175 0.0103 0.1958 0.0000 0.0130 0.0194
DFc 0.6068 0.0011 0.3946 0.0000 0.0580 0.0639
SU 0.0020 0.4670 0.1636 0.0000 0.1311 0.1476
SUc 0.9323 0.0020 0.1537 0.0000 0.7327 0.6844
SF 0.9893 0.0003 0.2321 0.0000 0.2940 0.2954
SFc 0.6049 0.0012 0.3319 0.0000 0.1527 0.2178

Table 8. GPT-4 p-values for Different In-Context Learning Approaches

Comparing AQuA LogiQA TruthfulQA
ZS-CoT GTA ZS-CoT GTA ZS-CoT GTA

DU 0.3089 0.8058 0.1395 0.7462 0.6632 0.2648
DUc 0.6307 0.1890 0.4525 0.3024 0.2392 0.5765
DF 0.5638 0.7929 0.9936 0.1062 0.0048 0.0489
DFc 0.1322 0.4820 0.3382 0.4337 0.0250 0.2369
SU 0.6778 0.7624 0.0509 0.8104 0.0063 0.0572
SUc 0.3145 0.7599 0.3932 0.3125 0.0297 0.2525
SF 0.2818 0.6367 0.9038 0.0491 0.0478 0.5067
SFc 0.2677 0.5417 0.0037 0.2679 0.0011 0.0111

Table 9. GPT-3.5-Turbo p-values for Different In-Context Learning Approaches

Comparing AQuA LogiQA TruthfulQA
ZS-CoT GTA ZS-CoT GTA ZS-CoT GTA

DU 0.2748 0.1188 0.8037 0.1245 0.4544 0.7770
DUc 0.8994 0.8539 0.1285 0.8728 0.9518 0.3670
DF 0.1845 0.0451 0.0144 0.3093 0.9840 0.3429
DFc 0.8065 0.5908 0.0505 0.7696 0.2248 0.7428
SU 0.4238 0.2524 0.0186 0.5463 0.9364 0.3364
SUc 0.8541 0.5486 0.0323 0.6991 0.5434 0.6946
SF 0.0992 0.0558 0.0093 0.3931 0.8899 0.4127
SFc 0.2790 0.1526 0.1431 0.8505 0.6492 0.6452

Table 10. Llama-3-8B-Instruct p-values for Different In-Context Learning Approaches

Comparing AQuA LogiQA TruthfulQA
ZS-CoT GTA ZS-CoT GTA ZS-CoT GTA

DU 0.0488 0.5230 0.3320 0.4825 0.8569 0.2464
DUc 0.2151 0.8029 0.3341 0.2573 0.7859 0.1824
DF 0.2610 0.7089 0.4776 0.3101 0.6582 0.4255
DFc 0.2190 0.8713 0.6078 0.8081 0.3891 0.0104
SU 0.6302 0.2352 0.7058 0.5657 0.5822 0.5463
SUc 0.3399 0.4633 0.6561 0.5424 0.9518 0.2365
SF 0.2268 0.8976 0.4570 0.7079 0.9604 0.2342
SFc 0.1095 0.7537 0.8032 0.6608 0.8679 0.1552
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Figure 10. Faithfulness vs Accuracy relationship of CoT reasoning generated by GPT-4 using different baseline (in red) and ICL strategies
(in blue). Results show that stochastic faithful sampling strategies, on average across three datasets, achieves higher faithfulness in CoT
reasoning.
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Figure 11. Faithfulness vs Accuracy relationship of CoT reasoning generated by GPT-3.5-TURBO using different baseline (in red) and
ICL strategies (in blue). On average, across all three datasets, we find that deterministic faithful (DF) sampling strategy achieve better
accuracy-faithful trade-off.

ACCURACY FAITHFULNESS

Figure 12. Accuracy and faithfulness of LLM reasoning for dif-
ferent intervention configurations (α,K) for LOGIQA dataset.
Activation editing shows different the trade-off between the accu-
racy and faithfulness performance of LLAMA-3-8B-INSTRUCT

and some configuration leads to an increase in accuracy as com-
pared to the zero-shot CoT performance ( and markers) but
doesn’t improve faithfulness significantly.
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